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ABSTRACT

The purpose of this study was to demonstrate the possibility of

fabricating thermally diffused p+n InP solar cells having high open-

circuit voltage without sacrificing the short circuit current. The p÷n

junctions were formed by closed-ampoule diffusion of Cd through a 3-5 nm

thick anodic or chemical phosphorus-rich oxide cap layer grown on n-

InP:S(N D = 3 x i0 _6 and 5 x 1017 cm -3) Czochralski LEC grown substrates.

After thinning the emitter from its initial thickness of 1 to 2.5 _m to

0.06 - 0.15 _m, the maximum efficiency was found when the emitter was 0.2

to 0.3 _m thick. Typical AMO, 25" C values of 854-860 mY were achieved

for Voo. Jsc values were from 27.5 to 29.1 mA/cm 2 using only the P-rich

passivating layer left after the thinning process as an anti-reflection

coating.

For solar cells made by thermal diffusion we expect the p+n

configuration to have a higher efficiency than the n+p configuration.

Based on this study we predict that the AMO, BOL efficiencies approaching

19% should be readily achieved providing that good ohmic front contacts

could be realized on the p+ emitters of thickness lower than 1 _m. If,

as we expect, the p÷n structures prove to be at least as radiation

tolerant as n÷p structures, then p÷n InP solar cells made by thermal

diffusion can become attractive for space applications, due to a

relatively low fabrication cost, for this method of fabrication.

INTRODUCTION

Owing to its potential low cost, reduced complexity and adaptability

to large scale batch processing thermal diffusion is a desirable

technique for p÷n or n+p InP junction formation.

***Funded by NASA Lewis Research Center
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Most research on InP solar cells, so far has concentrated on the n÷p
configuration. However, there is no apriori reason why the n+p

configuration should yield higher BOL efficiency and/or higher radiation

tolerance than the p÷n configuration.

n÷p InP solar cells made either by closed ampoule diffusion of sulfur

into InP:Zn [i] or InP:Cd [2] substrates or by open tube diffusion [3]

have been extensively studied. Good quality p÷n InP solar cells on the

other hand, have been fabricated only by epitaxial techniques [4,5].

This may be so because of the difficulty of i) fabricating thin p÷

emitters in a controlled manner, 2) forming good ohmic contacts to p÷

surfaces and 3) passivating p÷ surfaces.

The results we report here are part of a larger experimental effort

undertaken in an attempt to optimize the processing of InP homojunction

solar cells made by thermal diffusion, so as to achieve high-efficiency

low cost InP solar cells by this method of junction formation.

We have previously reported on limitations of n+p InP solar cells

made by closed ampoule diffusion [2,6]. Therefore, most emphasis here is

on the p*n configuration. Specifically, the objective of this preliminary

work was to demonstrate the possibility of fabricating thermally diffused

p÷n InP solar cells having high open-circuit voltage (roe) without

sacrificing the short circuit current (Isc).

In developing high-efficiency, radiation resistant p÷n InP solar

cells made by thermal diffusion our short-term effort, still in progress,

consists of:

I , Investigate the effects of i) various surface preparation procedures

including chemical treatments and anodic or chemical oxidation,

ii) choosing between Zn and Cd diffusants, in elemental form or as

Zn3P 2 and Cd3P_. and iii) diffusion through bare and capped surfaces,

on the characteristics, reproducibility and quality of p+n InP

structures made by closed ampoule thermal diffusion of Zn or Cd into

Czochralski LEC grown n-InP:S substrates;

o

.

Design optimum front contact grid pattern and form good ohmic

contacts on the emitters of thickness lower than 1 _m;

Choose from among the following processes for thinning the p÷ InP

emitter and optimize the processing parameters:

a) anodic dissolution;

b) anodic oxidation-removal cycles;

c) chemical etching,

so that the residual oxide left as a result of thinning i) is

stable, ii) has good passivating properties at the p*/oxide

interface, and iii) can possibly be used as a first layer AR

coating.

4. Find an appropriate second layer AR coating.

5. Radiation tolerance measurements.
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Based on previous reports on n÷p InP solar cells made by closed-

ampoule diffusion [i, 2, 6] and this work, we evaluate the limitations of

the n÷p and p÷n configurations in order to choose the structure and the

fabrication procedure of solar cells made by thermal diffusion with

efficiencies approaching those of epitaxially grown structures [5, 7].

EXPERIMENTAL

Cd and Zn diffusions into n-InP:S (ND = 3.5 x i0 IG and 4.5 x 1017

cm -3) were performed by a closed ampoule technique, using high purity Cd

and Zn or Cd3P 2 and Zn3P 2 [8]. Diffusion temperatures were from 480 to

550 ° C in the case of Zn and from 550 to 600 ° C in the case of Cd

diffusion. Diffusion times were from 5 to 75 minutes. The substrates

were Czochralski LEC grown with EPDs from 3 x 104 to 7 x 104cm -2.

Diffusions were performed through bare surfaces or by using cap

layers of: i) resistively evaporated SiO 2 (50-100A thick) [9]; ii)

phosphorus rich anodic [i0] and chemical [ii] oxides (35-50A thick).

The quality of p÷n InP structures was investigated from:

. Inspection of the post-diffused surface topography using Nomarski

and SEM microscopy;

, Revealing the surface and deep precipitates after thinning down the

p÷ layer to different depths by anodic dissolution using the FAP

electrolyte, and SEM inspection [12].

o Investigation of surface and deep etch pit density revealed

electrochemically using the FAP electrolyte at high current

densities (1-3 mA/cm 2) under illumination [12].

° Electrochemical C-V; I/C2-V, G-V and I-V characteristics by using

a Polaron PN4200 profiler.

° Performance parameters of p÷n InP solar cells fabricated on selected

p÷n structures.

RESULTS AND DISCUSSION

p÷n InP JUNCTION FORMATION

Using elemental Zn and Cd as diffusants, the p÷ surfaces were

seriously pitted even when phosphorus-rich oxide capping was employed.

Using high purity Zn3P 2 and Cd3P 2 sources, significant improvements

in the surface and p÷n diode quality were achieved. Due to space

limitation we are going to refer here only to diffusions using the

compound sources.

Diffusion through bare surfaces has led to unacceptable levels of

surface defect densities, e.g., as high as 109cm -2 in the case of Zn-

diffusion and of up to about 5 x 107cm -2 in the case of Cd-diffusion.
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The surface quality could be improved by diffusion through

resistively evaporated SiO 2 cap layers. In the case of Cd-diffusion EPDs

values as low as 8 x 105cm -2 were recorded, after removing the SiO 2 cap

layer and the contaminated front emitter layer (about i00_) from the

surface using the FAP electrolyte [12]. However, from electrochemical C-

V, I/C2-V, G-V and I-V characteristics, in this case, it was found that

relatively good diode characteristics were obtained only after removing

the front 0.2-0.3 _m layer from the surface.

Using phosphorus-rich anodic and chemical oxide cap layers, the

quality of p+n structures was dramatically improved.

Anodic oxides were grown in o-H3PO4:H20:ACN (1:200:300) under strong

illumination (= i00 mWcm -2) at a constant current density of 0.6 mA/cm -2

[I0]. Prior to diffusion the front In-rich oxide was removed by a short

dip in dilute HF (5%) solution, and the thickness of P-rich interfacial

oxide layer used as a cap was varied from about 25 to 50_ (cell voltage:

30 to 40 V).

Chemical oxides were grown using a newly developed etchant, called

"PNP" [II] with general formula: (o-HsPO4)_: (HNO3)v: (H_O2)t: (H20)100_{_+v+t),
which grows an interracial layer rich in In(PO3) 3 of thickness which Is

proportional to the etching time and depends on the composition of the

etchant.

Zn diffusion due to its higher diffusivity as compared to Cd

diffusion is hard to control. Furthermore, not only do the surface

precipitates have a high density but these precipitates extend deep into

the p+ emitters. The surface precipitates have a density ranging from 5

x 104 to about 5 x 108cm -2 depending on the diffusion temperature, amount

of evaporating material and temperature gradient between the end of the

quartz ampoule containing the source and the substrates region, and the

P-rich diffusion cap being used. We observed that keeping the source

region at a lower temperature (about I0 ° C below the substrate region)

improves the diode quality by reducing the surface precipitates.

In the case of Cd diffusion the precipitates which had a density

ranging from 4 x 102 to 6 x 107cm -_, depending on the diffusion conditions,

appear to be superficial. After removal of about 50_ from the surface

(below the oxide layer), no deep precipitates could be revealed.

Figure 1 shows a typical view of p+ surface topography for Cd and Zn

diffusion through capped and uncapped surfaces. As seen, specular

surfaces are obtained in the case of Cd diffusion through the thin P-rich

oxide cap layer.

Surface dislocation densities as seen in Figure 2 revealed either

electrochemically using the FAP electrolyte [12] at a high current

density or chemically using the Hubert etchant, have shown that extremely

low EPDs are achieved in the case of Cd diffusion using P-rich anodic or

chemical cap layers. The lowest EPD of 400-800 cm -2 in this case was

obtained at a diffusion temperature of 560°C with a temperature gradient

between the source and substrates of about 15°C. EPDs were about one

order of magnitude higher if no temperature gradient was used (see Figure
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2B) and as high as I0 _ cm-2 in the case of Zn diffusion through bare
surfaces (Figure 2C) .

Titre i. SEM view of surface topography

of p_m InP structures made by diffusion of

Cd at 560"C (A & B) and Zn at 540"C for 30

min (C) through about 35 _ thick chemical

oxide cap layer (A & B) and bare surface

(C) . Temperature gradient between the

surface and the substrates: A) 15"C;

B) 0"C; C) 15"C.

Tigure 2. EPD's revealed electrochemically

(A & B) using the FAP electrolyte at 2

mA/cm 2 under illumination and C)

chemically using HBr :o-H3PO _ (1:2) for

structures in Figure I.

From electrochemical C-V, I/C2-V,

G-V, and dark and illuminated I-V

characteristics, which were done for

all p+n structures, the diode quality was found to be the best for Cd

diffusion through the P-rich oxide cap layers. An example of these

characteristics after removing about 0.03 _m is shown in Figure 3. AS

seen quasi-ideal characteristics are obtained in this case even at a

diffusion temperature of 600" C. The diode characteristics in this case

were found to be near perfect even after removing just the front oxide

layer, implying an absence of a front dead layer, which proves that the

P-rich oxide is a very good choice as a diffusion cap layer.
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After Zn-diffusion, in the

best case (diffusion at 540"C)

reasonably good diode

characteristics were obtained only
after the removal of about 0.4 to

0.5 _m from the surface.

Electrochemical C-V (EC-V)

profilings performed using the FAP

electrolyte [12] have shown that

the net acceptor concentration,

(NA-ND), at the surface, in the

case of Cd-diffusion for diffusion

temperatures of 550 to 600°C, was

from 9 x 1017 to 2 x i018 cm -3,

depending on the diffusion

conditions. In Figure 4 are shown

Fi_ 3. Electrochemical C-V, I/C2-V and G-V tWO EC-V profiles after Cd

characteristics using the FAP electrolyte [12] diffusion through about 40_ P-rich
for a p+n InP structure, Cd diffused at 600'C
for I0 rain, after removing 0.03 _m from the chemical oxide cap layer into

surface. InP:S of two doping levels. As

expected the diffusivity of Cd

into the highly doped substrate appears lower than in the low doping

substrate.

p÷n InP SOLAR CELL PERFORMANCES

Small area (0.48 cm 2) p÷n InP solar cells were fabricated on

structures diffused at 560"C, the diffusion temperature at which the

A
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• a: 30 min at 575 °C
(N= =, "3.5E16 cm")

b: 30 rain at 575 °C
(N= =' 4.5E17 cm")

surface dislocation density is
minimum.

, ,

I

W

Since Au-Zn-Au front

contacts melt as far deep as 2 _m

into InP during sintering at

430"C, p*n structures with thick

emitters were fabricated.

Therefore, after front contact

sintering at temperatures from

390"C to 430°C, the emitters had

to be thinned down over the

uncontacted areas. Anodic

oxidation-removal cycles and

chemical etching were considered.

Since none of the etchants known

to us could be used, a new

D.pth Cu_) etchant which we call the "PNP"
et chant wad developed [II] .

Figure 4. EC-V profiles of two p÷n InP structures Resulting surfaces using this

made by Cd diffusion into n-InP :S through a etchant are very smooth as seen
In(PO%)_-rich chemical oxide cap layer
(-40 A thick)• in Figure 5 and a P-rich oxide

grows during the dissolution

process. Performance parameters were recorded at CSU after each thinning
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J':J.g%xzo 5. Nomarski micrograph Of a surface

after thinning the p" layer from -2.5 _Lm to

-0.I _m using the "PNP" etchant,

(u = 15, v = 45, t = I) [ii].
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step (see figure 6a) . Up to 150 steps r:Lg_zzeI. Illuminated I-V characteristics
were used in the case of chemical of cell |33 using a) an ELH lamp and b)

thinning in order to find the optimal under AMO, 25"C conditions.
emitter thickness. For selected cells, illuminated I-V (see Figure 6b)

dark I-V, I,c-Voc and spectral response measurements were done under AMO

conditions at NASA-LeRC.

Dark I-V, I,c-Voc characteristics, have shown that the diode quality
factor calculated at the maximum power point was from 1.03 to 1.08 and

the dark saturation current density from 8 x I0 -I_ to 2 x 10 -16 A/cm 2.

As seen in Figure 7, I,_ values increase with decreasing emitter
thickness and reaches a maximum at 0.15 to 0.25 _m. _ux was found

for emitter thickness of 0.2 to 0.3 _m. This means that most of the
current comes from the low defect density emitter and space charge

regions. The low FF values are due to the large values of R, due to an

inappropriate front grid design. The decrease of FF as a result of

thinning the emitter is directly related to an increase in R, due to a

large increase in sheet resistance once the surface concentration goes
below 9 x i017cm -3.
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Figure 7. Relative variations of I,c, Voc,
FF, I] , R, and R,h as functions of junction
depth of a p+n InP solar cell (#17).

Table 1 shows the variation of

the short circuit current density Jsc

and the open circuit voltage Voc for

several p+n InP solar cells fabricated

by closed ampoule diffusion of Cd into

InP:S substrates after thinning the.

emitter from about 2.5 _m to 0.06-0.15

_m by anodic and chemical oxidation,

as a function of the oxide type and

thickness. As seen, by using the PNP-

2 etchant [II] the largest J_c and Voc

values have been obtained. The high

Voc values for these thermally diffused

p÷n InP solar cells correlate well

with the low surface state density

minimum Nss,mtn of 3 x 10t°cm -2 eV -1

recorded after dissolution of a p+n

InP structure using the PNP-2 etchant,

from 2 _m down to = 0.25 _m. The

oxide thickness in this case was = 120

nm. The N_ values were calculated

from the conductance-voltage (G-V)

data at different frequencies using a
Polaron PN 4200.

In-rich surface layers have

previously been identified to be a

possible cause of the high density of

interface states [13]. From the large
enchancement of Photoluminescence

Intensity as a result of removing the

In-rich surface oxide layer [14], it

will appear that this is the case.

This might explain the data in Table 1

which show an increase in roe of anodic
oxide covered solar cells after

Table I. J,o and Voc of selected p+n InP Solar cells after thinning the p÷ emitter by anodic
oxidation-removal and chemical etching with PNP etchant [ii].

* Approx. Before removing After removing J,c(b)/J,_(a)
Cell Oxide oxide the front oxide the front oxide

# type thickness layer (b) layer (a) ( % )

(nm) J,_ (b) Voc (b) J,_ (a) Vo_ (a)

(mA/cm2) (mV) (mA/cm2) (mY)

20(c) anodic 120 25.69 849 23.33 854 90.8
22(d) chemical 850 27.00 859 22.43 852 83.1

23(e) chemical 150 27.65 859 22.33 850 80.0

26(f) anodic 130 20.80 846 21.22 851 102.0

27(g) chemical 400 27.96 859 23.04 853 82.4
33(h) chemical 120 29.10 860 - - -

* Illuminated I-V characteristics measured at NASA LeRC, under AM0, 25"C conditions; (c) grown in 3%

citric acid in ethylene glycol (1:3) buffered to pH7 with 20% NH4OH solution; (d), (e) and (g) grown in

PNP-I etchant; (d) : (u=0, v=60, t=l) ; (e) : (u=15, v=45, t=l) ; (g) : (u=5, v=60, t=l) ; (f) grown in

o-H_PO4:HzO:ACN (1:200:300) [i0]; (h) using PNP-2 etchant: (u=IO, v=30, t=l); where the PNP etchant is:

[ (o-H3PO,)_ : (HNO_)_ : (HzO2) t : (HzO)_oo_(_÷,,,tl ]
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removing the front In-rich oxide layer. As seen, after removing the

front oxide layers, the solar cell performance parameters are comparable

for the cells made using the two thinning processes, namely, the PNP-I

etchant and anodic oxidation. However, the cell performance parameters

are even better using the PNP-2 etchant. Since the anodic oxidation-

removal process is very laborious and hard to control [i0] as compared to

a simple chemical etching process, the latter seems to be the best

answer.

The above Voc values, measured at NASA LeRC under the AMO, 25 ° C

conditions, are higher than any previously reported Voc values for InP

solar cells made by thermal diffusion.

Table 2. Measured or Predicted AM0, 25"C p/n or n/p InP Solar Cell Performances

Structure Junction Dopant Approx. Voc Jsc FF 11 References

formation Junction (mV) mA/cm 2 (%) (%)

technique depth

p*-i-n LPE Mg/S 0.6 823.7 37.6 75.4 17.2 Itoh et al., NTT [4]

(active (active (Measured_

area) area)

p'(InGaAs)/ LPE 866 29.25 81 15 Shen, et al. [5]

p* (InP)/n (InP) / Zn/S 0.7 Arizona State Univ.

n ÷ (InP) MOCVD 864 32.84 76.7 15.9 (Measured)

n÷-p Closed S/Zn 0.2-0.3 828 33.7 81.6 16.6 Okazaki et al., NTT [i]

Ampoule (Measured)

n÷-p Faur, et el., CSU [2]

Closed S/Cd 0.15 806 30.5 80.1 14.35 (Measured)

Ampoule 0.08-0.1 840 36.5 84 18.8 (Predicted)

Faur, et el., CSU,

p*-n 0.25 860 29.1 52.2 9.52 (Measured) This work.

(Cell 33) Closed Cd/S 0.25 880 34.5 83 18.36 (Predicted)

Ampoule 0.25-0.3 890 37.4 84 20.4 (Predicted)

Radiation tolerance scale: p+-n = n÷-p-p _ > n÷-p > p÷-i-n (after Okazaki, et el., NTT ) [I]

08

External Ouantum Efficiency

vs. Wavelength

>_

0.6

LU
0.5

E
D
E

0 0.3

x 0.2
III

0.0

0.4

in _::_'4P--_ etchant )

I I I I t

0.5 0,6 0.7 0.8 0,9

Wavelength (nm)

1.0

In Table 2 is shown a

review of performances of p÷n

InP solar cells including

those measured and predicted

for our high performance p+n

junctions. For comparison,

performances of n+p InP solar

cells made by closed-ampoule

sulfur diffusion into Zn and

Cd doped substrates are also

given in this table.

One can see that our

measured Voc and Isc values are

higher or very close to

Figure 8. External Quantum

Efficiency plots of selected p+n InP

solar cells measured under AMO, 25"C

conditions at NASA LeRC.
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previously reported values of epitaxially grown

p+ (InGaAs) /p+ InP/n(InP)/n + InP [5] solar cells.

p+-i-n [4 ] or

From the external quantum efficiency plots, seen in Figure 8, an

increase of 15 to 25% in Isc can be expected by optimizing the passivating

layer and using a second layer AR coating. From the Isc-Voc

characteristics such an increase in Isc will produce an increase of about

I0 mV in Voc. By further optimizing the diffusion process we estimate

that a Voc value of 880 mV is readily achievable using these high

performance thermally diffused p+n InP structures. Assuming that by

reducing Rs, FF values of 83% can be achieved, a simple computation based

on presently measured Voo and Isc values indicates that AMO efficiencies

of over 18% are readily achievable. By further reducing the external

losses (i.e. 4% grid coverage and below 5% overall reflexivity), using

better quality substrates (i.e. defect density below I04cm-2), optimizing

base doping, further optimizing the diffusion process and the quality of

the passivating layer, AMO, 25 ° C Voc values as high as 890 mV for solar

cells fabricated by this method of junction formation should be possible.

The Jsc,ma. in this case is of about 37.4 mA/cm 2. Assuming a FF of 84%, the

expected maximum AMO efficiency is of 20.4%.
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By comparison, the maximum

reported AMO efficiency for an

n+p InP solar cell made by

thermal diffusion is 16.6% [I].

Voc in this case is the

principal limiting parameter.

Based on our thorough

investigation on n+p InP

thermally diffused structures

[2, 6 ] we estimate that the

maximum achievable Voc is about

840 mV which is in close

agreement with previously

predicted values [i]. The

maximum Jsc in this case is

Figl/re 9. Variation of Iph and majority carrier limited to 36.5 mA/cm 2.
concentration (ND) as function of depth after Assuming a similar FF value of

photoanodic dissolution using the FAP electrolyte 84%, the maximum AMO efficiency
[12] of an n÷p InP structure made by thermal
diffusion [2]: in this case is of about 18.8%.

These values were calculated

for an n÷p InP solar cell with similar minimal external losses as

described above, for a stucture fabricated by sulfur diffusion into Cd-

doped InP substrates, using a thin In(PO 3)3 diffusion cap layer and

removing the phosphorus depleted dead layer from the surface (400A).

As seen in Figure 9 which plots the variation of I_c at the FAP

electrolyte/n + InP interface and Nd as a function of the dissolution

depth, however the highest Isc value is found after removal of about 400_

from the surface, which corresponds to a surface concentration N d of about

2 x i018cm -3. The dislocation density minimum at this level was about 6

x 105cm -z, as revealed electrochemically. This explains the relatively

low Voc and I_c predicted values. However, by further thinning the

emitter, Isc and Voc both increase and reach a maximum at about 500A. Due
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to the graded nature of the diffusion profile [6], in this case the R s

drastically increases due to an increase in sheet resistance. Because of

this the maximum efficiency in this case was found for emitter thickness

of 800 to 1000A, which offers an explanation of why the Voc.max is only 840

mY, and the Jsc is below than that expected from a well designed p÷n InP

solar cell.

Very few and contradictory comparative radiation resistance

measurements of the two n÷p and p÷n InP configurations have been reported

[1,15]. While Okazaki, et al. [I] assume the radiation tolerance scale

for InP solar cells of different configurations to be: p÷-n = n÷-p-p ÷ > n ÷-

p > p÷-i-n, Weinberg, et al. [15] on the contrary predict the n÷p

configuration to be more radiation resistant than the p÷n configuration.

An explanation of this is that radiation tolerance evaluations were not

done on structures fabricated under similar conditions. Therefore more

insight in this area is necessary. We plan to do radiation resistance

measurements on p÷n InP solar cells but only after the external losses are

drastically reduced, i.e. an AMO efficiency greater than 16%.

CONCLUSIONS

From our preliminary investigation it appears that optimal

conditions for high quality thermally diffused p÷n structures are: i)

Cd3P2 as source; no added phosphorus; ii) diffusion through thin (25-40_

thick) In(PO3)3-rich chemical oxide; iii) diffusion temperature: 560 ° C

and iv) about 15°C temperature gradient between the source and

substrates.

For solar cells made by thermal diffusion we expect the p÷n

configuration to have higher efficiency than the n÷p configuration, due

especially, to an increased Voc.

Based on this study we predict that p÷n InP solar cells with AMO, BOL

efficiencies approaching 19% should be readily achievable providing that

good ohmic front contacts could be realized on the p+ emitters of

thickness lower than 1 _m. The maximum expected AMO efficiencies for the

p+n configuration is about 20.4%, while for the n÷p configuration, it is

about 18.8%.

If, as we expect, the p+n structures prove to be at least as

radiation tolerant as the n÷p structures, then p+n InP solar cells made

by thermal diffusion can become very attractive for space applications

due to a potential low cost, reduced complexity and adaptability to large

scale batch processing.
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