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SUMMARY

A set of instrumentation for making basic magnetic measurements was assembled in order to

characterize high-intrinsic-coercivity, rare-earth permanent magnets with respect to short-term

demagnetization resistance and long-term aging at temperatures up to 300 °C. The major spe-

cialized components of this set consist of a 13-T-peak-field, capacitor-discharge pulse magnetizer;

a lO-in.-pole-size, variable-gap electromagnet; a temperature-controlled oven equipped with iron-

cobalt pole piece extensions and a removable paddle that carries the magnetization and field
sensing coils; associated electronic integrators; and standards for field intensity H and magnetic

moment Mcalibration. A 1-cm cubic magnet sample, carried by the paddle, fits snugly between
the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T

can be applied by the electromagnet at temperatures up to 300 oC. A sample set of demagneti-

zation data for the high-energy Sm2Co17 type of magnet is given for temperatures up to 300 °C.
These data are reduced to the temperature dependence of the M-H knee field and of the field for

a given magnetic induction swing, and they are then interpreted to show the limits of safe mag-
net operation.

INTRODUCTION

Temperatures approaching 300 *C are now planned for the exciting magnets to be used in

free-piston-Stifling-engine-driven linear alternators for multiyear missions in space (Slaby 1989),
where a high heat rejection temperature permits a great reduction in radiator size. Of the vari-

ous presently available hlgh-energy permanent magnet materials, only the samarium-cobalt type

of material can produce magnets that retain at 300 °C a useful remanence (B r --- 0.9 T) and a

sufficiently high intrinsic coercivity (MHc > Br) to keep the magnetic induction B roughly linear
with the applied field H in the second quadrant (Wallace et al. 1989, Potenziani II et al. 1985,

NMAB 1985, and Strnat 1983).

However, determining the characteristics of the SmCo type of magnet is not easy. First,

these modern rare-earth-cobalt magnets are not easily magnetized; the "charging" field pulse

must exceed the magnet's MHc (usually tens of kilo-oersteds at room temperature) by at least a
factor of 2 or 3 in order to develop the maximum possible coercivity. Further, at 300 °C signif-

icant instrumentation problems related to thermal expansion of the magnet sample temperature-

control fixture, field-sensing coil expansion and wire insulation, and sample handling must be

overcome. Such experimental difficulties have no doubt contributed to the scarcity of high-

temperature demagnetization data on otherwise promising high-temperature magnets.



In this reportwedescribea setof basicmagneticmeasurementinstrumentationfor charac-
terizingthe demagnetizationresistanceof high-coercivityrare-earthpermanentmagnetsat
temperaturesto 300°C . Weprovideexamplesof dataobtainedusingthis setup,give interpre-

tatlons, and indicate directions of future research.

INSTRUMENTATION AND PROCEDURES

For charging 1-cm cubic magnet samples we are presently using a pulse magnetizer of the

mercury-ignitron-switched, capacitor-discharge type. A maximum of 24 kJ can be stored at

2000 V on our 0.012-F capacitor bank. This bank can be connected to either one of two sole-

noids, one providing peak fields up to 13 T in a 1-in. bore and the other up to 10 T in a 1.75-in.
bore. Spatial nonuniformity of the field is less than 10 percent over a 2-in.-long central volume

of these solenoids. The damping of this resistance-inductance-capacitance system is just suffi-
cient to ensure a nonreversing pulse of about 10-ms full width at half maximum that rises

rapidly to its peak in 2 ms and then tails off slowly in about 40 ms. This field is sufficient to

develop fully the coercivity of even the hardest neodymium-iron-boron (NdFeB) type of magnet
and is "overkill" for samarium-cobalt magnets.

The core instrument in our magnet testing laboratory is the magnet sample temperature-

control fixture. It has a removable aluminum paddle that carries the sample along with built-in

magnetization and field-sensing coils. The present instrument is an improved, 300 °C, model of

a temperature-control and probe coil assembly for magnet testing that was originally developed

at the University of Dayton (Mildrum and Graves 1981). Figure 1 shows how a precision 1-cm

cubic sample fits closely between the flat and parallel faces of iron-cobalt pole pieces that are
precision mounted to the electrically heated aluminum housing and together make up the

temperature-controlled oven. These high-magnetic-saturation pole pieces serve as extensions of

the electromagnet pole pieces; they are thermally insulated from the latter by 30-mil-thick

Teflon shims. The driving electromagnet has a 10-in. pole size and a variable gap and is

equipped with tapered pole caps. The fixture has tolerances and controlled overall thermal

expansion such as to keep the effects of the sample-to-poleface gap negligible. The B-flux is

sensed by a coil surrounding the sample, and the H-flux is sensed by another coil, of nearly the

same area-turns and thermal expansion, located adjacent to the B-coil. After electronic

integration the signals from these coils are subtracted so as to air-flux compensate the B-coil,

resulting in a signal proportional to the intrinsic magnetic moment Mwithin the B-coil. As the

field provided by the electromagnet is slowly varied, the electronically processed signals from the

two sensing coils yield the second quadrant M-H demagnetization curve, with possibly some

extension into the third quadrant. Salient features of this high-temperature model are the high-
saturation, hlgh-curie-point, 50 percent iron-cobalt pole pieces; the use of ceramic-insulated

sensing coil wire wound on machinable ceramic forms; and a bronze liner that provides a bearing

surface for the Sliding paddle. AbOVe 200 °C and without this liner the aluminum-on-aluminum

sliding contact was found to result in rapid surface gouging and even seizure of the paddle in its

slot after only a few uses.

Absolute calibration of the M-axis at room temperature was referenced to a pure nickel stan-

dard in the form of a 1-cm cube having a known magnetization of 6.100 kG in an applied field of

10 kOe at 25 °C. Up to about 200 °C the H-axis calibration was transferred from a precision
reference magnet by a Hall effect probe.
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Prior to measurement of the demagnetization characteristic, the samarium-cobalt samples

were pulse magnetized in the charger coil at 100-kOe peak field. For measurements at 200 °C

and above a sample was then preheated for approximately 5 min to about 100 deg C below the

measurement temperature in order to minimize chipping caused by thermal shock. Next the

sample was inserted into the preheated fixture and allowed to stabilize for a few minutes to final

temperature, and then the demagnetization curve was taken. In order to limit any aging effects,

no sample was ever soaked at measurement temperature for more than 10 min. Because the

probe coil fixture, which holds the sample and the thermocouple, suffers unavoidable loss of heat

during its removal from the oven when resetting integrators, the accuracy of a magnet tempera-

ture reading was probably no better than +3 deg C. In this regard, quick handling of hot

samples becomes an important consideration. The best solution has been to let the sample be

held by its own field to the face of a threaded Teflon spacer attached to a steel screw. The

sample is attracted to the embedded screw, and the protruding part of the screw serves as a
handle.

SUMMARY OF EXPERIENCE WITH SAMARIUM-COBALT MAGNETS

The initial investigations have been concentrated on the modern Sm2Co17 type of material,

because its energy product (B/-/)max , as well as possibly other magnet performance criteria, gen-

erally exceeds that of the older SmCo s type of magnet. Figure 2 is typical of the variation of
demagnetization characteristics with temperature that was observed for a commercial, aniso-

tropic 2-17 type of magnet. It exhibited the usual rapid loss of coercivity and relatively lesser

loss of remanence as temperature increased. The 24 °C curve terminates at H _-, -32 kOe be-

cause that is the maximum field strength achievable in the apparatus.

Data extending into the third M-H quadrant (not shown) were taken but became unreliable

as Mapproached saturation. In fact, the IMI-signal was actually seen to decrease for suffi-

ciently high IHI! Poleface saturation is believed to be the cause of this anomaly. Using the

electrostatic analogy, one can see that the magnetic charges appearing at the ends of the sample

magnet are normally canceled by image charges appearing in the contiguous pole faces.

However, as the pole faces approach saturation, imaging effectiveness decreases, and a sample in
a state of high M becomes subject to an increasing self-demagnetizing field in addition to the

externally applied H. Then the M and H readouts are no longer valid for the sample. As yet,

the authors know of no effective way to circumvent this limitation in this type of instrument,

which prevents one from obtaining a complete hysteresis loop of a high-coercivity magnet. In

light of this, certain vibrating sample magnetometers that are subject to image fields (Hoon and

Willcock 1988) may also be susceptible to errors from variable imaging.

We now discuss ways that raw demagnetization data, as in figure 2, can be reduced to plots

that exhibit the margin of safety against demagnetization in given circumstances of magnet use.

Briefly, if a magnet is subject to an excessive demagnetizing field that drives M below the knee

of the M-H curve (i.e., below the 10-percent-down-from-remanence point), one may expect an

immediate and significant loss of magnetization. The amount of this loss, which is recoverable

only by remagnetization, is obviously sensitive to the squareness of the M-H curve in the neigh-

borhood of its knee. Also, from considerations of domain wall energy, domain wall pinning

potentials, and thermal agitation (Mildrum et al. 1974), close approach to the knee is likely to
accelerate the rate of the long-term remanence loss called magnetic aging. From these consider-

ations the variation of the knee point with temperature is taken to be important information for

the design of demagnetization-resistant, permanent magnet devices. Figure 3 presents such a



plot of theknee field [MHk [, showing its decrease with temperature. Superimposed on this plot

are curves showing, at a given temperature, the magnitude IHdl of the demagnetizing field

needed to produce a desired induction swing AB below remanence Br According to the pre-

ceding remarks, one clearly needs ]Hall < [MHkI for safe operation to the right of the knee. For

example, figure 3 shows that this magnet with AB ----0.gB r cannot be safely operated above
280 °C. Considering the temperature range of 25 to 300 °C, figure 3, as well as similar data for

other samples not presented herein, also shows that room-temperature performance is not a

reliable predictor of performance near 300 *C because slopes with temperature, as well as their

variability, can be considerable.

CONCLUSIONS AND FUTURE DIRECTIONS

This work has shown that an electromagnet-driven permanent magnet hysteresigraph based

on induction sensing of the magnetization and field of 1-cm cubic samples held snugly between

tapered iron-cobalt pole pieces can be practicable up to 300 °C for obtaining the second quad-

rant M-H demagnetization data of high-energy magnets such as samarium cobalt. The two
sensing coils, wound with ceramic-insulated wire on machinable ceramic bobbins, have provided

reliable and reproducible output even after numerous excursions to 300 °C. At room tempera-
ture the 3.2-T maximum field in the 1-cm gap between the iron-cobalt pole pieces was adequate

to drive the magnetic moment to zero for all except the magnetically hardest samples; above

100 *C this limitation disappeared. In the third M-H quadrant and at high magnetization the

data provided by this instrument can be erroneous because pole face saturation above about 2 T

leads to magnetic decoupling (failure of magnetic charge imaging) of the sample from the pole

faces. A vibrating sample magnetometer using spherical samples may have a wider range in this

respect as well as in temperature. However, the 1-cm cubic sample has proven to be ideal for

availability, ease of handling, and ease of magnetic charging.

The present hysteresigraph is thought to be suitable also for short-term (_100 hr) one-at-a-
time aging tests of magnet samples at temperature and at a specified static demagnetizing field.

For longer term (--.5000 hr) aging there may be little choice but to simultaneously test multiple
samples in an inert-gas chamber. Subjecting samples to a continuous controlled bucking field,

other than the self-demagnetization in free space, and in-place testing at uninterrupted tempera-

ture may not be feasible for long-term aging tests.
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Figure 1.--Electromagnet-driven permanent magnet hysteresigraph. The FeCo pole pieces are an integral part of the temperature-

control fixture. Electronic processing converts the (B, /-/) signals to (M, H) signals.
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