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Summary

The paper describes two new techniques for formulating the coupling between levels in multilevel opti-
mization by lincar decomposition, proposed as improvements over the original formulation, now several years
old, that rclicd on explicit cquality constraints which werc shown by application experience as occasionally
causing numcrical difficultics. The two new techniques represent the coupling without using explicit equality
constraints, thus avoiding the above difficultics and also reducing computational cost of the procedure. The
old and the new formulations arc presented in detail, illustrated by an example of a structural optimization.
A generic version of the improved algorithm is also developed for applications to multidisciplinary system not
limited to structures.

Notation

A vector of cross-scctional arcas*, A;

C; cumulative constraint of ith bcé.m

DIS; vector defined by cq. (22)*

gk vector of constraints* for a beam, c.g., stress limits, and local buckling, k = 1... NGB,

partitioned in subscts of lengths NGB;, cach subsct corresponding to ith beam

Gy vector of constraints* for the assembled structure, e.g., displacement limits, k =1... NGA
1 vector of cross-scctional moments of inertia*, I;

Li length of ith beam

NE number of beams in a framework

N; vector of the end forces* for ith beam

NP length of vector F;

NSS number of subsystems

NX Iength of vector X

P; vector of parameters* in optimization of ith beam, comprising clements Py, ¢=1...NF;
P, gth clement of vector P;

SA system analysis

SI input vector of length NST into SA*

SO output vector of length NSO from SA*

SSA; ith subsystem black box analysis

{SSC} vector of geometrical* variables determining the structure overall shape

SSI; input vector of length NSSI; into SSA;*

SSO; output vector of length NSSO; from SSA;*

TOL tolecrance paramcter sct by user



w weight, equivalent to volume in a homogencous structure

X vector of design variables* at the system level (assembled structure) in optimization by
decomposition

Y; vector of design variables* in ith beam optimization problem

zZ vector of design variables* in optimization without dccomposition

*{ } brackets identifying vectors arc omitted where possible without causing ambiguity.

U and L with XY, Z, c.g., XU, X L, denotc upper and lower bounds on these variables; other symbols are
defined where first used.

Introduction

Large scalc optimization problems benefit from decomposition into a set of smaller, more manageable,
concurrently-solvable subproblems. In a hierarchic decomposition method, the subproblems form a pyramid
with the system problem on top and subsystem problems in the horizontal layers below. These subproblems
arc coupled through the solution of a coordination problem. A particular procedure for optimization by
decomposition introduced in reference 1 solved the coordination problem by enforcing a set of equality
constraints between the optimization levels and by using an optimum sensitivity analysis formulated in
references 2 and 3. That procedure, referred to as Optimization by Lincar Decomposition (OLD), was
formulated for two-levels in reference 1 and was demonstrated using a framework as a test case in reference 4
representing a class of skeletal, redundant structures. It was subscquently generalized to an arbitrary number
of levels in reference 5. The OLD is a generic method applicable to any system that is amenable to a hierarchic
decomposition, c.g., multidisciplinary applications reported in references 6 and 7.

Practical cxperience with the procedure, and its examination in reference 8 point to the enforcement of
cquality constraints as the source of numerical difficultics that occasionally make this procedure slow to
converge. This observation is consistent with the opinion generally held among the developers and users
of optimization methods that addition of cquality constraints to an optimization problem tends to make the
solution numerically more difficult. '

Motivated by the above, and by two new techniques for satisfying cquality constraints that were recently
introduced in references 9 and 10, this paper defines two alternative modifications to the OLD procedure. Either
alternative removes explicit cquality constraints from the procedure while, still, achieves their enforcement
implicitly.

The two alternative techniques will be introduced by generalizing from an example of the framework
structurc that was a test case in references 1 and 4. To this end, the framework analysis will be discussed first,
followed by the framework optimization problem formulated in a standard manner without decomposition.
Next, an abridged description of the OLD will be given, limited to a two-level, structural optimization of the
framework test casc. With this as a reference, two new alternative modifications to the OLD algorithm will be
introduced. :

Original Reference Procedure
Analysis

The framework is shown in figure 1. We limit the framework analysis to a two-dimensional case by allowing
only in-planc displaccments under the action of static loads. The static analysis of this structure may be
formulated in two levels by using cither a substructuring approach where cach of the three beams in the
framework is regarded as a scparate substructure, or a finitc clement method in which each beam is a single
finite element. Choosing the finite clement formulation, the analysis of the assembled framework requires an
input and gencrates an output as defined in table 1.

2



The derivalives such as the displacement U with respect to the cross-sectional arca A;, %U;, cxist because
U=f(A1,SSC),N; = f(A1,58C), and L; = f(SSC). These derivatives arc obtained by finite differencing
or by a quasi-analytical scnsitivity analysis embedded in the framework analysis.

Sclccted data from the above output arc entered as input into a local strength analysis of the ith beam.
The level of refinement of that analysis is immaterial for the purposes of this discussion, c.g., it might be a
finite clement analysis whereby the beam is divided into number of finite clements, or an clementary strength
of matcrials analysis. In cither case, the input and output arc as defined in table 2.

The above approach suggests decomposition of the framework analysis into the assembled framework
analysis (systcm level analysis) and the beam analyses (subsystem level analyses). This decomposition forms
a hicrarchy in which the former is a parcnt and the latter arc the daughters. The parent-daughter relationship
is hicrarchic because the information flows from the parcnt to cach daughter and no information is directly
transmitted from onc daughter to another. Since the daughter analyses are mutually independent, they may
be executed: concurrently.

To make the system and subsystem level analyses consistent, one has to acknowledge that A; and I; are
functions of the beam cross-scctional dimensions {Y'};. Thercfore, when prescribing the values for A;, I;, and
{Y'}i, we must satisfy the consistency cquations

Ai=fa{Y}i); Li= fi({Y}i), i=1...NE (1)

Kecping these equations satisfied in a multi-level optimization is a part of the so-called coordination problem,
and the analysis by decomposition will be exploited to cstablish a corresponding optimization-by-decomposition
scheme that will be described later.

Optimization Without Decomposition

The optimization problem to be solved is

“find Z such that F(Z) is at minimum subject to constraints” (2)
G;(2) <0, j=1...NGA; (2a)

9(2) <0, k=1...NGB (2b)

ZL<Z<2ZU (2¢)

In the static problem at hand, the design variables may include the clements of the {SSC} and some, or
all, of the cross-scctional dimensions of the beams, {Y'};. The constraints Gy comprisc the assembled structure
displacements and clastic stability, and at the beam cross-scction level the g constraints entail the allowable
stress, becam column buckling, and local buckling.

Optimization by Linear Decomposition (OLD)

The above problem is decomposed into a single problem solved for the assembled structure (system level
problem) and NE scparate problems solved for each beam (subsystem level problems). It is convenient to
describe the subsystem level problem first. The equation underscoring indicates which parts of the formulation
will be changed by the two new techniques formulated in this paper.

Subsystem level.

At the subsystem level, an optimization problem for the ith beam is independent of the other problems at
that level, hence the beam optimizations may be exccuted concurrently. The ith beam problem is, taking into
account cq. (1):

“find {Y'}; such that C;({Y};, {P}:) is at minimum subject to constraints” (3)
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Ai— fa({Y}i) =0, (3a)
Li—-{Y}i=o, (3b)
{YL}; <{Y};i < {YU}y; (3¢)

where {Y L}; and {YU}; arc the lower and upper side-constraints on {Y'};. The {P}; is a vector of parameters
comprising A;, I;, L;, and {N}; that are output from the analysis at the system level as defined in table 1
and arc passed as input into the beam analysis as shown in table 2. These paramcters stay constant in the
process of the bcam optimization. Hence, for ith beam

{Pg}i ={A;, J;, Li,{N};}, ¢g=1...NP, (4)

The scalar C; is a cumulative constraint representing the degree of satisfaction, or violation, of the subset
g({Y}:), k=1...NGB;, pertaining to the ith beam, of the entire set of gk that appears in eq. (2b). The
cumulative constraint may be cvaluated as in references 4 and 5 by means of the Kreissclmeier-Steinhauser
(KS) function (rcf. 11):

Ci(gr) = KS(gx) = (1/p) In (Z exp (ng)) » k=1...NGB; (5)
k

where p is a user-controlled cocfficicnt, that governs the distance between the K'S and max(gy). An alternative
K S-formulation that avoids generation of large values of the exponential function is

Ci(9x) = max(gx) + 1/p) In (Zcxp (p (g — maX(gk)))) » k=1...NGB; (5a)
k

The KS function is differentiable and has the property that
max(gy) < KS(gx) < max(ge) +In NGB;/p, k=1... NGB, 6)
approximating the nondifferentiable max(gx) with an error dependent on p (the larger p is, the smaller the

crror is. However, optimization may be more difficult numcrically).

The optimization in cq. (3) alters {Y'}; to enforce the consistency cq. (1) by means of the equality constraints
in egs. (3a) and (3b), and to achicve a minimum of C; cquivalent to a minimum of max(gi). This optimization
produces an optimal solution comprising of Cimin and {Y}iopt- It is followed by an optimum sensitivity analysis

. - : - L) -
(ref. 2) to obtain the derivatives of Cjpy, and {Y }iopt with respect to {Pg};, denoted '1(5')3:?‘ and —3-%%.

System level.

In the system level problem, the design variable vector X contains Ay, I;, i =1...NE, and the elements
of {SSC}
{X}:{A,-,Ii,{SSC}}, i=1...NE; (N

At this level, the assembled structural analysis whosc input is defined in table 1 is carried out. The objective
function in this casc is the structural weight which for a homogencous material may be replaced with the
material volume

NE
F(X)=W(X) =3 AL (8)



The problem formulation is

“find X such that F(X) is at minimum subjcct to constraints” 9)
Gi(X) <0, k=1...NGA; (9a)
Cy(X) <TOL, i=1... NE; (9b)
{YL} <{¥}i <{YU};, i=1...NE; (9¢)
XL <X < XU; (9d)

where TOL is a suitable tolerance parameter.

The constraints Gi(X) pertain to the assembled structure behavior, c.g., displacement limits and overall
clastic stability. The C;(X) is approximated by cxtrapolation

OC; min OPy;
Ci (X) umu + ZZ a;_;::n E')qu(xj - on):

i=1 ...NE,j-l...NX,q:l...NPi (10)

where Py; is defined by eq. (4). In the above, Cimin and —ggm arc transmitted from the subsystem level
optimization and optimum scnsitivity analysis, and the dcnvatlvc product terms constitute a chain rule
diffcrentiation nccessary since some of the pa.ramctcrs Py depend on X as noted in discussion of table 1.
Since X; is an clement of {P};, we will have ’J}&gl = 1 for the coincidences (Fy); = X; that occur in the
summation. The values of (X;), are those for whlch the assembled framework analysis was carried out prior
to the current optimization.

When Cj is expressed by a KS function as in eq. (5) or (5a), the extrapolation error in eq. (10) may be
significantly reduced, or shown in rcferences 4 and 5, by extrapolating cach constraint function gx that enter
C;

Ogy OF,
gk(X) = gko+22 sr o (X5 = Xio),
q:
j= ...NX,q_l...NP, (10a)

and, then, computing in extrapolated C; by means of cither eqgs. (5) or (5a). This technique removes that part
of the extrapolation crror that in eq. (10) would be caused by the curvature of the logarithm and exponential
functions embedded in the K'S function.

An cxtrapolation similar to eq. (10) is used to approximate {Y}; in eq. (9c):

Yiopt OP,
Y(X) = 1opt+ZZ a;f’ 3%, i = Xio)
i=1 ...NE,]—l...NX,q—l...NH (11)
XL<X<XU

Finally, XL and XU, arc, respectively, the lower and upper limits on X. These side constraints include the
move limits guarding against cxcessive extrapolation crrors in egs. (10) and (11).



Overall procedure.
The overall OLD procedure is

1. Initialize the overall shape data in {SSC}, and the beam cross-scctional dimensions {Y};;
2. Enter {Y'}; into cgs. (3a) and (3b) to initializc A and [ ;

3. Exccute the assembled structurc analysis (table 1);
4

- For cach bcam cxccute a subsystem level optimization per cq. (3), that refers to the beam analysis per
table 2, and carry out the optimum scnsitivity analysis with respect to paramcters defined in eq. (4);

<3l

- Exccutc optimization at the system level per cq. (9);

6. If termination criteria sct by usecr arc not satisfied, reset X and Y to the new values and repeat from
step 3, otherwise exit.

To conclude the description of the OLD procedure at two levels, one should point out that the individual
optimizations at both levels arc coupled by means of cgs. (3a), (3b), (9b), (9¢), (10), and (11). These equations
represent the coordination problem which is solved by virtue of converging the overall proccdure.

Shortcomings of the OLD Procedure in Need Jor Improvement.

In the subsystem level formulation in cq. (3), there is a possibility of a conflict between the equality
constraints in cgs. (3a), (3b), and the side constraints in cq. (3c). Specifically, it may not be possible to find
a feasible solution to the subsystem level problem while satisfying both scts of constraints. To alleviate that
conflict, the system level formulation above includes approximate representation of the side constraints on {v},
¢gs. (9c) and (11), to keep the system level optimization from imposing on the ith beam such combinations of
the A; and I; values that cannot be attained with the physically realizable {Y'};. The above potential conflict
is onc disadvantage of using the cquality constraints in cgs. (3a) and (3b).

As mentioned in the Introduction, the other disadvantage is the increased difficulty of solving the
optimization problem of cq. (3) brought about by the presence of the cquality constraints, as pointed out in
reference 8. Hence, the two alternative modifications are introduced next, primarily, to remove these equality
constraints.

Proposed Modifications

Two alternative modifications whose introduction is this paper purposc arc defined herein. The common
feature of both modifications is removal of the cquality constraints in cgs. (3a), (3b), (9b), and (9c), and
an indirect fulfillment of these constraints by reformulating the subsystem optimization problem. The two
modifications differ in the details of that reformulation.

Modification 1

The first modification is based on a technique for locating simultancous roots of a set of functions using the
K S function as described in reference 9. Specifically, if a set of NF functions Fi(Y)=0forY =Y,, then a
KS function comprising the positive and negative Fi(Y') has a minimum at Y,. Formally,

If Fy(Y) =0, for Y =Y,, then KS(Fy(Y) — F,(Y))

is at minimum for Y =Y,; i =1...NF (12)
The above property of the K'S function may be used to satisfy the cquality constraints in eqs. (3a) and (3b).
For brevity, we define nondimensional functions

Fai = (Ai— fa({Y}))/Ai, i=1...NE

Fri=Ii- i{Y}))/L, i=1...NE (13)



and construct a composite function

i ({Y}i, {Phi) = KS(Fai — Fay, Fry — Fy)
1 hl
= (2) 0 (exp (o) + exp (~pIa) + xploFr) + exp(=pF1) (14)

By virtue of eq. (12), this function is a minimum at {Y,}; where I'4; and F}; also vanish. We will seck
{Ys}; as {Y}iopt in an optimization that cntails C;({Y'};, {P};) decfined by cq. (14) as the objective function.
This approach was shown to be effective in reference 12, although the details of the function formulation and
of the overall procedure defined in that reference were different.

The subsystem level optimization of cq. (3) for the ith beam will now change to the following one in which
C; is dcfined by cq. (14):

“find {Y}; such that C;({Y};, {P};) is at minimum subject to constraints” (15)
9k({Y}) <0, k=1...NGB; (15a)
{YL}; <{Y}i < {YU} (15b)

The subsystem level optimization satisfics the local constraints, cgs. (15a) and (15b), and comes as close to
Fyp; =0and Fj; =0, that is f4 = A;, fi = I, as possible. However, in contrast to egs. (3a) and (3b), it is not
required to nullify these quantitics completely, if that is not yet possible in the process of iterating between
the levels in the overall procedure. Hence, the potential conflict among the constraints egs. (3a), (3b), and
(3c) described in the preceding section has been removed. Consequently, the constraints in eq. (9¢) that were
needed to alleviate that conflict are now deleted from the system level optimization. As a result of the deletion

a{Y},
of ¢q. (9¢) from the system level optimization, the derivatives —{m;gm become unnecessary. Consequently,

the optimum sensitivity algorithm from reference 2 may be replaced with the computationally less expensive
algorithm from reference 3 for a significant reduction of the computational cost of the entire procedure.

The system level optimization change is limited to delction of cq. (9¢c), and to redefinition of C; from the
onc given in cq. (5) to that sct by eq. (14). The new definition of C; must also be used in eq. (10).

Even though the cquality constraint such as those in eq. (3) do not appear dircctly in the above subsystem
optimization, they are eventually brought to satisfaction within tolerance TOL, indirectly, by virtue of eqs. (14),
(15), (15a), (15b), and (9b), when the overall procedure converges.

Modification 2

An algorithm introduced in reference 10 for the purposcs of fitting an empirical function to a set of
expcrimental data points may be adapted as a formulation of the subsystem level optimization problem. The
algorithm rcquires augmentation of {Y'}; by an additional indcpendent variable, LIM;, that also doubles for
the objective function in a following formulation of the subsystem problem for the ith beam

“find {Y'}; and LIM; such that LIM; is at minimum subjcct to constraints” - (16)
gk{Y}i £0, k=1...NGB; (16a)

—LIM; < Fp; < +LIM; (16b1)

—LIM; < Fj; < +LIM; (16b2)

{YL} <{Y}i <{YU}L (16c)

LIM; >0 (16d)
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The above problem solution produccs the values of LIM;,;, and {Y}iopt- The LIM;y;, is eventually
reduced to TOL owing to the following changes in the system level optimization of ¢q. (9): deleting eq. (9¢),
a4 in Modificalion 1 above, and replacing C; with LI M; which changes cqs. (9b) and (10) to

LIM;<TOL,i=1...NE (17)

OLIM;y i, OP;;
LIMy(X) = (LIM)min + ) 3 °= bﬁ}'f " 3 X"f (Xj — Xjo),
i g q1 7

i=1...NE, j=1...NX, ¢g=1... NP, (18)

As in Modification 1, the optimum sensitivity analysis that follows the solution of cgs. (15), (15a), and
(15b) may be carried out using the algorithm from reference 3 instead of reference 2. Neither Modification 1
nor Medification 2 change anything in the step-by-step prescription for the overall procedure OLD described
previously.

Extension to a Generic System

The above algorithm lends itsclf to a complete generalization by replacing the variables and terms specific
to the framework cxample with their generic counterparts, while leaving the organization of the decomposed
optimization and the formulations of its clements unchanged. This section explains the substitution of
the variables and terms in cach of the system and subsystcm level analyses, subsystem and system level
optimizations, and the overall procedure.

System Level Analysis

System Analysis, designated SA, js regarded as a black box that converts an input vector {SI} of length
NSIinto an output vector {SO} of length NSO. Vector {S1} contains as a subsct the vector {X } of length NX
that compriscs the system level design variables. Vector {503} also contains {X} as a subset (passed through
SA). By definition of SA

S0 = f(SI) (19)

assumed differentiable up to the first derivatives. Conscquently, a Jacobian matrix of the first derivatives exists
8Ss0 as0; [ . .

m-—[FjjJ,l—l...NSO,]—l...NSI (20)

Equations (19) and (20) form a functional statement that is a very gencral one and includes two important
special cases: the first derivatives in the above Jacobian, cq. (20), degenerate to zero wherever a particular
SO0; is not influenced by a particular S1;; and the derivatives default to unity wherever, for a particular pair
ij, there is SO; = SI; = X;.

The Jacobian matrix, cq. (20), is obtainable by finite differencing on SA or by quasi-analytical sensitivity
analysis cmbedded in SA. In cither casc the Jacobian matrix is regarded as an additional output from SA,
scparatc from SO.

The input defined in table 1 is an cxample of SI, while the subsct of A’s and I'’s in that input is an example
of X. The output defined in that table is an example of SO, and the A’s and I's present in that output are
cxamples of X as a subsct of SO that is being passed through SA unchanged. The derivatives 9N /OA defined
in table 1 constitute an example of the clements of 0S0/8S1.

Subsystem Level Analysis )
It is assumed that there arc NSS black baxes representing the next lower li;vcl of subsystems. As daughters
of the SA parent black box, they reccive their input in part from the system level and, in part, from the outside
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world, but not from cach other. Therefore, the subsystem black boxes are mutually independent and may be
exccuted concurrently. The ith black box is designated SSA;. It converts the input vector {SSTI }i of length
NS5SI; into an output vector {SS0Q}; of length NSSO;.

Vector {SS1}; contains selected clements of {S0}, some of which may be the clements of X. It includes
also the vector of the subsystem level design variables {Y'};.

At this point, it is convenicent to define a vector {P}i, i =1... NP;, as a subset of those clements of {SSr1};
which are functions of X. Naturally, this includes the clements of X , if any are present in {SST }i- An example
of such a subsct is cq. (4).

We now assume that for the clements of {P};, the {SSA}; contains a functional relation,
{P(X)}i=7({Y}) (21)

An cxample of the above relation ig illustrated by cq. (1). However, cq. (20) is more general than eq. (1)
since it recognizes that not only the clements of X but also other data in SSI;, sclected from SO, may be
computable as functions of {Y};.

For the ith subsystem optimization, it will be uscful to define a “discrepancy” vector {DIS}; defined as
{DIS;}i = ({P;li ~ f{Y}:))/{P5}i, 5=1...NP, (22)

Examples DIS; arc FA; and FI; in eq. (13). The SSA; output {S$S0}; contains { DIS}; and other behavior
variables of intcrest.

Subsystem Level Optimization

SSOPT; is an optimization of subsystem i. It can be defined by cither one of the two alternative ways,
consistent with Modification 1 (egs. (15), (15a), and (15b)) or Modification 2 (egs. (16), (16a~d)).

In the first alternative, corresponding to egs. (15), (15a), and (15b), the design variables are the elements
of {Y};, and the objective function C;‘is

Ci({Y}i, {P}:) = KS({DIS,};,-{DIS;};)

=(1/p) In (Z (exp (p{DIS;};) + exp (—p{DI Sj}i))) yJ=1...NPF, (23)

J

In this alternative the optimization problem comprises’ the above Cj as the objective function and its
formulation is as follows:

“find {Y'}; such that C;({Y};, {P};) is at minimum subject to constraints” (29)
a({Y}) <0, k=1... NGSS; (24a)
{YL}i <{v}i < {YUu} (24b)

In the sccond alternative, consistent with eq. (16), the design variables are the elements of {Y'}; and an
additional variable LIM;. The latter doubles for an objective function so that the optimization problem is

“find {Y'}; and LIM; such that LIM; is at minimum subject to constraints” (25)

a({Y}) <0, k=1... NGSS; (25a)
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-LIM; < {DIS_—,‘};’S‘*‘LIM,’, ji=1...NPF (25b)
{Y¥LYhi<{v} i <{¥YUh (25¢)
LIM; >0 (25d)

In both cgs. (24) and (25), the constraint functions g arc cvaluated using the data in $S0O;. The SSOPT;
output is {Y}iopt and, dcpendently on the choice of cgs. (24) or (25), Fimin = Cimin OF Fimin = LIM;min,
respectively.

Optimum Sensitivity Analysis and Extrapolation of the Minimum of the Objective Function

The Optimum Sensitivity Analysis, OSA;, uses the algorithm of reference 3, applied as a post-processor to
SSOPT;, toyicld for cach subsystem ¢ a vector of the derivatives of the minimum objective function Fjpy;, with
respect to the paramcters P. The vector of these derivatives, {%F%,}m}’ has the length N P;. The definition of

i

P (scc discussion preceding cq. (21)) and the functional relationship defined by eqgs. (19) and (20) imply that

{Pj}i=f(Xg), i=1...NP;, k=1...NX (26)

and that the derivatives 6—{8{;}}—‘ exist. These derivatives default to unity for those pairs jk for which P; = X.

Using the above, onc may extrapolate F; by mcans of the chain rule as an approximate function of X

OF; min OPyi . ,
F,~=F,-mi,,+ZZ—aLp';‘i'—“a—X‘:(xj-xjo),z=1...Nss,J=1...Nx,q=1...NP,- (27)
i q

where (Xj)o is the X for which the system and subsystem analyses were carried out prior to the subsystem
optimization. For an example of cq. (27), sce egs. (10) or (18).

System Level Optimization

Equating F; cither to C; computed from cq. (23), or to LIM; defined for cq. (25), dependently on the
choicc of Modification 1 (cq. (15)) or Modification 2 (cq. (16)) for thc SSOPT formulation, the system level
optimization, designated SOPT, may be formulated so as to accommodate both alternatives. Defining an
objective function F\S(X) and the vector of constraints G(X), both computed from the clements of SO, the
SOPT formulation is as follows:

“find X such that FS(X) is at minimum subject to constraints” ' (28)
Gi(X) <0, k=1...NGS (28a)

Fy(X)<TOL, i=1...NSS (28b)

XLL<X<XU (28c)

consistent with cq. (9) modified ag described in the discussions of the Modifications 1 and 2.

In the above optimization problem, F; in eq. (28b) is extrapolated by eq. (27), analogous to the extrapolation
of C; in cq. (10) or LIM; in cq. (18).

Initialization

It is a rccommended practice to initialize the entire optimization procedurce by first setting the values of
{Y}i, i =1...NSS, and then computing X from eq. (21), recalling that, by dcfinition X is a subset of P.

This guarantces starting in SA at the system level with the X values that arc physically realizable in SSOPT;
by {Y}; within the YL and YU limits. This opcration is abbreviated INIT.

10



Generic Two-Level Optimization Procedure

The procedure is the same as the one described previously for the framework cxample, restated in the
generic terms defined in this section.

1. Exccute INIT;
2. Exccute S4;

3. Exccute SSOPT;, followed by OSA;, i = 1... NSS, concurrently, if desircd and if the computing
cquipment permits;

4. Exccute SOPT;

5. If termination criteria sct by user arc not satisficd, reset X and Y to Xqpt and Yopt and repeat from
step 2, otherwise EXIT.

The procedure output is the optimal data for X, Y, G(X), g(X), and FS(X). Owing to the formulation
of SSOPT; in cq. (23) or (24), the optimal values of X and Y will satisfy eq. (20) within TOL. The procedure
flowchart is depicted in figure 2.

Concluding Remarks

Two ncw techniques arc presented for coupling the levels in optimization by decomposition. The
techniques constitute improvements of a previously published algorithm for two-level Optimization by Lincar
Deccomposition (OLD). The OLD algorithm has been summarized and illustrated by an application example
to show how the new techniques are implemented by local modifications in that algorithm. The resulting two
alternative formulations improve OLD by removing the potential for numerical difficulties that occasionally
were caused in the original algorithm by an explicit handling of the cquality constraints which constituted
the key coupling between optimizations at two levels. Both alternative formulations eliminate the explicit
presence of these constraints while satisfying them indirectly. The alternative formulations allow the use of a
variant of the optimum scnsitivity analysis that docs not require seccond derivatives of behavior and, therefore,
is computationally less expensive than the variant used in the original algorithm. Thus, an additional benefit
expected from the modified algorithm is a reduction of its overall computational cost. It is shown that the
improved algorithm may be generalized to multidisciplinary system applications.
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Table 1. Input and Output of Assembled Framework (System Level) Analysis

Input

A I cross-scctional arca and moment of incrtia for ith beam (i = 1...NE, the
number of clements in the example is NE = 3), both assumed constant along
the beam length

{SSC} vector of the structure shape coordinates in a reference coordinate system that

dcfines locations of the frame support and corner points
Q vector of loads Q;, 7 = 1... NDOF, applicd coincident with the structure
J .

unsupported degrees of freedom whose number is NDOF

E the material Young’s modulus

Output
{U} vector of displacements Uy, k=1... NDOF

{N};, i=1...NE  vector of the end-forces on the beam, at cach end there are three such forces:
axial force, transverse force, and bending moment

L; length of the ith beam

A;, I;, and E as an input passed through the analysis to output;
Derivatives: D(U, A), D(U,I), D(U,SSC), D(N, A), D(N,I), D(N,S8SC), D(L,SSC)

Table 2. Input and Output of ith Beam (Subsystem Level) Analysis

Input
NAL and SAL normal and shear allowable stresses, respectively
Input sclected from the Output in table 1:
Ni, i=1...NE vector of the end-forces on the beam
L; length of the ith becam
A;, I, and E;
{Y} vector of the beam cross-sectional dimensions Yy, k= 1... NY;, shown in the
insct, Fig. 1.
Output
{SN}; and {SS}; vectors of the normal and shear stresscs, respectively, at judiciously chosen

points on the end cross sections
{UB}; beam displacements in the beam local coordinate system

{NCR}; and {SCR}; vectors of the normal and shear critical stresses, respectively, for evaluation of
the beam column and local buckling constraints
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