# NASA Technical Memorandum 104036 

# TWO ALTERNATIVE WAYS FOR SOLVING THE COORDINATION PROBLEM IN MULTILEVEL OPTIMIZATION 

Jaroslaw Sobieszczanski-Sobieski



# TWO AITERNATIVE WAYS FOR SOLVING THE COORDINATION PROBLEM IN MUITILEVEL OPTIMIZATION 

Jaroslaw Sobics\%čanski Sohioski
August 1991

## Summary

The paper describes two new techniques for formulating the coupling between levels in multilevel optimization by linear decomposition, proposed as improvements over the original formulation, now several years old, that relicd on explicit equality constraints which were shown by application experience as occasionally causing numerical difficultics. The two new techniques represent the coupling without using explicit equality constraints, thus avoiding the above difficultics and also reducing computational cost of the procedure. The old and the new formulations are presented in detail, illustrated by an example of a structural optimization. A generic version of the improved algorithm is also developed for applications to multidisciplinary system not limited to structures.

## Notation

A
$C_{i} \quad$ cumulative constraint of $i$ th beam
$D I S_{i} \quad$ vector defined by eq. (22)*
$g_{k}$
$G_{k} \quad$ vector of constraints* for the assembled structure, e.g., displacement limits, $k=1 \ldots N G A$
$I \quad$ vector of cross-sectional moments of incrtia*, $I_{i}$
$L i \quad$ length of $i$ th bcam
$N E \quad$ number of beams in a framework
$N_{i} \quad$ vector of the end forces* for $i$ th beam
$N P_{i} \quad$ length of vector $P_{i}$
NSS number of subsystems
$N X \quad$ length of vector $X$
$P_{i} \quad$ vector of parameters* in optimization of $i$ th beam, comprising clements $P_{q}, q=1 \ldots N P_{i}$
$P_{q_{i}} \quad q$ th element of vector $P_{i}$
SA system analysis
SI input vector of length NSI into $S A^{*}$
$S O \quad$ output vector of length $N S O$ from $S A^{*}$
$S S A_{i} \quad i$ th subsystem black box analysis
$\{S S C\} \quad$ vector of geometrical* variables determining the structure overall shape
$S S I_{i} \quad$ input vector of length $N S S I_{i}$ into $S S A_{i}{ }^{*}$
$S S O_{i} \quad$ output vector of length $\mathrm{NSSO}_{i}$ from $S S A_{i}{ }^{*}$
TOL tolerance parameter set by user dccomposition
$Y_{i}$ vector of design variables* in $i$ th beam optimization problem
$Z$ vector of design variables* in optimization without decomposition
*\{ \} brackets identifying vectors are omitted where possible without causing ambiguity.
$U$ and $L$ with $X, Y, Z$, e.g., $X U, X L$, denote upper and lower bounds on these variables; other symbols are defined where first used.

## Introduction

Large scale optimization problems benefit from decomposition into a sct of smaller, more manageable, concurrently-solvable subproblems. In a hicrarchic decomposition method, the subproblems form a pyramid with the system problem on top and subsystem problems in the horizontal layers below. These subproblems are coupled through the solution of a coordination problem. A particular procedure for optimization by decomposition introduced in reference 1 solved the coordination problem by enforcing a set of equality constraints between the optimization levels and by using an optimum sensitivity analysis formulated in references 2 and 3. That proccdure, referred to as Optimization by Lincar Decomposition (OLD), was formulated for two-levels in reference 1 and was demonstrated using a framework as a test case in reference 4 representing a class of skeletal, redundant structures. It was subsequently generalized to an arbitrary number of levels in reference 5. The OLD is a generic method applicable to any system that is amenable to a hierarchic decomposition, c.g., multidisciplinary applications reported in references 6 and 7.

Practical experience with the procedure, and its examination in reference 8 point to the enforcement of cquality constraints as the source of numerical difficultics that occasionally make this procedure slow to converge. This observation is consistent with the opinion generally held among the developers and users of optimization methods that addition of cquality constraints to an optimization problem tends to make the solution numerically more difficult.

Motivated by the above, and by two new techniques for satisfying equality constraints that were recently introduced in references 9 and 10, this paper defines two alternative modifications to the OLD procedure. Either alternative removes explicit equality constraints from the procedure while, still, achieves their enforcement implicitly.

The two alternative techniques will be introduced by generalizing from an example of the framework structure that was a test case in references 1 and 4. To this end, the framework analysis will be discussed first, followed by the framework optimization problem formulated in a standard manner without decomposition. Next, an abridged description of the OLD will be given, limited to a two-level, structural optimization of the framework test casc. With this as a reference, two new alternative modifications to the OLD algorithm will be introduced.

## Original Reference Procedure

## Analysis

The framework is shown in figure 1. We limit the framework analysis to a two-dimensional case by allowing only in-plane displacements under the action of static loads. The static analysis of this structure may be formulated in two levels by using either a substructuring approach where cach of the three beams in the framework is regarded as a scparate substructure, or a finite clement method in which each beam is a single finite element. Choosing the finite clement formulation, the analysis of the assembled framework requires an input and generates an output as defined in table 1.

The derivatives such as the displacement $U$ with respect to the cross-sectional area $A_{i}, \frac{\partial U}{\partial A_{i}}$, exist because $U=f\left(A, I, S S C^{\prime}\right), N_{i}=f(A, I, S S C)$, and $L_{i}=f(S S C)$. These derivatives are obtained by finite differencing or by a quasi-analytical sensitivity analysis embedded in the framework analysis.

Selected data from the above output are entered as input into a local strength analysis of the $i$ th beam. The level of refinement of that analysis is immaterial for the purposes of this discussion, e.g., it might be a finite element analysis whereby the beam is divided into number of finite elements, or an elementary strength of materials analysis. In cither case, the input and output are as defined in table 2.

The above approach suggests decomposition of the framework analysis into the assembled framework analysis (system level analysis) and the beam analyses (subsystem level analyses). This decomposition forms a hierarchy in which the former is a parent and the latter are the daughters. The parent-daughter relationship is hicrarchic because the information flows from the parent to cach daughter and no information is directly transmitted from one daughter to another. Since the daughter analyses are mutually independent, they may be executed concurrently.

To make the system and subsystem level analyses consistent, one has to acknowledge that $A_{i}$ and $I_{i}$ are functions of the beam cross-sectional dimensions $\{Y\}_{i}$. Therefore, when prescribing the values for $A_{i}, I_{i}$, and $\{Y\}_{i}$, we must satisfy the consistency equations

$$
\begin{equation*}
A_{i}=f_{A}\left(\{Y\}_{i}\right) ; I_{i}=f_{I}\left(\{Y\}_{i}\right), i=1 \ldots N E \tag{1}
\end{equation*}
$$

Kecping these equations satisficd in a multi-level optimization is a part of the so-called coordination problem, and the analysis by decomposition will be exploited to cstablish a corresponding optimization-by-decomposition scheme that will be described later.

## Optimization Without Decomposition

The optimization problem to be solved is
"find $Z$ such that $F(Z)$ is at minimum subject to constraints"

$$
\begin{gather*}
G_{j}(Z) \leq 0, j=1 \ldots N G A ;  \tag{2a}\\
g_{k}(Z) \leq 0, k=1 \ldots N G B  \tag{2b}\\
Z L \leq Z \leq Z U
\end{gather*}
$$

In the static problem at hand, the design variables may include the elements of the $\{S S C\}$ and some, or all, of the cross-sectional dimensions of the beams, $\{Y\}_{i}$. The constraints $G_{k}$ comprise the assembled structure displacements and elastic stability, and at the beam cross-section level the $g_{k}$ constraints entail the allowable stress, bcam column buckling, and local buckling.

## Optimization by Linear Decomposition (OLD)

The above problem is decomposed into a single problem solved for the asscmbled structure (system level problem) and NE scparate problems solved for cach beam (subsystem level problems). It is convenient to describe the subsystem level problem first. The equation underscoring indicates which parts of the formulation will be changed by the two new techniques formulated in this paper.

## Subsystem level.

At the subsystem level, an optimization problem for the $i$ th beam is independent of the other problems at that level, hence the beam optimizations may be exccuted concurrently. The $i$ th beam problem is, taking into account eq. (1):
"find $\{Y\}_{i}$ such that $C_{i}\left(\{Y\}_{i},\{P\}_{i}\right)$ is at minimum subject to constraints"

$$
\begin{gather*}
A_{i}-f_{A}\left(\{Y\}_{i}\right)=0,  \tag{3a}\\
\underline{I_{i}-f_{I}\{Y\}_{i}=0,}  \tag{3b}\\
\{Y L\}_{i} \leq\{Y\}_{i} \leq\{Y U\}_{i} ; \tag{3c}
\end{gather*}
$$

where $\{Y L\}_{i}$ and $\{Y U\}_{i}$ are the lower and upper side-constraints on $\{Y\}_{i}$. The $\{P\}_{i}$ is a vector of parameters comprising $A_{i}, I_{i}, L_{i}$, and $\{N\}_{i}$ that are output from the analysis at the system level as defined in table 1 and are passed as input into the beam analysis as shown in table 2. These parameters stay constant in the process of the beam optimization. Hence, for $i$ th beam

$$
\begin{equation*}
\{P q\}_{i}=\left\{A_{i}, I_{i}, L_{i},\{N\}_{i}\right\}, q=1 \ldots N P_{i} \tag{4}
\end{equation*}
$$

The scalar $C_{i}$ is a cumulative constraint representing the degrec of satisfaction, or violation, of the subset $g_{k}\left(\{Y\}_{i}\right), \quad k=1 \ldots N G B_{i}$, pertaining to the $i$ th beam, of the entire set of $g_{k}$ that appears in eq. (2b). The cumulative constraint may be evaluated as in references 4 and 5 by means of the Kreisselmeier-Steinhauser $(K S)$ function (ref. 11):

$$
\begin{equation*}
C_{i}\left(g_{k}\right)=K S\left(g_{k}\right)=(1 / \rho) \ln \left(\sum_{k} \operatorname{cxp}\left(\rho g_{k}\right)\right), k=1 \ldots N G B_{i} \tag{5}
\end{equation*}
$$

where $\rho$ is a user-controlled cocfficient that governs the distance between the $K S$ and $\max \left(g_{k}\right)$. An alternative $K S$-formulation that avoids generation of large values of the exponential function is

$$
\begin{equation*}
\left.C_{i}\left(g_{k}\right)=\max \left(g_{k}\right)+1 / \rho\right) \ln \left(\sum_{k} \exp \left(\rho\left(g_{k}-\max \left(g_{k}\right)\right)\right)\right), k=1 \ldots N G B_{i} \tag{5a}
\end{equation*}
$$

The $K S$ function is differentiable and has the property that

$$
\begin{equation*}
\max \left(g_{k}\right)<K S\left(g_{k}\right)<\max \left(g_{k}\right)+\ln N G B_{i} / \rho, k=1 \ldots N G B_{i} \tag{6}
\end{equation*}
$$

approximating the nondifferentiable $\max \left(g_{k}\right)$ with an crror dependent on $\rho$ (the larger $\rho$ is, the smaller the error is. However, optimization may be more difficult numerically).

The optimization in eq. (3) alters $\{Y\}_{i}$ to enforce the consistency eq. (1) by means of the equality constraints in eqs. (3a) and (3b), and to achicve a minimum of $C_{i}$ cquivalent to a minimum of $\max \left(g_{k}\right)$. This optimization produccs an optimal solution comprising of $C_{i \min }$ and $\{Y\}_{i o p t}$. It is followed by an optimum sensitivity analysis (ref. 2) to obtain the derivatives of $C_{i \min }$ and $\{Y\}_{i o p t}$ with respect to $\{P q\}_{i}$, denoted $\frac{\partial C_{i \sin }}{\partial P_{q i}}$ and $\frac{\partial Y_{i \text { opt }}}{\partial P_{q i}}$.

## System level.

In the system level problem, the design variable vector $X$ contains $A_{i}, I_{i}, i=1 \ldots N E$, and the elements of $\{S S C\}$

$$
\begin{equation*}
\{X\}=\left\{A_{i}, I_{i},\{S S C\}\right\}, i=1 \ldots N E ; \tag{7}
\end{equation*}
$$

At this level, the assembled structural analysis whose input is defined in table 1 is carried out. The objective function in this case is the structural weight which for a homogencous material may be replaced with the matcrial volume

$$
\begin{equation*}
F(X)=W(X)=\sum_{i}^{N E} A_{i} L_{i} \tag{8}
\end{equation*}
$$

The problem formulation is
"find $X$ such that $F(X)$ is at minimum subject to constraints"

$$
\begin{gather*}
G_{k}(X) \leq 0, k=1 \ldots N G A ;  \tag{9a}\\
C_{i}(X) \leq \mathrm{TOL}, i=1 \ldots N E ;  \tag{9b}\\
\{Y L\}_{i} \leq\{Y\}_{i} \leq\{Y U\}_{i}, i=1 \ldots N E ;  \tag{9c}\\
X L \leq X \leq X U ;
\end{gather*}
$$

where $T O L$ is a suitable tolcrance parameter.
The constraints $G_{k}(X)$ pertain to the assembled structure behavior, e.g., displacement limits and overall clastic stability. The $C_{i}(X)$ is approximated by extrapolation

$$
\begin{align*}
C_{i}(X) & =C_{i \min }+\sum_{j} \sum_{q} \frac{\partial C_{i \min }}{\partial P_{q i}} \frac{\partial P_{q i}}{\partial X_{j}}\left(X_{j}-X_{j o}\right), \\
i & =1 \ldots N E, j=1 \ldots N X, q=1 \ldots N P_{i} \tag{10}
\end{align*}
$$

where $P_{q i}$ is defined by eq. (4). In the above, $C_{i \min }$ and $\frac{\partial C_{j \min }}{\partial P_{q i}}$ are transmitted from the subsystem level optimization and optimum sensitivity analysis, and the derivative product terms constitute a chain rule differentiation necessary since some of the parameters $P_{q}$ depend on $X_{j}$ as noted in discussion of table 1. Since $X_{j}$ is an element of $\{P\}_{i}$, we will have $\frac{\partial P_{q i}}{\partial X_{j}}=1$ for the coincidences $\left(P_{q}\right)_{i}=X_{j}$ that occur in the summation. The values of $\left(X_{j}\right)_{o}$ are those for which the assembled framework analysis was carried out prior to the current optimization.

When $C_{i}$ is expressed by a $K S$ function as in cq. (5) or (5a), the extrapolation error in eq. (10) may be significantly reduced, or shown in references 4 and 5 , by extrapolating cach constraint function $g_{k}$ that enter $C_{i}$

$$
\begin{align*}
g_{k}(X) & =g_{k o}+\sum_{j} \sum_{q} \frac{\partial g_{k}}{\partial P_{q i}} \frac{\partial P_{q i}}{\partial X_{j}}\left(X_{j}-X_{j o}\right), \\
j & =1 \ldots N X, q=1 \ldots N P_{i} \tag{10a}
\end{align*}
$$

and, then, computing in extrapolated $C_{i}$ by means of cither eqs. (5) or (5a). This technique removes that part of the extrapolation crror that in eq. (10) would be caused by the curvature of the logarithm and exponential functions embedded in the $K S$ function.

An extrapolation similar to eq. (10) is used to approximate $\{Y\}_{i}$ in eq. (9c):

$$
\begin{gather*}
Y_{i}(X)=Y_{i \mathrm{opt}}+\sum_{j} \sum_{q} \frac{\partial Y_{\text {iopt }}}{\partial P_{q i}} \frac{\partial P_{q i}}{\partial X_{j}}\left(X_{j}-X_{j o}\right), \\
i=1 \ldots N E, j=1 \ldots N X, q=1 \ldots N P_{i}  \tag{11}\\
X L \leq X \leq X U
\end{gather*}
$$

Finally, $X L$ and $X U$, are, respectively, the lower and upper limits on $X$. These side constraints include the move limits guarding against excessive extrapolation crrors in cqs. (10) and (11).

Overall procerlate:
The overall OLD procedure is

1. Initialize the overall shape data in $\{S S C\}$, and the beam cross-sectional dimensions $\{Y\}_{i}$;
2. Enter $\{Y\}_{i}$ into cqs. (3a) and (3b) to initialize $A$ and $I$;
3. Exccute the assembled structure analysis (table 1);
4. For cach beam exccute a subsystem level optimization per eq. (3), that refers to the beam analysis per table 2, and carry out the optimum sensitivity analysis with respect to parameters defined in eq. (4);
5. Exccute optimization at the system level per eq. (9);
6. If termination criteria set by user are not satisfied, reset $X$ and $Y$ to the new values and repeat from step 3, otherwise exit.
To conclude the description of the OLD procedure at two levels, one should point out that the individual optimizations at both levels are coupled by means of eqs. (3a), (3b), (9b), (9c), (10), and (11). These equations represent the coordination problem which is solved by virtue of converging the overall procedure.

## Shorlcomings of the OLI Proccdure in Need for Improvement.

In the subsystem level formulation in cq. (3), there is a possibility of a conflict between the equality constraints in eqs. (3a), (3b), and the side constraints in eq. (3c). Specifically, it may not be possible to find a feasible solution to the subsystem level problem while satisfying both sets of constraints. To alleviate that conflict, the system level formulation above includes approximate representation of the side constraints on $\{Y\}_{i}$, cqs. (9c) and (11), to kecp the system level optimization from imposing on the $i$ th beam such combinations of the $A_{i}$ and $I_{i}$ values that cannot be attained with the physically realizable $\{Y\}_{i}$. The above potential conflict is one disadvantage of using the cquality constraints in eqs. (3a) and (3b).

As mentioned in the Introduction, the other disadvantage is the increased difficulty of solving the optimization problem of cq. (3) brought about by the presence of the equality constraints, as pointed out in reference 8 . Hence, the two alternative modifications are introduced next, primarily, to remove these equality constraints.

## Proposed Modifications

Two alternative modifications whose introduction is this paper purpose are defined herein. The common feature of both modifications is removal of the cquality constraints in cqs. (3a), (3b), (9b), and (9c), and an indirect fulfillment of these constraints by reformulating the subsystem optimization problem. The two modifications differ in the details of that reformulation.

## Modification 1

The first modification is based on a technique for locating simultancous roots of a set of functions using the $K S$ function as described in reference 9. Specifically, if a set of $N F$ functions $F_{i}(Y)=0$ for $Y=Y_{o}$, then a $K S$ function comprising the positive and negative $F_{i}(Y)$ has a minimum at $Y_{o}$. Formally,

$$
\begin{gather*}
\text { If } F_{i}(Y)=0, \text { for } Y=Y_{o}, \text { then } K S\left(F_{i}(Y)-F_{i}(Y)\right) \\
\text { is at minimum for } Y=Y_{0} ; i=1 \ldots N F \tag{12}
\end{gather*}
$$

The above property of the $K S$ function may be used to satisfy the cquality constraints in eqs. (3a) and (3b). For brevity, we define nondimensional functions

$$
\begin{align*}
F_{A i} & =\left(A_{i}-f_{A}\left(\{Y\}_{i}\right)\right) / A_{i}, i=1 \ldots N E \\
F_{I i} & =\left(I_{i}-f_{I}\left(\{Y\}_{i}\right)\right) / I_{i}, i=1 \ldots N E \tag{13}
\end{align*}
$$

and comstruct a composite function

$$
\begin{align*}
C_{i}\left(\{Y\}_{i},\{P\}_{i}\right) & =K S\left(F_{A i}-F_{A i}, F_{I i}-F_{I i}\right) \\
& =\left(\frac{1}{\rho}\right) \ln \left(\exp \left(\rho F_{A i}\right)+\operatorname{cxp}\left(-\rho F_{A i}\right)+\operatorname{cxp}\left(\rho F_{I i}\right)+\operatorname{cxp}\left(-\rho F_{I i}\right)\right) \tag{14}
\end{align*}
$$

By virtuc of eq. (12), this function is a minimum at $\left\{Y_{o}\right\}_{i}$ wherc $F_{A i}$ and $F_{I i}$ also vanish. We will seek $\left\{Y_{o}\right\}_{i}$ as $\{Y\}_{i o p t}$ in an optimization that entails $C_{i}\left(\{Y\}_{i},\{P\}_{i}\right)$ defined by cq. (14) as the objective function. This approach was shown to be effective in reference 12, although the details of the function formulation and of the overall procedure defined in that reference were different.

The subsystem level optimization of eq. (3) for the $i$ th beam will now change to the following one in which $C_{i}$ is defined by eq. (14):
"find $\{Y\}_{i}$ such that $C_{i}\left(\{Y\}_{i},\{P\}_{i}\right)$ is at minimum subject to constraints"

$$
\begin{gather*}
g_{k}\left(\{Y\}_{i}\right) \leq 0, k=1 \ldots N G B_{i}  \tag{15a}\\
\{Y L\}_{i} \leq\{Y\}_{i} \leq\{Y U\}_{i}
\end{gather*}
$$

The subsystem level optimization satisfics the local constraints, cqs. (15a) and (15b), and comes as close to $F_{A i}=0$ and $F_{r_{i}}=0$, that is $f_{A}=A_{i}, f_{I}=I_{i}$, as possiblc. However, in contrast to eqs. (3a) and (3b), it is not required to nullify these quantitics completely, if that is not yet possible in the process of iterating between the levels in the overall procedure. Hence, the potential conflict among the constraints eqs. (3a), (3b), and (3c) described in the preceding section has been removed. Consequently, the constraints in eq. (9c) that were needed to alleviate that conflict are now deleted from the system level optimization. As a result of the deletion of eq. (9c) from the system level optimization, the derivatives $\frac{\partial\{Y\}_{i o p t}}{\partial P_{g i}}$ become unnecessary. Consequently, the optimum sensitivity algorithm from reference 2 may be replaced with the computationally less expensive algorithm from reference 3 for a significant reduction of the computational cost of the entire procedure.

The system level optimization change is limited to deletion of cq. (9c), and to redefinition of $C_{i}$ from the one given in eq. (5) to that set by eq. (14). The new definition of $C_{i}$ must also be used in eq. (10).

Even though the cquality constraint such as those in eq. (3) do not appear directly in the above subsystem optimization, they are cventually brought to satisfaction within tolerance TOL, indirectly, by virtue of eqs. (14), (15), (15a), (15b), and (9b), when the overall procedure converges.

## Modification 2

An algorithm introduced in reference 10 for the purposes of fitting an empirical function to a set of experimental data points may be adapted as a formulation of the subsystem level optimization problem. The algorithm requires augmentation of $\{Y\}_{i}$ by an additional independent variable, $L I M_{i}$, that also doubles for the objective function in a following formulation of the subsystem problem for the $i$ th beam
"find $\{Y\}_{i}$ and $L I M_{i}$ such that $L I M_{i}$ is at minimum subject to constraints"

$$
\begin{gather*}
g_{k}\{Y\}_{i} \leq 0, k=1 \ldots N G B_{i}  \tag{16a}\\
-L I M_{i} \leq F_{A i} \leq+L I M_{i}  \tag{16bl}\\
-L I M_{i} \leq F_{I i} \leq+L I M_{i}  \tag{16b2}\\
\{Y L\}_{i} \leq\{Y\}_{i} \leq\{Y U\}_{i}  \tag{16c}\\
L I M_{i}>0
\end{gather*}
$$

The above problem solution produces the values of $L I M_{i \min }$ and $\{Y\}_{i o p t}$. The $L I M_{i \min }$ is eventually reduced to TOL owing to the following changes in the system level optimization of eq. (9): deleting eq. (9c), as in Modification 1 above, and replacing $C_{i}$ with $L I M_{i}$ which changes eqs. (9b) and (10) to

$$
\begin{gather*}
L I M_{i} \leq \mathrm{TOL}, i=1 \ldots N E  \tag{17}\\
L I M_{i}(X)=\left(L I M_{i}\right)_{\min }+\sum_{j} \sum_{q} \frac{\partial I I M_{i \min }}{\partial P_{q i}} \frac{\partial P_{q i}}{\partial X_{j}}\left(X_{j}-X_{j o}\right), \\
i=1 \ldots N E, j=1 \ldots N X, q=1 \ldots N P_{i} \tag{18}
\end{gather*}
$$

As in Modification 1, the optimum sensitivity analysis that follows the solution of eqs. (15), (15a), and (15b) may be carricd out using the algorithm from reference 3 instead of reference 2. Neither Modification 1 nor Modification 2 change anything in the step-by-step prescription for the overall procedure OLD described previously.

## Extension to a Generic System

The above algorithm lends itself to a complete generalization by replacing the variables and terms specific to the framework example with their gencric counterparts, whilc leaving the organization of the decomposed optimization and the formulations of its clements unchanged. This section explains the substitution of the variables and terms in each of the system and subsystem level analyses, subsystem and system level optimizations, and the overall procedure.

## System Level Analysis

System Analysis, designated SA, is regarded as a black box that converts an input vector $\{S I\}$ of length NSI into an output vector $\{S O\}$ of length NSO. Vector $\{S I\}$ contains as a subset the vector $\{X\}$ of length $N X$ that comprises the system level design variables. Vector $\{S O\}$ also contains $\{X\}$ as a subset (passed through $S A$ ). By definition of $S A$

$$
\begin{equation*}
S O=f(S I) \tag{19}
\end{equation*}
$$

assumed differentiable up to the first derivatives. Consequently, a Jacobian matrix of the first derivatives exists

$$
\begin{equation*}
\frac{\partial S O}{\partial S I}=\left[\frac{\partial S O_{j}}{\partial S I_{j}}\right], i=1 \ldots N S O, j=1 \ldots N S I \tag{20}
\end{equation*}
$$

Equations (19) and (20) form a functional statement that is a very general one and includes two important special cascs: the first derivatives in the above Jacobian, eq. (20), degenerate to zero wherever a particular $S O_{i}$ is not influenced by a particular $S I_{j}$; and the derivatives default to unity wherever, for a particular pair $i j$, there is $S O_{i}=S I_{j}=X_{k}$.

The Jacobian matrix, eq. (20), is obtainable by finite differencing on $S A$ or by quasi-analytical sensitivity analysis cmbedded in $S A$. In either case the Jacobian matrix is regarded as an additional output from $S A$, scparate from $S O$.

The input defined in table 1 is an example of $S I$, while the subset of $A$ 's and $I$ 's in that input is an example of $X$. The output defined in that table is an example of $S O$, and the $A$ 's and $I$ 's present in that output are cxamples of $X$ as a subset of $S O$ that is being passed through $S A$ unchanged. The derivatives $\partial N / \partial A$ defined in table 1 constitute an example of the clements of $\partial S O / \partial S I$.

## Subsystem Level Analysis

It is assumed that there are NSS black boxes representing the next lower level of subsystems. As daughters of the SA parent black box, they reccive their input in part from the system level and, in part, from the outside
world, but not from each other. Therefore, the subsystem black boxes are mutually independent and may be executed concurrently. The $i$ th black box is designated $S S A_{i}$. It converts the input vector $\{S S I\}_{i}$ of length $N S S I_{i}$ into an output vector $\{S S O\}_{i}$ of length $N S S O_{i}$.

Vector $\{S S I\}_{i}$ contains selected elements of $\{S O\}$, some of which may be the elements of $X$. It includes also the vector of the subsystem level design variables $\{Y\}_{i}$.

At this point, it is convenient to define a vector $\{P\}_{i}, i=1 \ldots N P_{i}$, as a subset of those elements of $\{S S I\}_{i}$ which are functions of $X$. Naturally, this includes the elements of $X$, if any are present in $\{S S I\}_{i}$. An example of such a subset is eq. (4).

We now assume that for the clements of $\{P\}_{i}$, the $\{S S A\}_{i}$ contains a functional relation,

$$
\begin{equation*}
\{P(X)\}_{i}=f\left(\{Y\}_{i}\right) \tag{21}
\end{equation*}
$$

An cxample of the above relation is illustrated by cq. (1). However, cq. (20) is more general than eq. (1) since it recognizes that not only the elements of $X$ but also other data in $S S I_{i}$, selected from $S O$, may be computable as functions of $\{Y\}_{i}$.

For the $i$ th subsystem optimization, it will be uscful to define a "discrepancy" vector $\{D I S\}_{i}$ defined as

$$
\begin{equation*}
\left\{D I S_{j}\right\}_{i}=\left(\left\{P_{j}\right\}_{i}-f\left(\{Y\}_{i}\right)\right) /\{P j\}_{i}, j=1 \ldots N P_{i} \tag{22}
\end{equation*}
$$

Examples $D I S_{j}$ are $F A_{i}$ and $F I_{i}$ in cq. (13). The $S S A_{i}$ output $\{S S O\}_{i}$ contains $\{D I S\}_{i}$ and other behavior variables of interest

## Subsystem Level Optimization

$S S O P T_{i}$ is an optimization of subsystem $i$. It can be defincd by cither one of the two alternative ways, consistent with Modification 1 (cqs. (15), (15a), and (15b)) or Modification 2 (eqs. (16), (16a-d)).

In the first alternative, corresponding to eqs. (15), (15a), and (15b), the design variables are the elements of $\{Y\}_{i}$, and the objective function $C_{i}$ is

$$
\begin{align*}
C_{i}\left(\{Y\}_{i},\{P\}_{i}\right) & =K S\left(\left\{D I S_{j}\right\}_{i},-\left\{D I S_{j}\right\}_{i}\right) \\
& =(1 / P) \ln \left(\sum_{j}\left(\operatorname{cxp}\left(\rho\left\{D I S_{j}\right\}_{i}\right)+\exp \left(-\rho\left\{D I S_{j}\right\}_{i}\right)\right)\right), j=1 \ldots N P_{i} \tag{23}
\end{align*}
$$

In this alternative the optimization problem comprises the above $C_{i}$ as the objective function and its formulation is as follows:

$$
\begin{align*}
& \text { "find }\{Y\}_{i} \text { such that } C_{i}\left(\{Y\}_{i},\{P\}_{i}\right) \text { is at minimum subject to constraints" }  \tag{24}\\
& \qquad \begin{array}{c}
g_{k}\left(\{Y\}_{i}\right) \leq 0, k=1 \ldots N G S S_{i} \\
\{Y L\}_{i} \leq\{Y\}_{i} \leq\{Y U\}_{i}
\end{array} \tag{24a}
\end{align*}
$$

In the second alternative, consistent with eq. (16), the design variables are the elements of $\{Y\}_{i}$ and an additional variable $L I M_{i}$. The latter doubles for an objective function so that the optimization problem is "find $\{Y\}_{i}$ and $L I M_{i}$ such that $L I M_{i}$ is at minimum subject to constraints"

$$
\begin{equation*}
g_{k}\left(\{Y\}_{i}\right) \leq 0, k=1 \ldots N G S S_{i} \tag{25}
\end{equation*}
$$

$$
\begin{gather*}
-L I M_{i} \leq\left\{D I S_{j}\right\}_{i} \leq+L I M_{i}, j=1 \ldots N P_{i}  \tag{25b}\\
\{Y L\}_{i} \leq\{Y\}_{i} \leq\{Y U\}_{i}  \tag{25c}\\
L I M_{i}>0 \tag{25d}
\end{gather*}
$$

In both eqs. (24) and (25), the constraint functions $g_{k}$ are evaluated using the data in $S S O_{i}$. The SSOPTi output is $\{Y\}_{i o p t}$ and, dependently on the choice of cqs. (24) or (25), $F_{i \min }=C_{i \min }$ or $F_{i \min }=L I M_{i \min }$, respectively.

## Optimum Sensitivity Analysis and Extrapolation of the Minimum of the Objective Function

The Optimum Sensitivity Analysis, OSA $_{i}$, uses the algorithm of reference 3, applied as a post-processor to $S S O P T_{i}$, to yicld for each subsystem $i$ a vector of the derivatives of the minimum objective function $F_{i \min }$ with respect to the parameters $P$. The vector of these derivatives, $\left\{\frac{\partial F_{i m i n}}{\partial\{P\}_{i}}\right\}$, has the length $N P_{i}$. The definition of $P$ (scc discussion preceding cq. (21)) and the functional relationship defincd by cqs. (19) and (20) imply that

$$
\begin{equation*}
\left\{P_{j}\right\}_{i}=f\left(X_{k}\right), j=1 \ldots \mathrm{NP}_{i}, k=1 \ldots N X \tag{26}
\end{equation*}
$$

and that the derivatives $\frac{\partial\left\{P_{j}\right\}_{i}}{\partial X^{i}}$ cxist. These derivatives default to unity for those pairs $j k$ for which $P_{j}=X_{k}$.
Using the above, one may extrapolate $F_{i}$ by means of the chain rule as an approximate function of $X$

$$
\begin{equation*}
F_{i}=F_{i \min }+\sum_{j} \sum_{q} \frac{\partial F_{i \min }}{\partial P_{q i}} \frac{\partial P_{q i}}{\partial X_{j}}\left(X_{j}-X_{j o}\right), i=1 \ldots N S S, j=1 \ldots N X, q=1 \ldots N P_{i} \tag{27}
\end{equation*}
$$

where $\left(X_{j}\right)_{o}$ is the $X$ for which the system and subsystem analyses were carried out prior to the subsystem optimization. For an example of cq. (27), sec cqs. (10) or (18).

## System Level Optimization

Equating $F_{i}$ cither to $C_{i}$ computcd from cq. (23), or to $L I M_{i}$ defined for cq. (25), dependently on the choice of Modification 1 (cq. (15)) or Modification 2 (cq. (16)) for the SSOPT formulation, the system level optimization, designated SOPT, may be formulated so as to accommodate both alternatives. Defining an objective function $F S(X)$ and the vector of constraints $G(X)$, both computed from the elements of $S O$, the SOPT formulation is as follows:

$$
\begin{equation*}
\text { "find } X \text { such that } F S(X) \text { is at minimum subject to constraints" } \tag{28}
\end{equation*}
$$

$$
\begin{gather*}
G_{k}(X) \leq 0, k=1 \ldots N G S  \tag{28a}\\
F_{i}(X) \leq \mathrm{TOL}, i=1 \ldots N S S  \tag{28b}\\
X L \leq X \leq X U \tag{28c}
\end{gather*}
$$

consistent with cq. (9) modified as described in the discussions of the Modifications 1 and 2.
In the above optimization problem, $F_{i}$ in eq. (28b) is extrapolated by eq. (27), analogous to the extrapolation of $C_{i}$ in cq. (10) or $L I M_{i}$ in cq. (18).

## Initialization

It is a recommended practice to initialize the entire optimization procedure by first setting the values of $\{Y\}_{i}, i=1 \ldots N S S$, and then computing $X$ from eq. (21), recalling that, by definition $X$ is a subset of $P$. This guarantecs starting in $S A$ at the system level with the $X$ values that are physically realizable in SSOPT $_{i}$ by $\{Y\}_{i}$ within the $Y L$ and $Y U$ limits. This opcration is abbreviated INIT.

## Generic Two-Level Optimization Procedure

The procedure is the same as the one described previously for the framework cxample, restated in the generic terms defined in this section.

1. Exccute $I N I T$;
2. Exccute $S A$;
3. Fixecute $S S O P \Gamma_{i}$, followed by $O S \Lambda_{i}, i=1 \ldots N S S$, concurrently, if desired and if the computing equipment permits;
4. Exccute SOPT;
5. If termination criteria set by user are not satisficd, reset $X$ and $Y$ to $X_{\text {opt }}$ and $Y_{o p t}$ and repeat from step 2, otherwise EXIT.

The procedure output is the optimal data for $X, Y, G(X), g(X)$, and $F S(X)$. Owing to the formulation of $\mathrm{SSOPT}_{i}$ in eq. (23) or (24), the optimal values of $X$ and $Y$ will satisfy eq. (20) within TOL. The procedure flowchart is depicted in figure 2.

## Concluding Remarks

Two new techniques are presented for coupling the levels in optimization by decomposition. The techniques constitute improvements of a previously published algorithm for two-level Optimization by Lincar Decomposition (OLD). The OLD algorithm has been summarized and illustrated by an application example to show how the new techniques are implemented by local modifications in that algorithm. The resulting two alternative formulations improve OLD by removing the potential for numerical difficulties that occasionally were caused in the original algorithm by an explicit handling of the equality constraints which constituted the key coupling between optimizations at two levels. Both alternative formulations eliminate the explicit presence of these constraints while satisfying them indirectly. The alternative formulations allow the use of a variant of the optimum sensitivity analysis that docs not require second derivatives of behavior and, therefore, is computationally less expensive than the variant used in the original algorithm. Thus, an additional benefit expected from the modified algorithm is a reduction of its overall computational cost. It is shown that the improved algorithm may be generalized to multidisciplinary system applications.

## References

1. Sobieszczanski-Sobieski, J.: A Lincar Dccomposition Method for Large Optimization Problems-Blueprint for Development. NASA TM 83248, February 1982.
2. Sobicszczanski-Sobieski, J.; Barthelemy, J. F.; and Rilcy, K. M.: Sensitivity of Optimum Solutions to Problem Parameters. AIAA J., Vol. 21, Scpt. 1982, pp. 1291-1299.
3. Barthelemy, J. F.; and Sobieszczanski-Sobicski, J.: Optimum Sensitivity Derivatives of Objective Functions in Nonlincar Programing. AIAA J., Vol. 22, No. 6, Junc 1983, pp. 913-915.
4. Sobicszczanski-Sobieski, J.; James, B. B.; and Dovi, A. R.: Structural Optimization by Multilevel Decomposition. AIAA J., Vol. 23, No. 11, November 1985, pp. 1775-1782.
5. Sobicszczanski-Sobicski, J.; James, B. B.; and Riley, M. F.: Structural Sizing by Generalized, Multilevel Optimization. AIAA J., Vol. 25, No. 1, January 1987, p. 139.
6. Wrenn, G. A.; and Dovi, A. R.: Multilevel Decomposition Approach to the Preliminary Sizing of a Transport Aircraft Wing. AIAA Journal of Aircraft, Vol. 25, No. 7, July 1988, pp. 632-638.
7. Zeiler, T. A.; and Gilbert, M. G.: Integrated Control/Structure Optimization by Multilevel Decomposition. NASA TM 102619, March 1990.
8. Tharcja, R.; and Haftka, R. T.: Numerical Difficultics Associated with Using Equality Constraints to Achicve Multi-level Dccomposition in Structural Optimization. AIAA Paper No. 86-0854, AIAA/ASME/ ASCE/AHS 27th Structurcs, Structural Dynamics, and Matcrials Conferencc, San Antonio, Texas, May 1986.
9. Sobicszczanski-Sobicski, J.: A Technique for Locating Function Roots and Satisfying Equality Constraints in Optimization. NASA TM-104037, January 1991.
10. Vanderplaats, G.: Newsletter of VMA-Enginecring, May 1990.
11. Kreissclmeicr, G.; and Steinhauser, R.: Application of Vector Performance Optimization to a Robust 251-284.
12. Schmit, L. A.; and Ramanathan, R. K.: Multilevel Approach to Minimum Weight Design Including Buckling Constraints. AIAA J., Vol. 16, Fcb. 1973, pp. 97-104.

Table 1. Input and Output of Assembled Framework (System Level) Analysis
Input
$A_{i}, I_{i} \quad$ cross-sectional arca and moment of inertia for $i$ th beam ( $i=1 \ldots N E$, the number of elements in the example is $N E=3$ ), both assumed constant along the beam length
$\{S S C\}$
$\{Q\}$
$E \quad$ the matcrial Young's modulus
$\{U\} \quad$ vector of displacements $U_{k}, k=1 \ldots N D O F$
$\{N\}_{i}, i=1 \ldots N E \quad$ vector of the end-forces on the beam, at cach end there are three such forces: axial force, transverse force, and bending moment
$L_{i} \quad$ length of the $i$ th beam
$A_{i}, I_{i}$, and E as an input passed through the analysis to output;
Derivatives: $D(U, A), D(U, I), D(U, S S C), D(N, A), D(N, I), D(N, S S C), D(L, S S C)$

Table 2. Input and Output of $\boldsymbol{i t h}$ Beam (Subsystem Level) Analysis

NAL and SAL
normal and shear allowable stresses, respectively
Input selected from the Output in table 1:
$N i, i=1 \ldots$ NE $\quad$ vector of the end-forces on the beam
$L_{i}$
$A_{i}, I_{i}$, and E ;
length of the $i$ th beam
vector of the structure shape coordinates in a reference coordinate system that defines locations of the frame support and corner points
vector of loads $Q_{j}, j=1 \ldots N D O F$, applied coincident with the structure unsupported degrees of freedom whose number is NDOF

## Output

## Input

$\{Y\}_{i}$
vector of the beam cross-sectional dimensions $Y_{k}, k=1 \ldots \mathrm{NY}_{i}$, shown in the inset, Fig. 1.

## Output

$\{S N\}_{i}$ and $\{S S\}_{i}$
$\{U B\}_{i}$
$\{N C R\}_{i}$ and $\{S C R\}_{i}$
vectors of the normal and shear stresses, respectively, at judiciously chosen points on the end cross sections
beam displacements in the beam local coordinate system
vectors of the normal and shcar critical stresses, respectively, for evaluation of the beam column and local buckling constraints


Fig. 1 A portal framework.


Fig. 2 Flowchart of the generic procedure.

| Report Documentation Page |  |  |
| :---: | :---: | :---: |
| 1 Ifeperli No NASA 'TM-1040)36 | 2. Goverinemi Actessmin No, | 3. Reciplent's Catalog No. |
| 4. Title and Subtitle <br> Two Alternative Ways for Solving the Coordination Problem in Multilevel Optimization |  | $\begin{aligned} & \text { 5. Repor Date } \\ & \text { August } 1991 \end{aligned}$ |
|  |  | 6. Performing Organization Code |
| 7. Author(s) <br> Jaroslaw Sobieszczanski-Sobieski |  | 8. Performing Organization Report No. |
|  |  | $\begin{array}{\|l} \text { 10. Work Unit No. } \\ 505-63-36 \end{array}$ |
| 9. Performing Organization Name and Address <br> NASA Langley Research Center Hampton, VA 23665 |  |  |
|  |  | 11. Contract or Grant No. |
|  |  |  |
| 12. Sponsoring Agency Name and Address <br> National Aeronautics and Space Administration Washington, DC 20546-0001 |  | 13. Type of Report and Period Covered Technical Memorandum |
|  |  | 14. Sponsoring Agency Code |
| 15. Supplementary Notes |  |  |
| The paper describes two new techniques for formulating the coupling between levels in multilevel optimization by linear decomposition, proposed as improvements over the original fornulation, now several years old, that relied on explicit equality constraints which were shown by application experience as occasionally causing numerical difficulties. The two new techniques represent the coupling without using explicit equality constraints, thus avoiding the above difficulties and also reducing computational cost of the procedure. The old and the new formulations are presented in detail, illustrated by an example of a structural optimization. A generic version of the improved algorithm is also developed for applications to multidisciplinary system not limited to structures. |  |  |
|  |  |  |  |
| 17. Key Words (Suggested by Author(s)\| <br> cumulative constraint <br> optimization <br> geometrical$\quad$18. Distribution Statement <br> Unclassified - Un1imited <br> Subject Category - 05 |  |  |
| 19. Security Classif. (of this report) Unclassified | 20. Security Classif. (of this page) Unclassified | 21. No. of pages 22. Price <br> 16 AO 3 |

