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ABSTRACT

Spirulina sp. as a bioregenerative photosynthetic and an edible alga for

space craft crew in a CELSS, was characterized for growth rate and biomass

yield in batch cultures, under various environmental conditions. The cell

characteristics were identified for one strain of Spirulina: S. maxima.

Fast growth rate and high yield were obtained under the following conditions:

temperature (30°C-35°C), light irradiance 60-100 uE m -2 s-l, nitrate 30mM,

phosphate 2mM, aeration 300 ml/min, and pH 9-10. The partitioning of the

assimalatory products (proteins, carbohydrates, lipids) were manipulated by

varying the environmental growth conditions. Our experiments with Spirulina

have demonstrated that under "stress" conditions (i.e. high light 160

uE m -2 s-l, temperature 38°C, nitrogen or phosphate limitation; 0.I M

sodium chloride) carbohydrate increased at the expense of protein. In other

experiments, where the growth media were sufficient in nutrients and incubat-

ed under optimum growth conditions, the total proteins were increased up to

almost 70% of the organic weight. In other words the nutritional quality of

the alga could be manipulated by growth conditions. These results support

the feasibility of considering Spirulina as a subsystem in CELSS because

of the ease with which its nutrient content be manipulated.
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INTRODUCTION

Pursuit of our national goals in space exploration will eventually require

man's long-duration tenancy of celestial vehicles and planetary base. Re-

quirements for life support could be met through expenditure of stored

supplies and by regeneration and reuse of the waste products of human metab-

olism. The logistics necessary of regeneration for extended space missions

are well documented (I). The primary source of all man's food and organic

raw materials is solar energy. Conventional food sources consist of higher

plants and animals. Unconventional food sources for human consumption are

photosynthetic algae and bacteria and non-photosynthetic bacteria, yeast and

fungi. Conventional food sources are highly palatable, but require a long

time to produce. Algae, on the other hand, grow rapidly; their metabolism

can be controlled; they produce a high ratio of edible to nonedible biomass;

and their gas-exchange characteristics are compatible with human requirements.

The biological components of Controlled Ecological Life Support System (CELSS)

will serve as subsystems for the revitalization of air, for the long term space

flight. Studies of bioregenerative life support systems for use in space in-

dicated that they are scientifically feasible. Support of a crew in space,

whether in an orbiter or on the surface of a planetary body requires that oxygen,

potable water and food be supplied and that waste material be removed. Employ-

ment of photosynthetic organisms (Algae: Cyanobacteria) allows biomass production

from relatively simple components which are readily recycled in a CELSS system,

namely carbon dioxide, minerals (NO3-, PO4-3, K+, etc.) and micronutrients.

Cyanobacteria single cell protein (SCP) has been used as a food source in various

parts of the world (e.g. Mexico, China and Africa) since ancient times; in fact,

dried cyanobacteria and cyanobacterial tablets are now sold in health food stores

in Japan, North America and Europe because they are recognized for their nutri-

tional value. The nutritional quality of all cyanobacteriawhichhave been tested appears
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to be very high. The protein of S. maxima is easily digestible and approximately

65% of the protein is assimilatible.

The semi-microscopic blue-green algae (Cyanophyta; Cyanobacteria) occupy a

taxonomic position, since they combine an autotrophic mode of growth that is common

to eukaryotic plant cells with a metabolic system that is generally regarded as

bacterial, rather than plant-like.

Changes in the supply and consumption of metabolites may have considerable effects

on metabolic patterns. The accumulation of photosynthetic products in algae can

be induced by manipulating the environmental conditions under which the algae are

grown (2). The most difficult problem in using algae as food is the conversion

of algal biomass into products that a space crew could actually eat over a long

period of time. If algae are to be considered as a primary food source, it will

be necessary to determine that they can be converted into a wide enough range of

a palatable complete diet. Therefore, Spirulina, an edible alga with less nucleic

acids and no cell wall , offers a good prospect for further studies by manipulating

growth parameters.

In order to evaluate the potential of Spirullna for a CELSS diet, it is essential

to have background information on the environmental tolerance of the species and

eventually the responses of physiological characteristics. This background will

be obtained from studying the species in batch and continuous cultures.

The purpose of this project was to evaluate the growth and chemical composition

of Spirulina under different growth conditions in batch cultures.

MATERIALS AND HETHODS

$pirulina maxima (UTEX LB 2342) was cultured in Zarrouk medium (3). The

culture medium was modified for nutrient limitations. Studies for nitrogen

limited cultures, sodium nitrate was replaced by potassium chloride and nitrate,
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ammoniaand urea weretested. For P-limited mediumthe P wasreplacedby

sodiumchloride andphosphoricacid wasusedas P-source. For salinity studies,

sodium chloride was used. The pH was maintained in all cases at 9 with 2N NaoH.

All experiments were incubated in 30ml medium ofcontirmous light, in small bottles

and bubbled with air. These culture were used for evaluating the growth parameters

of the alga. Cultures were placed on shelves, illuminated with cool white

-2 -i
florescence tubes of light intensity 80 uE m s in culture room kept at 25°C ± I.

Light irradiation measurements were made with a Li-Cor Model Li-185 (Lambda

Instruments) Meter equipped with a spherical quantum sensor.

For mass culturing, algal cells were grown in bottles. Cultures were illuminated

continuously by placing them in front of a bank of two cool white fluorescent

lamps (40W). Light irradiation, measured at the surface of culture bottles was

-2 -I
80 uE m s The cultures were grown in a water bath kept at 29-30°C by the

use of a heater-thermostat combination.

The cultures were aerated with air (0.03% CO 2) or air enriched with carbon dioxide.

Mixtures of air (0.03%) and carbon dioxide were obtained by blending gases to a

desired mixture in a two-gas proportioner. The flow rate of the mixed gas de-

livered to the culture was maintained at 300 ml/min.

Analysis:

Growth Rate: Growth was measured by monitoring change in absorbance (O.D.) at

560 nm with spectrophotometer (Perkin Elmer Lambda I) and expressed as doublings

day -I. The mean daily division rate t, K, was calculated from: K = 3.32

t

(log10 OD t - 10gl00Do), Where, t = days since inoculation, OD t - optical

density after t days, ODo = optical density when t = 0.
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Harvestln 8 of Cells: Cells were collected by filtration using filter paper 10um

pore size (Gelman). Cells were washed with buffer solution (pH 8), diluted to

known volume and processed for further analysis. Cultures were harvested at

O.D. 0.i units, to avoid light limitation.

Total Chlorophyll: An aliquot from the culture was centrifuged for 2 min at

2000g. The precipitate was suspended in methanol for 5 min in a water bath at

70°C, and therefore centrifuged. The optical density of the supernatant was

determined at 655 nm.

Dry Weight Measurements (DW): A volume from the culture was filtered through

a filter 10um pore size, dried in previously dried, preweighed filter paper

and then weighed after cooling in a desiccator.

Ash-Free Dry Weight (AFDA): After recording the dryweight, the dried cells were

ashed. The difference between dry weight and ash weight gave the organic weight

of the sample.

Total Carbohydrates: The anthrone sulphuric acid method was followed.

Total lipids: Cellular liplds were solubilized by repeated extraction with

methanol and methanol-chloroform (I:I), then phase separated after adjustment

of the solvent rations to 10:10:9 (methanol: chloroform: water, v/v).

Total Nitrogen and Protein using Kjeldahl methods. The value of the readings

was calculated in ug N, from a standard curve for nitrogen source as ammonium

sulfate, which has been treated by the same method. Total protein was calculated

from total N x 6.25.

Triplicate samples of the algal suspension were taken for each determination.

The mean value of these triplicates was recorded.
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Nutrients Requirements:

Cultures were incubated in small bottles under the same conditions as described

in Section A. The original growth medium was modified by changing the concen-

tration of one nutrient. Nitrogen, phosphorus, iron, bicarbonate and sodium

chloride were studied in sufficient and limiting concentrations. The bicarbonate

effect was studied together with the aeration effect.

In all experiments triplicate culture bottles were inoculated from stock cultures

in the exponential phase. Growth response was measured as optical density and

the growth rate was expressed as doublings per day. The yield of cultures was

expressed as the total dry weight after five days of growth. The total dry weight

was determined by harvesting the cells and drying it.

B. Physiological Characterization of Spirulina in Batch Cultures:

For this experiment, the alga was grown in batch cultures (Roux bottles) as

mentioned in "Methods". The cultures were maintained under optimum growth condi-

tions and monitored in the exponential phase by the absorption measurement.

O.D. of Cell Suspension versus D.W. and Chlorophyll: The species was grown in

triplicate Roux bottles under the same conditions described before (see Methods).

Twenty ml of culture samples were taken daily for measurements of the D.W., and

chlorophyll. The experiment was continued for one week.

Under Optimum Growth Conditions: The species was grown in duplicate Roux

bottles under the same conditions described before (see Methods). Cultures

were analyzed for growth parameters during the eight days.

Stress Conditions:

Light and Temperature: Batch cultures were incubated in Roux bottles irradiation

and others at high temperatures (38°C) in water bath.
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EXPERIMENTAL DESIGN

A. Crovth Parameters Characterization

Temperature, Light: The algal growth was evaluated for temperature and light

tolerance on a gradient plate. Temperature could be adjusted in range from IO*C

and 50"C. Illumination was provided by eight cool white fluorescent tubes (40W).

The algal species was cultured in small bottles (60 ml capacity) containing 30 ml

growth medium. Triplicate cultures were placed on the gradient plate, at tem-

peratures: 20°C, 25=C, 35°C and 40°C. The cultures were exposed to two light

intensities and were aerated with air (0.03% CO2).

pH Effect:

The alga was incubated in small bottles at 35"C on a temperature gradient plate

-I -2
and 80 uE m s Irradlance. The original medium was used for culturing, except

the pH used for culturing was varied by using NaOH or HCf. The pH of cultures was

adjusted daily to the original pH. The cultures were aerated with air (0.03% CO2).

Aeration Rate_ Carbon Dioxide Enrichment, Bicarbonate Concentration:

The alga was incubated in small bottles at 35°C on a temperature gradient plate

-I -2
and 80 uE m s irradiance. Three sets of cultures were treated differently:

a. Cultures were aerated with different flow rates (air 0.03% CO2).

b. The flow rate which gave the best growth rate, was selected from "a". The

cultures were aerated with air enriched with carbon dioxide in different con-

centrations I%, 3%, 5% and 10%.

c. Cultures were treated with different bicarbonate concentrations in which one

set was aerated with air (0.03% CO 2) and other set was aerated with air

containing i% CO 2. The pH of all was adjusted twice daily.
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Nutrients:

Batch cultures were grown in Roux bottles in duplicate until the exponential

phase was reached. One batch was analyzed and represented the culture sufficient

in nutrients. Batch cultures were concentrated and diluted to the original batch

volume but with a new medium modified in one element. The cultures were in-

cubated under stressed conditions for two days and then harvested for analysis.

RESULTS AND DISCUSSION

Temperature and Light:

Figure 1 depict the growth and yield of Spirulina at two light irradiations and

different temperatures ranging from 20°C to 40°C. The strain did not grow at

20°C but it started to grow at 25°C at very slow rate. Temperatures 30 and 35°C

enabled the algal fastest growth rate and highest yield of cells. When the

temperature was raised to 40°C, the algal cells turned yellow and gave a lower

-2 -I
yield. The alga tolerated light irradiance 120 uE m s

Aeration Rate:

The effects of air agitation rate on the growth rate and cell yield are depicted

in Figure 2. The growth rate of Spirullna increased with increasing the flow rate

of air in range of 150 ml/mln and 500 ml/mln. When the flow rate of aeration was

increased to 2000 ml/mln, the growth rate started to decline and cells turned

yellow. On the other hand the cell yield in terms of dry weight was not affected.

The pH of all cultures increased to II. The cell yield of the strain showed

parallel fluctuation to the growth rate of the alga.

Air Enrichment with Carbon Dioxide:

Figure 3 shows the effect of air enriched with different concentrations of

carbon dioxide on the growth rate of Spirullna:

• Cultures aerated with 10% CO 2 - in air, did not grow and turned yellow. The pH

of the cultures were maintained at 9.4 by the addition of sodium hydroxide. How-
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ever, the pH of cultures aerated with I% CO 2 - enriched air was maintained stable.

• Cultures aerated with air (0.03% CO 2) grew at more or less the same growth

rate of those aerated with I% CO 2 - enriched alr. The yield of cultures

treated with different CO 2 concentrations, in terms of dry weight, was equivalent

to the growth rate.

The results of this experiment are in agreement with those of Faucher and Coupal

(4). They reported that Sparging i% CO 2 - air in Spirulina cultures could

maintain a constant pH of the culture medium, and at the same time generate HCO 3

ions which were used as carbon source for S. maxima. In a similar study with

green algae, Golden and Graham (5), reported that in batch cultures, maximum

growth rates were achieved at the CO 2 levels present in atmospheric air and at

HC0_ concentrations of 3 mM.

pH Effect:

The growth rate of Splrulina strain was clearly affected by the pH of the growth

medium as is shown in Figure 4. The alga exhibited higher growth rate in media

of pH range of 9 to 10. The growth rate decreased with increasing pH above I0

and the cells turned yellow. The cell concentration increased when increasing

the pH of the medium from 8 to i0 and then decreased above pH I0.

Nutrient Requirements:

Nitrogen: Nitrogen sources in the form on nitrate and urea were tested in

different concentrations in order to determine their effectiveness as N-sources.

The results of nitrate-N and urea-N are represented (Figure 5). The growth

rate of Spirulina was enhanced with increasing the concentration of urea-N and

nltrate-N. The urea-N at 20mM concentration enhanced the growth rate, while

further increase in its concentration limited the growth of the strain.
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On the other hand, nitrate-N at concentration 30 mM, enabled the strain to reach

fast growth rate and high yield in terms of dry weight. The experiment demon-

strated that the least amount of nitrate-N necessary to maintain the growth of

Spirulina in culture was 10 mM. Microscopically, the trlchomes became shorter

with average 6 turns/trichome, in media limited in nitrogen concentration. In

agreement with our results, Faucher (4) reported that urea-N in low concentration

could support the growth of S. maxima, at high concentration of nltrate-N.

Phosphate: Increasing the phosphate-P concentration in the culturing media to

I mM to 5 mM, enhanced the growth rate of the strain (Figure 6). But as the

concentration increased to i0 mM, the growth rate declined. The mass yield showed

similar responses coinciding with the growth rate. Microscopically, the trichomes

became shorter in media of phosphate-P concentration below I mM and with few

number of turns in case of S. maxima (5 turns/trlchome). Generally, cyanobacteria

require small concentrations of phosphate-P for growth. They grow in phosphorus-

limited media (6).

Sodium Chloride: Spirulina grew in media lacking sodium chloride (Figure 7).

The growth rate increased as the sodium chloride concentration increased to 0.01M

Further increase in sodium chloride concentration (0.1M) affected the growth rate

and resulted in lower yield of cells. In addition, microscopic examination of

the strain indicated that in media treated with a high concentration of sodium

chloride 0.IM, the trichomes were short and with less turns, the average turns

per trichome was 6. The results of this experiment, indicate that Spirulina

tolerate increases in sodium chloride concentration up to I00 mM. Splrulina

tolerance to salt had been previously reported (4).
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Iron: Iron concentrations (FeSO 4) influenced the growth and yield of the culture

(Figure 8). Concentration of 0.05 mM was sufficient for the growth, although

media deficient in iron did not show any growth response. Increasing the concen-

tration of iron beyond 0.I mM lowered the yield of alga and cells turned yellow.

Bicarbonate Concentration: Figure 9 shows that S. maxima grows in the medium

even without bicarbonate salt, providing that the culture was aerated with air

(0.03% CO2). As the bicarbonate concentration increased, the growth rate as well

as productivity increased. Further increase in bicarbonate concentration above

16g/L (190 mM) did not affect the growth rate. When the carbon dioxide concen-

tration in the air increased from 0.03% to I%, as shown in Figure 9, the growth

rate increased remarkably by decreasing the bicarbonate concentration in the

medium as low as 4g/L i.e. one quarter of the concentration in the

Zarrouk medium (see Methods). The results of this experiment indicate that

Spirulina can utilize atmospheric carbon dioxide when the media bicarbonate

concentration is minimum in the culture medium. The pH of all cultures was ad-

justed daily to 9.4.

Physiological Characterization of Spirullna in Batch Cultures:

Batch Cultures:

Optical Density (O.D.) of Cell Suspension versus Dry Weight (D.W.) and Chlorophyll:

Results are presented in Figure I0. For all samples within the first three days

of cultivation, which contain relatively small concentrations of biomass (400 mg

DW/L or less), readings fell within the accurate range of the O.D. scale and they

could be read directly from the spectrophotometer without dilution. However, for

all samples during the later cultivation periods which contained high concentration

of biomass (500 mg DW/L), dilution of the samples with distilled water was neces-

sary prior to OD readings. The graph show linearity between OD and dry weight.
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Each OD unit is equivalent to a concentration of 700 mg/L in the case of S. maxima.

It is obvious from this experiment that other reliable indicators of estimating

algal productivity can be computed from OD measurements. Therefore, OD measure-

ments can be translated into biomass yield in terms of dry weight or chlorophyll.

Physiological Characteristics of Culture, under Optimum Growth Conditions:

The cultures were assayed for growth parameters during the eight days. (Fig. 11)

Increments of carbohydrates, proteins, dry weight and chlorophyll are expressed

as ug/ml culture. The results show that increases in the synthesis of chlorophyll,

protein and yield of the culture are correlated. Growth parameters of cultures

analyzed after eight days started to level off, due the nutrient exhaustion and

light limitation caused by increasing cell concentration.

Physiological Characterization of Cultures, under Stress Conditions:

The results of analysis were expressed on the basis of organic weight (Ash Free

Dry Weight: AFDW) and represented in Table I.

-2
Light Irradiance and Temperature: Increasing the light irradiance to 120 uE m

-i
s , led to an increase in the total carbohydrate content and a decrease in protein

content: S. maxima 19.58%, 29.06%. Increasing the temperature of culture incubation

to 38°C, influenced the composition of the strain, in a similar manner to the light

irradiation experiment: S. maxima, 45.28%, 18.75%, for protein and carbohydrates,

respectively. The culture produced a low percentage of lipids, when grown in

high temperature experiments. Cells turned yellow green in color. Studies with

light-limited cyanobacteria showed a high level of polysaccharide formation when

they exposed to high light intensities (8).

Nutrient Limitation: Media limited in nitrate-N and phosphate-P, favored the

accumulation of carbohydrate rather than protein. Nitrate and phosphate
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limited cultures: S. maxima had 37.52%, 35.21% carbohydrate and 21.56%, 41.25%

protein. When the cultures were transferred to media limited in nitrogen and

phosphate, cultures changed in color from blue to yellow-green. N-llmited

cultures of Anacystis nidulans (7), and P-limited cultures of Oscillatoria

agardhii (8), showed elevated levles of polysaccharide storage.

Sodium Chloride: As Zarrouk (3) media were enriched with 0.1M and 0.5M NaCI,

the carbohydrate content of the cells increased, when compared to that of the

control (Zarrouk: 0.01M NaCI), to 26.25%, 36.73% in S. maxima. On the other

hand, the total protein decreased respectively to: 52:62%, 45.64% in S. maxima.

The lipid percentages showed little increase when compared to those of the complete

media (control). Many cyanobacteria are capable of adapting to a range of salinity

in the environment by synthesizing internal osmotic support in the form of carbon-

hydrates.

Bicarbonate: When bicarbonate concentration of Zarrouk media was reduced to one

quarter (4.g/L), the culture showed much difference in the chemcial composition

as compared with the control media except their yield was somewhat below the con-

trol. The carbohydrate increased to 38.53% when 0.03% CO 2 in air was used for

aeration and to 40.23% when 1% CO 2 air was used for aeration.

Conclusions of this study are summarized as following:

• The lipid percentage, in particular, did not show much increase in

different culture treatments. But, increasing the temperature of culturing

-2 -I
to 38°C or light irradiance to 120 uE m s , reduced the total llpids

drastically. However, increasing sodium chloride to 0.1M in the culturing

media, the llplds increased somewhat higher than in the control media.

• The ability of the alga to utlize macroelements and mlcroelements, and to

convert it into biomass.

229



• A slight inverse relationship was observed between the protein content and

carbohydrates which means that one increased at the expenses of the other.

This suggests that quality of blomass may be manipulated for dietary

purposes. An adequate supply of nutrients is therefore a pre-requisite

for producing a uniform quality of blomass, which in turn could then be

used in the formation of diets. (see Sufficient Nutrients). The possibility

of manipulating the quality of the biomass could have potential for the

NASA/CELSS Program, when specific diet formulation is needed (e.g. low pro-

tein content).

• Overall algal productivity and quality could be manipulated by means of

varying nutrient concentrations or temperature and light irradiance.

It can be concluded that through manipulating environmental conditions of the algal

growth, one can modify the photosynthetic products. Thus, Splrulina can be,

through manipulating growth factors, used as palatable diet comparable to higher

plants.

Further work is needed to characterize the efficiency of the algal cells under

such environmental conditions in terms of gas exchange and energy loss or gain

in steady state.
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Table I. Molecular Compositon of Spirulina maxima

Growth % Organic Nt. (AFDW)

Conditions Protein Carbohydrate Lipids

*Sufficient

Nutrients 69.75 11.5 4.68

Rlgh Light
(160uEm-2s -1) 29.06 19.58 3.56

High Temperature
(380C) 45.28 18.75 3.75

N-limlted 21.56 37.52 4.68

P-limited 41.25 35.21 5.20

Sodium Chloride

0.1M 52.62 26.25 4.68

0.1H 45.64 36.73 7.52

Bicarbonate

(4.4g/L)

(0.03% CO 2 ) 45.67 38.53 6.22

i% CO 2)_ 43.52 40.23 6.53

* Experimental conditions were:

temperature 300C; light irradiance 80uEm-2s-l;

air flow rate 300 ml/min;

The values shown are averages of four indepen-

dent determinations.
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