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SUMMARY

Tuning maps are an aid in the controller tuning process because they

provide a convenient way for the plant operator to determine the consequences

of adjusting different controller parameters. In this application the maps

provide a graphical representation of the effect of varying the gains in the

state feedback matrix on startup and load disturbance transients for a three

capacity process. Nominally, the three tank system, represented in diagonal

form, has a Proportional-Integral control on each loop. Cross-coupling is

then introduced between the loops by using nonzero off-diagonal proportional

parameters. Changes in transient behavior due to setpoint and load changes

are examined by varying the gains of the cross-coupling terms.

INTRODUCTION

Tuning of control systems to achieve desired transient response charac-

teristics to setpoint and load changes has long been an important issue. In

1942, Ziegler and Nichols proposed the first structured approach to the tuning

of Proportional-Integral-Derivative (PID) controllers to appear in the litera-

ture (ref. i). This technique presented a simple way to achieve one-quarter

damping in response to load disturbance upsets in industrial-type single-

input-single-output processes. Since then, many forms of the algorithm have

appeared with the emphasis on different types of responses (refs. 2 to 6). As

modern control techniques have become more popular in practice, some tuning

methods for multivariable systems have begun to appear in the literature

(refs. 7 to 9).

The original, pre-Ziegler-Nichols tuning method, sometimes known as

tweaking or trimming, is still very much in use in industry. It consists of

an operator observing a transient, adjusting the controller gains based on

experience, and rerunning the transient. This method is often limited in

practice by the infeasibility of running exploratory step responses on-line

and by the length of the dominant time constant of the plant which may be

hours for some processes. During normal plant operation, an operator is

generally more concerned with load disturbance rejection than with response to

setpoint changes. However, since it is often impractical to generate load
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upsets for testing purposes, tuning of a controller to compensate for loads
maybe difficult. Thus, operator dissatisfaction with closed loop performance
is commonand results in about half of all industrial control loops being run
on manual (in open-loop mode) (ref. I0).

Operator aids knownas tuning mapswere presented in 1962 (refs. Ii
and 12). These mapsconsisted of transient responses of a specified shape
(one-quarter damping, for instance) plotted in the plane comprised of the nor-
malized integral and derivative gains. The loop was closed around a multiple
lag plus deadtime process with a PID controller. The integral and derivative
terms were fixed and the proportional value was varied until the step response
had the desired characteristics. The transient was displayed at the appropri-
ate point in the normalized Integral-Derivative plane and the proportional
value which produced the response was shownalongside it. The mapallowed the
operator of a process with the designated transfer function to choose the PID
values directly from the mapof the desired response curve shape.

The advantage of the tuning mapover the Ziegler-Nichols-type tuning
algorithms is that it gives a large choice of PID parameters rather than a
single set for the desired response shape. Since the Ziegler-Nichols algo-
rithm seeks to achieve only one feature of the response (damping) as its
objective, other parameters such as period of oscillation, percent overshoot,
etc., are not considered. Operators who must meet several of these con-
straints simultaneously need the flexibility to choose initial controller
values which will comeclose to attaining their goals at once.

An extension of the tuning map idea which offers even more flexibility is
the three-dimensional tuning map. This mapagain contains transient plots at
specific points in the normalized Integral-Derivative plane but with manypro-
portional values used for each Integral-Derivative pair. Thus, the mapgives
the additional information of the direction of adjustment for the tuning
parameters to attain the desired response. This technique allows an overall
response curve to be chosen rather than simply a single feature (ref. 13).

All previous work has been applied to single-loop processes using class-
ical control methodologies. Our work involves using tuning maps for a state
feedback controller to demonstrate the effect of introducing interaction
between multiple loops of a formerly decoupled process. Generally it is

desirable to have noninteracting loops for ease of tuning, but, if the inter-

action provides t_e potential for improved system response and the method for

tuning the controller is provided, the addition of interaction can be benefi-

cial. The sample process used consisted of three noninteracting cascaded

capacities. This system was selected arbitrarily as a representative indus-

trial process. The scope of the wor_k was limited to having at most one cross-

coupling term in each multlvariable controller examined. It was felt that

exploring more complicated interactions would obscure the purpose of the maps

by creating an unwieldy number of variables which would overwhelm rather than

aid the operator (ref. 14).

The remainder of the paper consists of three parts: a description of the

process and the artificial interactions Imposed on it; a summary and analysis

of the tuning maps obtained for the process; an4 conclusions about the utility

of the maps.



THREE CAPACITY PROCESS

The three tank system shown in figure 1 is an example of the noninteract-

ing three capacity process of interest. We will assume that each tank is tall

enough with enough liquid that transient responses will not cause any tank to

empty or overflow, and that the valve determining the flow out of the tank

will never fully open or fully close. These restrictions will assure linear

behavior. We will also assume that the level in each tank is regulated about

its own setpoint. Finally, we are concerned only with the level of the bottom

tank. The levels of the upper two are measured as intermediate variables for

control purposes only, they are not system outputs.

The differential equation representing the liquid level, h, inside each

tank is a function of the inflow, qin' and outflow, qout' namely,

Ah(t) = qln(t) - qout(t)

where A is the cross-sectional area of the tank which is assumed to be

unity.

We assume that the outflow is regulated by a valve which can convert a

flow command to an appropriate opening in negligible time. Thus the transfer

function of the valve from flow request to output is

Gv(S) = 1.0 (I)

A Proportional-Integral controller of the form

k[ kps + k I

Gc(S ) = kp + __ =
s s

(2)

is used to govern the level in the tank. The closed loop transfer function

for any one tank is

r s
h(s) E _ + _r

s s 2 + kpS + k I

(3)

where r represents the new setpoint for the liquid level in the tank which

we assume is a constant, and _r is the amount of the step change in setpoint

(see the appendix for the derivation). Figure 2 depicts a block diagram of

one of the tanks. The transfer function of the error in the level (actual

minus desired) of any one tank is simply

s
e(s) - Ar

2

s + kpS + k I

assuming the disturbance input, qln(t), is unchanged. In the case of a

setpoint change at the lowest tank only, the transfer function for the level

in that tank is given by equation (3). As long as the capacities are
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noninteracting, the Proportional-Integral controller for the lowest tank

determines the transient response for the level as it is adjusted due to the

setpoint change.

For load disturbance upsets, _qin' the closed loop transfer function for

any individual tank is

r s

h(s) = _ + _qln(S) (4)
s 2

s + kpS + k I

where r represents the setpoint for the liquid level in the tank and we

assume that it is a constant. The transfer function of the error in the level

(actual minus desired) of any one tank is simply

s

e(s) = _qin(s) (5)
2

s + kpS + k I

From figure 2 it can be seen, using equations (I), (2), and (5), that

kpS + k I

qout (s) = _qin (s) (6)
2

s + kpS + k I

Therefore, in the case of a flow change, _v, into the highest tank, the trans-

fer function for the level in the lowest tank is

r s kpS + k I kpS + k I

h(s) - _ + _v(s)

s s 2 + kps + k I s 2 + _s + k I s 2 + kpS + k I

which is a combination of equations (4) and (6) since the outflow of one tank

is the flow into the next, causing the error to propagate through the three

noninteracting tanks.

Using the modern control technique of state feedback to, in effect, cou-

ple the capacities, it might be possible to improve the transient response to

setpoint or load changes by restricting or increasing the flow from the higher

tanks to the bottom one.



A possible state space realization for the three tank process is

i]h2

3

= Ah + Bqqou t + Fv = A(e + r) + Bqqou t + Fv

= Ae + Ar + Bqqou t + Fv =
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where v is the unrestricted flow into the top tank.

In order to include the integral terms of the controllers, the state vec-

tor can be augmented by the integrator state variables, Xl, x2, and x 3.
These additional variables provide the integral of the error in the level of

each tank. The sixth order equation is
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If we introduce the state feedback matrix, K = [Kp KI], which incorporates the
proportional and integral gains, we can obtain a closed loop system of the
form

by setting the vector qout from equation (7) to

(go 1 [kPlI 0 0 0 01

ut I kill

[qou_j o o _ o o kI__

eql

e_l

e31

Xll

x21

x31

(8)

This gives us a realization of the three noninteracting capacities pictured in

figure i. The fact that the portions of the K matrix corresponding to the

proportional and integral parts of the controller are diagonal keeps the tanks

decoupled.

Introducing interaction between the tanks in order to improve the startup

or load disturbance rejection characteristics involves simply adding nonzero

off-diagonal terms to the K matrix. In this work we are concerned only with

the effect of proportional coupling on the system. The state space formula-

tion of the interacting system is
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The tuning technique we will present may be understood symbolically from fig-

ure 3. Each knob on the front of the box in figure 3 represents a propor-

tional element of the left half of the K matrix. The tube on top provides

the disturbance input to the uppermost tank. The setpoints for the tanks

enter on the left. The process starts out in steady state. The output due to

a step change in the level command or the disturbance input is a transient

response which is plotted on a strip chart recorder to the right. Many tran-

sients are obtained, each with the knobs adjusted differently. The plots are

collected and presented in a way which makes it easy to see the effect of each

tuning change on the output.

Figures 4 to 6 show the tuning maps generated for step setpoint changes

from the system in equation (9). Figure 7 depicts the tuning map created for

the system in (9) due to a step load disturbance. The three-by-three grids of

plots are arranged so that each set of graphs in each figure corresponds to

the adjustment of the corresponding tuning knob from figure 3. In each of

these figures, the nominal or noninteracting system (the combination of

equations (7) and (8) with kli,=l and kp_1=2 ) is used. One by one, each

proportional element of the K matrix is varied through a range of values and

then reset to its nominal value. Each set of graphs depicts step responses to

setpoint or load changes. Within each graph, the corresponding proportional

gain is increased from upper left to lower right. In figure 4 the setpoint of

the bottom tank only is changed; in figure 5 the desired levels of the bottom

two tanks are changed simultaneously; and in figure 6 all three requests are

altered concurrently.



RESULTS

The tuning maps in figures 4 to 6 each represent different situations.
The case presented in figure 4 concerns a setpoint change in the bottom tank

only. Consequently, since the process is originally in steady state, feeding

the error from either of the upper two tanks to any other loop has no effect

on the transient response. This is because no error has been introduced in

the levels of the upper two tanks. The result is that the tuning maps vary

with the element of K in the right column only. Likewise, in figure 5 where

the command is changed in the lower two tanks, feeding the error in the level

of the uppermost tank to either of the lower two has no effect since the error

is zero. This results in the left column of the map being unaffected by vari-

ations in K. Figure 6 shows the case where all setpoints are changed making

any change in K have an effect on the step response transient.

The tuning map in figure 7 represents the case where a step change is

introduced in the flow into the top tank. This disturbance upsets the equi-

librium in the tanks, and the valves controlling outflow must be adjusted to

return the tanks to their desired levels. The plots depict the impact of

altering the interaction between the tanks on the level in the bottom tank.

Since the error is injected at the beginning of the flow path and its effect

is propagated through to the end, any change in the interaction between upsets

causes the ensuing transient responses to differ.

One caveat concerns the settings of parameters which apparently have no

effect on the transients in figures 4 and 5. The fact that no changes occur

in the step response due to varying the K value does not mean that the gain

selection is arbitrary; only when the error is exactly zero will this situa-

tion arise. Uninformed choice of the gains could result in an unstable system

which will manifest itself only due to noise or disturbance upsets. In this

case, any nonzero error will cause a runaway in the unstable loop, creating a

serious upset in the output. Since the output of this three capacity process

is ultimately limited by flow into the top tank, the desired output steady

state level might be achieved but the transient response will be unpredict-

able, defeating the purpose of the tuning map.

Also, the responses from the figures due to varying particular K ele-

ments away from the nominal form are in general not additive. That is, alter-

ing two or more K values at once in order to achieve, in some sense, a

combination of two responses from the maps will not work and may, in fact,

give an unstable result. It is entirely possible that simultaneously altering

several gains from their nominal settings will give greatly improved results.

However, the tuning maps presented here will not provide the information on

how to accomplish this.

CONCLUSIONS

Tuning maps for a three capacity process under multivariable control

were developed as a guide for choosing gains of a state feedback controller.

The maps provide a concise graphical representation of the effect of altering

a single proportional gain on startup and load disturbance transients. The

use of the maps is straightforward and easily understood.



The difficulties discussed at the end of the results section are an
indication of the complexity encountered when introducing interaction to even
a simple system. The mapsare intended to be used as a guide during the tun-
ing process, not as a design aid. As such, they demonstrate the effect of
simple parameter changes on step response transients and make no attempt to

address the result of changing several gains at once.

The determination of what constitutes the best transient response to a

setpoint or load change basically depends upon the operator's preferences.

There may be some constraints tied to the process's output product quality,

but otherwise the operator is generally free to choose the response shape.

The use of multivariable tuning maps gives the operator an extra degree of

freedom over standard single loop tuning methods and provides the potential

for greatly improved control.



APPENDIX

The derivation of the transfer function for the transient response of

the level in a single tank to setpoint and load changes follows. Refer to

figure 2 for a block diagram of a single tank.

We may begin with the differential equation for the level in the tank

Ah(t) = qln(t) - qout(t) (AI)

and for simplicity we assume the cross sectional area, A, of the tank is

unity.

If we assume that the system is in steady state before the setpoint and

load changes, we have the relation that

6(t) = 0

which, combined with equation (AI), gives us

qin(t) = qout(t) or qln(t0-) - qout(t0-) (A2)

where t o- is the time just before the setpoint and load changes.

Referring to figure 2 we see that

qout(s) = kes + kI(h(s) - r (s))
s

which has the particular solution

Sqout(S) - qout(t0-) = (kps + ki)(h(s) - r(s))

qout(t0-) _s + k I

qout(S) = + (h(s) - r(s))
s s

(A3)

Immediately after the setpoint and load changes occur, the level in the tank,

h(t0+ ), is the same as it was just before the setpoint change. Thus it is

clear from figure 2 that

h(t0-) = h(t0+) = z + Az (A4)

where r is the new setpoint and Ar

setpoint, equal to the error at time

is the value of the step change in

t+.
0

Finally, from time t +
0

I
r (s) -

S

on, we have the fact that

and qin(S) - qin(t°-) + _qin(s)
S

(A5)

where _qin is the change in load.

i0



Transforming equation

equation (A3) gives

(AI) into the Laplace domain and substituting in

sh(s) - h(t0-) = qin(s) - qout(s)

sh(s) = h(tc-) + gin(S)

= h(to- ) + qi.(s)

qout(t0-) kps + ki (h(s) _ r(s))
S s

kps + k Irqout(t0-) kps + klh(s ) + (s)
s s s

Substituting in equations (A4) and

kps + kih (sh(s) + s) = Ar + • +
s

(A5) and rearranging gives

gin(to -) + _qin(S) gout(t°-)
S S

+ kps + k I r
s s

Using equation (A2) and combining terms gives

s 2 + kpS + kTh(s ) = Ar + g°ut(t°-) + Aqin(s)
s

gout (to-)

h(s) = s Ar +
s z + kps + k I

s 2 + kpS + k I I

s Aqin(s ) + r
s 2 + kpS + k I s

s s
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Figure 1.--A representation of a non-interacting three-capacity process.
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Figure 2.--Block diagram of a single tank under PI control.
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Figure 3.--Symbolic representation of multivariable controller
tuning.
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