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ABSTRACT

The main idea of this report is to give an overview of the problems and difficulties

that arise in solving optimal control problems with switching points. A brief discussion

•of existing optimality conditions is given and a numerical approach for solving the multi-

point boundary value problems associated with the first-order necessary conditions of

optimal control is presented. Two real-life aerospace optimization problems are treated

explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in

presence of a dynamic pressure limit, and range maximization for a supersonic aircraft

flying in the vertical plane, also in presence of a dynamic pressure limit. In the second

problem singular control appears along arcs with active dynamic pressure limit, which,

in the context of optimal control, represents a first-order state inequality constraint. An

extension of the Generalized Legendre-Clebsch Condition to the case of singular control

along state/control constrained arcs is presented and is applied to the aircraft range

maximization problem stated above. A contribution to the field of Jacobi Necessary

Conditions is.made by giving a new proof for the non-optimality of conjugate paths ill

the Accessory Minimum Problem. Because of its simple and _xplicit character the new

proof may provide the basis for an extension of Jacobi's Necessary Condition to the case

of trajectories with interior point constraints. Finally, the result that touch points cannot

occur for first-order state inequality constraints is extended to the case of vector valued
control functions.
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Chapter 1

A "Road Map" for this Report



1.1 Overview

A particularly simple case of optimal control problems is given as follows:

subject to

min ¢(x(t:),t:) (1.1)
U

&(t) = f(x(t), u(t), t) (1.2)

x(to) = x0; to, x0 fixed (1.3)

• (x(t]), tl) = O. (1.4)

Equations (1.2), (1.3), (1.4) describe the evolution of the underlying dynamical system,

its initial states, and the target set to which the states have to be driven at final time.

The "driving force" for the dynamical system is given by the control vector function of

time u(t) appearing in the right-hand side of the state equations (1.2). Control u(t) can

be chosen freely, but the aim is, and this is tile essence of optimal control, to find control

u(t) such that the cost criterion (I) in (1.1)is minimized.

Many engineering problems of very different nature can be identified as optimal control

problems. In aerospace engineering applications equation (1.2) may typically descibe the

dynamics of helicopters, aircrafts, launch vehicles, or space probes. A common cost

criterion (1.1) is ¢(x(t.f),t:) = t] (minimum time problem: state x of the dynamical

system (1.2) has to be driven from initial state (1.3) to target set (1.4) such that final

time t: is minimized) or ¢(x(t]),t:) = -re(t j) (minimum fuel problem: state x of the

dynamical system (1.2) has to be driven from initiaJ state (1.3) to target set (1.4) such

that final mass re(t:) is maximized. In this case, of course, mass m has to be a component

of the state vector).

Another area for the application of optimal control is the chemical industry. Here the

dynamical system (1.2) may describe processes in a chemical plant. Typically, the control

components are energy input and/or input of catalyzers. Common objectives are usually

to minimize quantities such as the total energy consumption, the use of certain chemicals,

or the total output of undesired toxic byproducts.

More exotic areas for the application of optimal control are, for example, industrial

engineering and economics. Here the objectives are to organize a work force or a money

market such that some measure of productivity or profit is maximized. In these areas it is

usually very difficult to model the underlying dynamical system with sufficient precision

and consequently results are often of academic interest only.

Chapter 2 of this report gives an introduction to boundary value problems and shows

how they are associated with optimal control problems. Special emphasis is put on exis-

tence and uniqueness properties, as well as numerical well-posedness. A robust, easy-to-

use FORTRAN code is introduced, that has been used to generate all numerical results

that are presented in this report. Chapter 3 deals with the mathematical aspects of op-

timaJ control. First, the standard optimal control problem (1.1), (1.2), (1.3), (1.4) is

restated in Section 3.2 in mathematically more precise form (Definition 3.2.1). In a re-

mark following this definition it is explained how certain engineering requirements make it

necessary to alloy, minimization over all control vector functions of time u E (L2[to, t]]) m,



where m is the dimension of u and L2 denotes the well-known Hilbert space of all square

integrable functions on [to, tl] in conjunction with the natural norm induced by the scalar

product < ul, u2 >= k/f/o I ulu_ dr. In further remarks it is shown which types of seem-

ingly more general optimal control problems are covered by the simple problem formu-
lation in Definition 3.2.1 and which are not. Section 3.3 states the first-order necessary

conditions that a solution to problem (3.1), (3.2), (3.3), (3.4) has to satisfy. While Section

3.4 introduces the concept of singular control, Sections 3.5, 3.6, 3.7 cover important ex-

tensions of the standard problem, namely interior point constraints, control constraints,

and state constraints, respectively.

Closer examination shows that optimality conditions stated in Sections 3.3, 3.4, 3.5,

3.6, 3.7 lead to two-point boundary value problems in the simplest case and to multi-point

boundary value problems in general. These boundary value problems (BVPs) have to be

solved numerically. As this is a quite non-trivial task a whole Chapter (Chapter 2) is

devoted to the discussion of problems and difficulties'that may arise in solving BVPs.

An approach is introduced, namely the well-known Shooting Method, that reduces BVPs

to (usually highly non-linear) zero finding problems. Using simple examples it is indi-
cated that existence and uniqueness of a solution to a given BVP cannot be guaranteed.

Important for the numerical treatment of zero finding problems, the concept of condi-

tion number is discussed, which provides a measure for how well a problem is suited for

treatment on a digital computer with finite word length. Furthermore, some important
statements are made about the numerical evaluation of Jacobi matrices. A robust, but

simple and easy-to-use software package that has evolved out of the needs described in

Section 2.4 is described in Section 2.5. All numerical results stated in this report have

been obtained with this software.

In Chapter 4 an extension of the famous Goddard Problem is treated as a first example

for the application of optimal control to real-life aerospace problems, tlere the problem is

to find the thrust history for a vertically ascending rocket such that maximum altitude is

attained. The extensions beyond the classical Goddard Problem are a dynamic pressure

constraint, which, in the context of optimal control, represents a first-order state inequality

constraint, and an isoperimetric constraint. Despite the simple structure of the problem

(only one control variable; this control variable appears only linearly in the equations

of motion), solutions are found to be of considerable complexity. Theoretically, four
different control logics are possible, namely zero thrust, full thrust, singular thrust, and

arcs of active dynamic pressure limit. Upon varying the maximum dynamic pressure

limit and the prescribed final time, nine different switching structures are obtained. All

four theoretically possible control logics are found to be active in various sequences. The

complexity of the solutions provides numerous opportunities for improving or deteriorating

the numerical solvability by formulating different zero finding problems associated with
the same BVP.

Chapter 5 deals with range optimization for a high performance fighter aircraft flying

in the vertical plane. The controls are load factor n and throttle 77,with r/only appearing

linearly in the equations of motion. Constraints are explicit limits on the absolute values

of throttle and load factor (control constraints) and an upper bound on the dynamic

pressure (first-order state inequality constraint). Theoretically, eleven different control

logics are possible. The explicit derivation of these control logics along with the higher-



orderconvexitytests("Kelley Condition",or "GeneralizedLegendre-ClebchCondition")
for thesingularcontrolcasesis presentedin AppendixA.

In the caseof activestateor controlconstraintsthe theoreticalbackgroundfor these
higher-orderconvexitytestsis not availablein the literature. In Chapter6 a generalized
definition of singularcontrolis presented.Basedon a workby Goh [11] an extension
of the GeneralizedLegendre-ClebschConditionto singularcontrol alongstate/control
constrainedarcs is derived(Theorem6.6.2). The resultsobtainedhereareappliedin
SectionA.5.

In Chapter7a theoreticalresult on theexistenceof touchpointsfor first-orderstate
inequalityconstraintsis presented.Thewell-knownfirst-ordernecessaryconditionsasso-
ciatedwith the assumedswitchingstructure
(i) unconstrainedarc
(ii) statecontraintactiveat a singlepoint
(iii) unconstrainedarc
areusedto derivenewconciseconditions.In mostcasesof practicalinterestthesecondi-
tionsexcludetheexistenceof touchpoints.Forpracticalapplicationsresultsof this type
areinvaluable,asthey cansignificantlyreducethetime consumingandfrustratingsearch
for the correctswitchingstructure.

In Chapter8 finally the problemof conjugatepoint testing is addressed.In 1965
Breakwell&:Ho [3] showedthat the existenceof a conjugatepoint for a linearquadratic
optimalcontrolproblemwith zeroinitial statesandhomogeneousfinal conditionsimplies
that the trivial solution(identicallyzero)cannotfurnisha relativeminimum. Through
theconceptof theAccessoryMinimumProblemthis impliesfor generalnon-linearoptimal
control problemsthat a solutioncandidatewith a conjugatepoint cannotbeoptimal. In
Chapter8 the proofgivenby Breakwell&: tIo is modifiedsuchthat the trajectory that
furnishesnegativecostto the AMP is constructedexplicitly. The explicit characterof
the proofmakesit possibleto extendresultsimmediatelyto the casewherethe reference
solutionhasdiscontinuitiesat fixedpointsin time. Forthefuture it is hopedthat a Jacobi
testingprocedurecanalsobedevelopedfor trajectorieswith cornersof moregeneraltype.
For covenience,a derivationof the AMP for problemswith interior point constraintsof
the typedescribedin Section3.5is presentedin AppendixB. As a usefulbyproductthis
derivationalsoyieldsthefirst-ordernecessaryconditionsassociatedwith suchtrajectories.



Chapter 2

Boundary Value Problems in

Optimal Control



Chapter Overview

The concepts of two-point boundary value problems and multi-point boundary value prob-

lems are introduced. It is shown how these problems arise from applying the first-order

necessary conditions of optomal control. Existence and uniqueness questions are addressed

as well as questions of numerical well-posedness. A robust, easy-to-use software package

for solving boundary value problems is introduced.

2.1 Introduction

In practical applications it is common that about 80 % of the total time spent on solving an

optimal control problem is spent on the numerical treatment of boundary value problems

(BVPs). On a simple example it is demonstrated that existence and uniqueness of the

solution of a BVP can not be guaranteed. In fact, for the practically important non-

linear case, there are hardly any theoretical results that can answer these questions a

priori without actually trying to solve the BVP by running "numerical experiments".

Practically, this is a very unpleasant feature. Even if a given optimal control problem is

known to have a solution, the switching structure, i.e. the sequence of different control

logics that actually solves the problem is not known in advance and has to be found by

a numerical trial and error approach. Depending on the assumed switching structure

different BVPs are obtained. If a numerical solution of such a BVP can be found, then

fine. But if the numerical search for a solution fails it can not immediately be concluded

that a solution to the BVP does not exist. Hence one is stuck with the question whether

to continue the search for a solution of the assumed structure (which may not exist) or

whether to give up the present effort and start searching for a solution with a different

structure. Naturally, in this situation it is very important that the applied zero-finding

software actually does find a solution if there is a solution. In this context the condition

number of a zero-finding problem plays an important role.

2.2

(BVPs)

A two-point BVP is a problem of the following form:

Definition 2.2.1 (Two-Point Boundary Value Problem (TPBVP))

dinary differential equation (ODE) of the form

_(t) = f(z(t))

on the time interval [0, 1], where z(t) E R _ and

{R n __, R nf:
z _ f(z) C C 1

Find a solution of this ODE such that n given conditions

h(z(O),z(1))=O

Theoretical Background for Boundary Value Problems

Given is an or-

(2.1)

6



are satisfied, where

R n _ R n C 1h: (z(0),z(1)) _ h(z(O),z(1)) E •

The more general case of a multi-point boundary value problem can be stated as follows:

Definition 2.2.2 (Multi-Point Boundary Value Problem (MPBVP)) Given is a

piecewise defined ODE of the form

_(t) = fi(z(t)) on [ti-l,ti], i= 1,...,k + 1 (2.2)

with to = O, tk+l = 1; ti+l > ti Yi; z(t) E R '_ and

R n __, R ,_ C 1
.

z _ f(z)

Find a solution of this ODE such that n + k given conditions

h(z(O),z(tl),...,z(tk),z(1),tl,...,tk) = 0

are satisfied, where

{ R(k+2)_+kh: (z(0), z(tl), ..., z(tk), z(1), tl, ..., tk)

___ Rn+ k E C 1•

Figures 2.1 and 2.2 give a schematic representation of two-point and multi-point BVPs,

respectively.
Let us now have a closer look at the TPBVP. If we pick an arbitrary set of initial states

z0 E R n, then the solution to the initial value problem _ = f(z), z(O) = zo, if it exists,

is determined uniquely as long as the right-hand side f(z) of the differential equations

is Lipshitz bounded. Furthermore, if f E C 1 then the final states z(1) vary smoothly

with the initial states zo (see Lee & Markus [24]). Now it is clear that a TPBVP reduces

to the problem of picking the right initial states z(0) E R _ such that the n conditions

h (z(0), z(1)) = 0 are satisfied.
For MPBVPs the extensions are only of technical nature. In the case of the problem

stated in Definition 2.2.2 the independent parameters that can be chosen freely are initial

states z(0) and the location of the switching times tl,...,tk. For both, two-point and

multi-point BVPs this yields consistent zero-finding problems (i.e. number of conditions

is equal to number of independent variables). Because of the smooth dependence of
conditions h = 0 on the free variables, a Newton Method can be applied to solve these

zero-finding problems. It is interesting to note that the zero-finding problem associated

with a given BVP is not determined uniquely. In case of the MPBVP given in Definition

2.2.2 it is clear that instead of using z(O), tl, ..., tk as independent parameters to represent

the solution one could also choose z(O), (tl - to),,..., (tk+l - tk). Or, in order to make

things more complicated, one could choose some point ti as a starting point and obtain the



h(_(o),_(1))= o

J

=/(_)

t
0

Figure 2.1: Two-Point Boundary Value Problem

trajectory by integrating backward and forward. In this case the independent variables

can be chosen as z(ti),Q,...,tk. Mathematically it does not make any difference how

a trajectory is represented. However, numerically one may benefit considerably from a

change in parameters. Before discussing these points in more detail a simple example is

given in the next Section to answer questions about existence and uniqueness of solutions
to BVPs.

2.3 Existence and Uniqueness of Solutions to BVPs

Let us consider the simple physical example of shooting at an (empty) beer bottle with a

gun (see Figure 2.3). It is easily verified that (neglecting atmospheric drag) this problem

can be discribed by the following BVP

_ = (vcosTo)At x(o) = o

_° =0, = (vsin70 - gv)At y(O) = 0

x(1) = x/ > 0
2_t 0 y(1) = 0
dv --

(2.3)

Here g is the gravitational acceleration, v is the initial velocity of the bullet, 70 is its

initial flight path angle, and At is the total time that it takes the bullet to travel from

starting point (x, y) = (0, 0) to the target point (x, y) = (xl, 0). In order to normalize

the time interval to [0, 1] the independent variable, time t, is replaced by some scaled

8



h(z(O),z(tl),...,z(tk),z(1),tl,...,t&) = 0

I
= = I =

I I
I j I t

v

0 t_ t_ tk I

Figure 2.2: Multi-Point Boundary Value Problem

time-like variable r. From physics it is immediately clear that, since v0 is fixed, there is

an Xma:: > 0 such that (see Figure 2.4)

problem 2.3 has no solution if x/> Xm_,

problem 2.3 has exactly one solution if x/= xm_,

problem 2.3 has exactly two solutions if x I < Xma_.
Hence we see that even the numerical value of the prescribed boundary conditions

may have a strong influence on existence and uniqueness of the solution. In fact, for

the practically important case of non-linear BVPs there are hardly any theorems that

can give a priori answers to existence and uniqueness questions. In our simple example

only physical intuition can lead to an immediate answer without actually solving the BVP

numerically. It should be noted that physical intuition usually cannot be applied to BVPs

associated with optimal control problems. Even if the behavior of the plant is well-known

and understood, the evolution of the costates is usually quite unpredictable and one has

to rely exclusively on information obtained from running numerical experiments.

2.4 Numerical Well-Posedness

It is clear that different zero-finding problems can be formulated in association with

the same given BVP. Instead of integrating forward one could integrate the trajectory

backward, or one could even start the integration in the interior of the time interval and

obtain the trajectory through successive forward and backward integration. Analytically,



JJ
z!

v Z

Figure 2.3: A Physical Example for a Boundary Value Problem

the associated zero-finding problems are usually somewhat equivalent, but numerically

an intelligent choice of the parameters to describe a trajectory and the conditions to

determine these parameters can make all the difference between not getting a result at

all and getting a result pretty easily. Smooth zero-finding problems are usually solved by

some kind of Newton Method, which, in each iteration, solves a linear system of equations.

Hence it is natural to first investigate the scalar equation

ax+b=O; aER, bER; a, bgiven. (2.4)

A digital computer with finite word length will first add round-off errors to the input

variables a and b. Then these round-off errors will propagate according to the type of

operation that has to be performed on a and b to compute x, and finally another round-
off error is added to the result x. From these considerations it becomes clear that the

problem is best suited for numerical treatment if a is of order unity, i.e. ]a I = 1. If ]a]

is very small (Ial << 1) then even small perturbations in a (caused by round-off errors)

imply large changes in the solution z. On the other hand, if ]a] is very large (]a I >> 1)

then the magnitude of the solution is very small and even small perturbations in form of

round-off errors added to the solution x may corrupt the relative precision of the result

considerably. The generalization of this concept from scalar to vector equations is quite

straightforward and one comes to the conclusion that I] A ]I close to unity is desirable for
problems of the form

Ax+b=O; AER '_'n,bER '_. (2.5)

10



y

two solutions

0
Zmaz

no solution

Figure 2.4: Structure of Solution for Example Problem

However, careful examination of the non-scalar case shows that there is another quantity,

namely the so-called condition of A defined by cond(A) =ll A 11l] A-_ I1which is of

fundamental importance for the numerical solution of linear systems of equations. We

have the following theorem (see for example Stoer & Bulirsch [43]):

Theorem 2.4.1 Let x E R '_ be a solution to the linear system of equations Ax = b with

A E R '_'n, b E R '_ given. If x + _x is a solution to (A + _A)(x + _x) = b + _b for given

_A E R '_''_, _b E R '_, then we have

( )II _X II 1-- IIA-1 IIIt A II II_A II < IIA-] IIIIA II \ IIb II + 11A I------TIlxll IIAII - "

This is true for any norm on R '_ (the space in which x and b live). The matrix norm

is understood as the natural norm induced by the norm chosen for It", i.e. II AII=

supllxll,1 11_.

PROOF: Assume for given A, b we have x such that Ax = b. Then, for given _A, (_b we
have

(A + ifA)(x + (_x) = b+ _fb

Ax + A_x + _Ax + _fA_x = b + tfb

A_x + _fA_fx = gb - _Ax

11



IIAlexI]- I]_AtLzII_<II_bII+ II_A IIIIx I]

Also

II_z II = IIA-lAtex II

< IIA-1 IIIIA_x [I

=_ I] A*x II>
IIa-i I1"

Using this we get

II_z II
IIA-' II I1_A IIIt_ II_<II_b II+ II_A IIIIx It

(1 )II_x II IIA-1 II ]l_A II _ II_b II+ Jl_A IIIIz II

II_z II(1-II _A IIIIA-1 II) < II_b II IIA-1 II A-'IIz II - IIzI--------F+ II IIII_A II

II_z It (1 - II_AIIIIA-1 IIIIA II) IIA -1 IIItAx II A-'11x II _ IIA II _ <11_b II IIz II IIb II + II II11_A II

Jill_xxIll[ (1- ]l A-x II II A ]l I]I]gAAIIII) _< II A-1 t] I] A II [[-_l[_-II_b II. II A-1 ]] IIAII I]II/_AAIIII

( [I _A I]'_ < ]] A-' ¢][ _b II II *A [_.._)It*z II 1- IIa-t t] t] a II IIA I[ J [I 11a II \ IIb II + tl A IIItx II - "

q.e.d.

Essentially this theorem states that for small perturbations ,% E R n, _A E R '_''_,

cond(A) :=11 A-' II II A II

is an amplification factor by which relative errors in the data A, b may influence the

relative precision of the result x even if all operations are performed with total precision.

This property can be best demonstrated by the simple example problem of finding the

intersection point between two straight lines in the horizontal plane. Let the two lines

be given by the equations nTx = bl and nTz= b2 where nl E R 2, n2 E R 2, bl E R,

b2 E R. Then the intersection point x = E is determined by the linear 2 x 2
X2

system of equations n2r x = b2 . It is clear that without loss of generality the

normal vectors nl, n2 can be assumed normalized, i.e. II nl I1=11n2 I1-- 1, so that matrix

nr has norm close to unity. Then cond(A) is large if and only if matrix nr has a

singular value close to zero, i.e. if nl and n2 are close to parallel. Applying Theorem 2.4.1,

this implies that it is numerically difficult to calculate the intersection point between two

straight lines in R 2 if and only if these two lines are close to parallel. This result is of
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nosurprise.Of courseweexpectdifficultiesin calculatingthe intersectionpoint between
two nearlyparallel linesand it is immediatelyclearthat the obtainedsolutionmay be

worthless if the normal directions nl, n2 are corrupted even with only very small errors.

To summarize this point we note that for a given BVP the associated zero-finding

problem

F(x)=O,

F : _ Rv _ Rv

L z F(x)

should be formulated such that both, norm and condition of the Jacobian matrix J = aF

evaluated at the solution point x* are "as close as possible" to unity. To be more specific,

a norm or condition in the order of 10l° is still pretty much o.k. on a computer with

double precision accuracy (16 decimal digits mantissa). When norm and/or condition

go close to _, where e = machine precision, results in each Newton iteration step are

governed mainly by round-off errors and are becoming useless. Both, norm and condition

of the Jacobian associated with the problem F(x) = 0 can be influenced also by scaling

parameters x and/or conditions F. Even though the pure Newton Method is invariant

under scaling, the (usually applied) Relaxed Newton Method is not and scaling has an

effect beyond the amplification of round-off errors (see for example Stoer &: Bulirsch [43]

or Ortega _: Rheinboldt [35]).

There are numerous other criteria to examine when setting up a numerically well-posed

zero-finding problem associated with a given BVP. In general, BVPs are full of surprises

and it is probably not possible to give a reasonably complete list of what might go wrong.

The following two practical examples are given in order to demonstrate somewhat typical

problems that may occur and to show how these problems can be solved.

For the first example let us have a look at the rocket ascent problem treated in Chap-

ter 4. As described in Section 4.2 the rocket model involves only a single control, namely

thrust T. This control appears only linearly in the equations of motion and is subject to

fixed bounds 0 < T _< Tmax. For final time t I prescribed between (roughly) 0.13 and 0.15
it is found that the solution is of the structure

full thrust - singular thrust - full thrust - zero thrust.

Figure 2.5 gives a schematic representation of the BVP associated with this switching

structure and indicates two different zero-finding problems that may be associated with

this BVP, designated type 1 and type 2. The first zero-finding problem is obtained by

integrating from initial time 0 to switching time tl, then to switching time t2, and so on

until final time t] is reached. The set of parameters that makes this procedure unique

is given by the initial states and costates r(0), v(0), m(0), At(0), X,(0), Am(0), and the

lengths of the integration intervals At1, At:, At3, At4. (Of course parameters r(0), v(0),

m(0) can be eliminated directly by using the conditions numbered 1), 2), 3) in Figure

2.5, but this does not change the nature and the severity of the problem that is described

below). If the rocket ascent problem is solved successively for different values of pre-

scribed final time tl, it turns out that if the prescribed final time tl approaches 0.15 from

below, the length of the second full thrust arc [t2, t3] goes to zero and ultimately vanishes

completely, so that switching structure

full thrust - singular thrust - full thrust - zero thrust

13
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Figure 2.5: Schematic Representation of Boundary Value Problem

14



blends into switching structure

full thrust - singular thrust - zero thrust

for ty > 0.15. In this process the numerical solution of the zero-finding problem of type

1 fails if At3, the length of the second full thrust arc becomes less than 10 -3. Switching

times t2 and t3 are basically determined by the condition that the switching function be

zero. For the numerical calculation of the Jacobian J associated with the zero-finding

problem type 1, small perturbations have to be applied in the initial states r(0), v(0),

m(0), At(0), Av(0), Am(0) as well as the lengths of the arcs At1, At2, At3, At4. As usual,

partial derivatives are then approximated by quotients of finite differences. This proce-

dure is based on the assumption that finite differences and partial derivatives don't differ

too much. Of course this is true as long as the numerical offset for the finite difference

calculations are "small enough". But what is small enough may vary considerably from

problem to problem. In our example where the length of the second full thrust arc It2, t3]

is of order 10 -3 the magnitude of switching function S is at most in the order 10 -6 on

It2, t3] (as S = S = 0 at t2 and S = 0 at t3) and a perturbation applied at initial time

can be called small only if it yields a perturbation in S at times t2, t3 that is "small"

compared to 10 -6, the order of magnitude of S on [t2, t3]. But the effect of perturbations

at initial time that are small enough to satisfy this criterion are likely to be dominated

by round-off errors that build up during the integration, tlence the Jacobian matrix can

not be calculated with sufficient precision and the Newton Method must fail.

It is easy to visualize that the problem above can be avoided if the integration of the

trajectory is started at switching time t2 rather than at initial time to = 0 (zero-finding

problem of type 2 in Figure 2.5). In this case perturbations in the parameters (r(t2),

v(t2), re(t2!, At(t2), Av(t2), Am(t_), Atl, At2, At3, At4) have a direct effect on conditions

Sit 2 = O, Sit2 = O, Sit 3 = 0 and can be chosen reasonably large. In tile zero-finding

problem of type 1 perturbations applied at initial time are going through an amplification

phase along the integration on time interval [0, t2] before effects on the above conditions
are measured.

Another example for how different zero-finding problems associated with the same

BVP can have completely different numerical solvability qualities is provided by the air-

craft range optimization problem treated in Chapter 5. As described in Sections 5.2 and

5.4 the aircraft model involves two controls, namely throttle 6 and load factor n. Throttle

/_ appears only linearly in the equations of motion and both controls, _ and n, are subject

to fixed bounds 0 _< _ _< 1, --nmax <_ n < +nmaz. Additionally, a dynamic pressure limit

which, in the context of optimal control, represents a first-order state inequality constraint

has to be satisfied by the trajectories. Several different switching structures are found to

solve the problem upon varying the prescribed value of nmaz while keeping the prescribed

initial and final states fixed. A schematic representation of one of the switching structures

(denoted by ($6)) is given in Figure 5.4. The switching structure consists of five arcs.

With respect to the dynamic pressure limit Co := q - qmaz <_ 0 the switching structure is

not active - active - active - active - not active

(and this is the only property of switching structure ($6) that is important for this Sec-

tion). The most obvious zero-finding problem associated with this BVP is to search

numerical values of the 14 parameters E(0), h(0), 7(0), x(0), AE(0), Ah(0), A._(0), At(0),

lo, At1, At2, At3, At4, Ats such that the 14 conditions numbered 1), ..., 14) in Figure
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5.4 are satisfied. But it turns out that it is numerically nearly impossible to solve the

problem this way. Small perturbations in initial states, initial costates, or the lenth of the

time interval Atl lead to (usually slightly bigger) perturbations in the states at time Q,

the beginning of the active-state-constraint phase. Along state constrained arcs (intervals

[tl, t2], [t2,t3], [t3,td]) the differential equations are such that the dynamic pressure is

identically constant, so that q - q,_ = Aq on [tl, td], where Aq = (q - q-_*)ltl" Loosely
speaking, in order to stay on a higher dynamic pressure limit over some extended period
of time either the thrust has to be increased or the load factor has to be decreased. In

fact, even small positive increments Aq make it impossible for the aircraft to stay on the

dynamic pressure limit all along time interval [tl, td]. Numerically it turns out that load

factor n is reduced along [tb td] until n = 0 is reached. After that point either the calcu-

lation of n stops with a negative square root or the equation d(q_ qmaz) = 0 that has to

be satisfied along arcs with active dynamic pressure limit is no longer fulfilled. This means

that the calculation of the Jacobian is either impossible or leads to inconsistent results

(depending on how the software to integrate the trajectory is set up). Again it is easy to

see that all these difficulties can be avoided if the integration is started at a time where

the dynamic pressure constraint is active, i.e. somewhere along the time interval [tt, td].

The most preferrable starting point for the integration is switching time t2 (or t3). At

this time conditions 6), 8), 9) in Figure 2.5 can be used to reduce the free parameters to

the set h(t2), 7(t_), x(t2), _E(t2), /_(t2), 10, At1, At2, At3, Atd, Ats. The conditions left

to satisfy are given by equations 1), 2), 3), 4), 5), 7), 10), 11), 12), 13), 14). In this setup

the characteristic properties S = 0 along the singular arc It2, t3], as well as q- qm_: = 0

along the state Constrained arcs [tl, t2], It2, t3], [t3, td] are always satisfied irrespective of

the perturbations that are applied in computing the Jacobian matrix.

2.5 A Robust, East-To-Use Software Package

In this Section we describe the software package for solving multi-point BVPs that has

been used to generate all numerical results that are presented in this report. This package

has evolved out of the needs that arise in the practical work with optimal control problems.

The heart of the software is subroutine ZSCNT, an IMSL 9.2 implementation of Newton's

Method for solving non-linear zero-finding problems (see IMSL 9.2 User's Manual [15]).

The main program, into which the user has to make only a few entries, like the number

of equations to solve, is also provided in some standard form. This main program calls
the Newton Method and the Newton Method in return calls subroutine TRAJEC in an

iterative way (see Figure 2.6). For given parameter vector x (= input XIN in TRAJEC)

TRAJEC computes the value of the non-linear vector-valued function F(x) (= output

YOUT in TRAJEC) that has to be made zero. This subroutine has to be provided

completely by the user.

It is not claimed that this software package incorporates any new numerical theories.

The advantages of this software come purely from its user friendliness. In practice it is

usually necessary to write some program that can integrate the trajectory for a given

initial state/costate vector. This should always be done in order to test the right-hand

side of the differential equations (e.g. for constancy of the Hamiltonian) but may also

be required to find a starting trajectory for homotopy runs. Once such a program is
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Figure 2.6: Flow Chart for Boundary Value Problem Solver

written it is trivial to transform it into a subroutine and toprovide the input/output

interface as required in TRAJEC. Clearly, if the same subroutine that is used for software

test runs can be immediately embedded into the BVP solver, then an obvious source for

programming errors is eliminated.

Another advantage of the described program architecture (see Figure 2.6) is that the

user has complete control over the parameters used to characterize the solution of a given

BVP. All parameters have to be selected by the user and all conditions (to determine these

parameters) have to be programmed explicitly in TRAJEC. Also, no automatic scaling is

provided by the software package. The aim is to give the user as much control as possible.

By "playing around" with scaling factors and by trying different zero-finding problems

for a given BVP the user is able to get a good feeling for the BVP. In case of troubles it is

usually easy to clearly identify where the difficulties are coming from. In programs with a

lot of automatic features this may be very difficult. Besides, the problems and difficulties

arising in the practical work with optimal control problems are so different in nature that

it is probably impossible to make automatic procedures fool-proof. The software package

described here leaves it up to the user to do a good or bad job in fine-tuning the numerical

procedure. For the experienced user this feature is quite welcome. For the unexperienced

user it provides the opportunity of learning something and of growing with the software.
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Chapter 3

Existing Optimality Conditions
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Chapter Overview

A standard type optimal control problem is defined. Existing optimality conditions are

stated for this standard problem. Extensions to the practically important cases of singular

control, interior point constraints, control constraints, and state constraints are treated.

Finally, the existence of solutions and Jacobi Testing is addressed.

3.1 Introduction

In this Chapter it is intended to give an overview of existing optimality conditions for a

reasonably large class of optimal control problems. In the first Section of this Chapter

a very simple reference optimal control problem is defined. Section 2 states necessary

conditions for optimality and points out a few general difficulties associated with optimal

control problems. In Sections 3, 4, and 5 a few complications, such as control constraints,

interior point constraints, and state constraints are introduced to the simple reference

problem. Finally, Section 6 addresses the question of existence of a solution. Throughout

this Chapter proofs are avoided in favor of giving only the basic idea. For details numerous

references are provided in this Chapter.

3.2 Standard Optimal Control Problem

In this Section we consider the following simple optimization problem

Definition 3.2.1 (Standard Problem)

min _(x(ti),t]) (3.1)

subject to the equations of motion

5:(t) = f(x(t),u(t)) (3.2)

the initial conditions

x(to) = x0; to, xo fixed (3.3)

and the boundary conditions

k_(x(ts) , t/)= 0 (3.4)

where u(t) E Rm; x(t) E R'_," _ :R TM _ R; f : R '_+m _ Rn; _ :R TM _ R k, k _< n.

Remarks:

(i) It is important to allow minimization of the cost function (3.1) over a reasonably

large class of control functions u. For engineering purposes we want this class of control

functions to include at least the set of all piecewise continuous functions. Moreover, we

want the metric defined on the principle set of functions to be such that two continuous

functions f and g have distance zero ("are the same") if and only if f(t) = g(t) Vt E [to, t]].

Besides these engineering requirements an important issue from the mathematical point

of view is completeness of the set of control functions with respect to the selected metric.

(Note that for instance, the minimization problem of finding the smallest number in the

19



setX = {x E R[ 0 < z _< 1} does not have a solution because the set X is not complete.

To avoid difficulties of this kind we want the set of admissible controls to be complete).

Loosely speaking, the set L2[to, ty] in conjunction with the norm H f 112= f:o_ f 2 dt for

f E L2[t0, t]] can be defined as the completion of the set of all piecewise continuous

functions on [to, tf] (completion w.r.t, the metric oil 52 as implied by the norm II" 112),

and hence satisfies all desired qualifications. For all practical purposes it is possible to

view PWC[to,tl] (the set of all piecewise continuous functions on [to, ty]) as the set of

allowed control functions. This makes things easier to visualize. When this engineering

approach leads to difficulties it will be necessary to recall that we are really minimizing

over all control functions in L2[t0, t]].

(ii) Frequently, optimal control problems are stated in terms of a cost function

J = _p(x(t/), tj) + L(x(t), u(t)) dt

Problems of this form are not more general than the one stated in Definition 3.2.1. By

introducing the additional state y as solution of

i] = i(x, u), y(to) = 0

the above cost function takes the form

J = _(x(ti),tj) + y(t])

and hence is of the general form given in Definition 3.2.1.

(iii) Frequently, optimal control problems are stated with an explicit time dependence of
the right-hand side of the state equations

xit ) = f(x(t),u(t),t).

This explicit time dependence can be transformed away by introducing the additional

state y as solution of the initial value problem

_)=1

y(to) = to.

Then, obviously, the right-hand side of the state equations is only a function of states
(x, y) and controls u,

= f(x, u, y)

(iv) It is customary to consider initial conditions only of the simple form (3.3). It is not

possible to obtain such simple initial conditions by applying some transformation on the

general problem with initial/boundary conditions of the form, say

• x(tj), to,tj) = 0 (3.5)

Hence, considering only initial/boundary conditions of the form (3.3), (3.4) poses a non-

trivial restriction on the generality of the standard optimal control problem. On the

other hand, optimality conditions (and methods of deriving them) associated with the

more general initial/boundary conditions (3.5) are a quite straightforward generalization

of the optimality conditions (and methods of deriving them) associated with the simple

conditions (3.3), (3.4).
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3.3 Optimality Conditions for the Standard Problem

Assume the control function u*(t), t E [to, ti], furnishes a solution to the standard problem

given in Definition 3.2.1. Then necessary conditions for optimality are obtained from the

following formalism (the theory also guarantees that these optimality conditions have a

solution if the optimal control problem has a solution):
define the variational-Hamiltonian

H(x, A,u) := AT f(x, u) (3.6)

and define the Lagrange multiplier vector ,_ as solution of the final value problem

),_ OH
Ox (3.7)

Oq(I) ur Oq_ (3.8)
ox(tj) + Ox(tj----5

Then, at (almost) every instant of time, the optimal control u* is such that the Hamilto-

nian (3.6) is minimized (Minimum Principle):

u*(t) = arg min H(x(t),)_(t), u).
uER m

(3.9)

An optimality condition associated with final time t] is given by

O_ . T OtI/

HI,, + +. : o. (3.1o)

In an engineering approach these conditions can be obtained from setting the first variation

of the augmented cost function equal zero (see Appendix B). A more rigorous, yet very

geometrical and illustrative approach is presented in Leitmann [25]. Leitmann extends

trajectories into an n + 1-dimensional space (n state dimension, 1 cost dimension). Then

he introduces limiting surfaces defined as the set of all points in the n+ 1-dimensional space

associated with trajectories that connect arbitrary, admissible initial and final states, with

the cost at initial time chosen such that each trajectory ends up with the same fixed final

cost. Finally, the Lagrange multipliers introduced above are identified as (part of) the

normal vector on these limiting surfaces.

Another illustrative, yet mathematically very clean approach is given in Lee & Markus

[24]. For the minimum time problem Lee & Markus investigate the evolution of the set

of attainability K(t). This is the set of all possible states that can be reached within

time t, starting at a fixed point x0 at time to. Optimality conditions are derived from the

requirement that for all times t > to the optimal state x*(t) has to be a boundary point

of the set of attainability K(t).

Finally, it should be mentioned that the optimal control formalism can be derived also

in very abstract functional analysis approach (see Neustadt [33]). Most theorems and

proofs still have some geometrical interpretation, but often this is hard to see because

one is generally working in infinite-dimensional spaces. In some cases the results obtained

from the functional analysis approach lead to a significant strengthening of theorems

21



derivedin a classicalway(e.g.in [31]supplementaryoptimality conditionsonmultiplier
tt associated with state inequality constraints can be derived by applying results obtained

from the general multiplier theory).
It should be noted also that at each instant of time where the Hamiltonian is a suffi-

ciently smooth function of control vector u, the Minimum Principle (3.9) implies

OH
m

Ou 0 (3.11)

02H

Ou---5- >_ O. (3.12)

Condition (3.12) is called the Legendre-Clebsch Condition or Convexity Condition.

3.4 Singular Control

As stated in the previous Section, at each instant of time t, the optimal control u* has to

satisfy (Minimum Principle)

u*(t) = arg rain H(x(t), A(t), u)
uER m

(3.13)

It is possible that this condition does not determine u* uniquely. Typically, and for

practical applications most important, this can happen if some component uj of control

vector u appears only linearly in the right-hand side f(x, u) of the state equations (3.2)

such that _ is independent of all controls u and is a function of states x only. If, at
Ouj

OH is zero, i.e.some instant of time, states x and costates A are such that S(x, A) :=

S = 0 (3.14)

then the Hamiltonian is independent of uj at that instant of time and the Minimum

Principle (3.13) does not furnish any information on how to choose uj. It is clear that

pointwise occurrence of this situation can be ignored. This is true as we can choose any

arbitrary control value uj at an isolated point in time without changing the evolution of

states. If we are willing to think in terms of L2-functions (rather than piecewise continuous

functions) as admissible control functions then we can generalize this statement by saying

that arbitrary control values on a set of measure zero along the time axis do not have

any effect on the evolution of the states. Hence, we only have to investigate the case

where S is zero on a set of positive measure along the time axis. After replacing all

control components ui, i _ j, by functions of states x and costates A as determined by

the Minimum Principle (3.13), S is an absolutely continuous function and hence S being

zero on a set of measure greater than zero implies that there is a non-trivial time interval

[tl, t2] C [to, tf], t2 > tl, such that S _- 0 on [tl, t2]. This is called a singular control case

(note that the ttessian matrix O_H is singular on [tl, t2]). In this case control component

uj is determined implicitly by condition (3.14). Explicit information on uj can be obtained

by differentiating identity (3.14) until the undetermined control uj appears explicitly. In

[19] it is shown that S has to be differentiated an even number of times, say 2q times for
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someq E N, until control uj appears explicitly. Then q is c_lled the order of the singular

control.

Hence, on an arc [ti, t2], t2 > tl, with singular control uj, j E {1, ..., m} of order q we

have the following necessary conditions:

{u_li _ j) = arg min H (3.15)
uER m

s(x,  )lt, =0

dS "x
' = o

: (3.16)

where

d 2q-1 S J tl(x, = o

d2qS (x, A, uj) - 0 on [tl,t2]
dt29

(3.17)

OH
S = --- (3.18)

Ouj

with all controls ui, i _ j expressed in terms of x, A as obtained from (3.15). A more

general definition of singular control which applies also for non-linearly appearing controls,
as well as for arcs with active control and/or state constraints is given in Section 6.4.

In the 1960's singular control was found to play an important role in numerous en-

gineering problems of great practical interest (e.g. the atmospheric ascent of the Saturn

V rocket). This prompted intense research in supplementary optimality conditions for

singular control. Note that along singular arcs the classical Legendre-Clebsch condition

02H
-- >_ 0 (3.19)
Ou 2

is satisfied for the singular control component uj only in the weak form (i.e. with equality).

In 1964 It. J. Kelley [17] was the first to state second order necessary conditions for this

type of control. In the following years many authors e.g. Kelley & Kopp & Moyer [18],

[19], Robbins [36], Goh [11], Krener [20]'have extended Kelley's idea to derive what is

now known as the Generalized Legendre-Clebsch condition. In compact form it can be

stated as

(-1) _uj [dt 2q \-_uj]] >- 0 (3.20)

In Chapter 6, Goh's Necessary Condition, which implies (3.20), is extended to the case of

singular control along state/control constrained arcs.
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3.5 Interior Point Conditions

Let us introduce the additional condition

(x(tl),x(t+l),tl) = O, N: R 2n+1 ---* R p (3.21)N

to the standard optimal control problem stated in Definition 3.2.1. With conditions

of this form it is possible to formulate explicit conditions on the states and/or prescribe

discontinuous jumps in states at points in the interior of the trajectory. A typical example

is the staging of a rocket, where the mass changes discontinuously at staging time, say,

tl. The optimality conditions associated with constraint (3.21) can be easily derived

by investigating the first variation of the augmented cost function as demonstrated in

Appendix B. For convenience the results are restated below (superscripts -, + denote

evaluation just before tl and just after tl, respectively):

(X(tl),x(t+l),tl) ----0, N: R 2n+l --_ R p (3.22)N

l T ON )_+T) (l T ON /_+T) (l TON U + U-) dt I 0 (3.23)OX l + 4- d X l + 4- \ 0--_-1- d X l - + \ -_1 4- =

for all [dxl+,dxl-,dtl] E R '_+n+l with

ON ON ON

COxl+ dXl+ + O-_l_dXl- + -_ldtl = 0 (3.24)

The constant multiplier vector l E R p compensates for the p degrees of freedom lost

through condition N = 0.

In the practically important case where all states are continuous at tl and where time

tl is free, i.e.

g(x(tl)) = 0

the optimality conditions simplify to

N(x(tl)) -- 0 (3.25)

A+ T = A_ T _ iT ON (3.26)
Oxl

H + - H- = 0. (3.27)

We will make use of this result later in Section 3.7 when we are dealing with state con-
straints.

3.6 Control Constraints

In the standard optimal control problem stated in Definition 3.2.1 the range of control

vector function u E (L2[t0, t]]) m is assumed to be all of R TM. In this Section we consider

control constraints of the general form

g(x, u) < 0 (3.28)
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withg: R n+m ---, R v, l < p < m, and

09 (3.29)
rank Ou = p"

Assume u" furnishes a solution to the optimal control problem (3.1), (3.2), (3.3), (3.4),

(3.28) and assume control constraint (3.28) is active on some subinterval [tl, of [to,t:].
(i.e. g(x, u*) = 0 on [q,t2]), and control constraint (3.28)is non-active on [to, q)U(t2,t:]

(i.e. g(x,u*) < 0 on [t0, tl)t_J (t2, tf]). Then necessary conditions for optimality of u* are

obtained from the following formalism: define the Hamiltonian

H(x, A, u) = ATf(x, u)

and define the Lagrange multiplier vector X as solution of the final value problem

(3.30)

OH Og
Ox #-_x (3.31)

00_ vT Oq)

A(tf)- Ox(tl) + Ox(ty-----_" (3.32)

Then, at (almost) every instant of time, the optimal control u* is such that the Hamilto-

nian (3.6) is minimized subject to all active control constraints (Minimum Principle):

u'(t)=arg min H(x(t),_(t),u) on[t0, tl)U(t2,t]] (3.33)
uER m

u*(t) = arg min H(x(t),A(t),u) on [ta,t2]. (3.34)
,,_R", a(_(t),,,)=o

The multiplier vector function of time # : R --+ R v satisfies

# = 0 on intervals where g(x,u) < 0OH #TOg (3.35)+ au = 0 on intervals where g(x,u) = O.

The "switching times" tl, t2 are determined from the condition that the ttamiltonian be
continuous

H(tl +) = H(t,-) (3.36)

n(t2 +) = H(t2-). (3.37)

An optimality condition associated with final time t: is given by

O_ TO_

HIt,+_+v _=0. (3.38)

Again, the easiest way to obtain these results is to analyze the total variation of the

augmented cost function. For the case of state constraints instead of control constraints

this is demonstrated in Jacobson, Lele, Speyer [24]. (Mathematically, state constraints can

be viewed as control constraints in conjunction with additional interior point constraints,

see next Section). An alternative way of derivation which is even easier, but sometimes

very powerful, is given as follows:

First note that (as long as we don't have "chattering control", see [24]) every instant of
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time t E [to, tS] belongs to a time interval [rl, 72] of length > 0 which is either completely

constrained (i.e. g(z, u) - 0 on Iv1, r2]) or completely unconstrained (i.e. g(x, u) < 0 on

[TI,V2]). By the Principle of Optimality (see [24]) the control on unconstrained arcs is

determined from the usual unconstrained optimality conditions (3.6), (3.7), (3.8), (3.9),

(3.10), which is equivalent to conditions (3.30), (3.31), (3.32), (3.33), (3.35), (3.38) with

is = 0. On arcs with active control constraints, condition g(x,u) = 0, g : R '_+m ---+R p

canbeviewedasspecifyingpcontrolsw(u= [ v ]w , v E R m-p, w E R p) in terms of

states x and the remaining m - p controls v. The existence of a solution w = h(x, v) of

g(x, u) = g(x, v, w) = 0 is guaranteed at least locally by assumption (3.29) (see Implicit

Function Theorem [2]) even if an explicit solution of g(x, v, w) = 0 is not possible. Upon

substituting w = h(x, v) the constrained optimal control problem is transformed into an

unconstrained optimal control problem. For the evolution of costate vector A we get from

(3.7) (chain rule)

_T_ OH OH Oh
Ox Ow Ox"

From differentiation of the identity g(z, v, h(x, v)) =_0 w.r.t, x we obtain

Ox-

so that the adjoint differential equation can be written as

,_T_
(gg) -10...ggOH OH - -O--ww Ox "Ox Ow

::D T

Similarly, the constrained minimization problem (3.34) written in the form

u* = [v*, w*] = arg min H
uERL g(x,u)=O

(3.39)

yields

g(x; v, w) = 0 (3.40)

0tl 0. / 0g -' 0g
0-_- + _ww \-_ww) O---_= 0 (3.41)

_--:DT

and we see that multiplier is in (3.31), (3.35) is exactly the multiplier obtained from ap-

plying the Kuhn-Tucker conditions to the finite dimensional minimization problem (3.39).

This basic concept is the general idea used in Chapter 6 to derive an extension of Goh's

Necessary Condition for singular control along arcs with active state and/or control con-
straints.
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3.7 State Constraints

In the previous two Sections we introduced control constraints (3.28) and interior point

constraints (3.21) to the standard optimal control problem stated in Definition 3.2.1. In

this Section we consider state constraints. These are of the general form

h(x) <_ 0 (3.42)

with h : R n --+ R p, 1 _< p _< m. As in the previous Section, the Principle of Optimality

(see [24]) implies that along time intervals where the state constraint is non-active the

trajectory evolves as if there were no state constraints at all, i.e. equations (3.2), (3.6),

(3.7), (3.9) are valid. Along time intervals, say [Q, t2], where the state constraint is active
we note that

h(x) = 0 on It,,

is equivalent into

h(°)(x)=0 at t =tl

" (3.43)

h(q-1)(x) = O at t = tl

h(q)(x, u) - 0 on It1, t2]. (3.44)

Here superscript (i) denotes i-th total time derivative and q is the smallest integer i E N

such that u appears explicitly in h (i). IIence we see that an active state constraint h(x) =

0 on some interval [tl,t2] is equivalent into control constraint (3.44) along [tl,t2] and

interior point constraints (3.43) at time t = Q. The regularity condition (3.29) for control
Oh(q)

constraints translates immediately into rank 0--_- = P" Optimality conditions implied by

(3.43), (3.44) are given in the previous two Sections. For convenience these results are
restated below:

Optimality conditions for entering the state constrained arc:

h(°)(x)=O att =tl

h(q-1)(z) = O at t = ta

H +-H- =0 att =tl

. Oh (°) Oh(q-D

)_+ = A- - lo Ox ..... lq-1 Ox att = tl.

Optimality conditions in the interior of the state constrained arc:

u*(t) = arg R", min H(x(t), A(t),u),,_ ,g(=(t),,,)=o

5c= f(x, u)

27



_ OH Oh (q)
Ox # Ox "

The multiplier # is determined by (3.35) (with g replaced by h), and hence, as noted ear-

her, is exactly the multiplier obtained from applying the Kuhn-Tucker conditions applied

on the finite-dimensional minimization problem (3.34) (with g replaced by h). From this

observation we find immediately the supplementary optimality condition

#_>0.

Even stronger supplementary optimality conditions on multiplier # are given by

(-1 _di#
) -_-_- > 0 for i = O, 1,...,q- 1. (3.45)

This result is obtained from linking state constraint g(x) =_ 0 directly to the cost function
rather than splitting g(x) = 0 up into an interior point constraint and a control constraint

as shown in (3.43), (3.44) and linking both parts separately. The theoretical background

for this procedure is provided by a generalized multiplier theory (see [33]). Result (3.45)

is then basically obtained through simple transformations involving integration by parts
(see [31]).

Optimality conditions for leaving the state constrained are:

H +-H- =0at t=t2.

In contrary to control constraints we have to consider also the possibility of a state con-

straint being active only at an isolated point in time, a so-called touch point. (Note

that a control constraint being active at an isolated point in time, say tl, is equivalent

to associating a fixed numerical value with the control function u(t) at time Q. This is
not sensible as point evaluation for L2-functions is not well-defined. Hence non-trivial

touch-points can never exist for control constraints). In case of a touch point, say tl, the

only active constraints are the interior point constraints (3.43), while before tl and after

tl (at least in some neighborhood) the trajectory evolves like a free trajectory. Hence for

a touch point tl associated with a q-th order state inequality constraint we get

h(°)(x)=O at t = tl

h(q-1)(x) = 0 at t = tl

H +-H- =Oat t =tl

. Oh (°) Oh(q-l)
A+ -= 3_- -- tO _x ..... lq-1 0x

In [31] it has been shown for the case of scalar control u that touch points are not possible

for state constraints of order q = 1, except if very special conditions are satisfied. In

Chapter 7 this result is generalized to the case of controls of arbitrary dimensions m E N.
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3.8 Existence of a Solution and Jacobi's Condition

In the formulation of the Minimum Principle it is always assumed that the optimal control

problem under consideration does have a solution. It is possible then to conclude that the

optimal solution must satisfy the optimality conditions stated in the previous Sections.

In general it is not possible to reverse this process, i.e. an extremal which satisfies the

necessary conditions stated in the previous Sections need not furnish a solution to the

optimal control problem. In Lee & Markus [24] fairly general existence theorems are

stated. One of these theorems is given as follows:

Theorem 3.8.1 Consider the non-linear process in R n

k = f(x, t, u) (3.46)

The data are as follows:

1) The initial and target set Xo(t) and Xl(t) are nonempty compact sets varying contin-

uously in R _ for all t in the basic prescribed compact interval 7o _<t _< rl.

2) The control constraint set fl(x, t) is a nonempty compact set varying continuously in

a m for (x, t) e R _ × [_-o< t < TI].
s) The state constraints are (possiblyvacuous) hi(x) < 0, ..., hT(x) < 0, a l_nite or infi-
nite family of constraints, where h 1, ..., h _ are real continuous functions on R '_.

4) The family F of admissible controllers consists of all measurable functions u(t) on var-

ious time intervals to < t < tl in [7"0<_ t <_ vl] such that each u(t) has a response x(t) on

to < t < tl steering x(to) • X(to) to x(tl) • X(tl) and u(t) • _(x(t),t), hl(x(t)) % O,

..., hr(x(t)) <_ O.

5) The cost for each u • F is

_01
C(u):g(x(q))+ f°(x(t),t,u(t))dt+ max _/(x(t))

t0<t<tl

where fo C C a in R '_+l+m, and 9(x) and 7(x) are continuous in R '_.
Assume

(a) The family F of admissible controllers is not empty.

(b) There is a uniform bound

]x(t)] < b on to <_ t <_ tl

for all responses x(t) to controllers u E F.

(4) The extended velocity set

l_(x, t) = {f°(x, t, u), f(x, t, u)l u • fl(x, t)}

is convex in R '_+1 for each fixed (x, t).

Then there exists an optimal controller u*(t) on t_ < t < T_ in F minimizing C(u).

Conditions on states x and controls u are stated such that a priori the existence of a lower

bound on cost function C(u) is guaranteed. Let co • R be the greatest lower bound on cost

function C(u). Then, together with the assumption that the set of admissible controls is
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not empty,it is concluded that there is a sequence of admissible control functions such that

the associated costs are monotonically decreasing and have a cluster point at Co. Finally

it is shown that this sequence of control functions has a weakly convergent subsequence
and that an admissible control function is in this weak limit.

For practical purposes theorems of the form 3.8.1 may be inadequate because of the

strong assumptions necessary. An alternative line of thinking is presented in Bryson

Ho [5]. Without knowing whether the original optimal control problem has a solution it is

proposed to generate a solution candidate by solving the first order necessary conditions.

About this solution candidate one considers so-called weak perturbations. (these are

perturbations/ix in states x with the property that for/ix _ 0 also/i£" -. 0). Restricting

ourselves to weak perturbations (rather than all possible perturbations available in L2) it
is possible to expand the augmented cost function into a Taylor series about the reference

solution. By construction the first order term of this expansion is zero and the leading

term is of second order. Minimization of this second order term is equivalent to solving

a linear quadratic optimal control problem, the so-called Accessory Minimum Problem

(AMP).Controls and states in the AMP are exactly the (first order approximations of)

perturbations in controls and states about the reference solution for the original problem.
Now it is clear that

i) the reference solution for the original problem is non-optimal if there is a solution to

the AMP which furnishes negative cost.

ii) the reference solution for the original problem furnishes at least a weak local minimum

if all non-trivial control functions (control functions which are not identically zero) yield
cost greater than zero.

Because of these considerations the study of linear quadratic optimal control problems

gains tremendous theoretical importance. Explicit results on this matter are presented

for instance in Bryson £: Ho [5], Chapter 6.3, where sufficient conditions are stated that

allow one to transform the second variation of the cost function into a perfect square.
By construction these conditions are sufficient conditions for the reference solution under

consideration to furnish a weak local minimum to the original problem. Still, if a reference

solution is shown to furnish a weak local minimum, it is not clear whether it also furnishes

a strong local minimum. In fact it is not even guaranteed that the original problem under
consideration does have a solution.

Another interesting treatment of the AMP is given in a paper by BreakweU _: Ho

[3]. In this paper it is shown that the existence of a conjugate point along the reference

solution (for the definition of conjugate points see [3], [5], or Chapter 8 of this report)

implies the existence of a trajectory which furnishes negative cost to the AMP. Hence, by

virtue of i) above, the existence of a conjugate point implies non-optimality of the original

solution candidate. The proof given in [3] is not constructive. That means, a trajectory

that furnishes negative cost to the AMP is shown to exist, but it is not given explicitly.

In Chapter 8 of this report a modification of the proof in [3] is given which explicitly

constructs a trajectory that furnishes negative cost. Because of its explicit character, it is
possible to extend the new proof to the case where the coefficient functions in the AMP

have any finite number of corners. The results obtained so far apply immediately for

corners in the AMP that are induced by an explicit non-smooth time dependence of the

state equations for the original problem. In the future it is planned to extend the new
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approachalsoto cornersin the AMP inducedbyinterior point conditionsasdiscussedin
Section3.5.
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Chapter 4

Example: Vertical

Rocket-Powered Ascent Study
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Chapter Overview

The Goddard Problem is that of maximizing the final altitude for a vertically ascending,

rocket-powered vehicle under the influence of an inverse square gravitational field and

atmospheric drag. The present example is concerned with the effects of two additional

constraints: a dynamic pressure limit qm_, and a specified final time t I. Nine different

switching structures involving zero-thrust arcs, full-thrust arcs, singular-thrust arcs, and

state constrained arcs are obtained for prescribed values of qmaz between 0 and oo and

the final time t] between tl,m_,, and tl*. Here tl,mi, is the minimum possible time within

which all the fuel can be burned, and ty* is the optimal final time. For all points in

the above defined domain of the qmax, tl-plane the associated optimal switching structure

is clearly identified. Finally, a comparison between the optimal solutions and a simple

intuitive feedback law is given.

4.1 Introduction

The problem of maximizing the final altitude for a vertically ascending rocket was first

formulated by Goddard [10] in 1919. Numerous authors such as Hamel [14] in 1927,

Tsien and Evans [44] in 1951, Miele and Cavoti [32] in 1958, Leitmann [26], [27], [28],

[29], [30] in 1956-1963, and Garfinkel [9] in 1963 have analyzed the problem using various

mathematical methods and assumptions on the equations of motion. An extensive study

of the problem under realistic assumptions on the equations of motion has become possible

only with the development of the theory of optimal control in conjunction with powerful

digital computers. Recently, Tsiotras and Kelley [45], [46] have studied the effect of a

final time specification and of drag modelling.

In the present treatment a dynamic pressure constraint, which in the context of opti-

mal control represents a first-order state inequality constraint, is introduced to the prob-

lem. The effect of this constraint as well as the effect of restrictions on the final time

are investigated for their effect on the switching structure and the maximum attainable
altitude.

4.2 Problem Formulation

The problem is to maximize the final altitude for a rocket ascending vertically under

the influence of atmospheric drag and an inverse square gravitational field. The thrust

magnitude T is the only control and is subject to fixed bounds 0 < T < Tm_ (control con-

straints) and a dynamic pressure limit q _< q,_, (state constraint). The following assump-

tions are made: point-mass model, Newtonian central gravitational field, one-dimensional

trajectory, air density varies exponentially with altitude, constant drag coefficient, and

constant exhaust velocity.

In non-dimensionalized form the problem is given as follows:

rain - r(ty) (4.1)

subject to the equations of motion
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T-D 1
i)

m r 2

T

c

(4.2)

the control constraints

the boundary conditions

T e [0,T_°_] (4.3)

a) r(O)= 1
5) v(O)= 0
c) m(O)= 1

d) r(t]) to be maximized

e) v(ty) free

f) re(t1) = m!

(4.4)

and the state inequality constraint

Po(r,v,m) = v- Vma x < O; Vmax(r) :: _/-_----_e 13(l-r). (4.5)

The final time t] may be fixed or free. The dynamic pressure limit qm_ is prescribed

with values between qm_ = 0 (trivial case, rocket is allowed only hovering with maximum

velocity zero) and q,_z = +oo (dynamic pressure limit can be ignored). Radial distance

r, velocity v, and mass m are the states; thrust T is the only control. Drag D is given by

D = qCD

wbere

q = v2beZ(l-r)

is the dynamic pressure times cross section area [A]. Note that constraint (4.5) can be

identified as a dynamic pressure limit q - qm_ < 0.

The variables in the system description (4.1) - (4.5) have been non-dimensionalized

with initial radius [r0] as the length-scale, initial mass [m0] as the mass-scale and time-

scale given by to = X/_' where g is the value of Earth's gravitational acceleration at the

initial radius.

4.3 Minimum Principle

Problem (4.1)- (4.5) is solved by applying the Pontryagin Minimum Principle. Assuming

that a solution of (4.1) - (4.5) exists, the Minimum Principle states that at every point in
time the control is such that the variational-Hamiltonian

H ( r, v, m, )_r, )%, Am) = Ari, + A_iJ + Atom

°_m r2 - Am c

is minimzed subject to all control constraints:

(4.6)

T=arg minH; U= {TERITadmissible}.
TEU

(4.7)
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On 'unconstrainedarcs'(i.e. on time intervalswhere(4.5)is satisfiedwith strict inequal-
ity)

U = {T E R[ 0 < T < Tm_x}. (4.8)

On 'constrained arcs' (i.e. on time intervals, say [rl, r2] where (4.5) is satisfied with strict

equality)

P0 - 0 on [T1,7"2] (4.9)

is equivalent to

Po = 0 at t = rl (4.10)

P1 - 0 on t E (rl,r2) (4.11)

where
dPo T- D 1 ,

P' "- dt - m r2 vm_(r)v (4.12)

so that the set of admissible controls is

U = {T E RI 0 < T <_Tree,:, P1 = 0}. (4.13)

This set 'usually' consists of a single point, but may be empty. The evolution of the

Lagrange multipliers A_ , x E {r, v, m} is governed by

_: __ OH
Ox (4.14)

on unconstrained arcs. On constrained arcs the implicit dependence of the control on

states via (4.11) implies

_x-- OH OP1
Ox P Ox (4.15)

(see Bryson, Denham &: Dreyfus [4] or Sections 3.6, 3.7 of this report). Supplementary

optimality conditions are given by

# > 0 (4.16)

/t <_0 (4.17)

au/___P -A_+-- -= A mwhere # is the Valentine multiplier defined in (3.35), i.e. # = - OT/ _T m c

and (4.16), (4.17) is obtained from (3.45) in Section 3.7.

4.4 Hamiltonian and Adjoint Equations

Explicitly the Hamiltonian (4.6) takes the form

H = Arv + A_ (T m-D

and the adjoint equations are

- m Or Av -# m Or

_ _ A_mODov Ar- # ( ml ODor

Am

1 ) _ A, T (4.18)# c

+

(4.19)
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where

#=0
OH DP1
o---_+ _--_ = o

on unconstrained arcs

on constrained arcs.

Here t denotes differentiation w.r.t, radial distance r.

(4.20)

(4.21)

4.5 Control Logic

With the switching function S defined by

OH A, Am

OT m c
(4.22)

the Minimum Principle (4.7), (4.8)implies

0 if S>O
T= T,_._ if S<O

T_i,_g if S=O.

(4.23)

On 'singular arcs' S = O, S = O, S = 0 imply

m
)_v -- Am-- = O, (4.24)

and

where

and

- c -_-v + O, (4.25)

A1 + A2

Tsina - A3 ' (4.26)

A,- D (OD D) cg2D c92D (D 1)._ -8_ + + o-_v--8_: + V_ '

A2 = 1 (CODv_ OD (D _)) (OD 2m)c \ O,, _ + + --SV+ --_- '

(-_v D) 02D 1 OD 11 OD + + Ov 2 m Ov mcA3 mc

respectively. The singular arc is of first order (see Bryson &: Ho [5]). On constrained arcs

(4.7), (4.13)imply

t t : --'_v _- Am ___m ( from OH 01)1 "_c O-T- ÷ #-_) (4.27)
m

T = D + -_ + mv_m_x(r)v ( from/)1 = 0). (4.28)

36



AlongsingulararcstheGeneralizedLegendre-Cleschcondition(seeKelley,Kopp& Moyer
[lS])

d-_ b-Y > 0, q = 1 (4.20)

yields

_,_ 1 OD 02 D 1 ---_cc --- --- + > o (4.30)mc mc _v + + Ov 2 m Ov

and is checked numerically.

4.6 Transversality and Corner Conditions

All transversality and corner conditions are given such that the first variation 5J of the

cost function (4.1) J = -r(tf) is zero. For the boundary conditions (4.4) this yields

A,(/f) = -1 (4.31)

,_,(tl) = 0. (4.32)

In case of free final time t f, the associated optimality condition is

H(tf) = 0. (4.33)

The Hamiltonian H is continuous throughout the time interval [0, t f], including across

corners. At switching points between minimum and maximum thrust T this implies

S = 0, (4.34)

where S is the switching function given in (4.22). At the beginning of singular arcs (4.24)

and (4.25) have to be satisfied. At the beginning, say tl, of the constrained arc conditions
are

a) P0(tl) = 0

b) S-(T + - T-) = 0

c) )_r+ -- )_r- - lo OP1

d) )%+ = )_,- - lo 0P1

. OP1
e) Am+ = _m- - tO-_m

(4.35)

where superscripts +, - denote denote evaluation at times tl + ¢, tl - e, e > 0, e -_ 0,

respectively. The end, say t2, of the constrained arc is determined by

S-(T + - T-) = 0 at t = t2. (4.36)

Conditions (4.35b) and (4.36) are equivalent to the continuity of the of the Hamiltonian

at tl, t2, respectively. Note that two solutions, namely S- = 0 and T + - T- = 0 are

possible. The jump in the multipliers (4.35c), (4.35d), (4.35e) is implied by the interior

point condition (4.35a).
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4.7 Switching Structures

Problem (4.1) - (4.5) is solved for a range of prescribed values qmaz __ 0 and t] > 0.

For explicit calculations the numerical values Tma_ = 3.5, m! = 0.6, b = 6200, _ = 500,

c = 0.5, Co = 0.05 are used. In dimensional form this implies the exhaust velocity

3.95 103 _ and from the given value for b one determines that _-_ = 629.6 _ (A=cross
section area). These values are adopted from [47] and correspond to a Soviet surface-to-

air missile SA-2. The dimensional value of maximum dynamic pressure is recovered by
multiplying qma_ by 6174 N--_-.

As noted above, the switching structure, that is, the sequence of different control logics

that actually solves the problem is not known in advance. For a given problem it has to

be found by 'numerical experiments'. Assuming a certain switching structure the state

equations (4.2), costate equations (4.19), along with boundary conditions (4.4a), (4.4b),

(4.4c), (4.4f), transversality conditions (4.31), (4.32) and corner conditions implied by the

assumed switching structure yield a multipoint boundary value problem (see Figure (4.6)

for an example case). For qm_ > 0 and t] ranging between the minimum possible flight

time tf,mi,_(qm_) within which all the fuel can be burned, and the optimal flight time

tf*(qm_), the following different switching structures are found to solve the problem:

(S 1) full - zero

($2) full - singular - zero

($3) full - singular - full - zero

($4) full - constrained - zero

($5) full - constrained - singular - zero

($6) full - constrained - singular - full - zero

($7) full - constrained - full - zero

($8) full - constrained - full - singular - zero

($9) full - constrained - full - singular - full - zero

For switching structures ($4), ($5), ($6) the continuity of the Hamiltonian at the end

of the constrained arc, say at time t2, imposed by condition (4.36) is satisfied through

S- = 0 (or equivalently #- = 0). For switching structures ($7), ($8), ($9) condition

(4.36) is satisfied through T + - T- = 0. The domains in the t f, qm_-plane where the

above switching structures solve problem (4.1) - (4.4) are shown in Figure (4.1). The time

histories of thrust T, the switching function S, and the dynamic pressure q for selected

trajectories in the free time case are given in Figures (4.2), (4.3), (4.4),.

4.8 Numerical Procedure for Solving Multipoint Bound-

ary Value Problems (MPBVPs)

For switching structure (S5) [full - constrained - singular - zero] the associated MPBVP

is indicated in Figure (4.6). It is clear that the trajectory can be obtained by simple

forward integration once aH parameters h0, v0, m0, Ah0, A.0, Am0, 10, At1, At2, At3,

At4 are known. These 11 parameters are determined by the 11 conditions (1) - (10) and

(lla) for fixed final time, (llb) for free final time. (The jump conditions for the Lagrange

multipliers can be considered directly during the integration). The smoothness of the

right-hand side of the differential equations on each subarc implies smooth dependence of
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all conditionson the parameters,sothat a NewtonMethodcanbeappliedto solvethis
root findingproblem.As notedin Chapter2 theroutineZSCNTof the IMSL subroutine
library (version 9.2) is used for this purpose. The software package presented in Section

2.5 proved to be suited very well for the challenges that one meets in solving multi-

point BVPs associated with optimal control problems with switching points. As shown in
Section 2.4 caution has to be applied when setting up the zero-finding problem associated

with a given BVP. This zero-finding problem is not determined uniquely and different

zero-finding problems associated with the same BVP may have very different numerical

solvability properties.

4.9 A Simple Feedback Strategy

An intuitive feedback law to solve problem (4.1) - (4.5) is given as follows: choose T as

large as possible subject to the constraints T E [0, Tm_] and Po = q - qm_ <- O. That
means the thrust is always set T = Tm_ and is reduced only along arcs where the dynamic

pressure limit P0 = 0 is active. The optimal final time ts* is obtained from v(tl* ) = O.
The structure of these feedback solutions turns out to be of the following form:

(FB0) constrained if qm_x = 0

(FB1) full- constrained- zero if qm_ E (0,8.303)

(FB2) full - constrained - full - zero if qm_, E (8.303,21.334)
(FB2) full - zero if qm_, > 21.334

By comparison with the optimal switching structures given in Figure (4.1) it is found

that these feedback strategies actually yield the optimal solution for qm_ < 8.303. For

q,_, > 8.303 the loss in final altitude increases until qm_::,l_ee, the maximum attainable

dynamic pressure with thrusters burning on full throttle, is reached. For q,_ > q-_,S*e_

the loss in performance remains constant. These results are shown in Figure (4.5). It is
observed that the loss in final altitude never exceeds 2.5 %.

4.10 Conclusion

The effect of a dynamic pressure constraint on the vertical ascent of a sounding rocket

has been studied. Trajectories leading to maximum possible altitudes have been obtained

for arbitrarily prescribed limits qm_ on the dynamic pressure q and for final times tS

ranging between the minimum possible value within which all the fuel can be burned and

the optimal final time ts*. Nine different switching structures have been obtained and the

regions in the ts, qm_-plane where they furnish the optimal solutions have been clearly

identified. Finally the optimal solutions in the free-time case have been compared with a

simple intuitive feedback strategy.
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Chapter 5

Example: Range Optimization

for a Supersonic Aircraft
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Chapter Overview

Range optimal trajectories for an aircraft flying in the vertical plane are obtained from

Pontryagin's Minimum Principle. Control variables are load factor n which appears non-

linearly in the equations of motion and throttle setting _, which appears only linearly in

the equations of motion. Both controls are subject to fixed bounds, namely 0 < y _< 1

and Inl <_ nm_. Additionally, a dynamic pressure limit is imposed, which represents

a first-order state-inequality constraint. For fixed flight time, initial coordinates, and

final coordinates of the trajectory the effect of the load factor limit Inl < nm_x is studied.

Upon varying nmax, six different switching structures are obtained. All trajectories involve

singular control along arcs with active dynamic pressure limit. The explicit derivation of

possible control logics is presented in Appendix A. This includes the application of the

higher-order convexity test (Generalized Legendre-Clebsch Condition) for singular control

logics as presented in Chapter 6.

5.1 Introduction

Great efforts are being undertaken to develop reai-time, near-optimal feedback algorithms

either for enhancement of aircraft performance by optimizing specified maneuvers or as

autonomous guidance schemes for short and medium range air-to-air missiles ([6],[12],[42],

[13],[41]). Open-loop control logics obtained by state-of-the-art optimization techniques

are an important tool in testing the accuracy and finding the limits of such feedback

laws. In a recent study ([21],[22]) open-loop optimal control solutions in conjunction

with perturbation techniques have been used directly to develop feedback algorithms. In

this context minimum time intercept trajectories, or, often equivalently, maximum range

trajectories for fixed flight time play an important role in modern air combat scenarios.

In the present example Pontryagin's Minimum Principle is applied to determine range-

optimal trajectories for an aircraft flying in the vertical plane. State variables are energy

E, altitude h, and fiigh-path angle 3'; control variables are load factor n and throttle

setting 71. Control r/appears only linearly in the equations of motion and is subject to fixed

bounds 0 _< 77_< 1. Additionally, a dynamic pressure limit is imposed on the trajectory,

which, in the context of optimal control represents a first-order state inequality constraint.

For sufficiently large fixed final time the maximum-range trajectory will begin with a

climb to the dash-point. This is the point of maximum sustainable speed on the level-

flight envelope. State/ control values at the dash-point can be found by solving the

maximization problem:

max v( E, h)

subject to the level-flight constraints:

L =W

T=D

Once at (or near) the dash-point steady flight continues until near the terminal time,

when the aircraft executes a maneuver to meet specified end-conditions and to achieve

maximum range. In this chapter we study the effect of a load-factor limit (In] _< nm_x)

on this maneuver. Six different switching structures, involving singular control on state

constrained arcs are encountered if nmaz is varied between nm_:_ = oc and n,_a_ = 5.
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5.2 Aircraft Model

The equations of motion of an aircraft flying in the vertical plane are
v

= (qT- D)W (5.1)

]_ = v sin 7 (5.2)

= v cosT. (5.4)

The specific energy E, replacing velocity v, the altitude h, the flight-path angle 7, and

the range x are the state variables. Load factor n and the power setting 7/are the control

variables. Weight W and gravitational acceleration g are assumed to be constant. Velocity

v is a short notation for v = v/2g(E - h). The air density p in [kg/m 3] is given by

1.225
p(h)- _

g

y = -1.0228055 - 0.12122693 10-3h + r

r = 1.0228055 e -_

z = --3.48643241 10-Sh + 3.50991865 10-"h2+
-8.33000535 10-14h 3 + 1.15219733 10-XSh 4

The speed of sound in [re�s] is given by

a(h) = 20.0468v_

where the temperature 0 is given by

0 = 292.1 - 8.87743 10-3h + 0.193315 10-6h 2 + 3.72 10-12h 3.

In these expressions h is altitude in [m]. The Mach number is given by M = _(-_. The
lift L, the drag D, and the maximum thrust T are given as functions of h, M, ana n

q = _p(h)v2S

L=Wn

__n 2D=q CDo(M)+ K(M)
q2

a4M 4 + a3M 3 + a2M 2 + aiM + ao
CDo =

b4M 4 + b3M 3 + b2M 2 + blM + bo

c4M 4 + c3M 3 + c2M 2 + clM + Co
K=

dsM 5 + d4M 4 + d3M 3 + d2M 2 + diM + do

T(h, M) = es(M) h 5 + e4(M) h4 + ea(M) ha + e2(M) h 2 + el(M) h + eo(M)

where for i = O, 1, ..., 5

el(M) = fisM s + fi4M 4 + fiaM 3 + fi2M 2 + filM + fio.

The numerical wlues of the constants ai, bi, ci, di, fij are given in Tables 5.1, 5.2, 5.3,
and represent a high performance fighter-interceptor.
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5.3 Problem Formulation

The problem under consideration is that of finding control functions _(t) and n(t) that

steer an aircraft from prescribed initial states energy Eo, altitude ho, and flight-path angle

_o to prescribed final states energy Ej, altitude hi, and flight-path angle %, in prescribed

flight time (t] - to) (without loss of generality to = 0) such that the downrange x is

maximized. Along the optimal trajectory a set of state and control constraints has to be

satisfied. Explicitly the problem can be stated in Mayer form as follows:

rain - x(t_) (5.5)

subject to the state equations (5.1), (5.2), (5.3), (5.4), the control constraints

- "q <_ 0 (5.6)

the state constraint

71-1 _0 (5.7)

- n - nma_ < 0 (5.8)

+ n - nma_ _< 0 (5.9)

Co(E, h, _, x):= v - vm_(h) <_o

and the boundary conditions

a) E(0) = 38029.207[m]
b) h(0) = 12119.324[m]
c) 7(0) = 0 [Rad]
d) _(0) = 0 [m]

and the final time t] prescribed, e.g.

(5.10)

e) E(t_) = 9000[m]
f) h(t]) = 942.292 [m]

g) _(t_) = -0.2 [Rad]
h) x( t ] ) to be optimized

(5.11)

t/= 60N. (5.12)

Here nm_ is a specified constant denoting the maximum allowed absolute value of the

L In state constraint (5.10) vm_:_(h) is a specified function of al-load factor n = W"

titude h. With vm_x(h) chosen appropriately this covers the important case of a dy-

namic pressure constraint. Boundary conditions (5.11a), (5.11b), (5.11c) refer to the

dash-point or high speed point. The boundary conditions (5.11 e), (5.11 f), (5.11 g)

are picked more or less arbitrarily. The only important features are that h(tl) < h(O)

and v(t]) = k/2g(E(t])- h(tl) ) < vm_,::(h(tl)), i.e. in the altitude-velocity chart the

prescribed final point of the trajectory is located to the left of the state constraint (5.10).

5.4 Relaxed Problem Formulation

Existence theorems of optimal control theory require convexity of a certain velocity set

or hodograph. Given a state equation & = f(x, u), x E R n, u E R TM with admissible

controls u E U C R 'n, the hodograph at some fixed state x0 E R '_ is defined as the set
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S = {_ _ R_[ & = f(xo, u), u E U} of possible state rates. For state equations (5.1),

(5.2), (5.3), (5.4) with controls [_, n] e R 2 subject to the constraints (5.6), (5.7), (5.8),

(5.9), the hodograph is clearly non-convex as indicated in Figure 5.1. For aircraft models

with quadratic drag polar, as the one used in this chapter, this deficiency can be overcome

by rewriting state equation (5.1) as

V

_: = ['5(T - D + Dma:) - Dma:_] _ (5.13)

with Dm::(M, h) := D(M, h, nma:) or any function Dm_:(i,h) with Dm::(M,h) >_

D(M, h, nma:). The new control '5 replaces the old control _ and is subject to the con-
straints

- '5 < 0 (5.14)

'5 - 1 _< 0. (5.15)

Now the relaxed control problem is given by

min - x(ti)

subject to the state equations (5.13), (5.2), (5.3), (5.4), control constraints (5.14), (5.15),

(5.8), (5.9), state constraint (5.10), boundary conditions (5.11a), (5.11b), (5.11c), (5.11d),

(5.11e), (5.11f), (5.11g), and the final time t f prescribed as in (5.12). The hodograph

associated with the new system dynamics is obviously convex as indicated in Figure 5.2.

Note that state inequality constraint (5.10) being active on some time interval [rl, 7-2] (i.e.

Co(E, h, 7, x) _ 0 on [rl, r2]) is equivalent to

where

Co(E, h, 7, z)=0 at t = rl

C,(E, h, 7, z; n, '5)=_0 on

d

CI(E, h, 7, x; n, '5):- _C0(E, h, 7, z)

=('5(T-D+Dm_=)-Dm_=l_-vsin7 Vm_=+ .

(5.16)

(5.18)

5.5 Minimum Principle

The relaxed optimization problem as stated above is solved by applying the Pontryagin

Minimum principle. It states that at every point in time the controls have to be chosen
such that the variational Hamiltonian

H(E,h,%x, AE, Ah, A_,A_,'5, n)= AEF,+_hh+,L,'_+Axi: (5.19)

is minimized subject to all control constraints. Let the vector valued function g : R 6 _ R 4

be defined by

gl(E, h, 7, x; & n)

g2(E, h, 7, x; '5, n)

g3(E, h, 7, x; '5, n)

g4(E, h, 7, x; '5, n)

=-,5

='5-1

= --n -- nma x

-_ -_- n -- nma x

(5.20)
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sothat inequalities(5.14), (5.15), (5.8),(5.9) canbewritten conciselyasg < 0. Then

Lagrange multipliers AE, Ah, )%, A_ are solutions of the adjoint equations

_E OH aT O___ ,, OC__

_h OH

_ OH
(5.21)

where ai, i = 1, ..., 4 and # are multipliers associated with constraints gi < 0, i = 1, ..., 4

and C1 < 0 (C1 as given in (5.18)), respectively. On time intervals where constraint (5.10)

is not active (i.e. Co(E, h, 7, x) < 0), multiplier # is identically zero:

p = 0 if Co(t) < O. (5.22)

On these intervals multipliers oi, i = 1, ..., 4 are determined at each instant of time from

the Kuhn-Tucker conditions applied to the finite dimensional parameter optimization

problem

(_, n) = arg min H. (5.23)
9<0

At times where state constraint (5.10) is active (i.e. Co(E, h, 7, x) = 0), multipliers

a, # are determined from the Kuhn-Tucker conditions applied to the finite dimensional

parameter optimization problem

((_, n) = arg min H. (5.24)
g_<0,c1 <0

In both cases, as a consequence of the Kuhn-Tucker conditions, components of multiplier

vector a are zero along intervals where the associated constraint is not active:

ai=0ifgi>0, i=1,...,4, (5.25)

and components of multiplier vector a are non-negative along intervals where the associ-

ated constraints are active, i.e.

aik0ifgi=0, i= 1,...,4. (5.26)

5.6 Possible Control Logics

At each instant of time controls n, _ are determined from the Minimum Principle given

by equations (5.23) in case C1 < 0 and (5.24) in case C1 = 0, respectively. Since the

Hamiltonian H and the constraint functions g and C1 are smooth functions of their

arguments _ and n, the Kuhn-Tucker conditions imply that at the solution point [_*, n*]

the following conditions have to be satisfied at each instant of time:

0

-_(H + aTg + #el) -----0
(5.27)

0
_n ( H "4- aT g + #el) -- 0 (5.2s)
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#

02(H-l-aTg+p.Cl )

02
[zX , An]

On06

g _< 0 (5.29)

C1 _< 0 (5.30)

a > 0 (5.31)

> 0 (5.32)

0_0n (5.33)02( H'_erT g'['p'C1 ) An __ 0

On 2

for all (A_, An) E R 2 satisfying -_A_Oh+ OhAnon = 0. Here vector function h contains

exactly the active components of the inequality constraints g _< 0 and C1 _< 0. The set

of active control constraints and the character of the solution of (5.27) - (5.33) depends

greatly on the direction of the multiplier vector [hE, 2h, A.y, Ax]T, and through state

constraint (5.10) also on the state itself. The explicit analysis for solving this finite

dimensional constrained minimization problem as well as application of the Generalized

Legendre-Clebsch Condition are given in Appendix A. It is helpful to define

)_'_ gq (5.34)
no= AE 2 v2WK

)_EV O(Dm_)
nl - cos 2 3t + 2 cos "f (5.35)

At g Oh

n_ = q [_ T- -V-_sinT(v_a. + _)- qeno (5.36)qK

t 2
[(-_E (_'Y- + 1)+ _h ) _ + Vmax + V:axV] vsin_/

n3 = cos "/- _(v'_.v + g)cos_/ (5.37)

Dm_,:: + v w sin 3' (v'_ + _)
(_a = g (5.38)

Here no is obtained from OH = 0, nl solves A_ = 0 in the singular case 'constraint (5.10)

active, )% - 0, A, _ 0' (case 6b below), n2 is implied by C1 = 0 with _ = 1, and n3

is required for te singular control case llb. The expression ¢_1stems from C1 = 0 with

n = nm_z. Then the different possible control logics are as follows (a derivation of the

results stated here is given in chapter A of this report):

case 1: constraint (5.10) not active, hE < 0, no E [-nmax, +nmax]:

_=1

_2----n 0

0.1 --_-0

V

a2 = -AE (T- D + Dmax)

a3 =0

0"4 -----0

(5.39)

#=0
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case2: constraint(5.10)not active,)_E < 0, no < --nm_:

_=1

n = -nmax

0"1=0
V

a2 = -,kE (T - D + D,-,,_.)

OH

0"3 -- 0 _2

0"4=0

#=0

case 3: constraint (5.10) not active, ),E < 0, no > nmax:

_=1

n -:- nmax

0tl_---0
V

a2 = -AE (T - D + Dm_) H

0"3 =0

OH

(74 = - On

#=0

case 4: constraint (5.10) not active, AE > 0, A_ > 0:

?2 :- --nmax
Y

al = )_E (T - D + Dm_x) -_

0"2=0

OH

a3 - On

6t4 =0

#=0

case 5: constraint (5.10) not active, AE > 0, A7 < 0:

t_=0

n : nmax
V

ax = XE(T- D+ D._*)W

a2=O

O'3 _=- 0

OH

a4 "_ -- 0--'-_

#=0

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
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case6: constraint(5.10)not active,hE > 0, A.y= 0:

In this case the controls are not determined uniquely by the Minimum Principle. Pointwise

occurrence of this situation can be ignored. Assuming that _._ - 0 on some non-zero time

interval yields control n after differentiating twice (singular control of first order). Two

cases have to be distinguished, namely Ax = O, and Ax _ O:
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case6a: constraint(5.10)not active,AE> 0, A_= 0, and )_x = 0:

Then necessarily Ah _ 0 and

_f=0

A._=0

cos 7 = 0

n=O
73

al =AE(T-D+Dm_x) W

0"2 ----0

0"3 _0

0"4 _---0

#=0

The Generalized Legendre-Clebsch Condition (see Appendix 6) implies

sinT>0 if Ah<O

sin 3'<0 if Ah >0

case 6b: constraint (5.10) not active, AE > 0, A-r = 0, and Ax¢ 0:

_=0

A_=O

Ah-A_tan3'=O

n:Tt 1

V

0-1 : /_E (T -- D + Dm=_)

0-2 =0

0"3=0

0"4:0

(5.46)

(5.47)

(5.48)

it = 0 (5.49)

The Generalized Legendre-Clebsch Condition implies _x < 0.

The case AE -- 0, A_ = 0 can be excluded. The case AE -- 0, A.y _ 0 leads to first

order singular control in throttle/5 which is rejected as non-optimal by the Generalized

Legendre-Clebsch Condition. case 7: constraint (5.10) active, hE + #_ < 0, A.y < 0:

6=1

n:n 2

0"I _0

0"2 _ --

0"3:0

0"4 =0

A.y
#-

( ) vg (T - D + Dm_) -_ (5.50))_E +itv

q AE v (5.51)
n 2KvW g
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case8: constraint(5.10)active,AE + #_ < 0, )% > 0:

6=1

n ---- --n 2

0"1=0

0"2 = --

0"3 =0

0"4:0

it- n 2KvW

( vAE+# (T-D+Dma_:)_ (5.52)

v
q hE- (5.53)

g

The case 'constraint (5.10) active, AE + _v_ > 0, )_ # 0' can be excluded. The case

'constraint (5.10) active, AE + tz{ = 0, A-_= 0' is treated later, case 9: constraint (5.10)

active, AE + #_ = 0, A.y< 0:

6 = 61 (from C1 = 0 with n = nm_::)

Tt -_- nma x

O"1:0

o'2= 0

0"3=0

a4 = -)_g-
v

v
# = -AE-

g

(5.54)

(5.55)

case 10: constraint (5.10) active, AE + #_ = 0, A_ > 0:

6 = 61 (from C1 = 0 with n = nm_)

n = --nrnax

(:71=0

0" 2 =0

v

0"4 =0

v

# = -_-
g

(5.56)

(5.57)

case 11: constraint (5.10) active, AE + #_ = 0, A_ = 0:

In this case the controls are not determined uniquely by the Minimium Principle. Point-

wise occurrance of this situation can be ignored. Assuming that A.y - 0 on some non-zero
time interval

additional information has to be obtained from differentiating identity Agamma =_0

(singular control). Two cases have to be distinguished, namely Az = 0 and Ax # 0.

case lla: constraint (5.10) active, AE +tt_ = 0, A.y = 0, Ax = 0 : In this case we have two
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possiblecontrollogics,namely

T- Dl,=cos_

A.y =0

sin 7 = 0

Tt = COS ")'

o'1 =0

0"2=0

o'3 =0

0"4 =0
v

# = --AE-

g

Dm_ + v-_ sin 7 (v'a_ + _)

"4- D t7% O,X

(5.58)

(5.59)

and

Dm_ + v_ sin 7 (v_ + _)

)%=0

Ah + AE (1 +

sin 7 = 0

n = COS "/

0.1 =0

0.2=0

0"3 ----0

0"4 =0

T - D + Dmaz

v-o_v_
g /=0

(5.60)

v (5.61)# = --A E-

g

Here, equations (5.58) represent singular control of first order (in control n). Equations

(5.60) represent a case of infinite order singular control. In this case, control n is undeter-
mined. Every control function of time n(t) is admissible, as long as it leads to state/costate

time histories that satisfy all boundary, transversality, and switching conditions.

case lib: constraint (5.10) active, AE + p_ = 0, A.y = 0, and Az # 0:

Then necessarily cos 7 # 0 and

IDmo_+ v_ sin7 (vmo_+ 9
T - D[nasbeto w + Dma_

A_ =0

(Ah-A_ tanT+AN 1+ _ / =0

( v'_v_ (5.62)n = 1 g / cos 7
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0"1 =0

o'2=0

a3=O

o'4 =0
v

# = -AE- (5.63)
g

The Generalized Legendre-Clebsch Condition implies A_ < 0. case 12: constraint (5.10)

active, AE + #_ _ 0, A._ = 0:
Then necessarily cos 7 # 0 and

6=0

A_ =0

m_:_+vsin7 vm_ _+ =0

n= n3

--= - D v

o'2=0

a3 =0

0"4:0

'_h -- "_x tan 7

/Z: I
Vraax "4- v

(5.64)

(5.65)

5.7 Transversality and Corner Conditions

All transversality and corner conditions are given such that the first variation of the cost

function (5.5) J = -x(t]) is zero. With boundary conditions (5.11) this yields

Ax : -1. (5.66)

In case of final time t] to be minimized (i.e. cost function (5.5) J = -x(ty) being replaced

by J = t]), the associated boundary condition is

H(tf) = 1. (5.67)

The tIamiltonian H is continuous throughout the time interval [0, tf]. At any corner

point, say at time to, this yields an optimality condition on the switching time to, namely

H(t¢ +) - H(t_-) = O. (5.68)

Here and below superscripts +, - denote evaluation just right, and just left of the time

under consideration, respectively. At the beginning, say tl, of a state constrained are
additional conditions are

Co(Q) = 0 (5.69)
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,a_c

hE + =hE- --_ ,01_0

: - (5.70)
A_+ = )_'v- luaa__
,X_+ =.kx- -- _0 0z

where 10 is a constant multiplier. The end, say t2, of a constrained arc is determined

bY the continuity of the Hamiltonian. The jump in multipliers (5.70) is implied by the

interior point condition (5.69).

5.8 Supplementary Optimality Conditions

Along constrained arcs we have the sign conditions

al >_ 0 on arcs where gi = 0, i = 1, ...,4 (5.71)

a) # >_ 0 / (5.72)b)/i < 0 on arcs where Co = 0.
J

Along singular arcs an additional optimality condition is the Generalized Legendre-Clebsch

condition (see Appendix 6). This condition is already considered in the possible control

logics stated in Section 5.6. The explicit analysis is given in Appendix A.

5.9 Switching Structures

Problem (5.5) subject to the equations of motion (5.13), (5.2), (5.3), (5.4) and boundary

conditions (5.11) is solved for fixed final time (5.12). As a first step only control constraints

(5.14), (5.15) and the state constraint (5.10) are enforced, while load factor limits (5.8),

(5.9) are neglected. The associated switching structure turns out to be

(S1) l- 7-lib-7- 1
where any number i in the above sequence refers to case i of the possible control logics

hsted in Section 5.6). The load factor n = L increases rapidly near the final time t S

and reaches a maximum value of approximately nr_ = 56.5886. Mathematically this is

perfectly reasonable, as will be explained heuristically in the next Section. To make the

solution meaningful from an engineering point of view lower values of nm_ have to be

enforced. Starting with switching structure (S1) this is done by reducing the load factor

limit (5.9) in steps
In] < nm_, nm_ = 56, 55, ..., 5.

In the process we observe the following switching structures.

(S1) 1-7-1Ib-7-1

($2) 1-7-11b-7-1-3

($3) 1-7-11b-7-1-3-5

($4) 1-7-11b-9-7-1-3-5

($5) 1-7-11b-9-3-5

($6) 1-7-11b-9-5

for nm_z E [56.6, oc]

for nma:: E [32.7, 56.5]

for nma, E [22.7, 32.6] (5.73)
for nm_, E [20.8, 22.6]

for n_, E [18.2, 20.7]

for nmax E [5.0, 18.1]
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5.10 Large Load Factors Near Final Time

Figure 5.3 shows the time history of the load factor along the solution without the bounds

(5.8), (5.9), (i.e. nma_ = oo). It may be helpful to provide some explanation for why the

peak-value occurs at the final time and how the peak-value depends on the boundary

conditions. To this end, suppose the conditions (5.11e), (5.11f), (5.11g) are replaced with

vm_(hl) 2
E(tj) = EI - 2 g + hi, (5.74)

h(t_) = h_ = 9000, (5.75)

_(t_) = o, (5.76)

i.e. the prescribed final state lies on the dynamic pressure limit and the final flight path

angle is free. Then numerical calculations show that the switching structure associated

with the solution of this problem is given by switching structure ($1) of the previous

section with the last two arcs deleted. Now, if boundary condition (5.74) is replaced by

E(tl) = Ej - AE, (5.77)

for some AE > 0, then, if the load factor is unbounded, the 'optimal maneuver' for

the aircraft would be to fly exactly as in the solution of the previous case (i.e. boundary

conditions (5.74), (5.75), (5.76) until E(tf) = E I is reached and then to impulsively apply

a high load factor n _ oo on an infinitesimal time interval [t], tl+_t]] , 6t.f --* O, such that

the energy drops instantaneously to the prescribed value E I - AE. By noting that, in the

dynamical equations, the load factor appears linearly in the "_-equation and quadratically

in the/_-equation, we expect that along this infinitesimal arc 6E _ n2_ft, while 67 ,,_ n_ft.

Hence, with n and 6t I such that _fE = -AE we expect 67 _ 0 for n --* oc, and the

flight-path angle does not change along this arc.

If the final flight-path angle is prescribed at a value different from the natural one, i.e.

(5.76) is replaced by

_(tj) = -yj_+ _, _ # o, (5.7s)

Then the dissipation of energy turns into a gradual process extending over a non-zero

time interval and the load factor remains finite. Paradoxically, non-zero A_/ results in a

smaller peak value load-factor than does A_/ = 0.

5.11 Numerical Procedures

The switching structure, that is, the sequence of different control logics that actually

solves a problem is not known in advance. For a given problem it has to be found by

'numerical experiments'. Assuming a certain switching structure the state and costate

equations along with the boundary conditions, transversality conditions, and corner con-

ditions implied by the assumed switching structure yield a multi-point boundary value

problem (MPBVP). As an example case a schematic representation of the MPBVP associ-

ated with switching structure ($6) is given in Figure 5.4. By inspection it is clear that the

trajectory can he determined by simple forward integration if all parameters E(0), h(0),
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7(0), x(0), ,_E(0), Sh(0), $.y(0), ,_(0), 10, Atl, At2, At3, At4, Ats are known. Basically,

the numerical problem is to determine these 14 parameters such that all 14 conditions

(numbered 1, .., 14 in Figure 5.4) are satisfied. This root finding problem is solved using

routine ZSCNT of the IMSL subroutine library (version 9.2). In practice, forward inte-

gration causes the associated boundary value problem to be very badly conditioned. A

remedy is to consider t3 as new 'initial point' and generate trajectories by successively

integrating backward and forward, starting at switching time t3, respectively. In an obvi-

ous way this generates a new set of parameters E(t3), h(t3), 7(t3), x(t3), ,_E(t3), .'_h(t3),

,L_(t3), $_:(t3), 10, At1, At2, At3, At4, Ats along with the conditions numbered 1,..., 14

in Figure 5.4. Noting that conditions 6, 8, 10 in Figure 5.4 can equivalently be enforced

at time t3, three unknowns, say E(t3), )th(t3), )t-_(t3) can be expressed in terms of the

remaining twelve parameters h(t3), 7(t3), x(t3), AE(t3), )_z(t3), 10, At1, At2, At3, At4,

Ats. While it is only of minor importance that this reduces the number of parameters

and conditions, it is very significant that this substitution ensures that

(i) the characteristics of the singular arc, i.e. conditions 8, 9 in Figure 5.4, are satisfied

along [t2, t3]

(ii) the dynamic pressure limit v - vm_:(h) = 0 is satisfied along [tl, t4].
Note that both points hold true even before the root finding process converges. A more

detailed analysis of numerical problems and difficulties associated with optimal control

problems is given in Chapter 2. The software package used to generate the numerical re-

suits stated in this report is presented in Section 2.5. Switching structure ($1) is in some

sense the simplest of the switching structures ($1), ..., ($6) because no control constraints

on load factor n are active. Furthermore, in numerical experiments no other switching

structures could be found for trajectories involving an arc of active dynamic pressure limit

(and no active load factor limit). It is clear that switching structure ($1) can hardly be

found in an ad hoc method by just making an intelligent guess and getting the rest done by

a computer. In practice, the first attempts were to generate solutions with active dynamic

pressure limit that do not involve singular control arcs (of type llb). When this failed

trajectories were generated by just integrating along an arc of type 11b (singular control

along active dynamic pressure limit). The next problem was how to leave the constrained

arc and enter the free arc. Numerous different switching structures were tried out. In

this process only switching structure (SI) was found to lead to a consistent BVP. A first

guess for a trajectory was obtained by pure backward and forward integration starting at

some point in the interior of the singular arc of type 1lb. Starting with this guess solution

($1) could be found after a number of homotopy steps in which the prescribed initial and

final values of states E, h, 7 were varied. Introducing the load factor limit n < nma z WaS

comparatively easy. The necessary switching structures could immediately be guessed by

analyzing the time history of load factor n. It took the author more than one year to find

switching structure ($1). The other switching structures ($2), ..., ($6) were obtained the

same day. What a day!

5.12 Results

As a general trend it is observed that all trajectories consist of mainly 3 phases.

Phase 1: full thrust flight off the dynamic pressure limit (type 1) until dynamic pressure
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limit is reached
Phase2: rapid descentwith dynamicpressurelimit activeand singularcontrol power
(type llb) until closeto prescribedfinal altitude.
Phase3: rapid pitch up maneuveroff the dynamicpressurelimit with loadfactor on its
upperfimit andthrust first full, thenzero.
Below,the lengthsof eacharc in secondsaregivenfor selectedsolutionswith switching
structures(S1),..., ($6) (compare(5.73))

(81) 27.622- 0.525 - 30.614 - 0.796 - 0.443 with nmaxfree

(82) 27.618- 0.525 - 30.686 - 0.536 - 0.104 - 0.530 with nmax = 34

(83) 27.491 - 0.521 - 30.539- 0.451 - 0.015 - 0.515 - 0.567 with nm_x = 23

($4) 27.449 - 0.520 - 30.467 - 0.420 - 0.045 - 0.002 - 0.506 - 0.591 with nmax = 21

(85) 27.423 - 0.519 - 30.412 - 0.651 - 0.340 - 0.654 with n,,_x = 20

($6) 26.856 - 0.504 - 29.231 - 2.31 - 1.098 with nm_ = 10.

For the case of nma_ = 10 (switching structure $6) time histories for throttle _?, load factor

n, Lagrange multiplier _.y, and switching function S = )_EW + #_ are given in Figures

5.5, 5.6, 5.7, and 5.8, respectively. Figure 5.9 shows the altitude-velocity chart for this
solution.

All switching structures found seem to be of some general nature in the sense that the same

switching structures arise if initial or final coordinates of the trajectory are moderately

changed. In this context trajectories starting at ground level with speed around take-

off velocity have been calculated for prescribed flight times over 200 seconds and final

conditions as in (5.11). For "long flight times" (over 62 seconds for initial and final

conditions as given in (5.11)) the obtained switching structures $1, ..., $6 do not solve the

problem (thrust over-saturates at the beginning of the singular thrust arc). The correct

switching structure for "long flight times" has not yet been found.

5.13 Conclusions

Range optimal trajectories for an aircraft flying in the vertical plane have been synthezised

in the presence of a dynamic pressure limit (state inequality constraint) and a load factor

limit (control inequality constraint). Six different switching structures are obtained with

singular control along state constrained arcs always playing an important role. For long

flight times the control-over saturates at the beginning of a singular arc. For this case the

correct switching structure has not yet been found.
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0
1

2

3

4

ai

-2.6105984605010 -2

+8.5704396626910 -2

+1.07863115049 10 -1

-6.4477201863610 -2

+1.6493362650710 -2

bi

+7.29821847445 10 -1

-3.25219000620100

+5.72789877344100

-4.57116286752 10°

+1.37368651246100

Table 5.1: Coefficients for CDo-Model

0

1

2

3

4

5

ci

+1.23001735612 100

-2.97244144190 10°

+2.78009092756 10°

-1.16227834301100

+1.81868987624 10 -1

di

+1.42392902737 10+1

-3.2475912647110 +1

+2.9683874379210 +1

-1.3331681249110 +1

+2.87165882405 10+1

-2.27239723756 10-1

Table 5.2: Coefficients for K-Model

63



f_j

i=o

i=1

i=2

i=3

i=4

i=5

j=o

+0.11969995703106

-0.1464465642110 s

-0.45534597613103

+0.49544694509103

-0.46253181596102

j=l

-0.35217318620 106

+0.51808811078105

+0.23143969006104

-0.22482310455104

+0.20894683419103

j=2

+0.60452159152106

-0.95597112936105

-0.38860323817104

+0.39771922607104

-0.36835984294103

+0.12000480258101 -0.53807416658101 +0.94529288471101

[[ I,,
i=O

i=1

i=2

i=3

i=4

i=5

j=3

±0.43042985701 106

+0.83271826575105

+0.12357128390 104

-0.30734191752104

+0.29388870979103

-0.76204728620101

j=4

+0.13656937908106

-0.32867923740105

+0.55572727442 103

+0.10635494768104

-0.10784916936103

+0.28552696781101

j=5

-0.16647992124 105

+0.49102536402 104

-0.23591380327 103

-0.13626703723103

+0.14880019422 102

-0.40379767869100

Table 5.3: Coefficients for Thrust Model
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Chapter 6

The Generalized

Legendre-Clebsch Condition on

Constrained Arcs
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Chapter Overview

An extension of the Generalized Legendre-Clebsch Condition is obtained for problems with

singular control along arcs with active state or control constraints. This is achieved by

first transforming the Accessory Minimum Problem associated with constrained singular

arcs into an unconstrained singular, linear quadratic problem. In a second step (theorems

and proofs are largely based on Goh's work [11] ) necessary conditions are derived for

such singular linear quadratic problems to yield non-negative cost.

6.1 Introduction

In the 1960's singular control arcs were found to play an important role in many optimal

control problems of practical interest. H.J. Kelley, in 1964, was the first to formulate

second-order, necessary conditions for this type of control (see [17]). In the following

years many authors such as Kelley, Kopp & Moyer [18] and Goh [11] extended Kelley's

idea to what is now known largely as the Generalized Legendre-Clebsch Condition. To the

author's knowledge, singular control in the presence of active state or control constraints
has not been treated in the literature.

In Chapter 5 range optimal aircraft trajectories subject to a dynamic pressure limit are

synthesized. The appearance of singular control along arcs with active dynamic pressure

limit has prompted the research that lead to the results presented in this Chapter.

6.2 Problem Formulation

Let us consider the following optimal control problem stated in Mayer form:

subject to the conditions

rain O(x(ts),ts) (6.1)
uE(PWC[to ,tl])m

it(t) = f(x(t),u(t)) V t E [to, t:]

x(to) = Xo, Xo E R nandto E R fixed

• (x(t:), t:) = o

c(x(t),u(t))= 0 'v' t E [to, t]]

h(x(t), u(t)) < o Vt [to,t:]

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

Here t E R, x(t) E R n, and u(t) E R TM are time, state vector and control vector, respec-

tively. The functions • : R '_+1 _ R, f : R '_+m _ R '_, 9 : R TM _ R _, s <_ n, c :

R _+m _ R kl, and h : R n+m ----+ R k2 are assumed to be sufficiently smooth w.r.t, their

arguments of whatever order is required in this Chapter. (PWC[to, ts]) m denotes the set

of all piecewise continuous functions defined on the interval [to, tl] into R TM . Conditions

(6.2), (6.3), (6.4), represent the differential equations of the underlying dynamical system,

the initial conditions, and the boundary conditions, respectively. Components of vector

functions c(x,u) and h(x,u) , in which control u appears explicitly are called control
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constraints;componentsof c(x, u) and h(x, u) which are independent of u are called state

constraints. As time marches from to to t] the type of a given component of c(x, u) or
h(x, u) may change back and forth between state constraint and control constraint. The

present Chapter does not address switching conditions that have to be satisfied at junc-

tion points between arcs. We are only concerned with optimality conditions that have to

be satisfied along the interior of a given arc. By appropriately choosing the boundaries

7-1, 7-2 of an arc [7-1,7-2]it is clear that each component of c(x, u) and h(x, u) can be consid-

ered being of the same type (state constraint or control constraint) throughout the time
interval under consideration.

6.3 Minimum Principle

Let us assume that a solution to problem (6.1) - (6.6) exists, that k 1 -_- 0 (no equality

constraints), and that along the optimal solution conditions (6.6) are all non-active,

i.e. are satisfied with strict inequality. Then (see Bryson _: Ho [5], Lee &: Markus [24],

Neustadt [33]) there is a constant multiplier vector u E R s and a time varying multiplier

vector A(t) E R n which is non-zero for all times t E [to, ts] such that

H(x, A, u):= AT f(x, u) (6.7)

&T_ OH
0x (6.8)

A(tI)T - 0¢ uT O_
Ox(ts) + Ox(tI-----_ (6.9)

0(I) uT 0_ (6.10)
H(x(ts) , _(ts), u(ts) ) - cOt] cOtI"

At each instant of time the optimal control u* satisfies (Minimum Principle)

u* = arg min H. (6.11)
uER m

By virtue of the assumed smoothness of f(x,u) equation (6.11) implies

OH
-0

COu (6.12)

CO2H R _.
_uT-_u2 _u > 0 V_u E (6.13)

6.4 Singular Control and Goh's Necessary Condition

A necessary condition for optimality directly implied by the Pontryagin Minimum Prin-
ciple (6.11) is given by

OH]' = 0. (6.14)
cO'a I u*
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02Hhas full rankIn the regular case the second derivative matrix

rank \ Ou 2 ] _,* = m (6.15)

and all components of the optimal control u* are determined explicitly through (6.14), pos-

'sibly in conjunction with the convexity condition (6.13). The singular case, rank (02H_I_-_-_ ] 14. <
m, occurs typically if some control component, say uj, appears only linearly in the Hamil-

tonian. Then the associated component of the gradient OH is a function of x and _ only,

and can not be influenced by the choice of controls. Assuming that control uj is in the

interior of its allowed domain, i.e. no control constraint is active on control u j, condition

(6.14) implies that 0--Q-=:0H S(x, )_) = 0 has to be satisfied. Implicitly, this condition deter-
d 2

mines the control component uj through its derivatives d S(x, ,_) = O, _S(x, ,_) = O, ...
and so on.

In this Chapter we use the following more general definition of singular control.

Definition 6.4.1 An arc [rl, r2] is called singular of degree m* if there is a smooth func-

tion S : R 2n _ R m_ of x and )_ such that Yt E [rl, r2] the optimal control u* is determined

by
OH
Ou 0 (6.16)

02H

Ou---T >_ 0 (6.17)

(6.18)= 0

and

rank _ Ou 2 ] = m- m (6.19)

is satisfied along the solution of (6.16), (6.17), (6.18).

Note that S does not depend explicitly on u so that differentiation of identity (6.18)
w.r.t, time t is well-defined and can be used to obtain additional conditions on control

u. Assuming that the classical Legendre-Clebsch condition (6.13), (6.17) °2H > 0 is

satisfied, we find

02HI R1- O'_-m*"_* ] R1E Rm-'_*"_-m* (6.20)OU2 Om*,rn--ra* Ora*,m* '

possibly after a permutation of the components ui, i = 1, ..., m of control vector u. Along

an extremal x*(t), )¢(t), u*(t), tl*, v* of (6.1), (6.2), (6.3), (6.4) the second variation of

the augmented cost functional

ft_ J
J = _(x(ty), tI) + uTko(x(tf), tl) + AT(f(x, u) -- _:) dt (6.21)
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is givenby (seeresultsobtained in Appendix B)

where

w dt (6.22)

( 0_'_ vT 0:_' )"r= dxff _,Oz(tl)2 + Ox(tl) 2

+ dti T

dx f + 2 dz l T \ Oz_1)Ots

( 02_ T(92_ _

0--_12+ v O--_I2) dt f

w = $x TO2H
-8-_x2 _x

Here the variation $x(t) of state x is

+ t/T

c Ti)2H_

+ 2 ox O--_--_uOU

the solution of

Ox(tf)Otf dr f+

(6.23)

(6.24)

(Of Of
_ = _6x + _u, _x(t0) = 0

and the variation dx] of the final state is given by

(6.25)

dx] = 5x(t']) + f(x*(t*j),u*(t'l))dt] . (6.26)

The variation _u of control u is arbitrary, and all matrices are evaluated along the solu-
tion candidate x*, A*, u*. Applying Theorem 6.8.2 of this report to the second variation

immediately yields the following result.

Theorem 6.4.2 Let the optimal solution u* corresponding to the solution of (6.1), (6.2),

(6.3), (6.4) be singular of degree m* on some arc [7"1,7-2], i.e. equations (6.16), (6.17),

(6.18), (6.19) hold for all times t E [TI,T2]. Then a necessary condition for u* to be
optimal on [vl, r2], are the conditions

(i) the (m - m*) × (m - m') matrix function of time Q2B2 is identically symmetric, i.e.

Q2B2 = B2TQ2 T Vt E [to, t/] (6.27)

(ii) if Q2B2 is identically symmetric, then

where

R1 | _> E [to, t]]

R2 T ]
R4 := R2 R3

0 Vt
J

R2 := B2TQ1T - Q2B1

d
R3 := B2T p1B2 - _(Q2B2) - B3TQ2 T

B3 := A B2 - B2

(6.28)

(6.29)

(6.30)

(6.31)
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, R m-m',n _ R,_,nHere matrices R1 E R m-m''m-m* P1 E R '_''_,Q1 E , ,42 E R m',n, A E , Ba E

Rn'm-m*,B2 C R n'm*, are defined by (6.20) and

O2H

P1 := 0x--_, (6.32)

[Q1] 02H (6.33)Q2

Of (6.34)
A:-'_x,

Of (6.35)[ Ba, B2 ] :=-_u,

respectively, and are evaluated along the extremal x*, )¢, u*.

6.5 Constrained Arcs

A constrained arc is a non-zero time interval, say [rl,r2], along which a fixed set of

components of constraints (6.5), (6.6) is satisfied with strict equality. Let this set of

constraints be given by d(x,u) = O, d : R n+m _ Rkl+k_, kl + k_ > 0, where the first

kl components of vector function d are all constraints (6.5) and the last k_ components

of d are those components of (6.6) that are 'active'. For components i of d(x, u) which

represent state constraints (i.e. d(x, u) is independent of control u), the order of the state

dP, di(x) contains controlconstraint is defined as the smallest integer pi E N such that
0 dP_dr _u explicitly, i.e. _--_d-V; i(x) _ 0 on [ra,r2] (Ifpi changes on [rl,r2] then consider a new

interval [v_, r_] C [7-1,72] small enough such that Pi remains constant along [v_, g]). Then

di(x)_Oont e [T1, T2] (6.36)

is obviously equivalent to

di °)=Oatt=rl

: (6.3z)
dl p_-I) = 0 at t = vl

di =- 0 on t • [rl, r2].

Here superscript (j) denotes the j-th total time derivative. By virtue of this equivalence

the effect of all constraints d(x,u) in the interior of any constrained arc is completely

characterized by a vector valued function g : R n+m _ R p, p = kl + k_, with

g(x(t), u(t)) - 0 on t • (T1, T2) , (6.38)

as long as some set of "initial conditions"

_(x(t)) = 0 art = ra (6.39)

is satisfied. Now assume

rank, Ouu)) : P Vt • IT1,T21. (6.40)
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Then,without lossof generality,controlvectoru canbeseparatedas

U T = [V T, wT], V C= R m-p, w E R p

such that

(6.41)

rank (Og(x,_v,Ow wl) = P (6.42)

(i.e. _ is non-singular) and the Implicit Functon Theorem [2] implies the existenceOw

of a smooth function

such that

w =W(x,v) (6.43)

g(x, v, w(x, v)) - 0 (6.44)

is an identity in x and v.

6.6 Reduction of Constrained Arcs to Unconstrained Arcs

By the Principle of Optimality (see Lee & Markus [24]) every subarc of an optimal trajec-

tory is an optimal trajectory between its end points. Hence, along a constrained arc, say

t E [rl, r2], the formalism of (6.7) and (6.8) and the Minimum Principle (6.11) can still

be applied after substituting (6.41) and (6.43) into the equations of motion (6.2). With

the Hamiltonian (6.7) written in the form

H := xTf(x, v, w) (6.45)

and with

= 0-_;, ", _ + _7'

[° 0 ]= _' "'" Ov,__p + Owl' ""'

this yields on [rl, 7"2]

"°''

Oxt

0..__:_.]Owp

Oxl

"" "_ dvm-p

OW

0-

_-;_ ] • ...

Ovl "'"

"'" OXrt

".. *.

•'', Ox n

OWL_
OVm-p

OW__...

(6.46)

(6.47)

AT = dH(x, _, v, W(x, v)))
dx (6.48)

v*:arg min H(x,v,W(x,v)). (6.49)
vER'*-v

Again with the assumed smoothness of all participating functions (6.49) implies

dH(x,v,W(x,v))
dv = o (6.50)
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d2H(x, W(x,r v, v > o wv tt m-p
dv 2

In complete analogy to the unconstrained case we have

(6.51)

Definition 6.6.1 An arc [rl, r2] with constraints (6.38), (6.39) is called singular of degree

m* if there is a smooth function S : R 2'_ _ R m° of x and X such that along [rl, r2] the

optimal control v* is determined by
dH

dv 0 (6.52)

d2H

dr---_ >_ 0 (6.53)

(6.54)

and

S(z,A): 0

m" (6.55)
rank \dr 2] =m-p-

is satisfied along the solution of (6.52), (6.53) and (6.54). The differential operator d is

defined by equations (6.40) through (6.47).

As before, note that S does not depend explicitly on any controls so that differentiation of

identity (6.54) w.r.t, time t is well-defined and can be used to get additional conditions on

control v. As in the unconstrained case, (6.55) along with the Legendre-Clebsch condition

(6.53) implies the existence of a matrix R1 such that

d2H[ R' 0m-'-m'"_ ] R1 E Rm-p-m"m-P-m" (6.56)= 0re,m--V--m" Om',m" '

possibly after rearranging controls v. For the second variation to be non-negative on

[rl, T2] Theorem 6.8.2 yields the necessary condition

Theorem 6.6.2 Let the interval [7"1,r2] be a constrained singular arc of a solution to

problem (6.1) - (6.6), i.e. with Definitions (6.41) and (6.45), (6.46), (6.47) equations

(6.42), (6.43), (6.44), and (6._8), (6.52), (6.53), (6.54), (6.55)hold true on [rl,r2],

respectively. Then a necessary condition for v* to be optimal on [71, T_] are the conditions

(i) the (m- p- m*) × (m- p- m* ) matrix function of time Q2 B2 is identically symmetric,
i.e,

Q2B2 = B2TQ2 T Vt E [to, tl] (6.57)

(ii) if Q2B2 is identically symmetric, then

[ R' R2T ] >_0 VtE[to, tl] (6.58)R4 := R2 R3

where

R2 := B2TQ1T - Q2BI (6.59)

d
R3 := B_T pIB2 - -_(Q2B2) - B3TQ2 T (6.60)
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B3 := AB_ - B2 (6.61)

Here matrices R1 6 R'_-P-'_'"_-P-m*,P1 6 Rn'n,Q1 6 Rm-p-m*"_,Q2 6 Rm"n,A 6

R'_'n,B1 6 Rn'm-v-m*,B2 6 R n'm*, are defined by (6.56) and

d2 H
P1 :-- -- (6.62)

dx 2 ,

Q1 ] d_H (6.63)Q2 "- dv dx'

A := _-_fx' (6.64)

[B 1 B2 ] df (6.65)

respectively, and are evaluated along the extremal x*, )_*, v*.

6.7 Express Unknown Quantities in Terms of Known Quan-

tities

Equations (6.48), (6.51) - (6.55) seem to require the explicit knowledge of the functional

dependence w = W(x,v) . This may not be available, as it may not be possible to solve

(6.38) ana/ytically for w. Differentiation of identity (6.44) w.r.t, x and v yields

OXl "'" OXn

: ".. :

Oxl "'" Oxn

Owl "'" Owp

: ".. :

Owl "'" Owp

-1 o__
OXl

Oxl

""" 0xrt

"°.

o_g
• "" 0x n

(6.66)

ow ow,
_Vl OYm--p OWl "'"

• . • ° .

• . = -- ,,

owl
OV 1 "'" O_Orn_p O*vd 1 ""

respectively, and the differential operators _,

Wp

defined

Ovx "'" Ovm-p

: "-. : (6.67)

OVl "'" OVm-p

by (6.46), (6.47) take the form

d .

"'" "" _ I

O. O. ]- _-W'Twl'"'" O_op

d. [ d.dv "- dr1' ""'

Wl

11)1 °'"

d.
dvrn-p ]

Ogl
" ° ° OWp

,

-_ o__ o_.u
Oxl "'" Oxn

: ".. :

Oxl "'" Oxn

o ]"", OU_-_p

(6.68)
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Alsodefine

O. a. ]aw 1 _ "'" ' awp

awl "'" Owp

• ,. •

Owl "'" aw v

-1 o__
avl

Or1

ogl
• "" OVrn-p

''" t_Vrn_lo

#P Owl O,_p

Then equation (6.48) can be written as

(6.69)

(6.70)

AT OH #TOg (6.71)
-- ax -_z

and equations (6.50) and (6.70) can be restated together as

OH T cOg
0% + # _uu = 0. (6.72)

The non-singularity of matrix _ in equations (6.66), (6.67), (6.68), (6.69), (6.70) is guar-Ow

anteed by assumption (6.40), (refK-e 5.7). It is clear that also higher order derivatives
d

can be treated in this way by successively applying the differential operators d and

stated in (6.68) and (6.69), respectively. Hence it is possible to test the optimality con-

ditions stated in Theorem 6.6.2 without explicit knowledge of the functional dependence

of w = W(x, v) defined by (6.44). Stating general expressions would be lengthy and

unnecessarily confusing without providing further insight. In practice it is recommended

to perform all necessary operations step by step, simplifying expressions in every stage as

far as possible. The classical Legendre-Clebsch condition (6.51) can be restated as

[ 02H''TO2oOzH.T a...__ 02H +"T O_g ] [ OIV ]_vT [ I' {Ow'lT ]'Or' -_- T."o--_ ovow r. o,zow
O_H "4" " T O"q

OwOv " _ OwOv _ I_

With Definition (6.41) and assumption (6.42)

_v>0 V _ivER m-p.

(6.73)

is equivalent to

or with (6.67)

Hence

Og ) -1 cOg

,_w cOW ,sv
_V "

gv r I, IgveR m-p = [_vT,_wr]l_veRm-P,_w=--_- v j
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Og (_u = O}

and condition (6.73) yields the well-known result

[02H TO2g] R TM satisfying Og_u (6.74)

6.8 Singular Linear-Quadratic Optimal Control Problem

Definition 6.8.1 Let problem (*) be defined as

min J2
u_e(L2[to,tl]}'_*, t,2e(L2[t0 ,t I])'-'-*

(6.75)

subject to

f_o !J2:=7(x(tf),ti)+ wdt

"_ := Q2 x + 0

._ = Ax + BlUl + B2u2, x(to) = 0

• (x(tl), ti) = o.

Here the matrix functions of time

R1 E R rn''m*, R1 >0

o][ul]0 u2

(6.76)

(6.77)

Q1 E R m.'n, Q2 E R m-m*'n

B1 E R n'rn', B2 E R n'm-rn*

pl_ R",_, p, = p,T

A E R n''_,

are assumed continuous and B2,Q2 are assumed continuously differentiable. The func-

tions 7 : R"+I _ R, (x(t/),t/) _ 7(x(t/),t/), • : R "+' _ R', s <_ n, (x(ty),t]) _,

_(x(tf),t]) are assumed smooth and satisfy 7(0,0) = 0, _(0,0) = 0. For all k E N

(L2[t0, t]]) k denotes the Hilbert space of all quadratically integrable functions f( t) from

the interval [to,tf] into R k.

Theorem 6.8.2 a necessaryconditionfor [x(t) T, ul(t) T, u2(t) T] = [0, 0, 0] Vt E [to, ty]

to be an optimal solution of problem (*) is that

(i) the (m - m') × (m - m*) matrix function of time Q2B2 is identically symmetric, i.e.

Q2B2 = B2TQ2 T Vt E [to,ty] (6.78)
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(ii) if Q2B2 is identically symmetric, then

JR1 R2T ] >0 VtE[to, tf]R4 := R_ R3 -

where
R2 := B2TQ1T - Q2B1

d
R3 := B2Tp1B2 - _(Q2B2) - B3TQ2 T

B3 := AB2 - 1_2

(6.79)

(6.80)

(6.81)

(6.82)

Proof: The proof is adopted from Goh [11] and, for convenience, is restated here in slightly

modified form.

Introducing the matrices

0 0 0]
R := 0 R1 0 E R '_+m'+('_-'_')''_+'_'+('_-m') (6.83)

0 0 0

0 0 0
Q:= Q1 o o

Q2 o o

Pi o
P:= 0 0

0 0

and defining the new state vector

E R _+'_" +('_-'_*)''+m" +('_-m*)

o]0 E R n+m*+(m-m*)'n+m*+(m-m*)

0

7/E R '_+'_'+('_-m*) by

,3(t) ]

(6.84)

(6.85)

problem (*) can be restated in the form

min J2
[u T, uT]E(L:Eto,t ¢1) '_" +('_-m')

(6.86)

(6.87)

J2 = 7(r/l(tf), t]) + rjTp_ + 2iTTQq + iITRi_ dt

subject to the state equations

(6.88)

_1 = Arh + BlUl + B2u2

_2 _ Ul (6.89)

_3 = US
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the initial conditions

_l(to) -- xo
,;_(to) = o
r/3(to) -- 0

and the boundary conditions

zt(_l(tl),tl) = O.

Now define _/by the regular transformation

¢1=V71

where

Then we have

V:--

I. 0 -B2
0 Ira. 0
0 0 Ira--m*

E R '_+m'+('_-m*)'"+m'+(m-m').

:: [OT,
:= [ (x(t) - B_f:ou_(_)d_)T, f:ou,(r)J, I:ou (OJ ]

and problem (*) can be rewritten as

rain J2
[u T, uT]e ( L2[to,t l ])m" +( m-m" )

SI'g_ = _(01(tf) + B2(tl)O3(tf), tf) + orPO + 2_rQO + OTR_dt

subject to the state equations

_1 =

_2 =

_a =

A#I + BlUl + (AB2 - ]_2)_]3

U2

the initial conditions

rl,(to) = xo
#_(to) = 0
f/3(t0) = 0

and the boundary conditions

kO(f/l(tf) + B2(tf )_3(tf ), tl) = O.

Itere the old matrices R, Q, P given by (6.83) - (6.85) are replaced by

0 0 0]
R := 0 R1 0

0 0 0

(6.90)

(6.91)

(6.9:2)

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)

(6.98)

(6.99)

(6.1o0)
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0 0
Q:= Q1 0

Q: 0

P:= 0 0

B2T p_ 0

0

Q1B2

Q2B2

PI B2
0

B2T p1B2

(6.101)

(6.1o2)

= 2 "-T -In the so-transformed problem _3(t) us(t) appears only in the bilinear forms r]3Q_71
"--T

and 2_3 Q2B2_73. Integrating by parts, employing state equations (6.97) and assuming that

Q2B_ is identically symmetric it follows that

i' 2qT Q2#'dt = 2i-TT3Q2#' _I°

- _i' 2#T(_h + 2#_Q2BaCl2 + 2_ITQ2A#_ + 2#TQ_(AB2 - Be)_13 dt (6.103)

and

/i j "-T - T I:_ --fot't _/3Td(Q2B2)#3dt. (6.104)

Hence problem (*) takes the form

min J2 (6.105)
[_T, _2rle(L2[to,t1]) ''÷('-m')

J2 2 O3TQ2_]I :_= + fITQ_B2f]3 i_ +

fi'+ 7(_/1(t1) + B2(tl)O3(t]) , t/) + _?Tp_? + 2¢/TQ_ + tITRe ] dt (6.106)

subject to the state equations

_1 -" A#I + Blul + (AB2 -/3:)r/3

_: = ul (6.107)

_3 _ ?22

the initial conditions

_1 (t0) = XO

92(to) = 0
¢13(to) = 0

and the boundary conditions

gl(#l(tf ) + B2(t/)_3(tl),tl) = O.

Here the old matrices R, Q, P given by (6.100) - (6.102) replaced by

[000]R := 0 R1 0

0 0 0

(6.108)

(6.109)

(6. ao)
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P :._

Q:_

0

B2T p1 + 2(02 + 2Q2A

0 0 0
O_ 0 Q1B2 + BITQ2 r

Q2 0 Q2B2

0 P1B2 ]
0 0 .

0 B2Tp1B2 + -_(Q2B_) + 2Q2(AB2 - B2)

Again defining a new state vector by

[_(t)7",v(t)r ]

(6.111)

(6.112)

:---- [_l(t) T, _2(t) T, _3(t) T, v(t) T]

:= [_1_'_' (_i' _(_)d_) _ (_i' _'_(r)'_T)_]

: [(_(,)-,__ou_(T),,_-)_, (s:ou,(_-),_O_, (S:os_:u_(_),_T)_,
problem (*) finally takes the form

min J2
[u_, uZle (r2 [t0,tsl)'" +("-'_')

(6.114)

J2 = v(ts)TQ2_I(ts) + v(ty)TQ2B2v(ts)+

J/
subject to the state equations

(6.115)

Ot = A?lt + BlUl + (AB2 -/_2)v

7"]2 -_ _t 1

&
_]3 = v

i) = u2

(6.116)

the initial conditions

_l(tO) = Xo

_:(to) = 0

_3(to) = 0

v(to) = 0

(6.117)

and the boundary conditions

• (_l(tS) + B2(tl)v(tl),tf) --O. (6.118)
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Herethe matricesP, Q, R are as follows

where

e:_-

Q :=

 ,00]0 0 0

O 0 0

0 0

QI 0
Q3 0

0 0

0 R_

0 R2

0]0

0

0

R3

(6.119)

(6.120)

(6.121)

d
- B3Q:R3 := BTp1B2 - _(Q2B2) - Q2B3 T T

Q3 := B_PI - Q2A - ()2

B3 := A B2 - B:.

(6.122)

(6.123)

(6.124)

(6.125)

In this problem control u2 is "flee of charge". Note that u2 does not appear anywhere in

the cost function J2 in (6.115). Furthermore, in the right-hand side of the state equations

u2 appears only in the expression _) = u2. Hence, on every interval It1, tl + e] C [to, t]],

e > 0, state v(t) can be changed from any cl E R m-m* to any c2 E R m-m" (i.e. v(tl) = Cl,

v(tl + e) = c2) and the penalty in cost is at most of the order e. This implies that the

status of v can be raised to the status of a control. Let c* E R m-m_ be the optimal value

of v(t]) consistent with the boundary conditions (6.118) (the existence of a solution to

problem (*) defined in Definition 6.8.1 implies the existence of such a c*), then problem

(*) can be rewritten as follows:

min J2 (6.126)
b,T, vr]_(L2[_0,tj])','+(-,-"_')

to 'fJ2=c*TQ2_l(tl)+_/(_l(t])+ B2(tl)c*,t])+ (_TP_I+2_Q_+_TR_)dt (6.127)

subject to the state equations

711 = A?la + Blul + (AB2 - B2)v
&
7]2 : Ul (6.128)
.4_
r]3 : V

the initial conditions

_l(to) = xo

 2(to) = o
_3(t0) = 0

(6.129)
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andthe boundaryconditions

• (_,(ts) + B_(ts)c*,ts) = 0. (6.130)

Here matrices P, Q, R are given by (6.119)- (6.121). Now the classical Legendre-Clebsch

condition implies that necessarily

R, R_ ] > 0. (6.131)R2 R3 -

This proves (ii) under the assumption that (i) holds true, and it is left to show that indeed

(i) Q2B2 T T [to,t/]= B2 Q2 Vt E
Assume this is not the case. Define B2* E R n'm'*, B2** E R '_''*-'n*-m**, Q2* G

R m*'''_, Q2** E R m-m*-m**''_, by

Q2 := Q2 (6.132)

[B_, B_*] := B2 (6.133)

where m** > 0 is the smallest possible integer such that the (m-m*-m**)× (m-m"-m**)

order submatrix Q_*B_* of

* * F)*B** ]
Q2B2 = Q2B2 _2 2 (6.134)

Q_*B_ Q[*B_*

is identically symmetric. Then by construction the nonsymmetry of Q2B2 implies

I_**T fl*T
Q_*B_ - 1-'2 _2 # 0 for some t e [to, tl] (6.135)

Now applying (ii)of the Theorem on problem (6.87)- (6.91), with matrices (6.83) - (6.86)

replaced by

R:_

0 0 0 0

0 RI 0 0

0 0 0 0

0 0 0 0

E R '_+_" +'_*" +(_-m'-'_'')'n+_' +_'" +(_-m'-_*') (6.136)

0

Q1
Q :=

Q_

P1 o
0 0

P :_-
0 0

0 0

¢ := [ I,_,

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

-B1

E R '_+_" +_'" +('_-'_" -'_*')''_+'_" +'_'" +('_-'_" -'_'°)

E R '_+'_" +m" +(m- m" -,_"),,,+m" +,,_'. +(,,_- _* -,,c* )

-B_, -B_* ] E R '_''_+'_'+_''+(m-m'-'_'')

(6.137)

(6.138)

(6.139)
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O:=[-a, 0,0, 0] m"

E R l'n+m°+rn°'+(m-m*-rn°*)

implies that

where

Hence

R4 :=
R1 Om*'m'" R_T 1

0m**,m* Om**,m*" R_ *T > 0 Vt E [to, tl]

R_ R_* R3

•-2 Q1r,Q; -Q2 [B1, B_]

%'2 1, "-'2 _2 -- Q2**B2* •
J

R * D **TtqT **2 =_2 _¢1 -Q2 B1

(6.140)

(6.141)

(6.142)

(6.143)

and

R **2= B2**TQ2 *T- Oi*B_. (6.144)

Now the positive semidefiniteness of R4 implies that all 2 × 2 order submatrices of the
form

0 k 2 )pq

rR **_ > 0 Vt E [to, t]]. (6.145)_ Jvq (R3)qq -

This implies -(R2**)pq 2 > 0 Vt E [to, tf] so that necessarily

R **2 - 0 Vt E [to, tj]. (6.146)

But now (6.144) and (6.146) contradict the assumption (6.135). Hence assumption (6.135)

is wrong and Q2B2 is identically symmetric.

q.e.d.

6.9 Example

Examples for the application of the Generalized Legendre-Clebsch Condition to singular

control along state/control constrained arcs can be found in Appendix A. In Section A.5

the results obtained in this Chapter are applied to the singular control cases in the aircraft

range optimization problem treated in Chapter 5.
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Chapter 7

Touch Points for First Order

State Inequality Constraints
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Chapter Overview

The appearance of touch points in state constrained optimal control problems with general
vector-vaiued control is studied. Under the assumption that the Hamiltonian is regular,

touch points for first-order state inequalities are shown to exist only under very special

conditions, stated in Corollary 7.3.4. For state inequality constraints of arbitrary order
the control is shown to be continuous across a touch point.

7.1 Introduction

In optimal control problems state inequality constraints can turn active in two different

ways, namely in form of constrained arcs and in form of touch points. In practice, the
form in which a constraint becomes active (i.e. the switching structure) has to be found by

numerical experiments and involves some kind of "smart guessing". This time consuming

process can be cut down considerably if certain switching structures can be excluded a

priori. In this Chapter the existing first-order necessary conditions associated with interior

point constraints are used to derive concise new statements. Conditions similar to the

ones derived here have been derived in [31] for the case of a scalar control. In this Chapter

no restriction on the dimension of the control vector is imposed.

7.2 Problem Formulation and Existing Optimality Condi-

tions

Definition 7.2.1 (Reference Problem) Let the reference problem be given as follows:

min ¢(z(tI),t/) (7.1)
u(t)ER m

_c = f(x, u, t) (7.2)

x(to) = Xo (7.3)

_(x(ty),t])=O (7.4)

L(x) <_ 0 (7.5)

where x(t) ERn; u(t) E Rm; (I) : R n+l H R1; f : R n+m+l _-+ R_; • : R n+l _-+ R k,

k < n; L : R '_ _ R 1 is a q-th order state constraint, i.e.

Ou dt i ] 0 for i = q.

Definition 7.2.2 (Touch Point) Let x*(t), u*(t) be an extremal associated with the

reference problem stated in Definition 7.2.1. Time tl E (to, ty) is called a touch point if
there is some e > 0 such that

L(z(t)) = 0 at t = tl (7.6)
L(x(t))<O on te(tl-_,tl)U(tl,tl-Fe)

(see Figure 7.1).
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touch point

[o tt t]
* I _-- t

Figure 7.1: Touch Point

Definition 7.2.3 (Notation) In this Chapter, let superscripts (+), (-) denote evalua-

tion just left and just right of touch point tl, respectively. Explicitly, for any function of

time f(t) we define

f+ = lim f(tl+e),
e>O,e=_O

f- = lim f(tl-¢).
e>O,e=#O

Lemma 7.2.4 Assume the optimal solution to the reference problem given in Defini-

tion 7.2.1 has a touch point at some time tl E (to, tf). Then the following necessary

conditions for optimality are obtained from the Minimum Principle (for notation see Def-

L(q)(z,u)

L(q)(x, u)

L(°)(z) = 0 )

L(1)(x) = 0
• at t = t_ (7.7)

L(q-1)(x) = 0

> 0 ont E (tl-f, tl) _ for some_ > 0 (7.8)
< 0 on t C (tl, tl -I- () J

inition 7.2.3):

OL(O) OL(q -1)

()_+) = (_--) -- lo OX "'"- lq-I _ (7.9)

with

1o >_ O, 11 >_ O, ... lq-1 __ 0 (7.10)
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H + - H- -- 0 (7.11)

u* = argmin H a.e.. (7.12)
u6U

Here and in the remainder of this Chapter superscript (i) denotes i-th total derivative

w.r.t, time.

PROOF: Just apply the well-known first order necessary conditions (see Bryson & Ho [5]).

q.e.d.

7.3 Concise Statements Implied by First-Order Necessary

Conditions

Definition 7.3.1 (Regular Hamiltonian) The Hamiltonian is called regular if u* =

argminueu H is unique (i.e. if the Hodograph is strictly convex).

Lemma 7.3.2 At a touch point tx E (to, tl) in the solution to the reference problem

stated in Definition 7.2.1 the following conditions are implied by the conditions given in

Lemma 7.2.4 (for notation see Definition 7.2.3):

)_- f + : )_- f- : )_+f + : A+ f - (7.13)

lq_l(Lq) - = 0 (7.14)

lq_l(Lq) + = 0. (7.15)

PROOF:

Equation (7.11) H + - H- = 0 can be written as

)_+f+ - )_-f- =0.

With (7.9) this implies

( . OL (°) OL(q-1))f+_A-f-=O,_- - to -_x ... - lq-1

)_-f+ loO_(°z)f+ OL (q-l) +- -...-lq-l_f -A-f- =0

)_-f+ --10 (L(l') + -...- lq-i (i(q') + -/_-f- = O.

Conditions (7.7)imply (L0)) + ( )+---- .... L (q-l) = 0 so that

:+ lq : =o

/_- f"F -- /_-f- --__lq_ l (L (q)) -F.
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Now recaJ1 that

Then

implies

(L(q)) + < 0

lq_a _> 0

,X-f + - ,X-f- >_ 0

(from (7.8)

(from (7.10)

(from (7.12).

>0 >0 <0
m

A-f +-A-f- =0

lq_l(L(q)) + = O.

Again starting with equation (7.11) H + - H- = 0 we can write

(7.16)

(7.17)

A+f + - A-f- = O.

Now using (7.9) to substitute for ,_- yields

. OL (°)A+f + - A+ + lo_ + ... + lq_l
=0

cOL(o) cOL(q -1 )

,_+f+ - A+ f - - loaf- - ...- lq-1 cOx f- = 0

A+f + - A+f - -to (L'I') - -...- lq-1 (L(q)) - --_ O.

( ) ( )-Againusing conditions (7.7) we find L (1) ..... L (q-l) = 0 so that

/_+ f+ -- /_+ f- -- lq_l (i(q))- = 0

Now recall that

Then

implies

A+ f+- )_+f- = lq_l (L(q)) -

(L(q)) - _> 0 (from (7.8))

lq- 1 )_ 0 (from (7.10))

,X+f + - A+f- _< 0 (from (7.12)).

_+ f+ - ._+f- = lq_ 1 (L(q)) -

<o >O >O

A+f+ - A+f- = 0 (7.18)

lq_l(L(q)) - = 0. (7.19)

Observing that equations (7.16), (7.18) in conjunction with the continuity of the Hamil-

tionian (7.11) imply (7.13) completes the proof.

q.e.d.
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• "=

r Zi

Figure 7.2: Optimal Control Located in a Corner Point of the Hodograph

Corollary 7.3.3 Let tl be a touch point. If H(tl +) or H(tl-) is regular then the control

is continuous across tl.

PROOF:

Without loss of generality assume H(tl-) is regular. Condition (7.13) of Lemma 7.3.2

implies
A-f + = A-f-.

By definition of regularity of the Hamiltonian (see Definition 7.3.1) this immediately

implies
u + = u-. (7.20)

q.e.d.

Corollary 7.3.4 Consider the reference problem stated in Definition 7.2.1 with state in-

equality constraint L(x) _< 0 of order q = 1, i.e. o-_dLd_T_ O, (meaning that _ 7-(dLis not the

zero function). Let t I E (t0,t]) be a touch point (see Definition 7.2.2) and assume that

either H(ti +) or U(tl-) is regular (see Definition 7.3.1). Then only the following three

cases are possible:

a) (trivial case) lo = O, i.e. the touch point tl is a natural touch point.

b) lo > 0 and the Hodograph {z E R"I z = f(x(ti),u) for some u E R TM} has a corner

point at time tl and u*(t_) is located in that corner point (see Figure 7.2).
0 dL =0.

c) lo > 0 and -5-_-_ylu=u.,t=tl
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PROOF:

a) Assume Io --0, trivial.

b, c) Assume lo # 0. Then by (7.10) necessarilylo
OL(o)

X, f, _ into two components

> 0. First let us split up all n-vectors

x=[Xllx,
f=[A

oL(o) :oL(o)oL(o)]
Ox Oxl ' Ox2 j

Here subscript 1 denotes the set of all components i of the original n-vector for which the

associated state rate fi(x(tl), u) depends explicitly on control u, and subscript 2 denotes

the set of all components j of the original n-vector for which the associated state rate

fj(x(tl), u) = fj(x(tl)) does not depend explicitly on control u.

Now, from 10 # 0, we find A(tl +) # A(tl-). This gives rise to the two possible cases

i) there is no c E R such that Al(tl +) = e Al(tl-) (case b))

ii) there is a c e R such that Al(tl +) = c)h(tl-) (case c))

case b):

In this case the vectors Al(tl +) and A_(t_-) have different directions. From (7.12) and

(7.20) it follows that )h(tl +) and Al(tl-) are outward normal vectors associated with

two different hyperplanes through the same point Zl = f_(x, u*) in the Hodograph (more

precisely: in the projection of the Hodograph into the "l-plane"). This immediately

implies that the Hodograph has a corner at time tl and that the optimal control u*(tl) is
located in such a corner.

case c):

Assume 3 c E R such that Al(tl +) = c A_(t_-). First note that necessarily c # 1.

Otherwise (if c = 1) (7.9)in conjunction with OL(°) # 0 yields 10 = 0 which contradicts

the assumption. Hence Al(tl +) = c Al(tl-) is equivalent into

_I(Q-) = Al(tl-)- _l(tl +)
1--c

and with (7.9) this imphes

)_l(tl-)T_ lO OL(°)
1 - c 0x 1 (7.21)

Now assume u*(Q) is not located in a corner point of the Hodograph. Then the Minimum

Principle (7.12) implies that along the optimal trajectory

OH[ = 0
C_U Q-

or explicitly

Ou ] tl- = O. (7.22)
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Inserting (7.21)in (7.22) yields

1-c [ Ozl -_u 1
#o

=0.

Because of the continuity of control u across switching time tl (see Corollary 7.3.3) this

implies a dL (°) u=u*, = O.

Ou dt t=tl q.e.d.

Remarks:

a) Note that the conditions stated in Corollary 7.3.4 b), c) are only necessary for the

existence of a touch-point, not sufficient.

b) Also note that these conditions (except for condition l0 > 0) can be tested a priori

without solving a boundary value problem. In this test, additionally conditions

L(x(t))l===.,,=,, = o

_(x(t), u(t)) _=,',_=_',,=,,

(see equations (7.7) and (7.14), (7.15)) can be used.

=0
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Chapter 8

Non-Optimality of the Accessory

Minimum Problem in Presence of

a Conjugate Point
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Abstract

In this chapter, a new proof is given for Jacobi's "no-conjugate-point" necessary condition.

For a certain class of linear-quadratic optimal control problems it is shown that the

existence of a conjugate point in the interior of the extremal implies the existence of

control perturbations that lead to a reduction in cost. In a well-known way, through the

concept of the Acessory Minimum Problem, this results in a no-conjugate-point condition

for general optimal control problems. Important ideas used in this chapter are adopted

from Breakwell & Ho [3]. In contrast to earlier results, the new proof also applies if the

coefficient functions of time associated with the Accessory Minimum Problem have any

finite number of discontinuities.

Introduction

The Jacobi necessary condition states that an extremal cannot be optimal if it violates the

no-conjugate-point condition. Furthermore, the Jacobi sufficient condition states that,

under certain conditions, an extremal furnishes at least a weak local minimum if no

conjugate points are present (see [5], [8]). Unfortunately, because of its local character
and because of its restriction to weak local minima the Jacobi sufficient condition is mostly

of theoretical importance. In contrast, the benefits of the Jacobi necessary condition for

practical applications are clear.
However, presently all Jacobi testing procedures require the extremal under investi-

gation to be smooth. This condition poses a serious restriction to the results obtained by

Jacobi tests. Typically, conjugate points occur for "long" extremals. Hence, by applying

the Jacobi necessary condition only to smooth subarcs of a given extremal may result in
an essential loss of information.

In this chapter, a new proof is given for Jacobi's necessary condition. It is shown that

the existence of a conjugate point in the interior of an extremal implies the existence of

control perturbations that lead to a reduction in cost.

The analysis in this chapter is restricted completely to linear-quadratic optimal control

problems. By virtue of the Acessory Minimum Problem this poses no loss of generality.

Some Lemmas on Linear Ordinary Differential Equtions

Before stating the problem treated in this chapter we will define the transition matrix

and give some useful lemmas tailored for our purposes (see also [71).

Definition 8.0.5 Let A(t) be a given matrix function of time. Then the transition matrix

• (t, to) associated with A(t) and initial time to is defined as the solution of the initial value

problem d ¢(t, to) _ A(Q _(t, to)
dt

¢(t, t0) = I.

The importance of the transition matrix lies in the well-known fact that

• (t) = ¢(t, to) xo
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furnishes a solution to the linear initial value problem

= A(t) x(t)

x(to) = zo.

This can be verified easily by differentiation. The following Lemmas will state some nice

properties of the transition matrix.

Lemma 8.0.6 Let A(t) be a Lipschitz continuous matrix function of time. Then the

transition matrix _(t, to) associated with A(t) and initial time to is determined uniquely

and is non-singular for all times, i.e.

det ¢(t, to) _ 0 for all times t E R.

P roof:

(See for example Coddington _z Levinson [7]). The uniqueness of _(t, to) follows immedi-

ately from the Lipschitz continuity of A(t).

Assume det ¢(t, to) = 0 for some tl E R. Then 3Xo 7_ 0 such that _(tl,t0)x0 = O.
But then the final value problem

._(t) = A(t) x(t)

x(t,) : o

has at least two solutions, namely x(t) = O, and another solution with z(to) = Xo _ O.

This contradicts the assumed Lipschitz boundedness of A(t).

q.e.d.

Lemma 8.0.7 Let A(t) be a Lipschitz continuous matrix function of time with one point,

say tl, of discontinuity. If A(t) is left-hand/right-hand Lipschitz continuous at the left-

hand/right-hand limit of time t,, then the transition matrix ¢(t, to) associated with A(t)

and initial time to is determined uniquely and is non-singular for all times, i.e.

det ¢(t, to) _ 0 for all times t E R.

P roof:

Again, the uniqueness of ¢(t, t0) follows immediately from the Lipschitz continuity of

A(t).

Without loss of generality assume tl > to. According to Lemma 8.0.6 det ¢(t, to) _ 0

Vt E [t0,t_]. Assume det ¢(t2,t0) = 0 for some t2 > tl. Then 3 x0 _ 0 such that

(I)(t2,to) Xo = O. As det (I)(tl,to) _ 0 we have _(tl,to) Xo _ O. But now we have two

solutions of the final value problem

_c = A(t) x
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x(t ) = 0

namely one solution given by x(t) - 0 and another solution with the property x(tl) =

q_(tl, t0)xo. This contradicts the assumed Lipschitz boundedness of A(t) on the interval

q.e.d.

It is immediately clear that Lemma 8.0.7 can be generalized to any finite number of

discontinuities. Hence we get

Lemma 8.0.8 Let A(t) be a Lipschitz continuous matrix function of time with at most

finitely many points, say, tl,..,tn, of discontinuity. If A(t) is left-hand/right-hand Lip-

schitz continuous at the left-hand/right-hand limit of times ti, i = 1, ..,n, respectively,

then the transition matrix O(t, to) associated with A(t) and initial time to is determined

uniquely and is non-singular for all times, i.e.

det ¢(t, to) # 0 for all times t E R.

The next lemma relates the transition matrices associated wth A(t) and -A(t) T.

Lemma 8.0.9 Let A(t) be a Lipschitz continuous matrix function of time and let ¢(t, to)

be the transition matrix associated with A(t) and initial time to, i.e.

d q(t, to) _ A(t) ¢(t, to)
dt

q_(t, to) = I.

Then O(t, to) -T is the transition matrix associated with -A(t) T and initial time to, i.e.

d ¢(t, to) -T
- A(t) T O(t,to) -T

dt

• (t, to) -T = I.

P roof:

Applying the product rule of differentiation on the simple relation

we find

d
(¢(t,to)¢(t,to)-1) = 0

d
ddt (O(t, to)-') = -(l'(t, to) -1 --_O(t, to) O(t, to) -1

Similarly, replacing O(t, to) by O(t, to), we get

d
= _,(t, tol_Td t0) ¢(t, to)-r
= -¢_(t, to) -T O(t, to) T A(t) T 4_(t, to) -T

= A(t) T ¢(t, to) -T
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q.e,d.

A Class of Linear-Quadratic Optimal Control Problems

In the the remainder of this chapter we will investigate the following optimal control

problem:

Definition 8.0.10 (LQP)

fined by

min lx(ty)TSx(ts) + Jti' 1 T-_x(t) Q(t)x(t) + 2u(t)TR(t)u(t) dt

J:(t) = A(t)x(t) + B(t)u(t)

x(to) = o (s a)

Tx(t:) = 0

to, t/fixed.

Here S E R n''_, T E R s'n, s < n, are fixed matrices; A(t) E R '_''_, B(t) E R '_'m, Q(t) E

R n'_, R(t) E R m'm are time-varying, Lipschitz continuous matrix functions of time with

at most finitely many points of discontinuity, all of the type described in Lemma 8.0.8.
Also

S T = S

Q(t) T = Q(t) vt

R(t) T = R(t) Vt (8.2)

II R(t) l] > rmi,_ Yt, for some 0 < rmin E R.

Let the linear quadratic optimal control problem LQP be de-

For later reference we now state the first-order necessary conditions associated with this
problem.

Lemma 8.0.11 Necessary conditions for a solution of problem LQP stated in Definition

8.0.10 are that there is an absolutely continuous function of time ,_(.) and a constant
vector u E R s such that

= _Q -A T ,_

x(to) = o

Tx(tf) = 0

A(t]) = Sx(tl) + TTu

)_+ - _- = 0 at any point of discontinuity of A, B, Q, R

u(t) = -R(t) -1B(t)T;_(t).
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Figure 8.1: Conjugate Path

Proof:

See [51, [24].

The No-Conjugate-Point Condition for Problem LQP

Definition 8.0.12 (Conjugate Point) Time tc E (to, t]) is called a conjugate point for

problem LQP stated in Definition 8.0.10 if there is a non-trivial solution to the boundary

value problem (BVP) implied by the stationarity conditions for LQP (this BVP is given

in Lemma 8.0.11) such that (see Figure 8.1)

x(t) = 0 on [t0, tc],

x(t) # O on (tc, tc + e], some e > O.

Assume problem LQP stated in Definition 8.0.10 has a conjugate point, say, at time

t_ E (to, ts). Then there are at least two distinct extremals leading from the conjugate

point tc to the prescribed terminal manifold (paths 1, 2 in Figure 8.1). In the next Lemma
it is shown that the costs associated with these extremal arcs are the same.

Lemma 8.0.13 Assume problem LQP stated in Definition 8.0.10 has a conjugate point,

say, at time t_ E (to, ts). Let Ji be the cost for going from tc to t I along path i, i E {1,2},

i.e. Ji = lx fTSzf "]- fpathi ( 127TQx "_- luTRu) dr. Then gl = J2 : O.

Proof:

Trivially, Jz = 0, as x(t) =_ 0 and u(t) = 0 along path 1. To compute the cost along path
2 let us denote by tl, .., tk, k > 0 all points of discontinuity of the matrix functions of

time A(t), B(t), Q(t), R(t) on the interval (to, t]]. Using integration by parts (see [41])
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Figure 8.2: Construction of an Extremal with Negative Cost

we find

0 =ftt/ AT(& - Ax + BR -1BTA) dt

= ft? d (ATx) _ _Tx_ )_T(Ax_ BR-1BT)_)dt

= ATx tZ + ATx t+ + "'" + ATx t+ -- ftc _rx + AT( Ax - BR-1BTA) dt

-= ATx [',_ - f,':(-Qx- AT A)Tx + AT(Ax- BR -1 S T)_) dt

-- (s xS xj + L'/ xVQx + _TBR-I Br_ dt
= xlSx] + fttJ xTQx + uTRu dt

= 2J:.

We are now ready to prove the main result of this chapter.

q.e.d.

Theorem 8.0.14 Assume problem LQP stated in Definition 8.0.i0 has a conjugate point,

say, at time tc E (to, t]). Furthermore, assume that on every subinterval It', t"] C_ [to, t]],

t" > t I, the controllability matrix

K(t',t p') := ffti"O(t,t')-lB(t) B(t)To(t,t') -T dt (8.3)

is non-singular, i.e. the dynamical system & = Ax + Bu is controllable on each subinterval

[t', t'1] C_ [to, tl]. Then there is a control _(t) which yields negative cost for problem LQP

and hence the trivial solution x°(t) - O, u°(t) =_ 0 (which yields cost J = O) is not optimal.

In equation (8.3), O(t, t _) denotes the transition matrix associated with matrix A(t) and

initial time t _ as defined in Definition 8.0.5.

Proof:
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ConsiderFigure8.2. Let

path 1: A -_ B -_ C, "trivial path", state x °, control u °

path 2: A _ B -_ D, "conjugate path", state _, control

In Lemma 8.0.13 we have seen that the costs associated with path 1 and path 2 are the

same. Hence, to show that path 1 is not optimal it suffices to show that path 2 is not

'optimal.
By assumption, the matrix functions of time A(t), B(t), Q(t), R(t) have at most finitely

many discontinuities. Hence it is possible to find real numbers A > 0, 5 > 0, such that

A(t), B(t), Q(t), R(t) are continuous on [to - A, tc) U (t_, tc + 5]. Here tc may still be a

point of discontinuity. Additionally, choose 5 > 0 small enough such that x(t) _ 0 on

(to, tc + 5] (this is always possible by virtue of the definition of a conjugate point given in

Definition 8.0.12) and define x(t_ + 5) =: XF.

Now, keeping 5, A fixed, consider the optimal control problem

tc+5min lx(t)TQ(t)z(t)+ _u(t)TR(t)u(tldt (8.4)
Jtc--A

2(t) = A(t)x(t) + B(t)u(t) (8.5)

x(t¢- A) = 0 (8.6)

(8.7)

Two cases have to be distinguisched, namely

(i) problem (8.4), (8.5), (8.6), (8.7) does not have a solution

(ii) problem (8.4), (8.5), (8.6), (8.7) does have a solution

case (i): If problem (8.4), (8.5), (8.6), (8.7) does not have a solution then especially

the conjugate path _(t), 2(t) does not furnish a minimum to the cost criterion J[u] :=

f lxTQx + luZRu dt along the time interval [t¢ - A, tc + 5]. By virtue of the Principle

of Optimality this implies that the conjugate path, path 2, is not optimal on the interval

[to,tI].
case (ii): If problem (8.4), (8.5), (8.6), (8.7) does have a solution, say u*(t), z*(t), then

this solution satisfies the first-order necessary conditions. To show that the conjugate path

_'(t), _(t) cannot be optimal on [t_ - A, tc + 5] it suffices to show that x*(t) - 0 on any

subinterval It', t"] C[t¢ - A, t_ + 5], t" > t' is not possible (note that along the conjugate

path the state is identically zero on the interval (t_ - A, to)).

The optimality conditions associated with problem (8.4), (8.5), (8.6), (8.7) are given by

4" = -Q -A T _* (8.8)

0 (8.9)

x*(t_ + 5) = &f (8.10)

u*(t) = - R(t)-' B(t)T )_*(t) (8.11)

The assumed existence of a solution to problem (8.4), (8.5), (8.6), (8.7)implies the exis-

tence of a solution to the boundary value problem (8.8), (8.9), (8.10). Now assume that
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thereis a non-zerotime interval [t',t"] C [tc- A,tc + 5] with x*(t) = 0 on [t',t"]. Then

we have on [tt, t'_

0 = 5"

- A z* -BR-1BTA *

-0

- BR-1BT_ *.

As II R I1> rmin > 0 on It', t"] (see (8.2)) this implies

0 - B TA* on [t',t"]. (8.12)

Now let ¢(t, t') denote the transition matrix associated with A(t) and initial time t'. Then

¢(t, t_) -T is the transition matrix associated with -A(t) T and initial time #. Using x* = 0,

the solution of the costate equation in (8.8) is then obtained as A*(t) = (_(t, t') -T A*(t').

Now condition (8.12) can be rewritten as 0 - B(t) T ¢(t,t') -T A*(t') on [t',t"]. But this

immediately implies that

K(t', t"))¢(t') = 0, (8.13)

where K(t',t") is the controllability matrix associated with the time interval [t', t"] as

defined in (8.3). By assumption K(t', t")is non-singular. Hence (8.13)implies _*(t') = 0.

But the "initial conditions" x*(t') = 0, A*(t') = 0 for the state/adjoint system (8.8) in

conjunction with the assumed Lipschitz continuity of all participating matrix functions of

time A, B, Q, R on [to - A, to) U (to, t_ + 5] immediately imply that x*(t) - O, A*(t) - 0

on [tc - A,t_ + 5], even if A, B, Q, R are not continuous across t_. But this contradicts

x'(tc + 5) = xF _ 0. Hence path 2 is not optimal.

q.e.d.
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Appendix A

Explicit Calculations to Derive

the Possible Control Logics

Stated in Section 5.6
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A.1 Introduction

This Chapter contains the explicit calculations to determine the possible control logics

in the aircraft range optimization problem treated in Chapter 5. Several singular control

logics are found to be possible. In Section A.5 the supplementary optimality conditions

derived in Chapter 6 are applied to these singular control cases. For convenience the finite

dimensional minimization problem obtained by applying the Minimum Principle on the

original optimal control problem is restated below.

A.2 Finite Dimensional Minimization Problem Implied by

Minimum Principle

Cost Function

min! ¢ (E(ti), h(t]), 7(t]), x(t]), t f) with
a) ¢ = -x(ts)
or

b) ¢ = tj.
(A.1)

State Equations

/_ = [$(T(E, h) - D(E, h, n) + Dm_:(E, h)) - Dm_:(E, h)]

J_ = v sin7

+ = _(n-cos'y)

._ = v cos%

(A.2)

Controls
8 throttle

n load factor

Control Constraints

91 = -_ _<0

g2= 5-1 _<0

<0g3 = --n -- nma x _

<0g4 = n -- nma x _

(A.3)
(A.4)

(A.5)

(A.6)

State Constraints

Co := v - Vm_:(h)<_0

On arcs of active state constraint differentiation yields

(A.7)

-- -- -- ?)max := (/5(T D + Dm_=) D,_=)_ vsin7 + 0 (A.S)
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Hamiltonian

U = +_F[a(T- O + Dmo_)- Omo_]_

+_hV sin7 (A.9)
+_, _ (u - cosT)
+A_v cos 7

Minimum Principle

At every instant of time the control is determined by the condition that the Hamiltonian

(A.9) be minimized subject to all active control and state constraints. At each instant of

time this leads to a finite-dimensional constrained or unconstrained parameter optimiza-

tion problem. The following cases have to be distinguished.

A.3 State Constraint Not Active

The Kuhn-Tucker conditions associated with the finite-dimensional optimization problem

can be stated as follows

III

IV

V

VI

VII

(6, n)= arg minH
g<_o

-0I O(H + aTg)
06

II O(H + aT9) _ 0
On

=0 if gl <0ga <0andaa >0 if 91 =0

=0 if g2<092_<0anda2 >_0 if 92=0

=0 if 93<0g3 _< 0 and a3 > 0 if 93 = 0

=0 if 94<094 _ 0 and a4 > 0 if g4 = 0

O2(H+ar9)
[A_, An] 062

02(HTaTg)
On06

060n >
O2(H+arg) An -

On 2

0

for all [A6, An] E R 2 satisfying Oh Oh

where vector function h contains exactly the active components

of the inequality constraints g _< O.

(A._O)

Explicitly this implies

I

II

v

AE(T- D + Dm_:)_ - al + a2 = 0

2KvW g
-AE6--n + A_- - 0"3 + a4 : 0

q v
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III

IV

V

VI

VII

=0-_ _<0 and gl > 0

{=_- l_<0and a2 >

-n - nmax _< 0 and a3

+n -- nmax <_ 0 and a4

[A/f'An][ 0-n -n]_/f

if gl < 0

if gl = 0

0 if g2<0

0 if g2=0

=0 if g3<O>0 if g3=O

=0 if g4<0>0 if g4=0

[A/Il2KvWAn AE q
>0

Oh Oh
for all [A/i, An] E R 2 satisfying _A/f + _nnAn = 0

where vector function h contains exactly the active components

of the inequality constraints g _< 0.

(A.11)

To solve this problem several cases have to be distinguished.

A.3.1 AE <0, A,#O

With AE < 0 equation (A.11-I) can be satisfied only if a2 > 0, i.e.
active. Hence

constraint (A.4) is

v

I AE(T - D + D,_,)-_ + a2 = 0

2KvW g
II --AE--n + A..f- -- (7 3 + 6r4 = 0

q v
III o1 = 0

IV _f-l=0

V

VI

VII

=0 if g3<0-n - n,_ _< 0 and 0"3 > 0 if g3 ---- 0

--0 if g4<0+n-nm_<_0and a4 >0 if g4=0

-n -/i An AE-->_0
q

Oh./i Oh
for all [A/f, An] E R 2 satisfying _-_A + _nnAn = 0

where vector function h contains exactly the active components

of the inequality constraints g < 0.

(A.12)

Define

n O :--
A_ gq

AE 2v2KW
(A.13)
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(This is the solutionof (A.12-II) with 0"3 = a4 = 0). Simple analysis involving equations

(A.12-II), (A.12-V), (A.12-VI) shows

costraints (A.5), (A.6) are non-active

costraint (A.5) is active

costraint (A.6) is active

if - nm_ <_ no <_ nmax

if no < --nmax

if no > "knmax

Explicitly, we get

I 0.2

III al

IV _=1

0"3= 0
V n = --nmax

0"3=0

°'4= 0
VI 0"4 = 0

"It -_- "_ ltma x

VII

v

= -AE(T- D + Dm,._)_

n = no if - nm_. < no <_ +nm_

0"3 = --AE2KVWnq + A.y_ if no < --nm_

a4 = +AE2_ '_wn -- A._ if no > +n_

=0

if - nmax <_ no <_ "_-nmax

if no < --nmax

if no > +nmax

if - "ftmax __ nO _ "_ nmax

if no < --nmax

if no > +nm_

satisfied in all 3 cases without further restrictions

(A.14)

I

II

III

IV

V

A.3.2 A E > O, A, # 0

With AE > 0 equation (A.11-I) can be satisfied only if 0.1 > 0, i.e.

active. Hence

D v _
AE(T- D + maz)_ al = 0

_AE_f 2KvW g_n + A_---a3 +o"4 = 0
q v

_f=0

VI

0.2 =0

--n - nmaz <_ 0 and a3

+n - nmax <_ 0 and 0"4

VII

=0 if g3<0>0 if g3=0

=0 if g4<O>0 if g4=O

constraint (A.3) is

0n  E2 vW>0q
Oh Oh

for all [A_, An] • R 2 satisfying _--_A_ + _nnAn = 0

where vector function h contains exactly the active components

of the inequality constraints g _< 0.

(A.15)
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By inserting(5= 0 into equation (A.15-II) we see that constraint (A.5) is active if A_ > 0
and constraint (A.6) is active if A_ < 0. We get

v

I al = +AE(T - D + Dmax)_

II _" a3= +A_ ifA._>O

/ 0.4 =-A_ ifA_ <0

III (5= 0

IV 0.2 = 0

V [ n=-nm_x ifA_>O

( 0.3 = 0 if A-y< 0

VI [ 0.4=0 ifA_>O

( n=+nma_ ifA.y<O

VII satisfied in both cases without further restrictions

(A.16)

A.3.3 AE--=0, A._#0

With AE -- 0 equation (A.11-I) can be satisfied only if0.1 = 0 and 0.2 = 0, i.e. constraints

(A.3), (A.4) are both non-active. Equation (A.11-II)implies that constraint (A.5)is
active if Aw > 0, constraint (A.6) is active if A_ < 0. We get

I

II

III

IV

V

VI

VII

AE=O

0.3 = "{-A_v£ if A_ > 00"4 -A_ _ if A_ < 0

0.1----0

0.2 =0

n = -nraax if A-y > 00.3=0 ifA._ <0

0.4 : 0 if A_ > 0n=+nm_ ifA_ <0

in both cases trivially satisfied with strict equality

(A.ar)

Obviously, we have not yet obtained explicit information on control (5. Control (5 has

to be determined from the condition that _TOHand all its derivatives are identically zero
(singular control). With

we have

OH v

S - 0(5 - AE (T- D + Dm=_) _ (A.18)

S = 0 _ AE = 0 (A.19)

Below, further information is obtained by differentiation. Whenever control n appears
explicitly in this process it is formally replaced by ±nm_. In accordance with conditions
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(A.17-V),(A.17-VI)it is understoodthat n = +nmax if A_ < 0 and n = -nm_ if A_ > O.

We get

v

= AE(T-D+Dmax)_

[ ]= --Ahg-sin7+A'_-fi (+nmax-c°sT)-Axg-c°s7v v (T-D+Dmax)_

As (T- D + Dmax) _ # 0 we have

o_ = 0 => -Ah sin7 + A_(+nm_x - COST)- ,_ cos 7 = 0 (A.20)

Further differentiation yields (using conditions (A.19), (A.20))

S = [-,_hsinT- ,_hcos7"_ + A._-ff(+nmax -- COST)+

__ )+A._ (-2g2(+nm_ -cos 7)(/)- I'_)+ _-_ sinT_ /
_, v4

+ A_sin7_] (T- D + W

Here we know explicitly

OH
ih -

Oh

= -_'_['"] + Ah-gsin7-v A'r_--'2[(+nm_'-C°ST)+vv "_xg-C°STv
=0

_
• W

Y

=o (f_om s=0)

and

Using this and

yields

=

_.y = OH
07

= -_----_"']- AhVC°S7 - A'_g-sinTv + A_vsin7
=0

"_= g(+nmo. -- COS7)

[-Ahcos7 + (-Ahcos7-A._gsinTv2 + A_sinT) +

--._-),_'_(J_--h) + ,)l-),vg2 sin7 + ,_xsinT] (T-P--_ Dmax)wA f

-ahcosT+a_sinT-a_ (_:-h) 2(T-D+Dma_)w_
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For all practicalpurposesnm_. > 1 so that _ _ 0. As has been stated earlier also the

factor (T - D + Dm_)_ > 0. Hence we find

= 0 =_ -AhCOS7 + A. sin7 - _v_3(/_- ]_) = 0

Using

and

finally yields

h = vsin 7

= [_(T- D(n = _nm_=)+ Dm_z)- Dm==] W

v

= [ST- Dm_]_

Din=. + W (sin7 + X_g(-Ah cos"/+ A_:sin 7)) (A.21)
g=0=>_= T

A.3.4 AE--0, A.r-0

Differentiation leads to

--AhviSin 7 - Ax£ cos 7 -- 0 /-AhVCOS7 + AxV sin7 = 0 =_
)

-cos7 +sin3, A_ - 0

Ah=0, A_--0

Together with the initial assumption AE - )% -- 0 we get

A E _ A h _ A_ _ A x _ 0

Hence case A.3.4 can be excluded.

=_

A.3.5 AE<0, A_=0

With AE < 0 equation (A.11-I) can be satisfied only if constraint (A.4) is active. Equation

(A.11-II) implies that both constraints (A.5) and (A.6) have to be non-active. We get

Y

I AE(T - D + Dmax)_ + a2 = 0

II -AE_2KVVVn"" = 0
q

III al = 0

IV _=1

V a3 = 0 (A.22)

VI a4 : 0

VII satisfied without implying further restrictions
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Hence
V

I a2 = -AE(T - I)H-Dmax)_

II n=0

III ax = 0

IV 6- 1

V a3 = 0

VI 0"4 = 0

VII satisfied without implying further restrictions

(A.23)

This is no singular control. Obviously, case A.3.5 is just an extension of case A.3.1 from

AE < 0, A_ _ 0 to AE < 0 (and no restrictions on A,).

A.3.6 A E :> 0, A3 _ 0

With AE > 0 equation (A.11-I) can be satisfied only if constraint (A.3) is active. Using

A.y = 0 and 6 = 0, equation (A.11-II) implies that constraints (A.5) and (A.6) must be

both non-active. We get

V

I AE(T- O + Dm_:_)W - a, = 0

II Az g- = 0
v

III 5 = 0

IV a2 = 0

V aa = 0 (A.24)

VI 0"4 = 0

VII [AS, An] 0 -n A_ AE'-- > 0
-n -5 An q -

for all [A& An] E R 2 satisfying A6 = 0

Hence

v

I Ca = AE(T - D + Dm_x)-_

II A.y = 0

III 5 = 0

IV a2 = 0

V 0"3=0

VI 0"4 = 0

VII trivially satisfied with strict equality

(A.25)

Obviously, we do not yet get any explicit information on control n. This information has

to be obtained by differentiation of identity (A.25-II). We get

A._ -- 0 =_ -AAvcos7 + Axvsin 7 -= 0 (A.26)
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Beforedifferentiatingfurther, severalcaseshaveto bedistinguished:
Case 1: AE > 0, A_--=0, A_--0, Ah--=0

Then (A.26) is satisfied. From Ah -- 0 we get by differentiation

ih = +he ° (Dmo=_)_ 0
Oh

For the present aircraft model O(DohX_7) > 0 so that case 1 can be excluded.

Case 2: he > 0, h_ -- 0, hx -- 0, '_h ¢ 0

Then (A.26) yields

cos 7 - 0

Differentiation gives (using sin 7 # O, as cos 7 = O)

"_----0

With cos 7 - 0 this implies

n-0

Comprehension case 2:

he>0, A_--0, hx--0, hh#0

/f=0

S = h.y takes over the role of a switching function with

h_ = o (s = o)
cos-_= o (s = o)
n = o (_ = o)

Case3: he > 0, h.y--0, hz #0

Then necessarily cos7 # 0. Otherwise (A.26) can never be satisfied.
(A.26) implies

hh=hxtan7.

Differentiation gives (using (A.25-II), (A.25-III) and the result above)

_ d (,_h -- ,k_ tanT)
dt

= hE

- he

Ah - h_ co_2
7

hE
Oh

O(Dm=_)
Oh

O(D,,,o_)
Oh

Solving for load factor n yields

With cos7 # 0

+hhgsinT+h gcosT_ h ,a(n-cosT)
v v cos2 7

+hztanTg-sinTWhxg-cosT-h _(n-c°___sT)
v v cos2 7

+h g 1 h_(n-c°s7)
v cos 7 cos2 7

hey O(Dma_)
cos2 7 + 2 cos 7

n - A_ g Oh
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Comprehensioncase3:
AE> 0, A_--0, Az_0

5 = 0

A_ = 0
Ah = Axtan7

AEV
n -- cos2 7

A_ g

D v

Oh
+ 2 cosT.

A.4 State Constraint Active

The Kuhn-Tucker conditions associated with the finite-dimensional optimization problem

(5, n)= arg rain H
C 1 =0, .q_0

can be stated as follows

I O(H + pC1 + aTg) = 0
05

II O(H + #C1 + aTg) = 0
On

III c1 = o

=0 if gl <0IV gl_<0andal >0 if gl =0

=0 if g2<0V g2 < 0 and a2 > 0 if g2 = 0

=0 if g3<0VI g3 _< 0 and a3 > 0 if g3 = 0

=0 if g4<OVII g4 _< 0 and a4 > 0 if g4 = 0

VIII

(A.27)

[AS, An] 062 a_0_ > 0
02(H+ttCl+aTg) O2(H+t_el+aTg) An -

cqnD5 _gn 2

Oh Oh
for aH[/,5, e R satisfyingbTA5 + = 0
where vector function h consists exactly of equality constraint C1 = 0

and the active components of the inequality constraints g _< 0.

With conditions g _< 0, C_ = 0, and Hamiltonian H given by equations (A.3), (A.4), (A.5),

(A.6), (A.8), and (A.9) this implies explicitely

I (AF_+#g)(T-D+Dma:_)W -al+a2=Ov

II -5 _E + P _n + AT- - a3 + a4 = 0
q v
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III

IV

V

VI

VII

g (,(_(T-D+Dm::)-Dma:)_-vsin7 Vm: :+

=0 if--_ _< 0 and O"1 > 0 if

{:°_ - 1 _< 0 and a2 _> 0

--n -- nmaz <_ 0 and a3

+n - n._: _< 0 and 0"4

g_ <0

91=0

if g2<0

if g2=0

=0 if g3<0>0 if gn=0

=0 if g4<0>0 if g4=0

VIII [A6, An] 0 -n A6 AE + t_v q-n -6 An -- >- 0

Oh Oh

for all [A6, An] E R 2 satisfying _-_A6 + _nnAn = 0

=0

(A.28)

where vector function h consists exactly of equality constraint C1 = 0

and the active components of the inequality constraints g <: 0.

To solve this problem several cases have to be distinguished.

A.4.1 0, ¢ 0
In this case constraint (A.3) or (A.4) has to be active, otherwise condition (A.28-I) would

imply (XE + #_) = 0. Furthermore, with constraints (A.3), (A.8) active or constraints

(A.4), (A.8) active it is clear that constraints (A.5), (A.6) have to be non-active because
otherwise the two controls were overdetermined. Hence a3 = a4 = 0. In equation (A.28-

II) this implies 6 _ 0. Hence the active constraints are exactly constraints (A.4) and

(A.8). We get

II

III

IV

V

VI

VII

VIII

g (T-D+ +a2=0)_E + _v

--n + A.y- = 0
q v

(6(r - D + Dmo,)- Dm_) _ - v sin7 vm_ + -- 0
al=0

6-1=0

a3=0

0"4=0

][ ](0 -n A6 AE + #v q-n -6 An -- >- 0

for all [A6, An] E R _ satisfying

OC1 OC1An
0,5 A6 + On = 0

(A.29)
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Og2 A6 + Og2 An
o_ _ =o

Hence

g (T-D+I a:=- AE+# v

II ()_E "4-#g) -- "_ gqn 2Kv_W

q [ T - vw sin 7 (v'.:_ + 6) - qCDo
g

IiI In[ = W_ qK

IV o.1 = 0

V 6=1

VI 0"3 ---- 0

VII a4 = 0

viii 0n
for all [A_, An] E R 2 satisfying

A6=0

g) 2KvW > o+#v q -

An=0

A.30)

With a2 > 0 equation (A.30-I) implies ()_E + #v_) < 0. In equation (A.30-II) this yields

the sign condition

>0 ifA.y<On <0 if)% > 0

Explicitly, we get

I

II

III

IV

V

VI

VII

VIII

g (T-D+as=- ,_E + gv

)% qv
# = -AE-+

g n 2KvW

f-r_ow

+w_V - _ sin_(va_+_)-qCD°qK

n = /T_,_w

O.1 =0

6=1

0"3-----0

o'4=0

satisfied without implying further restrictions

(A.31)

Note that (A.31-I) in conjunction with condition o'2 > 0 implies AE + #6 < 0, i.e. the

case A._ ¢ O, (AE + #v_) > 0 can be excluded.
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A.4.2 A=,_O, (AE+/z_)=0

Here condition (A.28-I) immediately implies al = a2 = 0, i.e. constraints (A.3), (A.4)

are both non-active. Condition (A.28-II) implies that constraint (A.5) is active if A_ > 0,

constraint (A.6) is active if A._ < 0. We get

II
0"3= +A_,v£ if A_ > 0O"4 -- A.y_ if A_ < 0

(_f(T-P+Dm_x)-Dm_)_-vsin7 vm_x+ =0

O'1:0

a2=O

VI _" n=-n,,_,_ ifA.y >0
(A.32)L a3 = 0 if A_ < 0

o'4 = 0 if A._ > 0n= +nm_ ifA_ <0

-n -_f An AE + #v q

Oh Oh

for all [A_, An] E R 2 satisfying _-_A_f + _nAn = 0

where vector function h consists exactly of equality constraint C1 = 0

and the active components of the inequality constraints g _< 0.

Ill

IV

V

VII

VIII

tIence

II { 0.3 = 'l-A_v_ if A-y> 0a4 -A_ ifA_ <0

!+  vsin (v, ox+ v
9III _ =

T - D + Dm_

IV O'1 = 0

V 0"2=0

VI _" n=-nm_ ifA_ >0

( a3 = 0 if A._ < 0

VII _ a4=0 if )% >0

( n=+nm_, ifA-_<0

VIII satisfied with strict equality

(A.33)
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A.4.3 )%=0, AE+#_0

Equations (A.28-I), (A.28-II) now immediately imply al = a2 = a3 = 0"4 = 0, i.e.

constraints (A.3), (A.4), (A.5), (A.6) are all non-active. We get

(AE+# (T-D+ =0

A.yg- = 0
v

_ _ _ Vma x =(_(T D + Dmax) Dmax)-_ vsin7 + 0

This implies

I

II

III

IV

V

VI

VII

VIII

(7"1 --0

0"2 =0

0.3=0

0.4=0

[A_, an][
0 -n A(_ AE + # -- > 0

-n -_ An q -

OCl_x_for all [A& &n] G R 2 satisfying A_ + On

I # = --AE-
g

II A.y = 0

Din= + _--v sin 7 (v'_= + _)
9III _ =

T - D + Dm_z

IV 0.1 : 0

V 0"2=0

VI 0"3 = 0

VII 0"4 = 0

VIII satisfied with strict equality

(A.34)

=0.

(A.35)

Obviously, we do not yet have an expression for control n. This information has to be

obtained by differentiation of the "switching function" S = A.y. Before proceeding with
differentiation we state all adjoint differential equations.

O( H + #C1 )AE, =
OE

=
- Ahg sin 7

v

-A_g cos7
?)

OD OZ).,=) OD.,o=)v
OE + OE ] OE ] W g]+ (a(T- D + Dmax) - Dm=z) -_

cOD ODm::_ ODm_=_ 9 g era== sin 7 ]
OE + -_ ] -O--E] W v J

(A.36)
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Condition (A.35-II))_-_
terms

v_ then the= 0 is used here already. If we insert (A.35-I) # = -AEg

OE + -_ ] OE ]W

OD ODma_) ODma::) gOE + OE OE W

cancel out. Furthermore, by use of (A.34-III) (which is equivalent to (A.35-III)) we can

replace

(_(T - D + Dm°=) - Dma=) _ by sin 3' (v'_a= + _).

Then we get from (A.36)

AE : --AE Vma x + sin 7

-Ah g sin 7
V

- A_g- cos 7
V

l

-AEVma x sin 7

and hence

AE = -AE 2vma x+ sin 3,

- Ahg sin 3'
V

- A_g-cos 3`
V

(A.37)

Similarly

D( H + #el )

Oh

[(C= -)'E ,i _-_ Oh

+Ah g- sin"/
?)

+Ax g- cos 3`
V

[(C 0o-# Oh +

Vmaz + sin 7

+Ah g- sin 3`
v

+Ax g- cos 7
v

ODma_:_ v -(_(T-D+ Dma=)-Dma=)_-_

ODma=_ OD_:x_ g (,, v' g_ ]Oh ] Oh l-W- vmaxv - max v ] Sin 7
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and

!
-t-hE Vma x

= )_E (2v'm_ +

+Ah g sin 3,
v

+)_ g- cos 3,
V

V_g xv2) sin'/

n 2 \

gv Vmgxv )sin3'

O( H + #C1)

03`

= --,khVCOS 3,

+ A_ v sin 3,

(,+# v,_ + v cos 3'

V !
= --$E- (Vmaz v + g) cos')'

g

-- _ h V COS 3'

+A_v sin 3'

(A.39)

(A.38)

_ = O( H -4-#C1)
Ox

= 0 (A.40)

Now condition (A.35-II) S = A_ = 0 implies by differentiation

(,\:_sin3,- Ah+,_E 1+ _cos3,=0 (A.41)
!] //

Before differentiating equation (A.41) further it is convenient to distinguish the following

two cases:

case 1: A_=0,

case 2: A_#0,

In the course of the following calculations we will also make use of the fact that constraint

(A.7) is active, i.e. v = Vmaz(h).

case 1:A_=0

Then equation (A.41) reduces to

v-o=v 
(,kh+AE(l+ g /)cos3,:O

(A.42)
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If this conditionis satisfiedthrough.(Ah + AE. (1 + _r2_)) = 0, then further differentia-
tion gives

_h+_E 1+ Vtm"_axV VrnaxV-I"Vrnax+AE vsin7 cosT=0
g / g

Using (A.37) and (A.38) we find

+

]AE 2v'_ + gv Vmg_ sin'7 + Ah gvsin 7

[--AE (2v'_ + g)sin-'/--Ahg sinT] (1+ V'm_v)
v g

II l 2 ]
+AE vma=v + vm== vsin7 cos7Jg

=0

[[ (, ],--AN 2Vma x + sin 7 - Ahg- sin7 VmaxV
v g

V ¢ 2 ]

+ AE-_-_--_--v sin 7J cos 7

[( ]AE 2v'ax 2v t v m v t
g vm_ + - sin7 - AhVm_ sin 7

=0

cos 7 = 0

V_m'_v_ t sin 7)] 0[(AE (l + + Ah)(--vma x cos 7 =
g /

Obviously, this condition is satisfied already due to condition (A.42). Further differen-

tiation gives no new information. This case refers to a singular arc of infinite order. If

condition (A.42) is satisfied through cos 7 = 0, then further differentiation of this condi-

tion yields

sinT_ = 0.

As sin 7 _ 0 this implies -_ = 0, and hence

n = COS'7.

case 2: A_ ¢ 0

The assumption cos 7 = 0 in (A.41) leads to )_ = 0 which contradicts the assumption in

case 2. Hence cos 7 _ 0 in this case. To obtain further information we have to differentiate
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equation(A.41). Asthis involves_E, _hwefirst statetheassociateddifferentialequations,
simplifiedby useof equation(A.41). From(A.41)weget

(')Ah = A, tan 7 -- AE 1 + v,_a,______vv (A.43)
g

Inserting this into (A.37) gives

_E = -hE (2v'_, + g) sin 7

_(_t_n_-_(1+__ vS_n_
-,_,g- cos3`

v

= --,_EV_: sin 3` -- ,_ _ (tan 3' sin 3' + cos 3`)

= --,\EVil, sin3' -- ,_g 1 (A.44)
v cos 3'

ts V2 /hE 2v_x+ gv Vmg_ sin3'

v,_o.v55_+(_t_n_-_(_+--C_vS_
+._g- cos3'

v

( -"l "Um I]

+hE Vmaz gX sin7

+,_ g--(tan 7 sin')' + cosT)
v

Inserting (A.43) in (A.38) gives

Ah =

I "Um "U
= +h E Vma x -- sin')' + h_ g

v cos 7

Before differentiation we write (A.43) as

('),_ tan 3' -- ,_h -- hE 1+ vm_v =0
g

Differentiation gives

(A.45)

_ ( _-_vS_ v:o.vh÷_'_o_(Eh)Xh-XE 1+ hE =0
_:: tan 3' + h= co 3' g / g

Now insert ]_, _E, _h, A_ aS given in (A.2), (A.44), (A.45), (A.40) and use

E_ _s_n_('_)v- = vma _ + - - v sin 3'
g

t 2

-- VmaxV sin 3'

g

127



Thenweget

"7 _, .2 A g 1 )
i • VmaxV

+AEVma _ sm 7 - AE-- sin 3' +
9 v co_3'

/

( )(t • g 1 VmaxY
+ AEVm__smT+Ax 1+ +

v cos7 g /

--AE I, • VmazV sin 7
VmaxVVmaxSm7 + v_ v g

= 0

.._-u

_- .2 i sin' sin 7 + Vm_xV sin 3' + Vma x
_E --Vmax g

3'

I 2 Vllm,axVVma x I 2• Vma x V .
v,,_ v sin 3, sm 3' sm 3'

]g g g

+A_(_ g 1 g 1 I 1)+ ---- + Vma_ _ 3'3' v cos 3' v cos 3' c
= 0

It 2 tt )Ymg xv VmaxVVmax sin 3'AE -- sin 3' g

+ v'm_,: cos 3' = 0
+A_ cos2 7

As we are on an arc with active state constraint v - vm_ = 0 the coefficient of AE is zero

and we have
!

,_('_ + vm_ _ cos 3') = 0

or explicitly

' cos 3'),_ g-(n - cos3') + Vm,=
\V

As ,_ is assumed not-equal zero this finally implies

=0

n= (1 v'_2_:v_ cos 7. (A.46)
g /

A.4.4 Az_0, AE+p_¢0

Then condition (A.28-I) can be satisfied only if either constraint (A.3) or constraint (A.4)

is active. Then again, with already two constraints active, namely constraints (A.3)

and (A.8), or constraints (A.4) and (A.8), no further constraint can be active so that

a3 = 0"4 : 0. But now condition (A.28-II) becomes t_ (AE + Iz_) 2KvWn = 0. This equation
q

can be satisfied only through _5= 0 or through n = 0. The case n = 0 can be eliminated

quickly, as both cases,/_ = 1 & n = 0, and, _ = 0 & n = 0, are inconsistent with constraint

(A.S).
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Hence the active constraints are exactly (A.3) and (A.8). Note that condition (A.28-

I) in conjunction with condition al >_ 0 now implies that only the case AE + _ > 0 is

possible. We get

I

II

III

IV

V

VI

VII

VIII

g (T-D+ -al=O
hE "{- #v

_ = 0

- Dmax g vsin7 Vm__ + = 0
W

6=0

o'2=0

(7 3:0

a4 ----0

[A6, An] -nO -n_6 AnA6 AE + Pv q

for all [A6, An] E R 2 satisfying

Ogl _n06 A6 + An = 0

OC1 DCI An
06 A6 + On = O.

(A.47)

-->0

In presence of condition (A.47-IV) 6 = 0, the conditions

06 A6 + An = 0

0C1 OCI An = 0

on the perturbation vector [A6, An] E R 2 in (A.47-VIII) yield explicitly

-A6 = 0

g
(T - D + Dm_,:_)_A_ = 0

and are both satisfied if and only if
A6=0.

Inserting A6 = 0 in (A.47-VIII) and using (A.47-IV) 6 = 0 shows that (A.47-VIII) is

always satisfied with strict equality. Hence we have

( ) Dmax) W
g (T-D+I al = AE'4"_v

II Az = 0
g

III Dmax _ + (v'a:_v + g) sin 7 = 0

IV 6=0

V a2 =0
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VI a3 = 0 (A.48)

VII a4 = 0

VIII satisfied with strict equality.

Now, control n and multiplier # have to be determined from equations (A.48-II) and

(A.48-III) by successive differentiation. Using (A.48-II) and (A.48-IV), differentiation of

(A.48-II) yields

0 = i v

O( H + #C1)

03'

= --,XhVCOS7 + _vsin7 + #(v_,xv + g) cos 7 (A.49)

To satisfy this equation, two different cases have to be distinguished, namely

case 1: cos 7 = 0,

2. case: cos7 # 0.

We get

case 1: cos 3' = 0

Equation (A.48-III) involves only states and no costates. Hence, control n or multiplier

/2 can enter derivatives of equation (A.48-III) only through the right-hand sides of the

state equations (A.2). This immediately implies that multiplier # can never appear in

any derivative of equation (A.48-III). In conjunction with (A.48-IV) _ = 0, it also implies

that control n can appear in derivatives of equation (A.48-III) only through terms of the
form cos 3,-_. But with the assumption cos 3' = 0 this implies that also control n can never

appoar explicitly in any derivative of (A.48-III). Hence equation (A.48-III) either leads to

a contradiction after a finite number of differentiations, or it leads to a situation where

after some finite number of differentiations all further derivatives of (A.48-III) are satisfied

automatically. This mathematically complex situation can be understood by looking at

the physics of the problem. The assumption cos 3' --=0 implies immediately n = 0. That

means the aircraft goes into a vertical dive with engines off. We are also assuming that the

q-limit is active. But obviously, we are riding the q-limit onlybecause the q-limit is such

that it is automatically satisfied for the chosen controls _ = 0, n = 0. Hence the q-limit

can also be regarded as non-active and we end up with the case discussed in refrc-s 1.6,

case 2. If the q-limit is violated for _ = 0, n = 0, then the present control logic can be
excluded.

case 2:cos7 # 0

As v'az(h ) > 0 V h >_ 0 it is clear that (v'_x + _) # 0 and hence equation (A.49) can be
used to determine multiplier #. Explicitly, we get

AhVcos 7 - A,v sin 7

g) cos# (v,,,a_v + 3"

and hence
_h - )_z tan 7

/2= tvmo + (A.50)

Now control n has to be determined from equation (A.48-III) by successive differentiation.

In the following calculations we will make use of the fact that constraint (A.7) is active,

130



i.e. v = Vmax(h). We get

0
ODm_ • OD,n_ "\ g

l ' " Vm_vh ) sin 3' ++ (VmaxVmaxh ..[_ u "

+ (v'o=v + 9) cos3"

With the state rates

D v v m v
/) = - m_- -- +V sin')'

]_ = v sin 3'

-_ = g(n-cos3')
v

this yields

(, ) +( OD._: vm v g

(( " 2sin 3')sin 3' ++ V_az)2vsin3' nt- VmaxV

+ (¢_=v + g) cos3'(n - cos3')9_.
v

As t(vm_,:v + g) 76 0 and cos3' 76 O, this equation determines control n. We get

, 2 v_:v] v sin 3'[(O___ (y__ry__+ 1) + _) w_ + vm_x +

n = cos'}, - _(V_m_V + g) cos3'
(A.51)
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A.5 Generalized Legendre-Clebsch Condition in the Sin-

gular Control Cases

A.5.1 Singular Control Case A.3.3: State Constraint Not Active, )_E ------

O, )_..,_ 0

Here we have singular control in presence of an active control constraint, namely constraint

(A.5) g3 = -n - nm_ = 0 if 2_ > 0 or constraint (A.6) g4 = n - nm_ = 0 if A_ < 0.

In either case (as _ y_ 0, _ _ 0) control n can be regarded as the control that is

determined by the constraint. From (6.41), (6.42) we find that the symbols u, v, w, m, p

used in Chapter 6 have the following meaning in the case presently under consideration:

ur = [_,n]

v = ,_

w=n

m=2

p----1.

From (6.69) we find that the differential operator d takes the following form

d. _ O" O" ( Ogi _ -10gi i= 3,4
d,_ 0,_ On k On ] 0_ '

O.

O_

and from (6.68) we find for all states y E {E, h, 7, x}

Explicitly, this implies

d. O. O. (Ogi _ -I Ogi
dy - Oy On \-_n] Oy '

O.

Oy

i=3,4

dH OH

d,_ c9,_
v

= AE(T - D + D,,_,x)_

and, by applying Definition 6.6.1, we find that control _fis singular if and only if hE = 0

and the degree m* of the singularity is given by m* = 1. Applying Theorem 6.6.2 we find

R1 E R °'° =v non-existent

Q1 E R °'4 _ non-existent

B1 E R 4'° ::v non-existent
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and

Q2 E R TM /
B2 E R 4'1 _ Q2B2 E R 1'1 ::¢" Q2B2 -- (Q2B2) T

)

so that condition i) of Theorem 6.6.2 is always satisfied. Furthermore

B2 E R 4'1 ]

Q1 E R°'4 / :=¢"
Q2 E R 1'4

B1 E R 4'°

"1

B2TQ1T E R °'° I

IQ2B2 E R °'°

=¢"R2 E R °'° non-existent

Q2 --
d2H d2 H d2 H d2 H

d_dE' d_dh ' dtSdT' d_dx

[0,0,0,0]

so that

R3

B2 [ d[_ d]_ d'_ dic ] T= ---_' d--_' d--6'-_

- D v

For all practically important cases nr,_x > 1. ttence the control logic

n=+nm_,x if A'r <0n=-nm_ if A_ >0

(see A.3.3) implies that always R3 < 0. Consequently,

R2 R3 -

is always violated and the singular control given in case A.3.3 can be rejected as non-
optimal.
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A.5.2 Singular Control Case A.3.6: State Constraint Not Active, AE >

0, X_ --0

Here we have singular control in presence of the active control constraint (A.3) gl =

-_f = 0. As -_ _ 0 control _f can be regarded as the control that is determined by the

constraint. From (6.41), (6.42) we find that the symbols u, v, w, m, p used in Chapter 6

have the following meaning in the case presently under consideration:

uT = [n,

v _ "rt

w_

m=2

p-_ l.

From (6.69) we find that the differential operator d takes the following form

d. _ 0. 0. ((_gl_-I 0gl

,in On O_ \--0-[] On
O.

On

and from (6.68) we find for all states y E {E, h, 7, x}

d. _ 0. (_. (_gl)-I (_gl
dy Oy O_ Oy

O.

Oy

Explicitly, this implies

dH OH

dn (On

=_g
"7?)

and, by applying Definition 6.6.1, we find that control n is singular if and only if X_ = 0

and the degree m* of the singularity is given by m* = 1. Applying Theorem 6.6.2 we find

R1 E R °'° _ non-existent

Q1 E R 0'4 ::_ non-existent

B1 E R 4'0 ::_ non-existent

and

Q2 E R 1'4

B2 E R 4'1 } _ Q2B2 E R 1'1 _ Q2B2 =- (Q2B2) T
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sothat conditioni) of Theorem6.6.2is alwayssatisfied.Furthermore

Q1 E R 0'4 ::_ B2TQ1T E R 0'0

Q2 E R 1'4

B1 E R 4'0 _ Q2B2 E R °'°

=_ R2 E R °'° non-existent

[ d2H d2H d2H d2H ]
Q2 = [dndE' dndh' dndT' dndxJ

= [0,0,0,0]

B2 [ d[_ dh d'_ d& ]= --d-nn'--_n'dn'-_n

= o,o,g,o
v

T

so that

d
R3 = B2TpIB2 - -_ (Q2B2) -

=0

d7 2

• =_o •

Hence

R
=[ R1R2T ]R2 R3

= R3

(-Ahvsin7 - XzvcosT).

In A.3.6 case 2, the condition R >_ 0 implies

R = -)%vsinT- ,Xz vcos7

=0

g2
- Xh sin 7 _> 0

v

so that necessarily

sin3'>O if )_h <0sin 7 < 0 if "_h > O.
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Togetherwith the conditioncos3 =̀ 0 impliedby o6 = 0 this finally yields

3'=+900 if Ah<03'<-90o if Ah >0.

In A.3.6 case 3, the condition R >_ 0 implies

R = - Ah v sin 3` - A_v cos 3`

----Ax tan_

g2
= --- (A_ tan T sin 7 + A_COST)

v

g2 Ax
= - >0.

v cos 7

Hence, for -900 < 7 < + 900 necessarily A_ _< 0. Together with the assumption A_ ¢ 0

this finally implies Ax < 0.

A.5.3 Singular Control Case A.4.3: State Constraint Active, A, = 0

Here we have singular control in presence of the active control constraint (A.8) (due to

state constraint (A.7)). As _ _ 0 control _ can be regarded as the control that is

determined by the constraint. From (6.41), (6.42) we find that the symbols u, v, w, m, p

used in Chapter 6 have the following meaning in the case presently under consideration:

u T = [n,/5]

m=2

p=l.

From (6.69) we find that the differential operator d takes the following form

d. O. O. (OC 1"_-10C1

dn - On 08 \--_-J On

O" O" __ OD _9_
On W

On 08 (T- D + Dm==)w_

0% _OD O.
On

= O----_+T_D+D,_,,_O---_

and from (6.68) we find for all states y • {E, h, 7, x}

d. _ O. O. (0____)-'0C1
dy Oy O_ Oy

oc_ffa.
_ O. + o_

Oy (T- D + D,,_,,:)_ w
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Explicitly, this implies

dH OH _OD OH
On- +

dn On T - D + Dm_: O6

-O_n v ,_._g-= -_E_ W + v +

_OD V

on _(T - D + Dm=)-_+ T - D + Dm_,x

and, by applying Definition 6.6.1, we find that control n is singular if and only if X_ = 0

and the degree m* of the singularity is given by m* = 1. Applying Theorem 6.6.2 we find

R1 C R °'° =_ non-existent

Q1 E R °'4 _ non-existent

B1 C R 4'° =_ non-existent

and

Q2 E R 1,4 / RI'IB2 E R 4'1 _ Q2B2 E :=_ Q2B2 - (Q2B2) T
J

so that condition i) of Theorem 6.6.2 is always satisfied. Furthermore

B2 E R 4'1
Q1 E R °'4 ::¢" B2TQ1T E R °'°

Q2 E R1'4 / ::v R2 E R °'° non-existentB1 ER 4'° _ Q2B2 E R °'°

Q2 = [dndE' dndh' dnd 7' dndxJ

= [o,0,0,0]

so that

R3

B 2

dn dn' dn' dnJ

[0,0, g,0] T

d B (AB2 T= B2Tp, B2- --_(Q_ 21- _, -/_2) QT

=0 --0

d72

= -hE sin7 Vm_'_v
g-- + v) - _hvsin 7 -- )_xv
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Hence

R
=[ RIR2T ]R2 R3

= R3

2 V m V
= --A E sin 3/ -- + v - Ahv sin 7 - Az v cos 7] •

In A.4.3 case 2, the condition R > 0 is always satisfied with strict equality (because of

hx = 0, cos7 _ 0, and (A.41)). In A.4.3 case 2, the condition R _> 0 implies

R = -hE sin 7 v,_j_.___v+ v - hhV sin 7
g

_ g2 (hE (v--_:v+ 1)+ hh) sinT,
v \ 9

so that necessarily

{+900_= _9ooif _/_-+ +_h>o

If_ (_r_+1)+_ =0 thenboth,_--+9OO,_nd_=-9O0_rocomp_tib,ewith
the Generalized Legendre-Clebsch Condition. Explicit calculation shows that the latter

case is indeed possible as along arcs of control logic A.4.3 case 2 all derivatives of z :=

AE (Y-_ +1) + hh are zero automatically if only z = 0 is satisfied at a single point.

In A.4.3 case 4, using (A.43))% = hztan 7 - hE (1 + _), condition R > 0 implies

R
2 V m V

= -hEsin 7 -- +v -.kzvcosT+

-(h_tanT-hE\ g +1)) sin

2 V m V
= -hEsin 7 +v -hzvcosT+

v m v
,_xv sin7 tan 3'+hE +v sin7

= - _v[cos7+sin7 tanT]

cos 7

Hence, for -900 < 7 < + 900 necessarily h_ _< 0. Together with the assumption h_ ¢ 0

this finally implies h_ < 0.
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,Appendix B

Accessory Minimum Problem for

Extremals with Corners
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B.1 Introduction

In the following Section the Accessory Minimum Problem (AMP) is derived for optimal

control problems in presence of an interior point constraint. Along these calculations also
the first-order necessary conditions stated in Section 3.5 are obtained. For future research

it is planned to apply the preliminary results on the Jacobi Necessary Condition stated in

Chapter 8 to the AMP derived in this Chapter. The aim is to derive a Jacobi Necessary
Condition for optimal control problems with interior point constraints.

B.2 Derivation of the Acessory Minimum Problem (AMP)

Consider the non-linear optimal control problem

jft0 "!min ! ¢(x(tf), t]) + L(x, u, t) dt

= f(x, u, t)
x(to) = zo
¢(_(t:), t:) = o
N(X(tl+), x(tl-), tl) -_ 0 (B.1)
to fixed

tl free

t y free.

Let * and - denote quantities associated with a reference solution and an associated

perturbed solution, respectively. Furthermore let J denote the augmented cost function

g:_ ¢(x(t:),t:)+
+_'T¢(x(tl),t])+

+#T N(x(tl + ),x(tl-),tl)+

+ f:: L + AT(f - ]c) dt + ftt ' L + AT(f - 5:)dr

(B.2)

and define

•(z(t:),t:,.):=¢(z(t:),t:)+ .r¢(z(t:),t:)

H(x, u, _, t) = L(x, u, t) + ATf(x, u, t)

i(x(tl +), x(tl - ), tl, #) = #T i(x(tl + ), x(ti- ), tl ).

In the following we give an expansion of J - J* about the reference solution *. Then we

state necessary conditions that have to hold along the reference solution in order that all

first order terms in the expansion of if- J* (the "first variation") be zero. Finally the

problem of minimizing the remaining second order terms is identified as a linear quadratic
optimal control problem.

Throughout this Section the following nomenclature is valid:

superscript + denotes evaluation at time tl +*

superscript - denotes evaluation at time tl-*

subscript 0 denotes evaluation at time to
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subscriptf denotes evaluation at time t]*

other subscripts denote partial derivatives.
Let

_z(t) : _(t)- x*(t)

_u(t) : _(t)- u*(t)
_h = t--i- (tz)*

_tf : _f- (tf)',

then we have

j_ j* _t=dxf + qttdt] + (M=l+dxl + + M=l-dxl- + MtdQ) +

flI //'+ HxSx + HuSu - ATs& dt + HxSx

_ tx _ tt dry +

1 + [ M_1+=1+ M_I+=I-
+_[dxl ,dxl-,dtl] M=I-=_+ M=_-z_-[ Mt=l + Mtxl -

[ ][]+-_ [_x, _u] H=_: H=_ _xH_,= Hu_ $u dt +

+-2 1 [_x, Su] H,,= H,,_ 8u dt+

+0 3.

+ Hu_u - AT_& dt +

][,xa]Mz,-t dxl +
Mtt dtl

+

Now use

and similarly

£

= - (,_31" + _ex,tt
\ / It o

Zi'= _(are_ )- + (_r_x)o + _r_ dt
=0

.,__

x

= -A -T dxl- - _c-dt] - --_--dti 2 -

/:+ _T_x dt

_t t!-A TS&dt = - (_T_x) tl+ + _T_x dt
tl 1

5_-dtl) + 0 3 +
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Then

= -AyT(dxl-_ydtl-_dtl2-ti._fdt])+

( )03_,_+T dxl + - _+dti - -_-dq 2 - _+dtl + +

Ji'+ _T,sz dr.

-if_ j* 9:_dxf + _tdt! + (Mz_+dxl + + Mxl-dx 1- + Mqdtl) +

+ +_)_ + + +_)_ .o_d_

( _+ )+)_+T dXl + - ]c+dtl - -_dtl 2 - _&+dtl +

( )_)_T dXl-- _-dtl---_-dtl 2-_-dtl +

qJ tx qJ tt dt l +

1 + [ Mxl+Xl+ Mxl+xl-
+_[dxl ,dxi-,dtl] M_l-x,+ M_:,-_:,-[ Mqzl+ Mqx 1-

+-_ [_x, _u] H,,_ H_,= _u dt +

+-_ [_x, _fu] Hux H_,,, _u

+0 3 .

Mxl +Q

gxl -tl

Mr1 tl
][ Xl]dXl +

dtl

+

Rearranging yields

w

J - j* gx -- Af T) dz! + (_t + HI)dty +

+ (Mz_+ + ,k+T) dx,+ +

+(._,_-_-_)_,- +
+ (Mq - H + + H-) dtl +

+ + _T) _Z + +

ftt' (Hx (H_,),iu dt+ + _T) _X + +
1
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+._i,fT(_dtf2 + _xfdtl) +

/'_+.,2

q/ t_: kOtt dt I +

+1lax+ dx_,_,,]( M_,+_,+M_,+_,-M_,-_,+ M_,-_,-

Mhzl+ Mt:_-

+-_ [_x,_fu] H_:: H_u _u

+-_ [Sx,_u] Hx_ H_:,, _x dt +1 Hu_: Hu,, _u

+0 3 .

M_j -t_ dxl +

Mt:tx dt:

+

Now set

H_+ £T = 0

H_ =0

_ _ ,_ T = 0

qtt+ H: =0

(:::.,++._)_.,++(,.N_,_-._)_.,-+(..::,-.++.-)< :o.
(B.3)

These conditions eliminate all first order terms in J-J*. We wish to express the remaining

second order expression for J - J* completely in terms of 8x rather than dz. As all dx-

terms appear at least quadratically it is clear that J-- J* remains correct up to second

order if we make the first order approximations

dxf = _x] + ]cydt] + 0 2
dx + = _fx+ + &+dtl + O 2

dx- = _fz- + _c-dtl + O 2.

(B.4)

Then we get

j_j* = +)LcT(_dty2+_jcfdtf)+

_,_+T t.__._a, 1 + _k+d/1 +

(" ' )+A_W --_dtl + _-dtl +
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+-_ 6x- + _-dt, M.1-.,+ M.,-.,- M.l-t,
dh Mt,.l+ Mt, x1- Mhh

+_ [_z, _u] /L= //,,_, _u dt +

+0 3 .

The terms )_T_ and )_T_, can be written as follows:

AT;_ d AT _ _ _T 2-_() •
_ 1 dR I_T_

2 dt 2

_x + + k+dtl ]

_x- + _-dtl J +dr1

Hence

]_j* =

d (AT_x) _T_x
dt

= -H=_x + ATfx_x + ATfu_u--AT_x

'_ _'_0 " =0

'[/_")_,]+_ _+
1 ]---_ -- A'+T_+ dtl 2 + A'+T_x+dQ +

+-_ - A'-T_ - dtl2 - A: T_x-dtl +

1 [ _xl+xfdt] IT[ _x_ _3:t ] [ _zl+:r.fdt] ]+-2 dt f _l t_ _ u dr1

dt, Mh=,+ Mh= ,-

+-_ [_fx, _u] H_x Ht,_ bu

+

xl --_1

Ut] tl

_x + + ]c+dtl ]

6x- + _-dtl J +dtx
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1_[: [Hzx H_u

+0 3.

dt +

NOW use

5 --dTf

+ 2 dt: _t= _tt dt:

1[.,+.,,,].o..+.,,,j+5 dt: et_x] + -_tt dt 1

l[(dtt) __:_.f]dt.fa__7_x.fdtf +=5 -dT I
1

(_==_x] + --_--dt:) + dt I+2 [(_xf + &ydt]) T d_z \ (r_t:_x ]

1[.:o...+ .:%..+
•T dq?= dql , l

+x I ---_--dt! + k_t=_x/dt / + _dtl_j

1 [_x T_z=_x 1+ d$= f.Td_x+5 2---d_'Szydtf + _x/--_- + _-it ) dt]2 ]

1 T
-" 5_Zf _xxC_.Tf +

(%
_T 1 _fd_f ++\ dt f

_= (_-_):
= -_[llx.f,dtf] (-_t- _)f ('_t- _Tfc+,:.TdJ._,dt +"E£).fd'_
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1
-5

1

+5

1

+5

and similarly

_x- +._-dtl M__,:I+ M,:____

dtl Mt_÷ Mt__

[\-d-/-/ _ ,_+T_+

1 dII -
+5 -_ - i-r _-

+ -_ ,Sx - + 5:- d t _
dt]

1

+5

(_t )+- _+Tk+] dt, 2

]-dT - X-T k- dr12

Mx_+ t l
Mz 1_ t

Mtt

dtl 2 + _+Ti_x+dtl +

I _x + +._+dt_ 1
_x- + J:-dtl

dt_

dtl _ - _-T Sx-dt 1 +

dMz .
Mx_+::_+ _x + + M_+z_ Sx- + ---_t* dtl

dMz
M.__._+ 5x + + M____Sx- + ----_t-dtl

Mtxl+ _fx+ + Mtx 1- _x- -t- dd-_dt 1

+ _+TSx+dQ +

_ _-T_x-dQ +

F1 .4 _,¢

|ifx+T M_+ x_+ _x + + 5x+T Mx1+ zl_ 5x- + _X +T ttiVlxl+ dtl ++5
dt

• +T _+T M _+T dMxl+
+x M*_+_l+ Sx+dtl + _l+_-Sx-dQ + dt dt12 +

+Sx-T Mx__z_+ 5x + + 5x-T M.I_ x__ _x- + 5x -T d_d_-" dQ +

+x-WMzl-zl+ ifx+dt_ + _:-TMxl z I t_x-dtl + fc-TdMxl- dtl 2 +
- - dt

dMt
+Mtx_+ ifx+dtl + Mtxl-(_x-dtl + -_dtl ]

1 [(-_-) + ]2 _ _+T_+ dt2 + _+TSx+dtl +

+__ -_ _ A-T _- dtl 2 _ A_T _x_dt 1 +

1 [ dM._+
+-2 _x+r Mz_+xl+ t_x+ + _x-T Mz__x___X - + 2-----d-_x+dtl+

+2 1- _ - - dMt----d-[_. x ctt_ + 2,sz+T M.1+. 1 _x- + _:+Td 1+_+ k-TdM*l- + + dta2
- dt --_
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1,_x+T lt4 _X + + lt_x-T Mxl xl _x- +
2 .... xa+ za+ 2 - -

+21$x+TMxl+za 6x - +

1( dM_+ )+2 7 _+T + dt _x+dti +

+ -dr -] _x-dtl

+2 _z- C _x- ,
dtl dr1

where

C

Hence

Mxl+ xl+

Mxl-Xl+

( "4-_+T + dt ,]

_x 1+ x 1-

Mz I_ x1-

+ d, )

+T + _'_
dt

dt + +

- dt + x dt

(B.5)

--]_ j. 1 [_xy, dry]=

[ _x+ I T
+½ 5x- C

dtl

+0 3.

I_XX

H_ H_

H_ H_

H_ H,,_

i ]_x-

dt_

"dH _T_ + _T__t dq_-_- - + W)y

_x dt+
5u

5x dt+
5u

dr] ]
+

(B.6)

In the expressions above all quantities 5x, 5u, 5x f, 5xx+, 5zl-, dtl, dt I denote the differ-

ence between quantities associated with the reference solution and quantities associated
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with the perturbedsolution,i.e.

= - x*(t)
 u(t) = u*(t)

= :(t:*)
_x- = _(tl-*)- x*(tl-*)

dr: = t-_- t:*
dr1 = tl - tl*

(B.7)

All other terms appearing in (B.6) are evaluated along the reference solution * and hence

are either fixed numbers or fixed functions of time. As the right-hand side of (B.6) is a

quadratic form in the quantities (B.7) it is clear that (B.6) remains correct in the leading

(second order) term if we replace the quantities (B.7) by any first order approximation.

Hence it suffices to determine the quantities _x, $u, ifx], _Xl+, /fXl-, dtl, dt I from the
hnear conditions

(_&= fx_x + f_,ifu on [to, ti-*] U [ti +*, t]]

qY::(_x/ + &dt_) + qgtdt: = 0 (B.8)

Nx__ (ifx- + &-dti) + Nxl+ (_X+ + &+dtl) + Ntdtl = O.

Note that quantities evaluated along the reference solution may change discontinuously
across the switching point tl.

Now the problem

min J - J*

with J - J* given by (B.4), (B.6), subject to the linear constraints (B.8) constitutes

a linear quadratic optimal control problem, the so-called Accessory Minimum Problem

(AMP) associated with the non-linear optimal control problem (B.1). By construction it
is clear that

(i) If there is a solution to the AMP that furnishes negative cost then the reference

solution * cannot furnish a local minimum to (B.1). Then in any neighbourhood of the

reference solution * a competitive solution to (B.1) can be found that furnishes a cost
better than the cost associated with reference solution *

(ii) If all non-trivial solutions to the AMP furnish cost greater than zero then reference

solution * furnishes at least a weak local minimum to problem (B.1).
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