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The

RICIS

Concept

J

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support xesearch in the computing and
information sciences. As part of_ UH-Clear Lake proposed a id
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into i]
a three'year cooperative agreemen_ke beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9- i 6, computing an0educational facilities are shared

by the two institutions to conduct the research. _ _

The m_sfi0n 0fRICIS is to conduct,_ coordinate and _minate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of i _-:

faculty and stude_rits from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Appli_Sciences.

Other research organizations are invoIved v_aTh-e "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations, !J!_ i
having common research interests, to provide additional sources oir ex-pertlse to _ .
conduct needed research.

A major role of R!CIS is to find t_i6_st match of sponsors, researchers and

research objectives to advance knowledge in the computing and_informati6fi =_:

sciences. Working jointly With NASA/JSC, RICIS advises on research needs, _:

recommends principals for conducting the_'esearch, provides technical and

administrative support to coordinate th6 r_, and integrates technical results

into the cooperative goals of UH-CIearLake:an_NASA/JSC::= _: : _ _y_'
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1 Research Objectives and Accomplishments
. o

W

m_

The long-term goal of our research is to develop technology for constructing and using

large-scale, multifunctiona] knowledge bases on computers. These knowledge bases would

significantly improve current expert systems and tutoring systems because they contain the

broad knowledge of a domain required to perform multiple tasks [1, 14, 12]. For example,

a multifunctional knowledge base for a new aircraft might support expert programs for

assembly, maintenance, instruction, and design modification.

Building a single knowledge base that supports multiple tasks has two significant advan-

tages over building separate knowledge bases for each task. First, the effort of building a

multifunctional knowledge base can be amortized over many expert system projects. Using

existing technology (e.g., [36, 5]), multifunctional knowledge bases can be compiled into effi-

cient expert systems for performing disparate tasks within the domain. In contrast, reusing

a knowledge base built for a single task is typically infeasible because the knowledge is overly

specific. For example, Clancey [6] documents the difficulties in reusing the Mycin medical

diagnosis knowledge base for tutoring. The second advantage of multifunctional knowledge

bases is a significant reduction in the brittleness of expert systems. Multifunctional know-

ledge bases contain fundamental domain knowledge that can help solve problems that are

beyond the range of task-specific expert systems. For example, Fink [8] uses fundamental

knowledge of the structure and function of complex mechanisms to supplement surface-level

heuristics for diagnosing faults. Applying the principle on a large scale, the CYC knowledge

base is intended to provide a comprehensive body of task-independent knowledge "to provide

assistance for expert systems, natural language understanders, and so on, as they get 'stuck'

on problems" [15].

Unfortunately, multifunctional knowledge bases are hard to build with current meth-

ods for knowledge engineering and knowledge acquisition. These methods do not address

the problems caused by the size and complexity of multifunctional knowledge bases. As a

knowledge base grows, it becomes increasingly difficult to maintain, and determining the

consequences of a change to the knowledge base becomes difficult and error-prone [33]. Nu-

merous surveys of methods for building large knowledge bases (e.g., [22, 30, 38]) identi_"

these problems as serious obstacles to the advance of knowledge base technology.

Our research during the past twelve months has produced technology for building and

using multifunctional knowledge bases. In particular, we have developed prototypes systems

for the following:

• Knowledge engineering - This technology facilitates viewing and editing the contents

of a large knowledge base.

• Knowledge acquisition - This technology integrates new information from a domain ex-

pert into a knowledge base by automatically determining its consequences and adapting

the existing knowledge.



• Knowledgeaccess- This technologyaccessesmultifunctional knowledgebasesto ex-
tract knowledgethat coherentlyanswersquestions.

Continuing this research,we plan to significantly improve theseprototype systemsand
to integrate them into a single framework for constructing and maintaining multifunctional

knowledge bases.

2 Knowledge Engineering

We have developed a prototype knowledge-engineering environment for building multifunc.

tional knowledge bases. This environment provides a language for representing knowledge

and software support for viewing and editing knowledge structures. We describe each of

these in turn.

2.1 Knowledge Representation

Our knowledge representation language shares the primary tenets of other modern languages,

such as KnowledgeCraft [4], KEE [10], Strobe [32], and CYC [14]. These tenets include the

following:

1. Declarative knowledge is represented with frames (or objects) and procedural know-

ledge is represented with rules. The results of every computation are cachable as

declarations.

2. Constraints on knowledge base entries are explicitly represented and enforced by the

language.

3. Commonly used inference methods, such as inheritance, are built into the language,

and others can be defined by the user.

Our knowledge representation language builds on Theo, a language developed at

Carnegie-Mellon University [23]. We have added methods for representing rules and con-

straints. Our remaining work is to develop inference methods such as inheritanc# and forward

chaining.

In addition to this basic functionality, our representation language provides features

important for building multifunctional knowledge bases. Of utmost importance is the ability

to represent viewpoints, which are collections of facts that should be considered together.

For example, the viewpoint "car as a manufactured artifact" contains information about

raw materials and the assembly process, while the viewpoint "car as a consumer durable"

contains information about purchase costs an d longevity. A multifunctional knowledge base

contains many, highly-integrated viewpoints for each concept.

Past research on using viewpoints for organizing knowledge has assumed that all view-

points are represented explicitly. Viewpoints in Swartout's XPLAIN system [36] consist
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of annotations on elements of domain knowledge that indicate when a piece of knowledge

should be included in an explanation. Viewpoints in McKeown's ADVISOR system [21] are

represented by multiple hierarchies, each representing a single perspective. Viewpoints in

McCoy's system [18] are represented by lists associated with each object in the knowledge

base; each list specifies the salience of each of the object's properties under a particular

viewpoint. Unfortunately, explicitly representing viewpoints for a large knowledge base is

infeasible.

Our research addresses this problem with methods for creating viewpoints when they

are needed [34, 2, 25]. As explained below, this is done using a relatively small number of

general viewpoints, which we call "view types," that are instantiated for specific concepts.

2.2 Software for Viewing and Editing Knowledge Structures

We have developed prototype software for viewing and editing knowledge structures. Us-

ing mouse and menu operations, the knowledge engineer can "navigate" through a complex

structure and selectively display it both graphically and textually. Numerous editing oper-

ations are available, such as adding an object to a graph, changing an object's attributes,

and creating a rule to compute information when required.

This basic functionality is similar to that provided in other software environments for

knowledge engineering (such as KEE [10], Strobe [31], and KnowledgeCraft [4]). However,

we chose not to use commercial systems because an important goal of our research is to

develop an integrated tool for knowledge engineering and knowledge acquisition. Because of

the difficulties in extending commercial systems (e.g., the unavailability of source code), we

have replicated their functionality in our software.

We plan to significantly extend the basic functionality of this software. From three

year's experience building a large knowledge base [29], we have found that graphical displays

and graphical editing are very effective. Our domain experts use graphs to organize domain

knowledge and to communicate with others. Once everyone agrees on a graph, our knowledge

engineers convert it to the representation language. The software that we will add to our

knowledge engineering environment will automate this conversion process, thereby allowing

a domain expert to extend and modify the knowledge base by creating and editing graphs.

3 Knowledge Acquisition

The major obstacle to building multifunctional knowledge bases results from their size and

complexity. Knowledge base modifications that are intended to correct one shortcoming may

conflict with existing knowledge and introduce new problems. For example, extending a drug

therapy advisor (e.g., Mycin) to minimize the number of drugs prescribed to each patient

conflicts with other therapy goals, such as maximizing the number of symptoms covered by

the prescribed treatment [24]. Identifying how new information conflicts with existing know-

ledge is difficult: conflicts are often implicit, and the complexity of identifying interaction



Domain Expert: The leaf epidermis is covered by the leaf cuticle, which is composed of cutin

KI: Cutin is impermeable to gases. Does the cuticle restrict water loss from the leaf?.

Domain Expert: Yes, that's right.

KI: But the cuticle would also cause the leaf to starve.

Domain Expert: Explain. : "_ :

KI: The cuticle is impermeable to'gases. This prevents carbon dioxide in the atmosphere from passing

through the leaf's epidermis. Without carbon dioxide, the leaf cannot conduct photosynthesis and starves.

Domain Expert: Well, cuticle is impermeable to carbon dioxide; however, the leaf survives.

KI: Does the cuticle only partially cover the epidermis? Or, perhaps there are portals in the epidermis that

permit restricted gas flow?

Domain Expert: Yes, the epidermis does have portals. They're called stomata.

Figure 1: This figure illustrates the interaction between "KI and a domain expert as new

information describing Leaf Cuticle is integrated into the knowledge base. KI identifies

unanticipated consequences of the new information that reveals a gap in the knowledge

base. Then KI elicits additional knowledge to fill the gap.

between new information and existing knowledge increases with the size of the knowledge

base. Developing the technology to determine how new information interacts with existing

knowledge is the principle requirement for supporting the construction and maintenance of

very large, multifunctional knowledge bases, and it is the focus of our knowledge-acquisition

research.

3.1 KI: A Tool for Knowledge Integration _

Knowledge integration is the process of incorporating new information into an existing know-

ledge base; it involves determining how the new information interacts with the existing know-

ledge. For the past three years we have been constructing KI, a tool that performs knowledge

integration as it helps a domain expert extend the Botany Knowledge Base.

When provided with new information, KI retrieves relevant knowledge from the know-

ledge base and uses it to critique thenew information. This involves identifying the ways in

which existing knowledge corroborates or conflicts with new information. An example of KI

integrating new information into the Botany Knowledge Base is described in Figure 1. _

KI goes beyond identifying "surface" inconsistencies, such as explicit constraint viola-

tions, by determining subtle interactions between new information and existing knowledge.

This requires a focused, best-first search exploring the consequences of new information.

KI's model of knowledge integration comprises three prominent activities:

1. Recognition: identifying the knowledge relevant to the new information.

1KI does not generate and parse natural language; this example has been converted from a language of

frames, slots, and values.
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Figure 2: New information describing Leaf Cuticle

2, Elaboration: applying the expectations provided by relevant knowledge to determine

the consequences of the new information.

3. Adaptation: modifying the knowledge base to accommodate the elaborated informa-

tion.

t

3.1.1 Recognition

During recognition KI identifies concepts in the knowledge base that are relevant to the

new information. This involves maintaining a learning context - a set of propositions about

concepts deemed relevant to the new information. When presented with new information,

KI initializes the context with the new information; Figure 2 shows the context initialized

with the information from the first line of Figure 1. To extend the learning context, KI

uses viewpoints to determine which concepts in the knowledge base, beyond those explicitly

referenced in the context, are relevant.

Viewpoints are sets of propositions that interact in some significant way and should

therefore be considered together. Viewpoints are created by applying a generic view type to

a domain concept. Each view type is a parameterized semantic net, represented as a set of

paths emanating from a root node. Applying a view type to a concept involves binding the

concept to the root node and instantiating each path. Figures 3a and b present an example

view type and the viewpoint created by applying it to leaf epidermis.

To extend the learning context, KI finds the viewpoints that contain concepts already

in the learning context. Each candidate viewpoint is scored with a heuristic measure of

relevance: the percentage of concepts contained in the viewpoint that are also contained in

the learning context. KI presents the list of candidate viewpoints, ordered by their relevance

score, to the domain expert, who selects one for use. 2 The set of propositions contained

in the selected viewpoint are added to the learning context. This results in a ]earning

context containing those concepts in the knowledge base considered most relevant to the

new information.

3.1.2 Elaboration

During elaboration KI determines how the new information interacts with the existing know-

ledge within the learning context. Rules in the knowledge base are allowed to exhaustively

ZAlternatively, an autonomous version of KI selects the viewpoint having the highest relevance score

6



3a) Qua Container 3b) Leaf Epldermi_ qua ContMner

0

Lea_pidermis QuaContainer

Ira-Lm.ai'Tv4esoph y::

Le_fCO _ l._erCO 1
Tr_-pira_ Accimait3on Dir_buuon

I._Ambiem
Atmosphere

Figure 3: (a): The view type Qua Container identifies properties that are relevant to an

object's function as a container. These properties include the contents of the container

and the processes that transport items into and out Of the container. (b): Applying this

view type to Leaf Epidermi" s identifies the segment of the knowledge base that represents a

Leaf Epidermis in its role as a container. For example, this segment includes propositions

representing that Leaf Trarispiration is a process by which water vapor is transported from

inside the Leaf Epidermis to the atmosphere outside of the Leaf Epidermis.
7

forward-chain, propagating the consequences of the new knowledge throughout the context.

For example, one consequence of a leaf having a leaf cuticle is that the leaf epidermis is

impermeable to gases. Some of the domain inference rules applicable to this example are

listed in Figure 4, and the resulting conclusions are presented in Figure 5.

KI enters a cycle of recognition (i.e:, selecting viewpoints) and elaboration (i.e., applying

inference rules) that explicates the consequences of the new information. The propositions

added to the learning context during recognition determine which implicit consequences of

the new information will be made explicit during elaboration. This cycle continues until the

user intervenes or the relevance scores of all candidate viewpoints fall below a-threshold.

Figures 6 and 7 illustrate the second round of this cycle. The recognition phase extends

the context of Figure 5 with the set of propositions describing how the leaf acquires and

makes use of carbon dioxide. The elaboration phase propagates the consequences of the new

information throughout the extended context.

u

=_

g

w

i?

M
m

I

p

g +

m

m

m

mm__ !
g

3.1.3 Adaptation

During adaptation, KI appraises the inferences completed during elaboration and assists

the user in modifying the knowledge base to accommodate the consequences of the new

information. This can involve extending or retracting existing knowledge structures, or it

can involve eliciting additional knowledge from the domain expert.
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rule 1: If an object is composed of cutin,

then it is impermeable to gases.

rule 2: If the covering part of an object is impermeable to a substance,

then the object is impermeable to the substance.

rule 3: If the conduit is impermeable to the transportee,

then the transportation event is disabled

rule 4: If resource acquisition is disabled,

then resource distribution is also disabled.

rule 5: If either resource acquisition or distribution are disabled,

then resource provision is also disabled.

rule 6: If resource provision is disabled,

then resource utilization is also disabled.

rule 7: If either resource provision or utilization are disabled,

then resource a_similation is disabled.

rule 8: If leaf photosynthesis is disabled,

then the leaf is starving.

Figure 4: Example inference rules

w

w

I._._Cutide < • P' " _, .... .., P Y

l:r_- "Lee L_adCO _ Le_CO

7nr_piratio_ Acc_si_on E_mbu_or_

# dem'__ _a _tus

l_Lsabled Le_A.mbie'nt Disabled
A_osphere

Figure 5: Rules in the knowledge base are used to propagate the consequences of the new

information throughout the context of Figure 3b. The dashed lines indicate propositions

that are computed during elaboration. For example, since the epidermis is impermeable

to gases, carbon dioxide cannot be transported through the epidermis; therefore, the leaf

cannot acquire carbon dioxide (see rule 3 of Figure 4).

8



Leaf Qua CO, Assimilator

Lea.fEpidermis

L-.a/CO2
Acquisition

Lu/Mesophyl]

Diso'ibuUon Pho_osylnt.hes_s

Provision

u_bzamom

A_imilation

Figure 6: Carbon Dioxide Qua Leaf Assimilate This segment of the knowledge base represents

the process by which a leaf acquires and us_ carbon dioxid e. For example, the leaf acquires

carbon dioxide from the atmosphere and uses it during pg0tosy;lth is. The learning context

of Figure 5 is extended with these propositions during the second round of recognition using

the viewpoint "Leaf qua C02 assimilator."

i

I

t

1

i

i

1

Lad - _-" _. Starving
Cuti.n Gas i

BF _r_ ] _ mrn_andTl_ue

L_a/CuOde _ U Lea rEpiderm_s = mnut_..i- "_Le.a_tM_ophyl]

_j.,'oj I
Laa5 La_CO 2 Laa/CO2 I_

/Tr_nspita_ion A cquis..itionDistributionPhotos,_nthesis
% • /"

Disabled Lea/Ambien[ k Disabled / _ --- /
^tmo,ph=, \ / D_bl_l _-,,.._.

\/." "_'_ /

Provision - Asai.millt_on

Figure 7: During the second round of elaboration, rules in the knowledge base are used

to propagate the consequences of the new information throughout the extended learning

context. For example, since the leaf cannot acquire carbon dioxide, photosynthes!s cannot

occur (see rules 5 and 6 of Figure 4).
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In the example, elaboration reveals that the leaf cuticle benefits the leaf by restricting

water loss through transpiration. The explanation supporting this conclusion can be gen-

eralized to suggest that other organs of a plant's shoot system (e.g., stems, fruit) will also

benefit from having a cuticle, and KI suggests this generalization to the domain expert.

Elaboration also reveals that the leaf's cuticle prevents the leaf from acquiring carbon

dioxide from the atmosphere. Since carbon dioxide is an essential resource for photosynthesis,

KI concludes that leaves having cuticle cannot perform photosynthesis. This conflicts with

the expectation that leaves, in general, must he able to perform photosynthesis. To resolve

this conflict, KI identifies plausible modifications to the knowledge base that would allow

the leaf to acquire carbon dioxide and perform photosynthesis. These suggestions prompt

the domain expert to provide additional information describing stomata, portals in the leaf's

epidermis that allow restricted gas flow between the atmosphere and the leaf's interior.

This example illustrates how a tool for knowledge integration helps a domain expert

develop a knowledge base. The tool identifies gaps and inconsistencies in the knowledge

base and adapts it to accomodate new information. Automating these activities is critical

for developing large, multifunctional knowledge bases because changes to the knowledge base

can have significant, unforeseen consequences.

4 Access and Use of Multifunctional Knowledge Bases

We have developed prototype software for answering questions using a multifunctional know-
e

ledge base. Given a knowledge base and a student's question, an answer is generated in two

steps:

• content determination: select or infer the portion of domain knowledge constituting a

correct and coherent response.

• tezt generation: arrange the information into a linear sequence of propositions and

express the propositions in natural language.

The following sections discuss the types of questions to be answered, meth6ds for an-

swering questions, and the results of applying our prototype question-answering system to

the Botany Knowledge Base [29].

4.1 Question Types

A question type is a template for a class of questions that have similar conceptual repre-

sentations and that can be answered using the same methods. For example, the question

"What is a chloroplast?" belongs to the definition question type, and the question "How

does a petal differ from a sepal?" belongs to the comparison question type. Question types

are important for intelligent tutoring because they capture the range of questions that a

10



Question Type Meaning Ezamples

Definition Describe important aspects What is a chloroplast?

Comparison Describe similarities or How does a petal differ

differences from a sepal?

Why Describe causes or Why are plants green?

resulting states Why do plants absorb C02?

Why not Describe preventions or Why don't fungi contain

missing causes chloroplasts?

Hypothetical Describe important results What if a seed had no

of given conditions endosperm?

Table 1: A Small Sample of the Question Types

student can ask and they organize the automated reasoning strategies needed to answer the

questions. .....

Our set of question types is similar to the thirteen conceptual categories of questions

proposed by Lehnert [13], and subsequently extended by Hughes [9]. However, we have

added question types concerning the physical structure of objects, the roles of objects in

processes, and hypothetical situations. Table 1 is a small sample of our question types, and

[2] provides a complete description.

4.2 Content Determination

The first step in answering a question is content determination: selecting the information that

should be contained in a response. There is considerably more information in a knowledge

base of fundamental knowledge than should be presented in a coherent response.

A common approach to the problem of selecting knowlege is to use viewpoints, which

are collections of facts that belong together [37, 20, 18, 35]. For example, the viewpoint of

"photosynthesis as production" contains facts about the producer, the products, and the

raw materials, of photosynthesis. By contrast, the viewpoint of "photosynthesis as energy

transduction" describes the input and output energy forms ....

Most researchers have assumed that viewpoints are explicitly encoded in the knowledge

base. For example, viewpoints in Swartout's Xplain system consist of annotations on ele-

ments of domain knowledge. The annotations indicate when a piece of knowledge should

be included in an exp!anation. Similarly, viewpoints in McKeown's Advisor system (called

perspectives) are represented by multiple hierarchies, each representing a single perspective.

Finally, viewpoints in McCoy's system (also called perspectives) are represented by lists as-

sociated With each object in the knowledge base. Each list specifies the salience of each of

the object's properties under a particular perspective.

Despite the emphasis on this approach, explicitly representing viewpoints for a large-scale

knowledge base is infeasible. For example, Figure I illustrates the viewpoints of "photosyn-

g

g

I

m

m

m

J
J

R

It
g

m

J

j

m

J

11
m

w



w

m

w

=, .

w

w

thesis as production" and "photosynthesis as energy transduction." In addition to these

viewpoints, some circumstances require viewing photosynthesis as C02 utilization, a process

requiring chlorophyll, anda biosynthesis enabling proc_s: _- From just the information in

Figure 1, dozens of viewpoints are possible.

Our solution to this problem is to dynamically generate viewpoints when they are needed

to answer particular questions.. This is done using a small number of view types that deter-

mine patterns of knowledge structures constituting viewpoints. First we describe the view

types, then we explain how view types are used to generate viewpoints. A more comprehen-

sive description of these issues is in [2].

4.2.1 View Types

We believe that a small number of view types -- such as categorical, structural, functional,

and modulatory -- are sufficient to characterize all viewpoints within the physical sciences.

Our support for this conjecture is preliminary but encouraging. First, we found these view

types and their combinations sufficient to generate adequate definitions for over fifty terms

chosen at random from the glossary of a botany textbook. Second, as described below, we

have successfully used view types in our prototype question-answering system. We will con-

tinue investigating the adequacy of these view types for answering a wide range of questions,

and we will extend them as required.

The categorical view type emphasizes the properties and relationships that indicate how a

concept is a special case of one of its generalizations in a class hierarchy. For example, "flower

as reproductive organ" is a categorical viewpoint. This viewpoint includes the particular

reproductive parts of the flower (because reproductive organs have reproductive parts) as

well as the reproductive processes in which it participates (because reproductive organs

participate in reproductive processes).

The structural view type emphasizes an object's subparts (substructural view type) and

superparts (superstructural view type). A substructural viewpoint of a seed contains the

knowledge that a seed consists of the endosperm and the embryo, both of which are contained

by the seed coat. A superstructural viewpoint of an endosperm contains the kno_.'ledge that

the endosperm is a part of the seed contained in the seed coat. As illustra.t_ed by these

examples, a structural viewpoint includes those relationships that specify how the parts are

interconnected.

In addition to describing the physical structure of objects, the structural view type also

describes the temporal structure of entities and processes. The temporal substructure of an

entity is the stages it goes through during its existence. The substructure of a process is

its steps, or subevents. For example, a temporal substructural viewpoint is "photosynthesis

consists of the light reactions followed by the dark reactions." Temporal superstructural

viewpoints also belong to the structural view type.

The functional view type emphasizes the role of an object in a process. By definition,

it includes some kind of actor relationship, such as producer, agent, or raw material. For

12



example, the viewpoint "chloroplast as the producer in plant photosynthesis" belongs to the

functional view type. Although this example illustrates a direct relationship between an

object and a process, sometimes the relationship is indirect. A part or specialization of the

object may be the actor, rather than the object itself. For instance, one function of a seed

is to protect the plant embryo, although strictly speaking it is the seed coat, a part of the

seed, that protects the embryo.

The modulatory view type emphasizes how one object or process affects (or is affected

by) another object or process. A modulatory viewpoint necessarily includes modulatory

relationships, such as causes, prevents, enables, or facilitates. Other information also may

be included, as with the functional view type. Examples of modulatory viewpoints are

"sunlight as a requirement for plant growth" and "embryo growth as a cause of seed coat

rupture."

4.2.2 Using View Types to Answer Questions

A question-answering system uses view types for content determination by first using them

to select viewpoints ' from the knowledge base and then using the selected viewpoints to

construct a response.

To isolate a particular _iewpoint from the knowledge base, a question-answering system

first selects the concept of interest which is the_main topic of the viewpoint and is determined

by the student's question. The system then selects an appropriate view type for the question

at hand. This is done using heuristic rules that specify, for each question type, which view

types are most useful for generating answers to questions of that type. These heuristics are

sensitive to the kinds and amount of knowledge associated with the concept of interest in

the knowledge base.

After the view type has been selected, the system selects the reference concept to which

the concept of interest should be related. It serves as an anchor point for relating new

information to what the student already knows.

A view type, when applied to a concept of interest and a reference concept, specifies the

viewpoint to be selected from the knowledge base. For example,

• View Type: Functional

• Concept of Interest: Pollen

• Reference Concept: Plant Reproduction

specifies the viewpoint "the functional role of pollen in plant reproduction."

Once the system has determined the concept of interest, view type, and reference concept,

it uses a content determination strategy to select the specified viewpoint from the knowledge

basel After selecting the viewpoint from the knowledge base, the system uses the viewpoint

(possibly together with other viewpoints) as the basis of a response. The way in which the

viewpoint is used depends upon the type of question. For definition questions, the selected
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viewpoint(s) can be used directly as the content of a response. For comparison questions, the

similarities and differences in the selected viewpoints constitute the content of the response.

w

m°

4.3 Text Generation

After selecting the content of a response, a question answering system must express it in

English. This process of translating from the internal representation of the knowledge base

into grammatical text is called text generation. Fortunately, domain-independent computer

programs for text generation are available, and we plan to integrate one of these programs

with our tutoring software.

Two major projects on text generation have produced useful systems. The Mumble

system [19] generates text from specifications provided by a content-determination module

or text planner. A text specification is a conceptual (non-linguistic) description of what

should be said, how it should be structured, and what perspective or emphasis it should

reflect. A specification is expressed in terms of the internal conceptual representation of the

underlying knowledge base. To generate text from specifications, Mumble uses knowledge of

how objects in the knowledge base correspond to possible syntactic structures and phrases.

Each element of a text specification is associated with a set of such choices and a decision

procedure for selecting among them. Mumble is fast and portable, and has been successfully

used as the realization component for several systems, including Romper [11] and Text [20].

Another portable text generator is Penman [16]. Like Mumble, Penman makes a clear

distinction between the domain-dependent and domain-independent system modules. Pen-

man produces text from a hierarchical text plan that specifies content and organization.

Using one of the largest English grammars encoded on a computer, Penman can be used for

a variety of domains and knowledge representations. Penman's designers claim that its tech-

niques are adequates for use with several existing explanation generation systems, including

Text [20], Proteus [7], and KDS [17].

4.4 Results of Our Prototype Question-Answering System

We have built a prototype system, called Prosaiq, that answers questions using_the Botany

Knowledge Base. Currently, the system answers questions that are classified as definition

and comparison question types using the categorical, structural, and functional view types.

The following examples demonstrate the use of view types to select information comprising

a coherent response to the definition question "What is photosynthesis?"

When the chosen view type is categorical and the chosen reference concept is Biological

Production, Prosaiq generates 3

Photosynthesis is a biological production event in which a photosynthetic organ

converts the raw materials carbon dioxide and water into the product glucose

SThe system's output has been manually translated into English for these examples.

14



and the byproduct oxygen. It consists of the light reactions followed by the dark

reactions.

To generate this definition, Prosaiq selects only those relations of Photosynthesis that are

inherited from Biological Production or one of its generalizations. Although this is a small

portion of the knowledge associated with Photosynthesis, it is a coherent definition because

it adheres to a particular viewpoint (photosynthesis as production).

The next example illustrates using the categorical view type to answer the comparison

question:

How are photophosphorylation and cellular respiration alike?

When the chosen reference concept is Biological Production, Prosaiq generates:

Photophosphorylation and cellular respiration are alike in that they are both

biological production events in which the end product is ATP.

Photophosphorylation and respiration have many similarities; many of these arise because

both processes are a kind of biological production. By using the categorical view type and

making the assumption that the student knows about biological production, the system

generates a concise response containing only the similarities that are most likely to be new

to the student.

4.5 Discourse Planning

Building on the ability to answer questions, we are developing a prototype system for plan-

ning and generating extensive pedag0gical discourse. Just as coherence is an issue_ in an-

swering questions, it is also important for planning a discoursel A discourse planner must

ensure that both the knowledge that is selected and the manner in which it is organized is

coherent for the student. In contrast to a question answerer, a planner must address three

additional issues. First, it must maintain coherence across much longer passages Of text.

Second, it should take advantage of opportunities to educate the student about- important

concepts in the domain, and must weave these discussions into the discourse in a coherent

manner. Third, it must allow the student to interrupt to ask questions, and then replan the

remainder of the discourse as needed to maintain coherence.
+

The discourse planning task is formulated as follows:

• Given:

- a discourse goal

- domain knowledge

- the student's current state of knowledge

• Generate:
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- a discourse that achieves the goal, includes the domain knowledge appropriate for

the student, and is organized in a manner that is appropriate for the student

- an updated student model that reflects what the student has been told

The discourse goal can be furnished by either the student or by an instructional planner,

such as those proposed by Woolf and McDonald [39], Peachy and McCalla [28], and Murray

[26]. The domain knowledge is contained in the knowledge base. The student's current state

of knowledge is maintained in the student model.

In addition to the issues faced by a question answerer, an effective discourse planner must

address three additional issues: global coherence, opportunistic pedagogy, and interruptabil-

ity.

A discourse planner must maintain global coherence across much longer passages of text

than a question-answerer. There are several aspects of global coherence that should be

incorporated in a discourse planner. First, a discourse planner should cluster semantically

similar knowledge together and order these clusters by their prerequisites. Second, it should

provide organizational aids such as an outline early in the discourse and a summary at the

end of the discourse. Finally, a discourse planner should maintain thematic coherence across

a discourse. For example, when planning a discourse on photosynthesis, a planner should

adhere to a theme of either photosynthesis viewed as production or photosynthesis viewed

as energy transduction throughout the discourse.

In addition to maintaining global coherence, an effective discourse planner must address

the issue of opportunistic pedagogy. As it plans a discourse, it should take advantage of

opportunities to educate the student about concepts in the domain that are closely related

to the topic but are unknown to the student. In general, a planner should not only notice

these opportunities and take advantage of them, it should actively seek them, while avoiding

unnecessary digressions.

Finally, a discourse planner should be interruptable. An important goal of intelligent

tutoring systems research for twenty years has been to provide mized-initiative instruction

[3]. In a mixed-initiative environment, both the student and the system may direct the

tutorial exchange. To provide such an environment, the planner must allow the student to

interrupt the discussion to ask a question. Interruptability presents a significant-problem for

a discourse planner. By responding to the student's question in the middle of a discourse, the

planner may need to radically change how it should complete the discourse. For example, its

response to the question may obviate the need for introducing concepts that are to appear

later in the discourse. In short, providing interruptability implies that the planner must

dynamically revise its plans.

We are designing a discourse planner that addresses the issues of global coherence, op-

portunistic pedagogy, and interruptability by using a delayed-commitment approach to plan

construction. This approach increases the flexibility of a planner by decoupling content

determination from organization.

To generate a discourse plan, our planner adds elements to a loosely organized workspace,
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and gradually imposesstructure on them. When the plan elementsare totally ordered, they
are passedto the text generatorfor conversionto text.

By decoupling content determination from organization, the order in which the planner
constructs the elementsisdifferent than the order in whichthe utterancesderivedfrom those
elements appear in the discourse. This decoupling permits more flexibility than current
approachesto planning which Usediscoursestrategies. At each step of the strategy, these
plannersextract a fragment of the knowledgebaseand translate it into text [20]. Although
strategies in someplanners can invokeother strategies [27], the global organization of the
discourseis largely determined by the order of the steps in the strategies.

The delayed-commitmentapproachto discourseplanning promotesglobal coherence.As
the planner constructs the plan elements,it can organizethem accordingto their estimated
familarity to the student. In contrast, with current p!anning systems,the designerof the
system must anticipate in advancewhat conceptswill be familiar to the student, and embed
thesedecisionsin its strategies.For example,supposethe systemwere planning a discourse
on the process of embryo sac formation. If the student were familiar with the concept
of double fertilization, a processfollowing embryo sac formation, then the planner could
explain this conceptual link to a familiar conceptearly in the discourse.On the other hand,
if the student were unfamiliar with doublefertilization, the planner could either omit this
discussionor postpone it until later in the discourse.

The delayed-commitment approach promotes opportunistic pedagogy by allowing the
planner to interject discussionsof unexplained,but important, conceptsand to restructure
the discourse as needed. For example, suppose the planner was explaining embryo sac
formation and its two primary actors: a megaspore,which is haploid, and a megaspore
mother cell, which is diploid. Becausethesecell types are important, the planner should
digressand explain their differences.Moreover,rather than interjecting this discussionin the
middle of another topic, the planner can relocateit to an appropriate placein the discourse.
In contrast, current plannerscannot effectivelytake advantageof pedagogicalopportunities
becausethey cannot reorganizethe discussion.For them, the global organization is fixed in
advance.

The delayed-commitment approach also promotes interruptability by permitting plan

revision. After responding to a question, the planner can reorganize the remainder of the

discourse. For example, suppose the system were discussing reproduction in angiosperms

and the student asked about the related concept of "alternation of generations." Then after

answering the question, the planner could replan the remainder of the discourse to relate the

upcoming concepts to the alternation of generations. In contrast, curren t Planners cannot

dynamically revise their plans. The ability to reorder plan elements rather than being forced

to follow a pre-defined strategy permits a much higher degree of flexibility than is allowed

by current planners.
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5 Summary

Multifunctional knowledge bases offer a significant advance in artificial intelligence because

they can support numerous expert tasks within a domain. As a result they amortize the costs

of building a knowledge base over multiple expert systems and they reduce the brittleness

of each system.

Due to the inevitable size and complexity of multifunctional knowledge bases, their con-

struction and maintenance require knowledge engineering and acquisition tools that can

automatically identify interactions between new and existing knowledge. Furthermore, their

use requires software for accessing those portions of the knowledge base that coherently

answer questions.

We have made considerable progress in developing software for building and accessing

multifunctional knowledge bases. We have developed a language for representing knowledge,

software tools for editing and displaying knowledge, a machine learning program for integrat-

ing new information into existing knowledge, and a question-answering system for accessing

the knowledge base.

In our continuing research, we plan to significantly improve these prototype systems

and to integrate them into a single framework. The resulting software environment will be

effective for building, maintaining, and using large multifunctional knowledge bases in an)'

domain.
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