
; L

tL----'

i

S

---= .

ART-Ada: An Ada-Based

Expert System Tool

(NASA-CR-188_30) APT-Ada: AN Ada-_ASED

EXPERT SYSTrN TOOL (R_s_nrch Insf. for

Advnnced Computer Science) I_ p CSCL 09B

Nqi-32837

Uncl ds

G3/ol 0046430

___:_.......... _ _.......... S. Daniel Lee

=--- -_-=-- Bradley P. Allen

<Li_:
1

Inference Corporation

June 1990

L
Cooperative Agreement NCC 9-16

Research Activity No. SE. 19

i -
NASA Johnson Space Center

__ Inf._0rmation Systems Directorate

E _, . Information Technology Division

w

i .

......... O ©

Research Institute for Computing and Information Systems

- - - _.... University of Houston - Clear Lake

L.-_ -_C" H-: N_I:C •A " LR-E • P • O" R "T

g

: ==r,

g

J

W

The

RICIS

Concept

J

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into

a three-yearcooperative agreement with L_'Clear Lake beginning in May, 1986, to J
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9- ! 6, computing and educational facilities are shared
by the two instjt_uti0nsto conduct the research. - g-

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research oa_tio_. Within UH-_Clear
Lake, the mission is being implemented through interdisciplinary involvement of _
faculty and students fi-orn each-rf-tfieTour schools: Business, Education. _
Sciences and Humanities, and Natural and Applied Sciences.

Other researchorganizations are involved via the "gateway" concept. UH-C!car
Lake establishes relationships with other universities and research organizations, _ -J
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best ma_h .of sP0_nsors,resear_he_ and
research objectives to advance knowledge in the computing and informatio_ _
sciences. Working jointly with NASA/JSC, RICIS advises on research needs, mlP
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC. / _

w

ART-Ada: An Ada-Based

Expert System Tool

=

=_

w

m

w

r_

_ _ _ _ ---_ _ _ _ _ _ _ _ _ L_ _ k!_ _ _

me

Iw

_m
I

m

g

g

g

m

i
Iw

i

m

W

I

m
II

IP

m
m

Um

W

W

I!

= :

_=*.d

ART-Ada: An Ada-Based Expert System Tool"

S. Daniel Lee and Bradley P. ,-kllen

Inference Corporation
550 N. Continental Blvd.

E1 Segundo, CA 90245

E_

W

W

W

Abstract

The Department of Defense mandate to standardize

on Ads as the language for software systems develop-

ment has resulted in increased interest in making ex-

pert systems technology readily available in Ads en-

vironments. NASA's Space Station Freedom is an ex-

ample of the large Ads software development projects

that will require expert systems in the 1990's.

Another .large-scale application that can benefit from

Ada-based expert system tool technology is the Pilot's

Associate (PA) expert system project for military

combat aircraft. This paper describes ART-Ads, an_

Ads-based expert system tool. ART-Ads allows ap-

plications of a C-based expert system tool called

ART-IM to be deployed in various Ads environments.

ART-Ads is being used to implement several

prototype expert systems for N.ASA's Space Station

Freedom Program and the U.S. Air Force.

1. Introduction

The Department of Defense mandate to standardize

on Ads as the language for software systems develop-
ment has resulted in increased interest from

developers, of]arge-scaJe Ada systems in making ex-

pert systems technology readily available in Ads en-

vironments. Two examples of Ada applications that

can benefit from the use of expert systems are

monitoring and controlsystems and decisionsupport

systems.Monitoring and controlsystems demand real-

time performance, small execution images, tight in-

tegration with other applications,and predictable

demands on processorresources;decisionsupport sys-

tems have somewhat lessstringentrequirements.

An example project that exhibits the need for both

of these types of systems is NASA's Space Station

Freedom. Monitoring and control systems that will

perform fault detection, isolation and reconfiguration

for various on-board systems are expected to be

developed and deployed on the station either in its in-

itial operating configuration or as the station evolves;

decision support systems that will provide assistance

in activities such as crew-time scheduling and failure

mode analysis are also under consideration. These sys-

tems will be expected to run reliably on a standard

data processor, currently envisioned to be an 80386-

based workstation. The Station is typical of the large

Ads software development projects that will require

expert systems in the 1990's.

Another large-scale application that can benefit

from Ads-based expert system tool technology is the

Pilot's Associate (PA) expert system project for

military combat aircraft [3}. Funded by the Defense

Advanced Research Projects Agency (DARPA) as part

of its Strategic Computing Program, the PA project

attempts to automate the cockpit of military combat

aircraft using Artificial Intelligence (AI) techniques.

A Lisp-based expert system tool, ART (Automated

Reasoning Tool), was used to implement one of the

two prototypes built during Phase I. An Ads-based

expert system tool can provide a migration path to

deploy the prototype on an on-board computer be-

cause Ads cross-compilers are readily available to run

Ads programs on most embedded processors used for
avionics.

Inferencehas been involved with Ada-based expert

systems research since 1986. Initialwork centered

around a specificationfor an Ada-based expertsystem

tool[4]. In 1988, the ART-Ada Design Project was

*This paper willappear in the proceedings of the SpLce Operations, Applications and Research Symposium, Albuquerque, New Mexico, June

19g0.

J

initiated to design and implement an Ada-ba.sed ex-

pert system tool [6],TlO], [11}. At the end of 1989,
,_T-Ada was released to beta sites as ,-kRT:Ada 2.0

Beta on the V,_(/'\','MS and Sun/Unix platforms [71.

In 1990, eight beta sites, four NASA sites and four

.Air Force sites, will be evaluating ART-Ada 2.0 for

in Ada, ART-_I's front-end (its parser/analyzer and

graphical user interface) was reused as the ART-Ada

development environment. The ART-I2q kernel was

enhanced to generate Ada source code that would be

used to initialize Ada data structures equivalent to

A_RT-_I's internal C data structures, and also to in-

eight

deploying them in Ada environments. The objectives

of the ART-Ada Design Project were two fold:

months by developing expert systems and terrace with user-written Ada code. This approach al-

1. to determine the feasibility of providing a

hybrid expert system tool such as ART in

Ada, and

2. to develop a strategy for Ada integration

and deployment of such a too!:

Both of these objectives were met successfully when
._RT-Ada 2.0 beta was released to the beta sites.

• :- :. : :=

Inference Corporation developed an expert system

tool called ART (Automated Reasoning Tool) that has

been commercially available for several years [5].

ART is written in Common Lisp and it suppOi'-t_s

various reasoning facilities such as rules, objects,

truth maintenance, hypothetical reasoning and object-

oriented programming. In 1988, inference introduced

another expert system tool called ART-IM

(Automated Reasoning Tool for Information Manage-

ment), which is also commercially available [8]. ART-

h-'vl is written in C and it supports a major subset of

ART's reasoning facilities including rules, objects,

truth maintenance and object-oriented programming.

ART-IM supports deployment of applications in C

using a C deployment compiler that converts an ap-

plication into C data structure definitions in the form

of either C source code or object code. ART-IM's in-

teractive development environment includes a graphi-

cal user interfacethat allowsbrowsing and debugging

of the knowledge base and an integratededitor that

lows the user to take full advantage of the interactive

development environment developed originally for

,_RT-IM. Once the development is complete, the ap-

plication is automatically converted to Ada source

code. It is, then, compiled and linked with the Ada
runtime kernel, which is an Ada-ba.sed inference en-

gine.

2. Overall Architecture

ART-Ada is designed to be used by knowledge en-

gineers who may not be familiar with Ada. With

minimum knowledge about Ada, they can still develop

a knowledge base in a high-leveE language whose Syn-

tax most resembles that of Common Lisp. When the

knowledge base is completed, Ada source code can be

generated automatically by simply "pressing a but-
ton".

When this automatically generated Ada code is com-

piled and linked with the Ada library of the ART-Ada

runtime kernel, an Ada executable image is produced.

ART-Ada also provides extensive capabilities for Ada

integration so that the knowledge base can be em-
bedded i_n an Ada environment. It would be best if

the knowledge engineer developing the knowledge base

works with an Ada programmer who serves as a sys-

tem integrator. ART-Ada would be most useful for

those who must deploy in Ada environments (because

of the Ada mandate) expert system applications al-

ready developed using tools that do not support Ada

offers incremental compilation. ART-IM is available _ deployment. _ : : :
for MVS, VMS, Unix, MS-DOS, _d OS/2 environ-

merits. :

Our approach in designing an Ads-based expert

tern tool was to use the architecture of proven expert

system tools: ART and ART-IM. Both ART and

ART-IM have been successfully used to develop many

applications which are in daily use

today [I],[12],[13]. ART-IM was selected-as a

baseline system because C is much closer to Ada.

While ART-IM's inferenceengine was reimplemented

The overall architecture of ART-Ada is depicted in

figure 22i: -T-h_nowiedge base is developed and

debugged using _]nteractive user interface that sup-

ports three main features; a command loop similar to

the Lisp eval loop, a graphical user interface for

knowledge base browsing and debugging, and an in-

tegrated editor for incremental compilation of the

knowledge base. Any user-written Ada code can be

integrated into the knowledge base by either calling it

from a rule or invoking it as a method for object-

J

m

u

g

J

I

w

I

m

I

=

J

I

m

Ni

l

_I

1 w

= _ ,

i 7

v

i :

mm

E_

m

w

b_

m

w

Figure 2-1: Overall Architecture of,adCLT-Ada

oriented programming.

Once the knowledge base is fully debugged, it can be

automatically converted into an Ada package for

deployment. The ART-Ada runtime kernel is an Ada

library, which:is in essence an Ada-based inference en-

gine. An A.da executable image is produced when the

machine-generated Ada code and any user-written

Ada code, if any, are compiled and linked with the

Ada library.

3. Knowledge Representation

ART-Ada's key feature is the integration of rule-

based representation and object-based (frame-based)
representation, it supports three different program-

ming methodologies:

Rule-based Programming - Rules oppor-

tunisticallyreact to changes in the sur-

rounding database. Rules can fire (ex-

ecute) in an order based largelyon the

dynamic ordering of those changes. Rules

cannot call other rules,and hence must

communicate indirectlyby making changes

to the database Which will,in turn,stimu-

lateother rules.

Object-Oriented Programming - The fun-

damental unit of ART-Ada's object-

oriented programming is the object,

represented by a schema. Control is

managed by sending messages to object_

(schemas). The object reacts to the mes-

sage by searching within itself for a

method appropriate to that message. If an

object does not have a method for the

received message, it searches to see if it

has inherited any appropriate methods

from its parents. Once a method has been

found, the object carries out the actions
associated with the method.

Procedural Programming -- ART-Ada's

procedural language supports function

calling, iteration (for, while) and con-

ditionals (if, and, not). There are more
than two hundred functions available in

the procedural language.

ART-Ada's rule system is based on the optimized

Rete pattern-matching algorithm [2]. Unlike OPSb,

ART-Ada rules can pattern-match on objects called

schemas as well as on lists called ,facts. Facts are

similar to Lisp lists and do not support any in-

heritance. Schemas are similar to CLOS (Common

Lisp Object System) objects; they are organized as

attribute-value pairs and support inheritance through

the is-a (subclass)and instance-of (member) rela-

tions.In the followingexample, mammal and dog are

schemas while (animal-founddog) isa fact. Mammal

isa Cl_ and dog isa subci_ of the classmammal;

they are linkedWith an is-alink. On the other hand,

fido is a member of classesdog and mammal; it is

linked to the classdogthroug h an instance-of link.

The significanceof the relationsis-a and instance-of

isthat the attribute-valuepairs gets inheritedeither

from a classto a subclassor from a classto a mere'

ber. In thefoilowing example, fido willinheritat-

tributes(eatsmeat),(socializationpack)/(iocomotion-

mechanism run),and (instance-ofmammal) from dog;

it will also inherit(feeds-offspringmilk) and (skin-

covering hair)from mammalo. As shown in the rule

determine-if-dogthat matches on both a schema pat-

tern (schema ?animal (...))and a factpattern(classify-

animal ?animal),the ART-Ada rules can match with

schemas as wellas facts. In order to optimize perfor-

mance, ART-Ada usestwo separatepattern matchers:

one forschemas and one forfacts.

m 2

Cdefschemam_mmal

(feeds-offsprlng milk)
(skln-coverlnghair))

(defschema dog

(Is-a mammal)

(eats meat)

(socialization pack)

(locomotlon-mechanlsm run))

(defschema fldo

(instance-of dog)

(owned-by John))

(defrule determlne-if-dog
•Determine if subject is a dog."
(classlfy-anfmal?animal)
(schema?animal

(Is-a mammal)

(socialization pack)

(eats meat))
=>

(assert (schema?animal
(Is-a dog)))

(assert (animal-found dog)))

When an expertsystem deduces a conclusion(e.g.to

diagnose faultsin an electriccircuit),it isoften re-

quired to answer a question like "why? =. This

capabilityiscalledezplanation. In ART-Aria, an ex-

planation capability can be implemented using the

justificationsystem. When enabled, the justification

system can provide a listingof the rulesand data ob-

jectsWhich=w_reresponsibh f6r creating a particular

fact or schema. By embedding features of the jus-

tification system in an application, the expert system

can trace the steps leading to a particular conclusion.

The justification system is also a powerful debugging

tool when used durlng-the deve_pment of an e_pert

system. Should an applicationexhibitunexpected be-

havior during development, the programmer can ex-

ploitthe featuresof the justificationsystem to dis-

cover the sourceof the problem.

In the following example, _!f (classify-animal my-

kangaroo) matches with a LHS pattern (classify-

animal ?animal) where ?animal is a variable,and the

rule firesto assert (schema my-kangaroo (is-amar-

supiM)), then we say that (classify-animalmy-

kangaroo) justifies(schema my-kangaroo (is-amar-

supiM}). In ART-Ada, consistencyof the knowledge

base is maintained by a justification-basedtruth

maintenance system (JTMS) called Logical Depen-

dencies. Iflogicaliswrapped around (classify-animal

?animal), (schema my-kangaroo (is-a marsupial)) is

not only justified by but also logically dependent on

(classify-animal my-kangaroo)., when (classify-animal

my-kangaroo) is retracted from the knowledge base,

(schema my-kangaroo (is-a marsupial)) is also

retracted, and therefore consistency of the knowledge

base is maintained automatically.

(defrule determlne-if-marsuptal
"Determine if subject Is marsuplat."
(logical (classlfy-anlmal?animal))
(schema?animal

(Is-a mammal)

(carrles-offsprlngpouch))

(assert (schema ?animal
(ls-a marsupial))))

In ART-Ada, object-oriented programming can be

used with rule-based programming to take advantage

of both paradigms. In the following example, the rule

print-out-object is used to sent the print message to

all objects that are instances of object. When an ob-

ject my-triangle matches with the rule

print-out-object, an inherited method print-triangle
will be invoked. Methods can be defined either in

ART-Ada's procedural language using clef-art-fun

which is similar to the Lisp defun, or directly in Ada

using de/-user-]un which will be discussed later.

;;; define objects

(defscbemm obJec_
(print print-_nknowu))

(defschemm circle
(Is-aobject)
(prln_prlnt-clrcle))

(defschem_triangle

(is-aobject)
(printprlnt-trlangle))

(defschemsmy-trlangle
(instance-of triangle)
(position (1 2)))

;;; define a rule that sends a print message.

(defrule prin_-ont-obJec_
(schems?object

(instance-of object)
(position (?x ?y)))

(sendprint ?object ?x ?y))

g

M

mm

mm

u

w

g

mm

g

g

!

mm

J

i
I

g

!
I

mm

m

J

m
w

L

r

M

u

w

W

m

E_

4. Knowledge Base Debugging

ART-Ada offers three main features in the user in-

terface called the Studio:

* a command loop,

• a graphical user interface, and

s an integrated editor.

ART-Ada's command loop is similar to the Lisp eval

loop, in which user input is interpreted. More than
two hundred functions are available in the command

loop. Even Ada functions can be added to the com-

mand loop and called from the command loop.

The Studio's interactive, menu-based graphical user

interface provides immediate access to the knowledge

base, and lets you monitor any aspect of program

development or execution via an integrated network
of menus and windows. "-

The Studio also provides a tightly integrated inter-
face to the GNU Emacs full-screen editor. This inter-

face facilitates the ART-Ada program development

process by providing a number of powerful

capabilities, such as incremental compilation of ART-
Ada code.

The ART-Ada Studio can be used to do the follow-

ing:

Develop and execute an ART-Ada applica-
tion.

Browse the knowledge base - to examine

declarative (facts/schemas) knowledge,

procedural (rules) knowledge, and runtime
state, such as matches and activations:

Debug the knowledge base - by setting

breakpoints in the programs and tracing

their execution.

Develop applications incrementally - by

editing the knowledge base to change facts

or rules, or to modify program inter-

II

The Sun version supports on17 a command loop interf_e while

the VAX/VMS version supports all three.

actively.

• Generate Ada source code.

The A_RT-Ada/%3IS Studio is based on DECwin-

dows. The Studio is also implemented using other

user interface standards (e.g. PM, OaF/Motif, ISPF)

on other platforms.

5. Ada Integration

A major feature of ART-Ada is its ability to in-

tegrate expert systems technology with Ada. ART-

Ada supports three types of Ada integration:

Ada call-out refers to an ability to call

Ada subprograms (procedures and func-

tions) from the knowledge base (rules and

methods).

". Ada call-in refers to an ability to call

ART-Ada's public functions from Ada.

Ada call-back is a special case of Ada call-

in and refers to an ability to call ART-

Ada's public functions from an Ada sub-

program called from the knowledge base

using Ada call-out.

Designers of expert systems will want to develop

their own Ada code to provide user and system inter-

faces for their applications. There also may be a need

to interface expert systems with other Ada applica-

tions (e.g. a signal processing application). A primary

benefit of incorporating Ada code into the knowledge
base is that Ada code will execute faster than similar

code written in the ART-Ada procedural language. A
consistent Ada call-in and call-out interface is

provided for both development and deployment en-

vironments so that nser-written Ada code runs with-

out modification when it is deployed inAda. In order

to illustrate how an Ada subprogram is called from

the knowledge base, let's consider the following rule:

4
w

Mmmw

(defrule dlstance-calculation-rule

"talc distance between airfield and base"

(schema ?_irfleld

(instance-of _irfleld)

(la_ ?fail)

(lon ?lonl))

(schema ?base

(Instance-of base)

(lat ?iat2)

(lon ?1on2))

_-->

(blnd ?distance
;; call an Ada function to calc distance
(calculate-dls_ance?fail ?lonl

?lat2 ?lon2))

(assert
(distance ?base ?airfield ?distance)))

The function, calculate-distance, can be im-

plemented either in the ART-Ada procedural language

or in Ada, but the Ada version would run faster. The

ART-Ada construct de/-user-fun specifies the inter-
face between ART-Ada and Ada. It establishes an

ART-Ada function name which calls out to the cor-

responding Ada subprogram, and it provides a

description of data being passed. For example,

calculate-distance can be specified as an Ada function
as follows:

(def-user-fun calculate-distance

:arts ((latl :float)

(lonl :float)

(lat2 :float)

(lon2 :float))

:returns :float
:compiler :dec-add)

This de/-user-fun statement specifies that the ART-

Ada function calculate-distance will call out to an

Ada function CALCULATE_DISTANCE. There are

four arguments of a type floating-point number being

passed to Ada.. The return value is also a floating-

point number. It a/so specifies the default Ada com-

piler for the platform (i.e. DEC Ada). The cor-

responding Ada code should be declared in a package
called USER and would look like:

-- ART is a public package of ART-Add.

with ART;

-- USER is a package for user's Ada code.

package USER is

function CALCULATE DISTANCE

(LATI, LONI, LAT2, LOl_ : ART.FLOAT_TYPE)

return ART.FLOAT_TYPE;

end USER;

.-LRT-Ada .-ida

integer INTEGER_ TYPE

float FLOAT_ TYPE

boolean BOOLE,%_N TYPE

string STRING

symbol STRING

ar t-obj ect ART_ OBJECT

Size

32 Bits

64 Bits

Table 5-1: Data Types for Ada Call-in/Call-out

Ada data types supported for the call-in and call-out

interfaces are: 32 bit integer (INTEGERTYPE), 64

bit float (FLOAT_ TYPE), boolean

(BOOLEANTYPE), string and symbol (STRING),

and an abstract data type for objects in ART-Ada

(ART OBJECT). Table 5-1 summarizes the map-

ping between ART-Ada and Ada data types.

6. Aria Code Generation

ART-Ada takes one or more ART-Ada source files

as input and outputs Ada source files that represent a

single Ada package. At any point after ART-Ada
source files are loaded into ART-Ada and the

knowledge base is initialized for execution, the Ada

code generator may be invoked to generate Ada

source code. An Ada package specification generated

by ART-Ada for an example application called

MY EXPERT SYSTEM is shown below:

-- generated zutomatlcally by ART-Add

MY EXPERT_SYSTEM ispackage _

-- Initialize the application.

procedure INIT;

end MY_EXPERT_SYSTI_;

A simple Ada main program that initiaiizes and

runs the application MY_EXPERT_SYSTEM is

shown below. It is the simplest way to run an ART-

Ada application in an A_d_, environment: i(qs pos-

sible, however, to embed it in a large Ada program.

ART-Ada's public Aria packages, ART and SCHEMA,
include a full set of Ada utilities to control and access

m

mm

im

ill

E

w

=

lid

m

lib

IP

I'm

m
u

I

u

5 U

w

= =

w

L_

w

w

== =

. ,

w

w

W

W

procedurally the knowledge base from Ada. In OPSS,

for example, it is hard to access working memory ele-

ments procedurally. In ART-Ada, Ada utilities are

provided to access the knowledge base directly from
Ada.

-- This is a maln program written by the user.

-- ART is a public pacI_ageof ART-Ada.
with ART, _ff_EXPERT_SYSTEM,
procedure RAIN is
TOTAL RULES : ART.INTEGERTYPE;

begin

MY EXPERT SYSTEN.INIT; -- initialize

TOTAL RULr-$:= ART,A RUN(-I); -- run it.

end MAIN;

In addition to generating the Ada source code that

initializes the knowledge base, a call-out interface

module is generated as a separate procedure; it is a

large case statement that contains all Ada sub-

programs called out to from ART-Aria. ART-Ada

also generates a command file used to compile all Ada

files generated by ART-Ada.

7. Ada Runtime Deployment

The steps needed to deploy an ART-Ada application
in Ada are summarized below:

1. Develop and debug an application using

ART-Ada's interactive development en-

vironment. If necessary, call out to Ada

using the call-in/call-out interface.

2. Generate Ada code from ART-Ada using

the Ada code generator. If the Ada com-

piler platform is different from the ART-

Ada development platform, the generated

Ada code can be moved to the platform on

which the Ada compiler runs as long as
the ART-Ada runtime kernel is available

for that platform.

. Compile the generated Ada code and user-
written Ada code using either a self-

targeted compiler or a cross-compiler into

an appropriate Ada library of the ART-
Ada runtime kernel.

4. Create an Ada executable image by linking

an Ada main program.

5.Deploy the Ada executable image on a

host computer or on a target system

8. Future Work

According to a recent benchmark, A_RT-Ada does

not perform as well as ART-_I While immature

Ada compilers also contribute to the poor perfor-

mance, fundamental problems of the Ada language it-

self have been uncovered [9] Some examples are:

• dynamic memory management,

• function pointers, and

• bit operators.

Among these, the overhead of dynamic memory

management is the most serious problem. Due to the

dynamic nature of expert systems, it is necessary to

allocate memory dynamically at runtime in ART-Ada
and ART-]2vI. The direct use Of- new and

uncheckcd deallocation is the only dynamic memory

management method available in Ada. The problem
with this method is that new incurs a fixed overhead

associated with each call and it is called very fre-

quently to allocate a relatively small block for an in-

dividual data structure. It results in a performance

penalty in size and the slower execution speed. This

is also aggravated by the poor implementation of new

in the Ada compiler.

The existing Ada features, new,

unchecked_ deallocation, and

unchecked_conversion, are too restrictive and totally

inadequate for a complex system that requires ef-

ficient memory management. More flexible features

(perhaps in addition to the existing ones) should be

provided. This is particularly important in embedded

system environments that impose a severe restriction

on the memory size.

This issue and others were presented to several

members of the Ada 9X Project in a meeting held in

Washington, D.C. in March, 1990. We believe that

they should be addressed by the Ada 9X standard.

Unfortunately, the revised Ada language based on the

Ada 9X will not be available until 1993 or later,

which would be too late for the Space Station

Freedom software development schedule.

Our currentresearcheffortis focusedon improving
theperformanceof ART-Adaby implementing._d_T-
Ada'sownmemorymanagerusingcurrenttechnology.
If it is not possibleto implementit in Ada,wewill
implementit in anotherlanguage(e.g.an assembly
language). ,_'_T-Adahas an Ada codegenerator,
whichgeneratesAda codethat relieson newand
uncheckeddeallocation.Thecurrentcodegenerator
wouldhaveto be redesignedto be compatible with

the new memory manager.

Other Ada language issues such as function pointers,

bit operators and portability and compiler problems

encountered during the development of ART-Ada are

discussed elsewhere [11], [9].

9. Acknowledgments

The authors wish to acknowledge the guidance and

support of Chris Culbert and Bob Savely of NASA

Jo-hnson Space (_en{er-,-Gregr'Swietek ot" N_A,-Head-

quarters, and Captain Mark Gersh of the U.S. Air

Force. Mark Auburn, Don Pilipovich, Mike Stoler

and Mark Wright of Inference Corporation con-

tributed to the project.

References

1. Dzierzanowski, J.M. et. al. The Authorizer's As-

sistant: A Knowledge-based Credit Authorization Sys-

tem for American Express. Proceedings of the Con-

ference on Innovative Applications of Artificial Intel-

ligence, AAAI, 1989.

2. Forgy, C.L. "RETE: A Fast Algorithm for the

Many Pattern / Many Object Pattern Match

Problem'. Artificial Intelligence 19 (1982).

3. Hugh, D.A. "The Future of Flying'. A/Expert

8, 1 (January 1988).

4. Inference Corporation. Ada-ART, Specification

for an Ada-based State-of-the-Art Expert System

Construction Capability. Inference Corporation,

August, 1987.

5. Inference Corporation. ART Vernion 8.$ Re fer-

ence Manual. Inference Corporation, 1988.

8. Inference Corporation. AJRT/'Ada Design Project -

Phase I, Final Report. Inference Corporation, March,
1989.

7. Inference Corporation. A.RT-..-lda/V:%fS 2.0 Beta

Reference ._[anual. Inference Corporation, 1989.

8. Inference Corporation..-hgT.l.X[/"_:_[S 9.0 Beta

Reference Manual. Inference Corporation, 1989

9, Lee, S.D. Toward the Efficient. Implementation of

Expert Systems in Ada. Submitted to the TRI-Ada

Conference, ACM, 1990.

10. Lee, S.D., Allen, B.P. Deploying Expert Systems

in Ada. Proceedings of the TRI-Ada Conference,

ACM, 1989.

U. Lee, SD., Allen, B.P. ART-Ada Design Project -

Phase II, Final Report. Inference Corporation,

February, 1990.

12. Nakashima, Y, Baba, T. OHCS: Hydraulic Cir-

cuit Design Assistant. Proceedings of the Conference

on Innovative Applications of Artificial Intelligence,

AA.AI, 1989.

13. O'Brien, J. et. al. The Ford Motor Company

Direct Labor Management System. Proceedings of the

Conference on Innovative Applications of Artificial In-

telligence, AAAI, 1989.

m

m

U

D

D

z

g

mi

i

g

u

N

g

7 W

