
_tl FL < Oxz-Sia ; -,_E

AN ALTERNATIVE DESIGN FOR A SPARSE DISTRIBUTED MEMORY

Louis A. Jaeckel

July 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.28

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188847) AN ALTERNATIVE DESIGN FOR

A SPARSE DISTRIBUTED MEMORY (Research Inst.

for Advanced Computer Science) 47 pCSCL 09B

G3/60

N92-I0291

Unclas

0043033

ReSearch Institute for Advanced Computer Science
An Institute of the Universities Space Research Association

..... JJ : :: :

AN ALTERNATIVE DESIGN FOR A SPARSE DISTRIBUTED MEMORY

Louis A. Jaeckel

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.28

July 1989

Abstract: This report describes a new design for a Sparse Distributed Memory, called the

selected-coordinate design. As in Kanerva's original design, there are a large number of memory

locations, each of which may be activated by many different addresses (binary vectors) in a very

large address space. In the new design, each memory location is defined by specifying ten
selected coordinates (bit positions in the address vectors) and a set of corresponding assigned

values, consisting of one bit for each selected coordinate. A memory location is activated by an
address if, for all ten of the location's selected coordinates, the corresponding bits in the address

vector match the respective assigned value bits, regardless of the other bits in the address vector.

Some comparative memory capacity and signal-to-noise ratio estimates for the two designs are

given. A few possible hardware embodiments of the new design are described. The new design is

the subject of a patent application filed in 1988.

Work reported herein was supported in part by Cooperative Agreements NCC 2-408 and NCC 2-

387 between the National Aeronautics and Space Administration (NASA) and the Universities

Space Research Association (USRA).

AN ALTERNATIVEDESIGN FOR A SPARSE DISTRIBUTED MEMORY

INTRODUCTION

A Sparse Distributed Memory, as proposed by Kanerva (1988),

is a memory system that uses addresses that are very long bit

strings, or binary vectors, and is able to retrieve stored data

quickly if the retrieval information (the read address) is known

only approximately.

This report describes an alternative design for a Sparse

Distributed Hemory. This new design, called the selected-

coordinate design, is like Kanerva's design in that it consists

of a large number of memory locations, called hard locations,

each of which may be activated by many different addresses in a

very large address space. The difference between the two designs

is in how the set of addresses that activate a particular hard

location is defined. In Kanerva's design, a hard location is

activated by any read or write address that is within a fixed

Hamming distance of the address of the hard location. The set of

addresses that would activate a memory location in the new design

will be defined below. Other aspects of the new design, such as

the counters at the hard locations and the method of storing and

retrieving data in the memory, will remain the same as in

Kanerva's design.

Note that in either design a memory location can be

2

described or represented by giving the set of read or write

addresses that would activate it. Conversely, for each possible

read or write address, there is a corresponding subset of memory

locations, consisting of those locations that would be activated

by that address. These relationships will be useful in

understand/rigthe designs.

By considering alternative designs for a Sparse Distributed

_emory, we can gain greater insight into the ideas underlying the

memory system, and when we apply the memory we will be able to

choose the design that best fits the particular problem. A later

report will describe a more general class of alternative designs,

which includes both Kanerva's design and the selected-coordinate

design.

I will begin with a review of Kanerva's design and a brief

description of the S_anford prototype, a small-scale hardware

prototype of Kanerva's design. (See Flynn et al., 1988.)

Then I describe theselected-coordinate design, in which

each memory location is defined, not by a point in the address

space as in Kanerva's design, but by specifying ten selected

coordinates (bit positions in the address vectors) and a set of

corresponding assigned vaI,es, consisting of one bit for each

selected coordinate. A memory location is activated by an

address if, for all ten of the location's selected coordinates,

the corresponding bits in the address vector match the respective

assigned value bits, regardless of the other bits in the address

vector.

The new design can be compared to Kanerva's design by

3

computing the expected number of hard locations in the access

overlap, that is, the,set of memory locations activated by both

of two addresses. The ability of the memory to recover a stored

data word when reading from the memory at an address near the

address at which the data word was written depends on the size of

the access overlap as a function of the Hamming distance between

two given addresses. The access overlap should be large for two

addresses near each other, and small for two addresses that are

far apart. I will compute some estimates of comparative memory

capacity and some approximate signal-to-noise ratios for the two

designs, under some assumptions as to the randomness of the data

words written to the memory. These estimates indicate that the

performance of the new design is somewhat better than that of

Kanerva's design.

One way to implement either design is to have an address

decoder for each hard location. During a read or a write

operation, each of these address decoders would determine whether

its location is to be activated. I will also describe two

possible hardware embodiments of the new design, based on some of

the design features of the Stanford prototype. The first

embodiment uses 256-bit addresses, like the Stanford prototype,

but it is somewhat simpler and faster. The second embodiment can

use addresses consisting of up to 32,768 bits, but it is slower

and more complex than the first embodiment.

The selected-coordinate design is the subject of a patent

application, submitted to the U. S. Patent Office in 1988. The

descriptions of the design and its hard_are embodiments in this

report are based on material in the patent application.

To make the exposition more concrete, and to compare the new

design with some examples in Kanerva (1988), I will generally

assume that n, the length of the address vectors, is 1000, that

there are one million hard locations chosen at random, and that

approximately 1/1000 of them are activated by a given read or

write address. These numbers could of course be varied.

APPLICATIONS

A Sparse Distributed Memory system has many potential

applications in fields such as signal detection, computer vision,

speech recognition and transcription, and robotics, and in other

such fields involving adaptive learning and control. The memory

system would be the key component in an adaptive system that must

deal with complex, noisy real-world information. Data from the

environment would enter through sensory systems that would

preprocess and encode the data as binary words to be transmitted

to the memory. The system would learn, that is, adaptively

adjust itself based on a set of "training data", by storing the

training data in its memory.

The system would perform the tasks required of it by

receiving data patterns from its sensors and then reading from

the memory, using the encoded incoming data as the read address.

The result of the read operation would be a binary word which in

some applications would represent a pattern which the system has

been trained to recognize. The patterns to be recognized could

be encodings of visual images or symbols, written text, spoken

5

words, or other such patterns or sequences of data. Since the

system can respond to patterns that are similar to those with

which it has been trained, it could recognize patterns from input

data that are noisy or incomplete.

In other applications, such as robotics or control systems,

the result of a read operation would be a word representing

command or control information for driving a motor system such as

a robot arm. After the memory system has been trained by storing

in it the appropriate responses to a set of given situations, the

system can quickly respond to a new situation by producing a

response similar to the responses it has been taught for similar

situations.

KANERVA'S SPARSE DISTRIBUTED MEMORY

A conventional computer memory system can retrieve stored

data only if the retrieval information, such as the read address,

is known exactly. The reason for this is that in a conventional

computer, a string of binary digits (a data word) is stored at a

specific location in the computer's memory, and nothing else is

stored at that location at the same time.

P. Kanerva (1988) has proposed a memory system called a

Sparse Distributed Memory. The memory is distrib,ted in the

sense that each data word is stored at many of the memory

locations simultaneously, and each memory location contains a

linear combination of a subset of the stored data words rather

than a single word. A brief description of his system follows.

Let the address space S be the set of all n-bit binary

words. That is, S is the set of all n-dimensional binary

vectors, or vectors in which each component is either 0 or 1. S

will represent both the set of all possible read or write

addresses, and also the set of all possible addresses for memory

locations. This distinction will become clear as we proceed. If

n is large, say between 100 andlO,O00, then the number of

possible addresses, 2n, is so large that we cannot build a

memory with that many memory locations. Therefore, instead of

implementing a memory location for each possible address, we

choose a large random sample of the addresses, say one million of

them, and implement a memory location for each of these

addresses. This is why the memory system is called sparse.

These implemented memory locations will be called hard locatio,s.

During a read or a write operation, many of the hard

locations are activated, instead of just one, as in a

conventional computer. Which hard locations are activated

depends on the read or write address; the rule for activating the

hard locations is given below. Data will be read from or written

to those hard locations that are activated by the read or write

address.

For two binary vectors x = (Xl,.-.,Xn) and y =

(yl,...,yn) in S, let
n

d(x,y) = _ Ixi - yil

i=l

This is known as the Hamming di3ta.ee between x and y. It is

the number of coordinates for which xi _ Yi"

The rule for activating the hard locations is as follows:

hen a read or a write operation is performed at an address x,

all of the hard locations whose addresses are within a fixed

Haning distance r of x are activated. This region of

activation may be viewed geometrically as a sphere in S with

center at x and radius r. Suppose, for example, that n =

1000 and r = 451. Kanerva (1988), p. 62, showed that in that

case the sphere contains about 1/1000 of the points in S.

Therefore, since the addresses of the hard locations are randomly

distributed throughout S, the number of hard locations in this

sphere is approximately 1/1000 of the total number of hard

locations. If there are one million hard locations,

approximately one thousand of them are activated by a given read

or write address. The actual number of hard locations activated

will vary somewhat, due to the random choice of the hard location

addresses.

Note that there are actually two kinds of spheres here: As

stated above, the hard locations activated by a given read or

write address x are those whose addresses lie in a sphere with

center at x and radius r. Conversely, for a particular hard

location, the set of read or write addresses that would activate

it constitutes a sphere in S of radius r centered at the

address of that hard location. Thus, if n = 1000 and r = 451,

a hard location would be activated by about 1/1000 of the

possible read or write addresses.

The memory system may be constructed as follows: For each

hard location, we could have an address decoder to determine

whether to activate that location during a read or a write

operation. The address decoder would compute the Hamming

distance between the given read or write address and the address

of the hard location, and if that distance is less than or equal

to r, it would activate the location.

Assume that the data words to be stored in the memory are

m-dimensional binary vectors, for some fixed m. In some

applications the data words will be n-dimensional vectors like

the address vectors, so that a data word may be thought of as an

address, or as a pointer to the memory. Each hard location has

m counters for storing the data, one counter for each of the m

bit positions, or coordinates, in the data vectors. The method

of storing and retrieving the data is as follows:

l/hen a data word (a binary vector) is uritten to the memory

at address x, the word is added to the counters at each of the

activated hard locations (those uithin distance r of x)

according to the follouing rule: For each i, if the value of

the i th bit of the data uord is 1, the i th counter is

incremented; if the value of that bit is O, the counter is

decremented. Houever, since each counter has finite capacity, it

must have an upper and a louer limit. If a counter's limit has

been reached, and the system then tries to add another bit that

uould take the counter beyond its limit, the counter simply

remains at its current value. On the other hand, if adding the

new bit uill keep the counter uithin its range, the counter is

updated. Eight-bit counters, having a range of _127, should be

sufficient for many applications. Thus, if the limits of the

9

counters are not exceeded, the counters at each hard location

will contain a linear combination of those data words for which

the location was activated when the data words were written to

the memory.

l_hen a read operation is performed at an address y, then,

separately for each bit position i in the data words, the

values stored in the i th counters of all of the activated hard

locations are sent to an accumulator and added. Each of these

sums is then compared to a threshold value, and if a sum is

greater than the threshold, a 1 is recorded for that coordinate.

Otherwise, a 0 is recorded. These l's and O's form an

m-dimensional binary vector which is the result of the read

operation.

Kanerva (1988) showed that if a word is written at address

x, and if a read operation is later done at address y near to

x in Hamming distance, then many of the hard locations which had

been activated by the write operation at x will also be

activated by the read at y. Conversely, for a data word stored

at an address more distant from y, few or none of the hard

locations to which it was written will be activated by the read

at y. As a result, the vector of sums computed during the read

operation (at address y near x) will contain many copies of

the data word written at x, one copy for each of the hard

locations activated by both x and y, along with "random noise"

due to small numbers of copies of other data words written at

more distant addresses. (This will be expressed mathematically

in a later section.) Consequently, if x is the only write

10

address near y, then the binary vector resulting from the read

operation at y will be close to the data word originally stored

at x. Because of the random noise, some of the bits may not be

recovered correctly; however, since the memory system is designed

to work with approximate information, its goal in many

applications will be achieved if it can recover most of the bits

in the stored data word.

Kanerva (1988) computed the expected number of hard

locations activated by both a write at x and a read at y, as a

function of n, r, and d(x,y). Since the region of activation

for x is a sphere of radius r centered at x, and the region

of activation for y is a similar sphere about y, the hard

locations activated by both x and y are those whose addresses

fall in the intersection of the two spheres. This region will be

called the access overlap. Kanerva (1988) derived a formula for

the volume of the intersection of two such spheres, that is, the

number of points of S lying in the intersection. Since the

hard locations are randomly distributed, the expected number of

hard locations in the intersection is proportional to the volume

of the intersection. Some representative values of this expected

number are given in Table 1 below.

The performance of the Sparse Distributed Memory may be

judged by its ability to recover a stored word with some degree

of accuracy when we read from the memory at an address near to

the address at which the word was written, under the assumptions

that a certain number of other words have been written to the

memory at other addresses, and that the memory has a given number

11

of hard locations. Thus it is clear that for the system to

perform well, the access overlap must be large if d(x,y) is

small, and small if d(x,y) is large. (Rich distances are

"small" and which are "large" may depend on the particular

application.) Some estimates of memory capacity and signal-to-

noise ratios will be derived in a later section.

A limitation on the performance of Kanerva's design is

imposed by the fact that if the read address is more than a small

distance from the write address of the stored data word thatis

to be recovered, there is a substantial decrease in the size of

the access overlap, as can be seen from Table I. Consequently,

it may be difficult to recover the data word if the address is

not accurately known, and if many other data words have been

written to the memory. It would be better to have an even

greater access overlap for small d(x,y) and a smaller access

overlap for large d(x,y), so that the signal-to-noise ratio

would be improved. We will see that the new design has these

properties. Another disadvantage of Kanerva's design is that

computing the _amming distance for each hard location involves

summing a large number of bits, an operation that requires

specially designed hardware if it is not to be very time-

consuming.

The Computer Systems Laboratory at Stanford University has

constructed a small-scale prototype of Kanerva's Sparse

Distributed Memory, referred to below as the Stanford prototype.

It is described in Flynn et al. (1988). Two possible hardware

embodiments of the selected-coordinate design will be described

12

below. Since their architecture is similar in some respects to

that of the Stanford prototype, I will give a brief description

of it here.

The Stanford prototype uses 256-bit addresses and 256-bit

data words. It will hold up to 8192 hard memory locations, with

256 eight-bit counters for each hard location. The addresses of

the hard locations may be set by the user. The address decoding,

that is, determining which hard locations to activate, is done by

a custom-designed address module. During a read or a write

operation, it computes the 256-bit Hamming distance between the

refere,ce address -- that is, the read or write address -- and

the address of each hard location, one at a time, and compares

that distance to a given radius. There is a specially designed

set of adders to compute the Hamming distance sum quickly. If

the Hamming distance is less than or equal to the radius, which

means that the hard location is to be activated, a 13-bit tag

identifying the hard location is sent to a tag cache, a buffer in

the address module that holds the tags of the activated hard

locations until the data in their counters can be processed.

The process of updating the counters for the activated hard

locations during a write, or accumulating the data in those

counters during a read, is done by a stack module, which contains

the counters, Consisting of 256 bytes of memory for each hard

location, and a processor to do the additions. Since the stack

module receives tags from the tag cache, it can begin working

while the address module is continuing to determine which

locations should be activated. If the tag cache becomes full (an

13

unlikely event), the address module must pause until the stack

module can catch up.

There is a control module that sends commands and data to

the other modules, and there is also an executive module, which

functions as a user interface. The overall arrangement of the

modules is shown in Figure I.

The Stanford prototype is designed to perform a read or a

write operation in about 1/50 of a second.

THE SELECTED-COORDINATE DESIGN

I will now describe a different design for a Sparse

Distributed Memory system, which I call the selected-coordinate

desigs. Compared to Kanerva's design above, the new design can

be built with simpler address decoders that operate faster and

require fewer connections with other parts of the system. Int

addition, the new design has better performance than Kanerva's

design, due to the fact that when x is near to y, the expected

number of hard locations activated by both x and y is greater

than in Kanerva's design, while for x and y farther apart the

expected number of activated locations is about the same, or

somewhat less. (See Table 1 below.) Thus, we will see that the

new design is better able to recover a stored word when reading

at an address near to where the word was written to the memory.

In a Sparse Distributed Memory, a memory location may be

activated by any of a number of different read or write addresses

(points in S). Hence, any memory location may be described, or

represented, by specifying the subset of S consisting of those

14

addresses that would activate the location. We saw above that in

Kanerva's design these subsets are spheres centered at points in

S. The new design differs from Kanerva's design in the way in

which the subsets of S representing memory locations are

defined. These subsets will not be centered at points in S, as

they are in Kanerva's design. Other features of the new design,

such as the counters at the hard locations and the way in which

they are written to and read from, will remain the same as in

Kanerva's design.

To describe the new design, I will designate a large

collection of subsets of the space S, each containing a certain

proportion of the points in S, say about 1/1000 of them. Each

of these subsets will represent a potential memory location, in

the sense that the subset is the set of all addresses in S that

would activate that location. A certain number of these

potential memory locations, say, one million, are chosen at

random and implemented as the hard locations. I will also assume

that n, the dimension of S, is 1000, so that the number of

points in S is 21000. Each of the above numbers could of

course be varied. Since Kanerva (1988) used these numbers in

some of his examples, their use here will facilitate comparison

of the two designs.

I will define a subset of S as follows: Select any ten of

the n = 1000 coordinates, for example, the 37 th, the 152 rid, and

so on. Assign a value of 0 or 1 to each of the ten selected

coordinates, say, 1 for Bit 37, 0 for Bit 152, and so on. The

subset defined is then the set of all points (binary vectors) in

15

S such that, for all ten of the selected coordinates, the

corresponding components of the vector agree with the respective

assigned values for the selected coordinates; the values of the

bits for the other 990 coordinates are free to be either 0 or 1.

In the example above, the subset is the set of all binary vectors

in S whose 37 th bit is 1 and whose 152 nd bit is O, etc. This

subset represents a potential memory location, in the sense that

the memory location would be activated by any address in the

subset.

Thus a subset of this kind is defined by giving its ten

selected coordinates and the ten corresponding assigsed val_es.

The number of such subsets is

(approximately 3x1026), where the first term is the number of

ways of selecting ten coordinates out of 1000, and the second

term is the number of ways of assigning values of 0 or 1 to each

of the ten selected coordinates. These subsets are isomorphic to

one another in the sense that they can be mapped onto one another

by permuting the order of the coordinates and interchanging the

values 0 and 1 on the individual coordinates. Each of these

subsets represents a potential memory location in the new design.

A certain number of them are chosen at random to be implemented

as hard locations. (Each of these randomly chosen subsets will

most likely be based on a different set of ten selected

coordinates.)

Each such subset contains 2990 points, which is 1/1024

16

of the entire space S. Note that the number of selected

coordinates is ten, so that each memory location would be

activated by 1/1024 of the addresses in S. If we wanted each

subset to contain some other proportion of S, such as 1/2 q of

S, we would define the memory locations by selecting q

coordinates to be given assigned values, instead of ten.

For a given read or write address, that is, a point in S,

the class of potential memory locations activated by it (when

reading or writing at that address) is represented by the class

of subsets of S of the kind defined above that contain the

point, k subset of this kind contains the given point if and

only if, for all ten of the selected coordinates which define

that subset, the coordinates of the point agree with the assigned

values. In other words, a memory location is activated by this

address if the assigned values for all ten of its selected

coordinates match the corresponding components of the given

address. The number of potential memory locations activated by a

given address is therefore

since this is the number of ways of selecting ten coordinates

with which to define a subset. Once the ten coordinates have

been selected, there is only one way to assign values to them so

that they all agree with the given address. This number is

1/1024 of the total number of potential memory locations. If

there are one million hard locations selected at random, the

expected or average number of hard locations activated by an

17

address is 1,000,000/1024 = 976.56. The actual number will

vary, but will be between 945 and 1008 for the majority of the

addresses in S.

We have a kind of duality here: Each memory location

corresponds to a subset of S (those addresses that activate the

location), and each address in S corresponds to a subset of

memory locations (those locations that are activated by the

address). In Kanerva's design, a subset of the first kind is a

sphere in S with Hamming radius r centered at the address of

a memory location, while a subset of the second kind is a sphere

with the same radius, but centered at a read or write address.

In the new design, these two kinds of subsets are very different

from each other because they are subsets of different sets. In

either design, however, the access overlap for two addresses is

the intersection of two subsets of the second kind.

In Kanerva's design it is obvious that the number of

addresses that activate a given memory location is the same as

the number of potential memory locations that are activated by a

given address. In the new design these numbers cannot be

compared directly. But we can compare proportions: We saw above

that in the new design each subset of the first kind contains

1/1024 of the points in S, and that each subset of the second

kind contains that same proportion of the set of potential memory

locations. This equivalence is true more generally, as I will

now show.

In any design for a Sparse Distributed Memory, we have a set

S of addresses, indexed by x, and a set M of potential memory

18

locations, indexed by p. As above, each memory location p

corresponds to a subset of S (the addresses that activate p),

and each address x corresponds to a subset of M (the memory

locations activated by x). Define the following:

Let k(x,p) = I if the address x activates the memory

location p; if it does not, let A(x,p) = 0.

I
Let Px = _f_ _ A(x,p) be the proportion of memory

locations that axe activated by the address x.

I
Let Qp = _S_'_ A(x,p) be the proportion of addresses that

xcS

activate the memory location p.

In both Kanerva's design and the new design, Px has the

same value P for a11 x, and Qp has the same value Q for

all p. This may not be true for other designs.

The overall average of k(x,p) is

1 I

X
xp x

I V

= = ave
p P

That is, the average of the Px equals the average of the Qp.

In other words, if in a "typical" read or write operation the

address activates, say, 1/1000 of the memory locations, then a

"typical" memory location will be activated about once in every

thousand read or write operations. If all Px = P and all qp =

q, as in the two designs considered here, then P = Q.

Given two addresses x and y with Hamming distance

d(x,y) between them, we need to know the size of the access

19

written at

read at y

and y.

overlap, that is, the number of potential memory locations

activated by both addresses. The expected number of hard

locations activated by both addresses is proportional to this

number. If x is a write address and y is a read address,

then, as in Kanerva's design, the number of copies of the word

x that will be contained in the sums computed by a

is the number of hard locations activated by both x

A memory location will be activated by both x and y if

and only if both x and y agree with the assigned values for

all ten of the selected coordinates which define that memory

location. But this can happen only if x and y agree with

each other on each of those ten coordinates. In other words, all

of the location's selected coordinates must be among the

coordinates on which x and y agree, and for each of those

selected coordinates the assigned value must agree with the

common value of x and y. For example, with the numbers used

above, if x37 = Y37 = I, x152 = Y152 = 0, etc., then the memory

location defined by: Bit 37 = I, Bit 152 = 0, etc. would be

activated by both x and y. The number of potential memory

locations activated by both x

If d(x,y) = d, then x and y

agree on 1000 - d coordinates.

and y may be found as follows:

differ on d coordinates and

If a potential memory location

is activated by both x and y, all ten of the selected

coordinates defining it must be among the 1000 - d coordinates

on which x and y agree. The number of ways in which ten

coordinates can be selected so that x and y agree on all of

20

them is therefore

the number of subsets of size ten that can be chosen from a set

of size 1000 - d. As for the assigned values, if a memory

location is to be activated by both x and y, the values

assigned to its selected coordinates must agree with the

corresponding components of x and y. Therefore, one and only

one potential memory location defined by a given set of ten

selected coordinates on which x and y agree can be activated

by both x and y, so the number above is the number of

potential memory locations activated by both x and y.

The expected number of hard locations in the access overlap,

that is, the expected number activated by both x and y, may be

found by multiplying the number above by the ratio of the number

of hard locations to the total number of potential memory

locations. If there are one million hard locations, this

expected number is:

1.000.000 i0 -d = 976.56 x

 ooo.• •
Some examples are given in Table I below.

COMPARISON OF THE SELECTED-COORDINATE DESIGN TO KANERVA'S DESIGN

The new design can be constructed with simpler hardware than

can Kanerva's design. One way to implement either design is to

have an address decoder for each hard location, as was described

above for Kanerva's design. These address decoders would

21

simultaneously determine whether each location is to be

activated. For the new design, the address decoder for each hard

location would have ten inputs from the area where the current

read or write address is stored, one for each of the selected

coordinates defining that location. The decoder would compare

the value of each of the ten inputs with the respective assigned

value for that selected coordinate; if all ten match, the

location would be activated. Thus the address decoder is simply

a device to compare the ten address bits with the assigned value

bits, followed by an "AND" gate whose inputs are the results of

the ten comparisons. Since the complexity and speed of these

address decoders do not depend on the value of n, the same

address decoders could be used in a memory system with any value

of n, no matter how large. In KanervaWs design, however,

assuming n = 1000, each address decoder would have 1000 inputs,

from which it must compute a Hamming distance, an operation that

involves comparing and adding 1000 bits. The address decoders in

the new design, therefore, are simpler, work faster, and have

fewer input connections. Also, we will see that the possible

hardware embodiments of the new design, described below, are

simpler in some respects than the Stanford prototype.

The following table compares the size of the access overlap

for the new design to that for Kanerva_s design, for selected

values of d(x,y). I assume that n = 1000, that there are one

million hard locations in each design, and that in Kanerva's

design the radius of the spheres is 451, since the volume of a

sphere with this radius is approximately 1/1000 of S. The

22

numbers in the middle column of the table are taken from Table

7.1 in Kanerva (1988), p. 63. The numbers in the third column

are computed from the formula above.

TABLE1

Exuected number ofh_d locations activated bv both x and x

_aaerva's _ New

0 I000 977

1 894 967

I0 743 883

50 445 583

I00 267 339

150 162 191

200 97 104

300 30 27

400 7 6

500 I 0.91

To compare the performance of the two designs, I will make

some assumptions so that I can compute approximate memory

capacities and signal-to-noise ratios for each design. Although

these assumptions may be simplistic, a comparison of the numbers

obtained for the two designs under the same conditions will give

us an idea of their relative performance. I will assume that

both designs are constructed using the parameter values on which

Table 1 is based.

Assume that the data in a "training set" have been written

23

to the memory. The training set consists of t write addresses

Xl, x2, • • , xt and an m-bit data word for each address.

These data words are written to the memory by the method

described above: The counters in the activated hard locations

are incremented or decremented according to whether the

corresponding data bit is 1 or O. No "retraining" of the memory

to improve its response is done. The number of words written to

the memory might be in the thousands or tens of thousands:

Kanerva (1988), Keeler (1988), and Chou (1988) have studied the

memory capacity of Kanerva's design, assuming large n and a

large number of hard locations. They give formulas for the

approximate number of data words that can be stored in the

memory, under some assumptions of randomness.

Suppose that we are reading at address y, and that there is

one and only one address, say xI, near y, at which a data word

was written. The goal is to recover the data word written at

x1. I will also assume that all of the other write addresses are

randomly scattered about S, and that the data words written to

the memory are random. These assumptions will be made more

precise below. If a point in

expected distance from y is

probability its distance from

S is chosen at random, its

n/2 = 500, and with very high

y will be in the range 450 to

550. Thus I will assume that for all of the write addresses

except Xl, their distance from y is in that range.

We can see from Table 1 that when we read at y, each of the

write addresses, other than x 1, has a very small access overlap

with y. Thus, when the contents of the counters of the

24

activated hard locations are summed, the contributions to the

sums of the counters due to the data words written at those other

addresses will be only a few copies, if any at all, of each of

the words written at those addresses. The word written at xI

will of course be included in these sums many times, once for

each hard location in the access overlap of xI and y. Thus,

when we compute these sums and compare them with appropriate

threshold values, we should recover most of the individual bits

of the word written at xI. We may not recover all of the bits

correctly, because it may happen that for a small proportion of

the coordinates, the "random noise" will overwhelm the multiple

copies of the correct value, and we will lose those bits. But,

in many applications, it is sufficient to recover most of the

bits correctly, if we are given only approximate retrieval

information, that is, the address y.

If y is very close to Xl, that is, if d(Xl,Y) is

considerably less than SO, then in either design the access

overlap is so large that we should be able to recover the stored

word accurately, even in the presence of a large amount of noise.

On the other hand, if d(Xl,Y) > 200, the access overlap is

small, and about the same, in both designs, so if t is large it

will be difficult to recover the stored word accurately. Kanerva

(1988) showed that for his design, under some assumptions similar

to those made here, a distance of 200 between x 1 and y is

nearly the outer limit for recovering the word stored at x 1 by

reading at y. Since his argument is based on the size of the

access overlap as a function of the distance between x and y,

25

Table 1 shows that a similar argument holds for the new design.

So I will compare the designs for d(Xl,Y) _ 200.

To compare the designs, it will simplify matters if I assume

that the write addresses x i and the read address y are given,

with y near x 1 and approximately 500 away from the other x i.

There are two remaining sources of random fluctuation: the bits

in the data words, which I will assume are random, and the random

sample of potential memory locations to be implemented as hard

locations.

It should be noted that there are many possible ways to

construct a probability model for this process. A more realistic

approach might be to think of the read address y as a noisy

approximation of the "target" address x 1, and therefore to treat

y as a random vector, rather than as fixed. Thus, in order to

analyze the situation where y is a given distance d from x 1,

we could assume that y has a uniform probability distribution

over the set of points in S that are a distance d from x 1.

Computing the variance of the noise in such a model would be more

complex than under the assumptions made here. In constructing a

probability model, there is the general question of which factors

to consider fixed and which to consider random. For example, we

might consider the choice of hard locations to be fixed, since in

practice they would be fixed in advance. The same could be said

for the data words, since they would already have been written to

the memory. The assumptions made above will allow the

computations to be relatively simple, and should give us a valid

comparison of the two designs, even if the actual numbers derived

26

for each design are only rough approximations.

Consider one of the m bit positions in the data words.

Since the data in each of these bit positions is processed

separately, the same analysis would apply to each bit position.

For each data word, define a random variable Bi corresponding

to the bit in the i th data word in the bit position under

consideration as follows: If the bit in the i th data word is

1, let Bi = 1, and if the bit is O, let Bi = -1. These values

correspond to incrementing or decrementing the counters when the

word is written to the memory. I will assume that P(B i = 1) =

P(B i = -1) = 0.5, so that E(Bi) = O. I also assume that each

Bi is independent of the other Bj (j # i), that the values of

the Bi are unrelated to the write addresses or to the read

address, and that the Bi are independent of the random choice

of hard locations. Since the goal in reading at y is to

recover the data bit represented by B1, we can assume that B1

is fixed.

For each write address x i, let the random variable Li be

the number of hard locations in the access overlap of x i and

y. The expected value h i of Li is a function of d(xi,Y),

depending on the design; the formulas derived below apply to both

designs, except that the values of the _i are different for the

tvo designs. (Table 1 gives values of _i for each design.)

Since the hard locations are chosen at random, and h i is small

compared to the total number of hard locations, the distribution

of Li is very close to a Poisson distribution. We can

therefore approximate the variance of Li by Var(Li) = E(Li) =

27

-hi, from which it follows that

E(Li_) = Var(Li) + [E(Li)]2 = h i + _i 2

Since the read and write addresses are assumed to be fixed, it

follows from the assumptions above that each of the Bi is

independent of all of the Li.

When we read at y, the contents of the counters at the hard

locations activated by y are summed. Let _ be the sum of the

counters at the activated locations for the bit position under

consideration. Since the counter at each of those locations

contains the sum of the Bi corresponding to the x i that

activated that location, it follows that for each i, the value

Bi occurs in the sum _ once for each hard location activated

by both x i and y. Therefore,

t

= _ LiBi
i=l

See Kanerva (1988), p. 67.

Since the goal is to recover B1, which is assumed to be

fixed, we can rewrite the sum as

t

= L1B1 + _ LiBi
i=2

t

= _IB1 + (L1 -]I)B1 + _ LiBi •
i=2

In the last expression above, I will regard _IB1 as the sig,al

(_1 is the expected number of copies of B1 in _), and the

other terms, _hich contain the random variables, as the noise.

28

The first noise term is due to the uncertainty in the number of

copies of B1 in Z, and the other noise terms are due to the

other data words.

We can now compute the expected value and the variance of

the noise. The derivation is similar to that given by Chou

(1988). Since E(L1) = 41 and B1 is fixed, we have

E[(L 1 - 41)81] = O; since for i > 1, Bi is independent of Li

and E(Bi) = O, we have E(LiBi) = E(Li).E(Bi) = O. So the

expected value of the noise is O.

The variance of a sum is the sum of the variances and the

covariances of the summands. First I will show that under the

above assumptions all of the covariances are O. Since B1 is

fixed and the other Bi are independent of each other and of all

of the Li, we have, for 2 _< i _< t,

Cov[(L 1 - ,_1)BI, LiB i]

= E[(L1 - _I)BILiBi] - E[(L1 - _I)BI].E(LiBi)

= E[(L1 - /I)BILi]-E(Bi) - 0.0

= 0 .

And for 2 < i < j < t,

Coy(LiB i,LjBj)

= E(LiBiLjBj) - E(LiBi).E(LjBj)

= E(LiLj).E(Bi).E(Bj) - 0.0

=0

So the variance of the noise is the sum of the variances of the

noise terms. First, since I]I= _I, Var[(Ll - _I)BI] = _I" And

for 2 _< i _< t,

29

Var(LiBi) = E(Li2Bi 2) - [E(LiBi)]2

= E(Li2-1) - 0

= _i + _i2 '

since Bi2 is always 1. Therefore, the variance of the noise is

t

h i + _ (hi + _i 2)

i=2

If d(xi,Y) = 500, then, using the values in Table I, we see

that for Kanerva's design, hi + _i2 = 2, and for the selected-

coordinate design it is 1.74. Since I am assuming that for 2 _<

i _<t, d(xi,Y) is near 500, and since for both designs hi in

this range is a gradually decreasing function of the distance, I

will approximate hi + _i2 by 2 for Kanerva's design and by 1.74

for the new design. This will result in a slight underestimate

of the variance of the noise for both designs. (See](eeler,

1988, and Chou, 1988, for more detailed treatments of the

variance of the noise.) The approximate variance of the noise

for Kanerva's design is then

_1,k + 2(t - I) ,

and for the new design it is

_l,s + 1.74(t - 1)

The subscripts k for Kanerva's design and s for the selected-

coordinate design indicate that the value of _1 is different

for the two designs.

If

After E is computed, it is compared to a threshold value.

E is above the threshold, the data bit recovered by the read

3O

operation is a 1; otherwise it is a O. Since E is the sum of a

constant, _IB1 , plus a sum of uncorrelated noise terms, the

distribution of E is approximately normal with mean _IB1 and

variance as given above. Therefore, for a given threshold value,

we can use the normal distribution to find the approximate

probability of correctly recovering the data bit represented by

B1. I will use 0 as the threshold value so that the probability

of recovering the data bit correctly is approximately the same,

whether B1 is 1 or -1. For example, if d(Xl,Y) = 100 and if

we assume that B1 = 1, then, for Kanerva's design, E is

approximately normally distributed with mean 267 and variance

267 + 2(t - 1). Therefore,

Z = _ - 267

267 + 2(t - I)

is approximately a standard normal random variable (mean 0 and

variance 1), and Z > 0 is equivalent to

-267
Z>

4_267 + 2(t - 1)

Thus, for a given number, t, of stored data words, the

probability of correctly recovering B1 under the conditions

above is the probability that Z satisfies this inequality.

Conversely, if we want the probability of recovering B1 to

be, say, 992 when d(Xl,Y) = 100, we can compute the maximum

value of t for which, under the conditions above, this

probability will be at least 99Z. Since Z is approximately

normal, we have P(Z > -2.33) _ 99Z. Therefore, we need to find

the value of t for which the right side of the inequality above

31

is -2.33. Solving for t in the equation

= -2.33 ,
-267

267 + 2(t - 1)

we find t k _ 6,433 data words.

If we do the same computations for the new design, we have

Z = Z - 339

4 339 + 1.74(t - I)

and if we solve for t in the equation

-339 = -2.33 ,

4 339 + 1.74(t - 1)

we find t s _ 11,972 data words. This is 86Z more than the

value found above for Kanerva's design. In other words, under

these conditions, if the new design has 86_ more stored data

words than Kanerva's design, the two designs will have the same

probability of recovering a data bit.

We can define a signal-_o-noise ra_io as the size of the

signal, _1' divided by the standard deviation of the noise. If

t is large, we can simplify the formulas by omitting the first

term in the variance expressions above; although doing this will

somewhat underestimate the noise for both designs, we _ill still

have a fair comparison of the two designs. The approximate

signal-to-noise ratio for Kanerva's design is then _l,k/_, and

for the new design it is 21,s/_.

As stated earlier, I want to compare the designs when

d(Xl,Y) < 200. For example, if d(Xl,Y) = 50, the approximate

signal-to-noise ratio is 445/_ = 315/_ for Kanerva's design

and 583/_TT4T = 442//_ for the new design, an improvement of

32

40Z for a given t. Another way to express this comparison is to

compute the relative number of data words that can be stored in

the memory so that the signal-to-noise ratio is the same for both

designs, if we store tk words in Kanerva's design and ts

words in the new design, and set their signal-to-noise ratios

equal to each other, we have

315 442

and we find that ts = 1.97tk. That is, the new design can store

97Z more data words than can Kanerva's design, with the same

signal-to-noise ratio when d(Xl,Y) = 50.

Repeating the above computations for d(Xl,Y) = I00, we find

signal-to-noise ratios of 189/_ and 257/_/_ for the two

designs, an improvement of 36Z for a given t. Setting these

ratios equal to each other, we find that ts = 1.85tk, so the new

design can store 85Z more data words than can Kanerva's design

and achieve the same signal-to-noise ratio. (This is very close

to the 86Z figure obtained above, which is a more accurate figure

for the particular assumptions under which it was computed.)

For d(Xl,Y) = 150, the signal-to-noise ratios are I15/_/_

and 145/_', an improvement of 26Z, from which we find that ts =

1.59tk, so the new design can store 59Z more data words with the

same signal-to-noise ratio.

Finally, for d(Xl,Y) = 200, the signal-to-noise ratios are

69/_/_ and 79/_/_,an improvement of 14Z, from which we find that

ts = 1.31tk, so the new design can store 31Z more data _ords _ith

the same signal-to-noise ratio. For distances beyond 200 and for

33

large t, it will be difficult for either design to recover

stored data words accurately.

POSSIBLE HARDWAREEMBODI_NTS

I will now describe two possible hardware embodiments of the

selected-coordinate design. Certain parts of their architecture,

such as the stack module and the tag cache, are similar to the

Stanford prototype, described above, that has been built to

implement Kanerva's design.

As we saw earlier, either of the Sparse Distributed Memory

designs above could be implemented by having an address decoder

for each hard location. During a read or a write operation,

these address decoders would function simultaneously, each

determining whether its location is to be activated. The address

decoding would thus be done very quickly. In practice, however,

it would be expensive to include so many such units in the

system, and for many applications adequate speed could be

attained by having one or more specially constructed units to

perform the address decoding for the hard locations one at a

time. Each of the embodiments described below has one such unit,

called an address modsle, for this purpose. _owever, either of

these embodiments could include several identical address

modules, each working in parallel on a different subclass of the

hard locations. The address decoding could then be done faster,

or more hard locations could be handled in the same amount of

time.

The new design cannot be run on the Stanford prototype

34

because the new design is based on a different method for

determining which hard locations are to be activated. In the new

design, a hard location is indifferent to the values of most of

the bits in the read or write address, lore importantly, each

hard location is indifferent to a different subset of the address

bits. The Stanford prototype does not provide for computing the

Hamming distance based on a different subset of the address bits

for each hard location. (The Stanford prototype does allow for a

"global" mask, so that a given subset of the 256 address bits can

be used in a read or a write operation, but that subset must

remain the same throughout the operation. The new design

requires that a different subset be used for each hard location.)

The overall arrangement of the modules in the two

embodiments of the new design is similar to that in the Stanford

prototype, and is shown inFigure 1. The executive module is the

user interface to the Sparse Distributed Memory. It consists of

a computer workstation, with software allowing the user to define

the selected coordinates and assigned values for the hard

locations, write to and read from the memory, and perform various

debugging operations.

The memory system itself contains three modules. The

address module, the key element in each of the two embodiments

herein, is designed differently in each case; these designs will

be described in detail below. The stack module in each

embodiment, consisting of a processor and a large amount of

memory for the counters, is like the one in the Stanford

prototype, and would function in the same way. The control

35

module receives commands and data from the executive module,

sends data to it, passes tags from the tag cache to the stack

module, and generally controls the functioning of the address and

stack modules.

The address module for the first embodime,t of the new

design is shown in Figure 2. As in the Stanford prototype, a

clock unit contains a clock generator, various registers, and a

tag counter, which acts as a pointer to the hard locations.

During a read or a write operation, the tag counter is

successively incremented so that it points to each of the hard

locations in turn. A hard address unit stores the addressing

information -- the selected coordinates and their assigned values

-- which defines each of the hard locations. A logic unit

compares the refere,ee address (the read or write address) to the

information defining each hard location, one location at a time,

and determines whether that location is to be activated. As

explained earlier, a location is activated if the assigned values

for all of its selected coordinates agree with the corresponding

bits in the reference address. If a location is to be activated,

a tag identifying the hard location (the tag is the current value

in the tag counter) is stored in a tag cache, which is a buffer

like the one in the Stanford prototype. These tags are then sent

to the stack module, where the data in the counters is processed.

The tag cache is not an essential part of the design, but it

enables the system to function more efficiently.

I will assume that this embodiment uses 256-bit addresses

and has 8192 hard locations, like the Stanford prototype,

36

although these numbers could be varied.

The information defining each hard location is stored in the

hard address unit as two 256-bit words, one in each half of that

unit. The first word for each hard location contains the

assigned values for the selected coordinates, in the positions

corresponding to those selected coordinates; the other bits in

this word may have any values. The second word acts as a mask:

It has a 1 in the position corresponding to each selected

coordinate, and all of the other bits are O's. _ence the hard

address unit must have 64 bytes of memory (512 bits) for each

hard location, twice the amount used in the Stanford prototype.

Although this method of storing the information is a somewhat

inefficient use of memory space, it allows us to have a

relatively simple logic unit. The tag counter has a line to each

half of the hard address unit, so that it can point

simultaneously to both parts of the information defining a hard

location.

The logic unit works as follows: At the beginning of a read

or a write operation, a 256-bit reference address register (which

could be constructed as in the Stanford prototype) receives the

reference address from the control module. Then, for each hard

location, the follo_ing steps are performed: An array of logic

elements performs a 256-bit exclusive-or (XOR) of the reference

address and the word from the first half of the hard address

unit, _hich contains the assigned values for the selected

coordinates of the hard location pointed to by the tag counter.

Then another logic array performs a 256-bit logical AND of the

37

result of the XOR and the word from the second half of the hard

address unit, the mask containing l's at the positions of the

selected coordinates for that hard location.

The resulting 256 bits have the following values: If a bit

position is not a selected coordinate, the bit is a 0 (due to the

AND). If a bit position is a selected coordinate, then the bit

is a 0 if the corresponding bit in the reference address agrees

with the assigned value, and the bit is a 1 if they disagree (due

to the XOR). It follows that the hard location is to be

activated if and only if all 256 of the resulting bits are O's.

8he way to test the 256 bits for all O's is to send them to a

two-stage array of logic elements. The first stage consists of

16 elements, each having 16 inputs. Each element sends a 0 to

the second stage if and only if all of its inputs are O's;

otherwise it outputs a 1. The second stage consists of one

element just like the elements in the first stage; it outputs a 0

if all 16 of its inputs are O's. If the output of the second

stage is a O, indicating that the hard location is to be

activated, the location's tag is stored in the tag cache. Then,

whether or not the hard location is activated, the tag counter is

incremented and the logic unit proceeds with the next hard

location.

This address module can run somewhat faster than the one in

the Stanford prototype, because the latter must compute the sum

of the 256 bits resulting from the XSR of the reference address

and each hard location address, whereas the module above simply

performs a logical AND, and tests the 256 bits for all zeros.

38

For clarity, a few counters, logic elements, and data lines

are not shown in Figures 2 or 3. For example, there must be a

line from the control module to the hard address unit so that the

information defining the hard locations can be sent to that unit;

counters and logic elements to control the tag cache; and a line

to signal that the tag cache is full.

Many applications may require addresses that are longer than

256 bits. The architecture of the embodiment described above

could be modified so that longer addresses can be used, but the

hard address unit and the logic unit would require

proportionately more hardware. For example, to allow for 512-bit

addresses, about twice as many components would be needed for

those units.

The secosd embodime,t of the new design, whose address

module is shown in Figure 3, can be used in applications where

the addresses are very long binary words. Addresses consisting

of many thousands of bits might be required, for example, in

cases where the addresses represent complex visual or auditory

information. In the description given below, it is assumed that

the reference addresses can consist of as many as 215 = 32,768

bits, although this number could be varied. (Note that the

number of counters per hard location in the stack module need not

be the same as the number of bits in the addresses; although in

principle we can have any number of counters per hard location,

to implement 32,768 counters per hard location would require a

huge amount of memory.)

The underlying principle of the second embodiment is the way

39

in which the information defining the hard locations is stored in

its hard address unit. A hard location is defined by giving its

selected coordinates and their assigned values. If the addresses

are 32,768-bit words, a coordinate (a bit position) may be

indicated by a number between 0 and 32,767, which may itself be

represented by a 15-bit binary number. Therefore, a selected

coordinate, together with one bit for its assigned value, may be

represented by a 16-bit word, which can be stored in two bytes of

memory. Thus, assuming ten selected coordinates per hard

location, each hard location requires 20 bytes of memory in the

hard address unit, compared to 64 in the first embodiment.

Packing the assigned value bit with the number of the selected

coordinate in this way is of course not necessary, but it is

convenient.

As in the first embodiment (and the Stanford prototype), a

tag counter steps through the hard locations, and a logic unit

determines whether each location is to be activated, one location

at a time. Components of the address module not described here

are assumed to be like those in the first embodiment.

The logic unit is a processor that does the following: At

the beginning of a read or a write operation, it receives from

the control module the length n of the reference address (up to

32,768 bits), the number of selected coordinates per hard

location (up to ten in this example, although the number could be

greater), and the reference address. The logic unit stores the

reference address in a set of internal memory locations, one bit

per location, so that it will have direct access to each bit.

4O

(These internal locations could be wired directly to the control

module.)

The logic unit then performs the following steps for each

hard location: For each selected coordinate, it receives the two

bytes from the hard address unit giving the number of that

selected coordinate and its assigned value. It shifts this

two-byte word one bit, to separate the bit for the assigned value

from the number of the selected coordinate. The latter is used

as an internal address to retrieve the corresponding bit in the

reference address. This reference address bit is then compared

to the assigned value bit. If these bits are equal, the logic

unit repeats the above steps with the next selected coordinate

for that hard location, and then the next, and so on, as long as

the bit in the reference address corresponding to the selected

coordinate is equal to the assigned value bit. If the bits match

for all of the selected coordinates, then the hard location is to

be activated; in that case its tag is stored in a tag cache, as

in the first embodiment. However, if for any selected coordinate

the bits are unequal, that hard location will not be activated,

so the logic unit immediately proceeds to the next hard location.

We can now make a rough estimate of the relative speed of

the first and the second embodiments of the new design. Assuming

that the selected coordinates and their assigned values are

chosen at random, we can see that the logic unit in the second

embodiment will eliminate most of the hard locations after

checking only a few of the selected coordinates: Half of the

hard locations _ill be eliminated on the first selected

41

coordinate, half of the remaining ones on the second, and so on.

Only a very small proportion of the hard locations must have all

ten of their selected coordinates checked. In fact, the average

number of selected coordinates that must be checked per hard

location is slightly less than two.

In the first embodiment theaddress module performs

approximately seven basic steps for each hard location, while in

the second embodiment the address module must perform about the

same number of steps for each selected coordinate for each hard

location. Therefore, since the logic unit in the second

embodiment checks an average of two selected coordinates per hard

location, the second embodiment will take about twice as long as

the first to perform a read or a write operation. (If greater

speed is desired in either embodiment, it could have two or more

logic units, operating in parallel on different subclasses of the

hard locations.) On the other hand, the second embodiment can

handle much longer addresses than can the first, and it requires

less memory space in its hard address unit.

Compared to the Stanford prototype, the first embodiment of

the new design requires a larger hard address unit, but it would

operate faster. The second embodiment allows for much longer

addresses, but without a proportionate increase in the hardware

needed. It should operate at a speed comparable to that of the

Stanford prototype.

42

REFERENCES

Chou, P. A. (1988). The Capacity of the Kanerva Associative

Memory. Submitted to I££E Transactions on Information Theory.

Flynn, M. J., Kanerva, P., Ahanin, B., Bhadkamkar, N.,

Flaherty, P., _ Hickey, P. (1988). Sparse Distributed Memory

Prototype: Principles of Operation. Technical Report

CSL-TR-87-338, Computer Systems Laboratory, Stanford University.

Kanerva, P. (1988). Sparse Distributedlemory. MIT Press,

Cambridge, Mass.

Keeler, J. D. (1988). Capacity for patterns and sequences in

Kanerva_s SDM as compared to other associative memory models. In

D. Anderson (ed.), Neural Information Processing Systems.

American Institute of Physics, New York.

43

Executive

I I'

Sparse Distributed Memory System

I 1
Control Address

I 'i Ii'l t' ,

[Stack [

J [i
t__ 1

Figure I: Irrangenent of Modules

Executive module:

Control module:

Address module:

Stack module:

A workstation for user interface.

Communicates with other modules and controls

operation of address and stack modules.

Determines which hard locations are to be

activated for a given reference address.

Contains the counters for the hard locations
and a processor to read data from and write
data to the counters.

ow,=l

.l=l

I=0
O

_ _,_ o3

m

=¢
Z

T
I

03
o3

===

o_,=1r-.,,(Q) "_

O3 O

p3
D

'=4
D

L'_

J fI

l '

0

0 0

0

Go

PRECED;;'_G PAGE BLA;_K NOT FILMED

Reference Address Bits

T !
I I I I

• _ _-_t_ _

I I I

. a_
- _

l
I

-_ _._
_ 0_._ _

I

I

m
0

o'3

0

_3

