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ABSTRACT Current research toward real-time fault diagnosis for propulsion systems at the

National Aeronautics and Space AdmlnlstraUon's Lewis Research Center Is described. The

research Is being applied to both alrbreathlng and rocket propulsion systems. Topics Include fault

detection methods Including neural networks, system modeling, and real-time Implementations.

INTRODUCTION

Motivated by the need for high performance and hlgll

reliability aerospace and nuclear power generation systems, many

metllods have been Investigated for improved fault detection. In

this paper the topic of discussion Is restricted to real-time fault

detection where real-time Is delined by the Interaction ol the fault

delectlon logic with control accommodation. Much of the literature
in real-time fault detection has been dlracled to sensors and

actuators and has been summarized by Frank _. Additionally, lault

detection reseamh specifically directed to propulsion systems has
been summarized by Merdll =.

This paper describes current research toward real-time fault

diagnosis for propulsion systems at the National Aeronautics and

Space Administration's Lewis Research Center. This research Is

of Impedance because an analytically-based redundancy approach
can result In substanftal control system cost and weight savings

over a hardware-based redundancy approach In a high

pedormance propulsion system. Research with appllcaUons to

both alrbreathlng and rocket propulsion systems are discussed. In

padicular, this paper first discusses the results ol a program _ to

detect sensor faults In a high-performance turbolan engine using an

advanced algorithm based on analytical redundancy. Next a

program to Integrate traditional rocket control concepts with real °
time fault diagnostic capabilities `=Is described.

SENSOR FAULT DETECTION

The objective ol the Advanced Detection, Isolation, and

Accommodafion(ADIA) program was to Improve demonstrated

reliability of digital electronic control systems for turbine engines by

detecting, Isolating, and accommodating sensor faults using

analytical redundancy methods. The ADIA program was organized
Into four phases: development, Implementation, evaluation, end

demonstration. In the first three phases the algorithm was

designed using advanced tittering and detection methodologies,

Implemented in microprocessor based hardware, and evaluated
using a real-time engine simulation running on a hybrid computer.

In the foudh phase the algorithm was demonstrated on a full scale

F 100 engine in the Lewis Research Center altitude test facility. The

test objective was to demonstrate the predicted performance of the
ADIA algodthm on realistic hardware over a wide range of engine

operating conditions. These conditions Included altitude, Mach
number, and power varlallons.
Alaodthm DescdeUon

The ADIA algorithm detects, Isolates, and accommodates

sensor faults In an FIO0 turbofan engine control system. The

algorithm Incorporates advanced fnterlng and detection logic and Is
general enough to be applied to different engines or other types of

control systems. The algorithm detects two classes of sensor

faults, hard and soft. Hard faults were defined as out-ol-range or
large bias errors that occur *Instantaneously" In the sensed values.
Soil faults were defined as smell bias errors or drift errors that

Increase relatively slowly with time. The ADIA algorithm of Figure 1
consists ol four elements: (1) hard sensor fault detection and

isolation logic; (2) soft sensor fault detection and Isolation logic; (3)

an accommodation filter; and (4) the switch matrix.
In the normal or untalled mode of operation, the

accommodation filter uses the full set of engine measurements to

generate a set of opllrnal estimates of the measurements. These
estimates(Z(t)) were used by the control law. When a sensor fault

occurs, the detection logic determines that a fault has occun'ed.

The isolation logic then determines which sensor Is faulty. This

structural Information Is passed to the accommodation filter. The

accommodation tilter now removes the faulty measurement Irom

further consideration. The accommodation filler, however,

continues 1o generale the full set ot optimal estimates tar the

control. Thus the control mode does not have to restructure tar any

sensor lault. The ADIA algorithm Inpuls as shown In Figure I were

the sensed engine output variables, Z,,(t), and the sensed engine

Input variables, U,(t). The outputs of the algorithm, the eslhnales,

Z(I), of the measured engine outputs, Z,(t), were used as Input to

the propodlonal part of the control. Dudng normal mode operallon,

engine measurements were used In th e Integral control to ensure

accurate steady-state operation. When a sensor fault Is

accommodated, the measurement In the Integral control Is replaced

with the corresponding accommodation filter estimate by

reconfigudng the Interface switch matdx.
AccommodaU0n FIfi(tr. The accommodation filter

Incorporates an engine model along with a Kalman gain update to

genarale estimates of the engine stales X and the engine outputs
Z as follows.

2 = F(X- X_) + G(U - U=) * K¢ (1)

z = H(X- X_) • O(U - Ub), Z, (2)

• _ Z,. - Z (3)

Here the subscrlpt b represenls the base point(steady-state engine
operating point) and X ts the model stale vector, U_ the sensed

control vector, and Z., ls the sensed output vector. The matdx K Is

the Kalman gain maldx and E Is the residual vector. The F, El, H,

and D matrices were the appropriately dimensioned model syslem

matrices. Their Individual maldx elements along with those of K

were corrected by the engine Inlet condlUons F__and scheduled as
nonlinear lunctlons of Z b, These nonlinear functions allow

continuous correction of the model parameters throughout the flight
regime. This filter structure Is the structure used In the

accommodation filler and all the hypothesis filters used In the soft

detection and Isolation logic. Reconflguratlon of the
accommodation filler after the delectlon and Isolation of a sensor

fault was accomplished by forcing the appropriate residual element

to zero. The residuals generated by the accommodation filter were
used In the hard fault detection logic.

Hard Faul _ Detection end Isolation Logic. The hard sensor

fault detection and Isolation logic is straightforward. To accomplish
hard tauft detectlon and Isolation the absolute value of each

component of the residual vector was compared to Its own
threshold. If the residual absolute value was greater than the

threshold, then a fault was detected and Isolated for the sensor

corresponding to the residual element° Threshold sizes were based
on the standard devlatlon of the noise on the sensors.

Soft FauI_ Detection _nd I_ola_l_n Logic. The soft fault

detection logic consists of multiple-hypothesis-based testing. Each
hypolhesls was Implemented uslng a Kalman filter. The soft fault

detecfion,'lsolatlon logic structure Is shown In Figure 2. A total of six
hypothesis tilters are shown, one for normal mode operation(H,=)

and live for the fault modes(one for each engine output sensor, H_-

He). The structure for each hypothesis filter was Identical to the

accommodation filter(Eqs. (1) to (3)), However, each hypothesis

filter uses a different, reduced set of measurements. For example
the first hypothesis fil|er(H_) uses all of the sensed engine outputs

except the first, N1. The second uses all of the sensed outputs

except the second, N2, and so on. Thus, each hypothesis filter

generates a unique residual vector, r_. From this residual each
hypothesis filter generates a statistic or likelihood based upon a

Weighted Sum of Squared Residuals(WSSR). Assuming Gausslan



sensornoise,eachsampleofr_ has a certain likelihood or

probability p= given by

LI = pl(el) _ ke_Sn_ (4)

where k Is a constant and WSSF_ - r_xT.'lr_ with 'r = diag(c=). Here

T denotes matrix transposition and o I are the sensor noise standard

deviations, These standard deviation values scale the residuals to

dimensionless quantities that can be summed to form a WSSR.

The WSSR statistic was smoothed to remove gross noise effects

by a first order lag with a tirne constant of .1 sec. Mathematically,

when Ihe log of the ratio of flkelihoods is taken, then

LR, = log (_) = WSS_ - WSSR_ (5)

r

If the maximum LR, exceeds the soft fault detection and Isolation

threshold, then a fault is detected and Isolated, and accommodation

occurs, ft a sensor fault has occurred In N1 for example, all of the

hypolhesis filters except H_ will be corrupted by the faulty

information. Thus each LR, wilt be small except for LR_. Thus, LRq

will be the maximum and It will be compared to the threshold to
detect the taulL

Adaptive Threshold. Initially, the soft fault

detection/Isolation threshold was determined by standard statistical

analysis of the residuals le set the confidence level of false alarms

and mlssed detections. Next, tile threshold was modified to

account for modeling error by simulation anatysls. It was soon

apparent from initial evaluation studies that transient modeling error

was dominant in determining the fixed threshold level. It was also

clear that tills threshold was too large tot desirable steady-state

operation. Titus, an adaptive threshold was Incorporated to make

the algorithm more robust to transient modeling error while

maintaining steady-stale performance. The adaptive

Ihreshold was heuristically determined and consists of two parts.
One part is the steady-slate detection/Isolation threshold which

accounts for steady-state, or low frequency modeling error. The

second part accounts for the transient, or high frequency modeling

error. Tile adaptive threshold expansion logic enabled the

threshold steady-state value to be reduced to 40 percent of Its
odglnal value which results In an B0 percent reduction In the

detectlonrtsolallon threshold In steady-state. The adaptive threshold

logic Is illustrated In Figure 3 for a PLA pulse transient.

Fault Accommodation. For accommodation two separate
steps were taken. First, ell seven of the filters(the accommodation

filter and the six hypothesis filters) were reconflgured to remove the
failed sensor from further use in the filters, Sect, rid, If a soft fault

was detected, the states and estimates of all seven filters were

updated to the values of the hypothesis filler which corresponds to
the failed sensor.

Det ectlon/Accommodation Performance

The criteria used to evaluate detection, Isolation, and

accommodation pedormanca were: (1) mtnlmum detectable bias

values and drift rates, (2) elapsed time between sensor fault and
detection, (3) steady-stale pedormance degradation after fault

accommodatlan, and (4) transient response of the engine to the

filler and control reconflguratlon resulting from fault
accommodation. In the engine test sensor faults were Injected

directly into the control feedback signal and consequently effected
engine operation until detection and accommodation. The engine

studied was a full scale, high performance, turbofan engine. The

engine was tested In an altitude facility over a wide range of
operating conditions, Two general fault types were studied, hard
and soft sensor faults.

The flrst type of sensor fault considered In the
demonstration testing was a hard fault, Because hard faults ere

easily detected, they were examined at only one operating

condition, 10 000 ft/Mach 0,6, The ADIA algodthm exhibited
excellent hard detection performance at this condition.

The chosen engine performance measure, engine pressure
rallo(EPR), Is almost linearly related to engine thrust. The change

In EPR following the accommodated hard sensor fault was used as
a measure of accommodation performance. Here the percanl

change In engine pressure rafio(EPR)

8EPR = IO0(EPR_ - EPR_) (6)
EPRTo

where EPRro is the steady-state engine pressure ratio before the

fault and EPRT,, is tile steady-state EPR after the fault, Is defined

to be the change in steady-state engtne performance. For th9

hard fault delection and accommodatlon expedments, the 5EPR

results were less than 6 percent In all cases, well below the critical

level of 10 percanL In tacl most or the performance changes were
negligible,

The other type of sensor fault studied was the soft fault.

Undetected soft sensor faults, although small In magnitude, may

result In degraded or unsafe engine operation. Because of their

small size, soft faults were more difficult to detect than hard faults.

Two soft fault modes were studied, bias and drift.

The minimum detectable magnlludas of soft sensor bias

and drift faults were determined for each of the five sensors

considered at each of tile operating points defined tn the test

matrix. The minimum detectable drift magnitudes were determlned

by finding the smallest detectable drift fault such that a fault was

detected approximately 5 seconds after fault Inception, In general
there was good agreement between those minimum fault detection

magniludas observed in the test and those predicted by the real-

time hybrid evaluation. This agreement demonslralas the excellent

fidelity of the model used in the algorithm and the simulation used
In the evaluation.

The times to detection for the soft bias faults were all less

than. 1 sac. The steady-state accommodation performance for this

class of fault was good. Again percent changes In thrust(EPR)

were determined for several operating points demonstrating
subsonic and supersonic operatian at military and medium power

levels, All values obtained were well below the 10 percent critical

level except for operating condition 50 000 ft/Mach 1,8 results

which show a 12 percent change in thrust for an exhaust nozzle
pressure (PT6) sensor fault.

The steady-stale accommodation performance results

obtained for sensor drift fautls were very good with most thrust

changes being small and with none larger than the 10 percent level.

Shown In Figure 4 is a fan-speed drift fault at the 30 000-ft/Mach

0.9 operating condition at medium power. Here, a fan speed (N1)
drift fault of 150 rpm/sec was Introduced at I sac. Detection and

accommodation occurred at 6.5 sac.(5.5 sec after fault Initiation)
and the engine required about 4.5 sec to return to a steady

condition. During this experiment the fan speed and nozzle

pressure Integral logic was active. The other four output responses

show good estimation accuracy and relatively small transient
disturbances to fire sensor fault accommodation.

Additionally, detection performance for sequantlal faults was
demonstrated. At condition 10 000 ft,'Mach 0.6 six different

sequences of soft faults were Injected into the tesl bed system at

medium power and one was demonstrated at Intermediate power.
Each of the seven sequences was a different permutation of the

live sensors taken four at a time. In each case the algodthm
successfully detected and accommodated each sensor fault in the

correct order. These tests demonstrate the ability ol the algodthm

to continue to successfully perform even after most of the sensors
have failed.

Finally, a simultaneous soft fault of burner pressure (PT4)

end PT6(both failed at the same Inslant of time) was Injected Into

the engine system. The algorithm, although not designed for this
extremely low probability event, successfully detected and
accommodated this fault scenario.

Actual Sensor Hardware Fault Detection. During engine
testing, two unplanned faults of actual sensor hardware were
detected by the ADIA logic. There were no missed detections of

sensor hardware faults by the ADIA logic. In the first case the fan

discharge temperature thermocouple, which was not explicitly

covered by the ADIA logic, felled. This fault was e hard fault. The
second sensor hardware fault was associated with the fan turbine

intermediate temperalure measurement and was a soft fault
associated with the signal conditioning amplifier for the sensor. In

each case the algorilhm was able to detect the fault.

Transient Performance. Two power level (PLA) franslect

expedments were used to further demonstrate the successful
accommodation, or posl-fauit performance, of sensor faults. The
first experiment consisted ot Injecting, detecting, and

accommodating a single sensor fault and then commanding a PLA
pulse transient. Engine performance with this accommodaled failed

sensor was compared to normal mode engine performance.

Eighteen of these single fault PLA pulse tests were pedormed at 5

different operating polnfs with excellent results. . -

The second accommodation performance experiment
demonstrated the excellent accuracy of the engine model. In this
experiment ell the engine sensors were failed end accommodated.

Then, the englne was commanded to respond to a PLA pulse

transient, For the condition 10 000 ft/Mach 0.6 experlmenl, N1 and

PT6 results are shown in Figure 5. Here excellent performance
_ . . .. .



wasdemonstrated.Litlteor no overshoot was observed and engine

steady-state perlormance was good. This demonstrates the

capability of safe, predictable engine operation without any sensed

engine output information over a slightly restricted power range.

The fluctuations In PT6 at high power were caused by an airflow

Interaction between the tadlity and the engine.

, ADIA Spmmary
Sensor fault detection and accommodation were

demonstraled at eleven different operating points which Included

subsonic and supersonic conditions and medium and high power

operation. The minimum detectable fault magnitudes represent

excellent algorithm performance and compare closely to values
predicted by simulation. Accommodafion performance was

excellent. Transient engine operation over the full power range with

single sensors failed and accommodated was successfully

demonstrated. Open loop engine operation(all engine output
sensors tailed and accommodated) over at least 75 percent of the

power range was also demonstrated al two different operating

condillons. Engine operation with only one sensor operational(fan

speed) was demonstrated at one operating condition,
The algorithm Is Implementable In a realistic environment

and In an update Interval consistent with stable engine operatlon_

Off-the-shelf microprocessor based hardware and straightforward
programming procedures, Including FORTRAN and ftoatlng point

arithmetic, can be used. Parallel processing was used as an

effective approach to achieving a real-time implementation using
ofl-lhe-shelf computer resources.

INTELLIGENT FAULT DIAGNOSIS

Intelligent Control Systems tiCS) are defined as those

control systems which Integrate traditional control concepts with
reaI-Ume fault diagnostic and prognostic capabilities 4. Currently, the

Lewis ICS research program Is developing a real-time diagnostic

capability for reusable rocket engines, specifically the Space Shuttle

Main Engine (SSME), Here, dlagnasllcs Is defined as the detection

of a fault, the Isolation of the fault to a specific component, and the
estimation of the severity and likelihood of the fault, Cdtlcal engine
components as well as sensors will be monitored for faults. A

framework of the ICS, glvan tn Figure 6, clearly shows the

Interaction of the control with the diagnostic subsystems.

Coordinator subsystems arbitrate the potentially conflicting
objectives of the life extension control modes, which accommodate

engine faults, and the overall mission and engine performance
objectives. The multilevel Implemantatlon architecture for the

diagnostic system 5 shown In Figure 7 exploits parallelism to

achieve high data rates at the condition monitoring and fault

detection layers, Each ot the layers will now be described wfih
some discussion about current research associated with each of the

layers.

1. Sensor Layer

The Sensor layer includes all of the Instrumentation
required by the diagnostic system. Measurements obtained in this

layer are communicated Io the CondlUon Monitoring layer. Efforts

to develop special purpose sensors for hnproved engine diagnostic
capabilities Is an ongoing research area _,

2. Condition Monitoring (CM) Layer

The Condition Monitoring layer in the diagnostic hierarchy

Is responsible for signal processing, signal conditioning, feature

extraction, and other necessary data abstraction for decision

making purposes. Tho extracted features needed are defined by
the experts according to the selected fault modes to be detected.

Typical condition monitoring functions are: trending of a selected

sensor over a specific time pedod, FFT processing of beadng
deflectometer data, and calculation of functions of measurements,

pump suction specific speed, for example, and model-based-
residual generation 7.

3. Fault Mode Defection (FMD) Layer

The Fault Mode Detection layer responds to those

conditions which Indicate the posslblfity of a defined fault mode.

Each detector module attempts to find condillons of a single fault

mode. The emphasis at this layer Is to minimize missed delections
even at the possible expense of Increased false alarms. As

discussed In the next section, the diagnostic exped syslem (DES)
layer will address eliminating false alarms. Relevant Information
Ihat will be transferred to the DES layer Indudes an estimate of the

probability and sevedty of the detected fault mode.

If several fault modes are extremely similar and

dlsllngulshlng them Is either Impossible or unnecessary at this

stage then a single module will be used to find conditions Indicating

the group. Similar fault modes which must be distinguished will be

resolved by the next layer In the hierarchy. The FMD layer

contains the first layer of diagnostic knowledge. It uses the

compressed sensor information obtained Irom the condition

monitors to make the first diagnostic detection of fault modes. An

example fault mode of this module Is Turbine Interstege Seal Wear

which can be deduced from CM layer oulpule: Turbine Discharge
Temperature, Pump Shaft Speed, Pump Head vs. Flow Coefficient,

end Rotor Dynamic Instability Indicator. Another example Is the

diagnosis of actuator faults using neural networks B.
4. Diagnostic Expert System (DES) Layer

• The diagnostic expert system serves as the high layer

health monitor. This layer resolves any conflicting reports from the

.fault mode detectors, determines the prlodtles of the detected fault
modes, does the health status assessment of the overall system,

end Issues the status report to the Intelligent coordination control

layer (see Figure 6). This layer also monitors the dynamic status

(operating condition) of the system which may play an Important
part In determining engine health. The DES has to gather all the

Information, Including the probability of detection and the sevedty

of the detected modes and then decide on the status of the system.
The probability of the correctness of this decision, as well as the

severity layer of the fault mode are transmitted to the coordination

layer• The ICS coordinator, based on current mission status, then

decides what, If any, accommodation strategy to employ.

4.a Emergency Logic (EL) subsystem
It Is recognized that many fault modes will result In rocket

engine shutdown. Many of these situations require e nearly

Immediale engine shutdown to prevent further damage 1o Ihe

engine. The decentralized functionality and parallelism of the

expected Implementation of the diagnostic system will provide

subslantlal computational throughput. However, to account Ior

those slluailons where a direct, Irrevocable engine shutdown Is
required, an Emergency Logic subsystem Is Included In the

diagnostic system•

E xamp_=DJ=ag nps tic_ystem

As an example of the multilevel diagnostic system just
described, a two level, neural network based architecture has been

developed to detect end diagnose engine actuator faults In 1he
SSME, The two level architecture would be representative of the

Fault Detection Layer ol the diagnostic architecture and would be
driven by model-based residuals generated at the Condition Monitor

Layer, The reslduai generation process Is described tirsL
Residual Generation

Typically, complete nonlinear dynamic simulations of

propulsion system (SSME) performance are available. However,
due to their size and complexity (40 rain. CPU time for 20 sec. of

real llme operation with a VAX 8800 for the SSME), these nonlinear

simulations cannot be used to generate residuals In real tlme to

describe the normal mode of operation. Alternative approaches,

such as the linked linear model approach, have been applied to
accurately, yet simply, model the performance of the SSME'. Here

a system Idenlificalion algorithm and the data generated from the
nonlinear performance simulation are used to obtain linear models

of the SSME at twenty live different operating points. The Inputs of

these models are the rolary motion of the valve ecluator outputs of

the oxldlzer preburner oxidizer valve (OPOV), _omv, and fuel

preburner oxidizer valve (FPOV), _mv. The models have

measurable slate variables which simplifies the model structure.

The outpuls which ere also the slate variables, are the chamber
Inlet pressure, Pc, mixture ratio, MR, high pressure fuel lurblne

speed, SHe,n, and high pressure oxidizer turbine speed, SH_ T. The
linear models, which predict the output of the nonlinear simulation

with very good accuracy, are linked to obtain a simplified, quasi-

linear model of the SSME, valid withln Its full range of operation.

The coefficients of the linear models are regressed with the

parameters which determine the nominal operating conditions,
mlxture ratio and fhe chamber pressure, A compadson of the

responses of the linked model and the nonlinear simulation indicate

good agreement as shown In Figure 8.

Wlth the observed state variables, residuals are generated

between the measured output and the output oblained uslng the

state-space model as:

ms/duals _ Yn,_=_,_,t- Y,_o_ (7)

These residuals are generated by Inducing stuck valve faults In tile
nonlinear dynamic simulation of the $SME. Both the OPOV and the

FPOV are considered for this purpose. In this paper a stuck fault

Is defined such that a valve may not move above a certain angle,

called the fault severity. However, the valve may move as

commanded below this angle. Data are obtained at various sluck

fault severity angles. Using tile residuals generated by tile

Condition Monltorlng Layer, a two layer, neural network based



architecture has been developed to detect and diagnose engine
actuator faults.

Neural Network Architecture

The Neural Network architecture employed in this study, as
shown In Figure 9 Is a two level architecture:

f) The Classifier level where the faults are actually

classified as belonging to a padlcular categoP/(fault detection);
2) The Severity level where the severity(magnitude)

of lhe fault that was Identified in the Classifier level Is estimated.

Classifier Level

The Classifier level consists of two networks, one

associaled wilh the chamber pressure residual and the other with
the mlxlure rallo residual Each of these two networks are Ihree

layer (including the inpul and output layers) feedtorward networks
with non-linear hidden and oulput unils. The weighls in these

networks are assigned using the generalized back propegalion
algorithm.

Each of these networks consist of 200 input nodes, 20

hidden nodes and 2 output nodes. The input to one network Is a

time sequence of the chamber pressure residual of length 200.
The time step between residuals Is 0.04 seconds wllh the total

sequence lime representing 8 sacs. Similarly the other network

receives the mixture ratio residual sequence as Its Inpul. For each

of these two networks, one output node Is associated with the
OPOV stuck condition while the other output node corresponds to

the FPOV stuck condition. In short, one output node Is activated tl
an OPOV stuck condition Is activated; the other Is activated If an

FPOV stuck condtlion Is activated, The output activations are real
numbers between 0 and 1.

Training:

For network training, six fault scenarios were generated
from the non-linear dynamic simulation for the following fault
conditions:

a) The OPOV valve stuck at 45, 47 and 50 degrees
respectively.

b) The FPOV valve stuck at 53, 57 and 59.5 degrees

respectively.
Chamber pressure and mixture ratio residuals for these scenarios

were generaled as In Equation (7) for e lime span of 8 seconds tn

steps of 0.04 seconds (a 200 length sequence), That Is, the

residual data are generated as the difference of the actual output

of the SSME non-linear simulation and Ihe oulput generated by the
linked model.

Dudng training, a residual pattern representing a fault

condition Is applied to the input level (200 nodes) and a f

(Indicating full activation) is applied to the corresponding oulput

node. For Instance, the chamber pressure residual corresponding
to an OPOV stuck valve condition ls applied fo one of the Classifier

networks and an activation of 1 is Imposed on tile output node

corresponding to file OPOV sluck condition. The network weights

are then adjusted Invoking the back propagation algorithm, thus

enabling llre neural network lo learn the Imposed Input-oulpul

pattern. Each of the Classlfler networks ts trained using all six faull
scenarios.

Severity Level

The Severity level conslsls ot four (4) networks, two

associaied wiih the chamber pressure residual (one for OPOV

severity and tile other for FPOV severity) and file other two with the

mixture ratio residual. Once again, each of these networks Is a

three layer feedforward network where the weights ere assigned
using the back propagation aigedthm.

Each of these networks consist of 200 input nodes, 20

hidden nodes and 3 output nodes. Two of these networks receive

Ihe chamber pressure residual sequence as Its Input, while the

olher two networks receive the mixture ratio residual sequence as

its Input. The three output nodes correspond to the three severity
levels (OPOV stuck at 45, 47 and 50 or FPOV stuck at 53, 57 and

59.5 degrees).

Training:

The training Is similar to that used in the Classifier level.

Once the Inpul pattern Is applied to a network, the node

corresponding to the severity level ol the input paUem Is fully
actlvaled and the network weights learned through back

propagation. For Instance, the chamber pressure residual,

corresponding to the 45 degrees OPOV stuck valve fault scenario,

Is applied as the Input and the output node corresponding to a 45

degree severity level Is given an activation of 1. However, for the

Severity level networks, only those residual sequences that

correspond to the appropriate network are used to train the

network. For example only mixture ratio residual sequences are
used to train the two mixture ratio severity networks. As a result,

each of these Severity level networks is trained with three Input

representations rather than six as in tile Classifier level.
Resulls

Test data with severity levels not used tn training were used

to test both the Classifier level and the Severity level networks.
the network architecture wo, ks es follows. Consider a laull

scenario of the OPOV valve stuck at 47.5 degrees. The two

Classifier level networks use their corresponding Inputs (one uses

the chamber pressure residual while tile other uses the mixture

ratio residual) to give an output actlvatlon corresponding to the fault

(In this case the oulpuf node corresponding to the OPOV fault
condition Is activated tn each of these two networks). Figure 10
lllustrates tile results obtained for this case.

Once the decision has been made as to what Ihe fault Is,

the Severity level networks are used Io detect the severity of the

lault. With the OPOV stuck condition, 2 Severity level networks

swing into acl|on (each corresponding to one of the two residuals)

to eslimate the severity of the OPOV stuck valve. Tile other two

Severity level networks are dormant as they are trained to estirnale
the FPOV faull severity levels.

Consider another test case for lhe fault scenario of Ihe

FPOV valve stuck at 55 degrees. Again the network architecture

would work as In tile previous case with the outputs of the Classifier

and Severity level networks shown In Flguret I. Nole that In this
case tile network actually approximates the severity level since the

weighted sum of the oulput activation rnagnl!udes Is 55,5. In both

cases the networks correctly Identify both the fault lypes and their
severity.

CONCLUSIONS

This paper discusses some of the ongoing research In fault
detection and diagnosis for aerospace propulsion systems

sponsored by the National Aeronautics and Space Administration's

Lewis Research Center. The research reported Is grouped In two

general areas, sensor fault detection and Intelligent fault diagnosis.

Sensor fault detection and ancomrnodatlon for a high

pertormance turbofan engine '&as demonstrated at eleven different
operating points which Included subsonic and supersonic conditions

and medium and high power operation. Excellent detection and

accommodallon performance was shown. Trenslenl engine
operation over the full power range with single sensors failed and

accommodaled was successlully demonstrated. Open loop engine

operation(all engine output sensors failed and accommodated) over
at least 75 percent of the power range was also demonslraled at

two different operating conditions.

In the area of Intelllgnet fault dlagnosls a proposed

architecture for real-time, decentralized lault diagnosis was

proposed. Withth this four layer architecture research into model

based fault detection and diagnosis using neural networks was

presented. This Included a design of e model based fault detection

and diagnosis system for the space shuffle main engine. The
engine Is modeled using a discrete time, quasi-linear stale-space

representation whose model parameters are determined by

Idenllficatlon. Residuals generated from the model are used by s

neural network to detect and diagnose engine component faults.

Fault diagnosis Is accomplished by tralntng the neural network Io
recognize the pattern of the respective fault signatures.

Preliminary results obtained from a nonlinear dynamic simulation of

the space shuttle matn engine for two failed oxidizer valve

scenarios were presented and Indicate thai tim developed approach

can be used for fault detection and dlagnosls. Unequlvocel

classifications of fault type were obtained along with accurate

estimallon of fault severity for scenarios not Included In the training
set.
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