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Abstract

A study of a near-term, low risk two-
stage-to-orbit vehicle was undertaken. The goal
of the study was to assess a fully reusable TSTO
vehicle with horizontal takeoff and landing
capability that could deliver 10,000 pounds to a
120 nm polar orbit. The configuration analyzed
was based on the Beta vehicle design, earlier
completed by USAF and Boeing. NASA, USAF
and Boeing entered a co-operative study to
redesign and refine the Beta concept to meet the

mission requirements of the present study. The
vehicle resulting from this study was named
Beta II. It has an all-airbreathing first stage and
a staging Mach number of 6.5. The second stage
is a conventional wing-body configuration with a
single Space Shuttle Main Engine.

The National Aerospace Plane (NASP)

has gainedconsiderableattentionin recentyears

as a flexiblemeans ofaccessto space. However,
many technologyadvances are requiredtoobtain

a viable single-stage-to-orbit(SSTO) system,
especiallyin the areas of propulsion and

materials/structures. In order to design a

reasonablysizedvehiclewith low risktechnology,

a two-stage-to-orbit(TSTO) configurationmay be
required. Such a vehiclewillresultin a lower

grosslift-offweight (GLOW) than a comparable

SSTO vehiclewith the same leveloftechnology.

However, thisbenefitdegrades as materialsand

structuretechnologyresultin large dry weight
reductions.

In light of the above, a study was

undertaken to investigatelow riskmethods for

routineaccessto space. The ground rulesofthe
study are specifiedin Figure 1. A near-term

technology level was assumed for the vehicle.

Near-term technologyisdefinedas thatwhich is

eithercurrentlyavailableor could be developed

with low riskin the next fiveyears. Additional

ground rules specified a manned, completely
reusable vehicle with a horizontal takeoff and

landing capability. The baseline mission for the
study required a 10,000 lb payload to be delivered
to a 120 nm polar orbit.

A literature search of past work revealed
such concepts as the German SANGER vehicle

(ref. 1), the USAF/Boeing Beta concept (ref. 2)
and others (ref. 3,4). The Beta concept had many
unique features which were desirable for

incorporation in the current study. (These
features will be discussed in the following
section.) Thus, after an initial evaluation, the
Beta concept was chosen as the baseline

configuration on which the current study was
built. A cooperative program was established in
order to modify the original Beta design to meet
the requirements set forth in this study as well as
perform additional tradeoffs to optimize the
design. The participants in this cooperative effort
were the NASA Lewis Research Center, the Air
Force Wright Laboratory and the Boeing Defense
and Space Group. The participants and their
respective roles are shown in Figure 2. The
vehicle resulting from this study was named
Beta II.

USAF/Boeing Beta Des]_m

A short discussion of the original Beta
design will now be given to provide background
for the current study. Figure 3 shows the
original USAF/Boeing Beta configuration. The
most prominent feature of this system is the
bottom loader configuration of the second stage in
the booster stage. The bottom loader

configuration results in many desirable features.
First, this configuration allows expedient ground
handling and mating. The mating can be
accomplished without the use of special cranes.
The orbiter stage is rolled under the booster from

the rear and then hoisted into position using the
staging mechanism. Second, because the orbiter
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iscontainedwithinthe booster,the minimization

of transonic drag becomes an easier design

problem when compared to a more conventional

topmounted piggyback arrangement. Finally,at

stage separation,the lightly loaded booster

vehiclewilltend to liftaway from the heavily

loaded orbitervehicle making for a cleaner
separationmaneuver.

The Beta configurationincorporatestwo

Space Shuttle Main Engines (SSME), eight
Advanced Tactical Fighter (ATF) turbofan

engines and two ramjet propulsionpods. One
SSME ison the orbitervehicle.This rocketfires

from takeoffto orbitinsertion.Although firing
the orbiterrocket the entire mission is not

optimum, this mode of operationwas deemed

necessarytoavoidproblems ofshuttingdown the
SSME afterpassing through the thrust critical

transonicregionand then restartingitat stage
separation.This SSME was throttledback to 65

percent of maximum thrust from Mach 3 until

stagingoccurredat Mach 8 in order tominimize

the impact of its low specificimpulse. The

remainder of the engines are mounted on the

boosterstage.The boosterSSME ismounted just

below the verticaltaft. It is only used from
takeoffup to Mach 3. AfterMach 3 more than

sufficientthrust is availablefrom the orbiter

rocket and the booster ramjets, therefore,it
becomes more efficientto shut down the booster

rocket.The airbreathingenginesare mounted in

two nacelles,one on each side of the fuselage.

Like the boosterrocket,the turbofanenginesonly
operatefrom takeoffup toMach 3. The turbofans

are sized to provide sufficientthrust for a

subsonicferrymission ofthe boostercarryingan
empty orbiter. Therefore, the turbofans
contributeonly a small fractionof the total

takeoffthrustwhen the vehicleis fullyloaded.

The conventionalramjets operatefrom Mach 1
throughstageseparationatMach 8.

The originalBeta system is very large,

weighing 2.2 million pounds fully loaded at

takeoff. The fullyloaded orbiterstage weighs
600,000Ibsand iscapableofdelivering50,000Ibs
ofpayloadtopolarorbit.

Wind tunnel testswere performed on a
model of the Beta vehicle.The resultsof these

tests were used to calibrateand verify the

analysiscodes used in the originalstudy as well
as the currentstudy ofthe Beta IIvehicle.The

test results were particularlyuseful in the

transonic region, where accurate analytical

analysis becomes most difficult. Separation tests
have not been run to date. Flow interactions
when the orbiter is swung down from the booster

for staging is an area that requires further study.

The current study mission requirements

were differentthan thoserequiredforthe original
Beta. The most significantof these mission

changes are the payload and the stagingMach

number. The originalBeta designincorporateda

50,000Ibpayloadand stagedatMach 8. A 10,000

Ib design payload requirement was specifiedin

the currentstudybecause itcoveredthe majority
ofprojectedNASA payloads.The originalMach 8

staging was considered high for conventional

ramjet operation. Mach 8 staging also makes

designingthe inletand handling the thermalheat

loadsvery challenging.Therefore,to lessenthe

design risk, the staging Mach number was

reduced toMach 6.5forthe currentstudy. Mach

6.5 staging is stillvery challenging,but is

consideredmuch more manageable in the near-
term than Mach 8.

A preliminary trade study was
undertaken to (1) investigate the effect of
reducing the staging Mach number, (2)
investigate the effect of downsizing the payload,
and (3) determine the best type and mix of
propulsion systems on the booster and orbiter.

The original Beta aerodynamics and propulsion
data were used in this preliminary trade study.
Vehicle lift and drag were scaled with reference
area. Each engine type was scaled up or down as
required to get the performance and weight of the
desired propulsion system configuration. A
coupled vehicle weight analysis and trajectory
analysis was used to get closure on the vehicle for
each of the numerous vehicle trade-offs that were
studied.

The primary resultsof thistrade study
are shown inFigure 4. The originalBeta vehicle

isdepictedby the firstcolumn in the figure.The

resultsforotherconfigurationsin the trade study

are presented relativeto this originalvehicle
weight. The firststepin thistrade studyprocess

was to reduce the stagingMach number to ease

the difficultiesof the airbreathingpropulsion

design. Although the lower staging Mach
number reduced the booster propulsion system
weight and complexity, it resulted in a higher
overall system weight of 8% as depicted by the
second column in the figure. The overall weight



increased because the orbiter vehicle was

requiredto providea significantlylargerportion

of the totalenergy requiredto reach orbit.The

energy required to acceleratethe vehiclefrom
Mach 6.5to Mach 8 was suppliedusing a rocket

engine with a lower specificimpulse than the

combinationof ramjets and rocket used on the

baselinevehicle.However, in order to developa

system with near-term/low risk materials and

propulsion system, the lower staging Mach

number was carriedthrough the remainder ofthe
study.

The use of rocket engines on the booster is
a very effective means of providing large thrust
margins in the critical transonic region. A
rocket's high thrust-to-weight ratio provides a
large amount of thrust while only adding a small
amount to the empty weight. However, because
it is burning both fuel and oxidizer, its propellent
use is very high. Each three seconds of operation
of the SSME burns the equivalent weight of one
ATF engine. Therefore,itisdesirableto reduce

or eliminatethe use of rocketthrustduring the
boosterphase ofthe flight.The thirdcolumn of

Figure 4 shows the effectof eliminatingthe
booster rocket entirely,not firingthe orbiter

rocket until separation, and increasing the

airbreathingpropulsionthrustas required. The

optimum thrust-to-weightat takeoff for this

system is .53. This resultedin approximately

27% weight reductioncompared to using rocket

propulsionduringtheboostphase.

The effectof reducing the payload to the

missionrequirementof10,000Ibsisshown by the
last column in Figure 4. The GLOW of the

vehicledoes not decrease linearlywith payload

reductions.In fact,the GLOW was onlyreduced

by 50% even though the payloadwas cutby 80%.

trajectory was optimized using the OTIS
computer code (ref. 5). The resulting ascent
trajectory is shown in Figure 6. The booster

follows a 1500 lb/t_ 2 dynamic pressure limit
through most of its flight.

Aerodynamic performance for the new

configurationwas generated using the APAS

analysiscode (ref.6). Transonic aerodynamic

performance was generated by scalingthe wind
tunnel and analysis data of the originalBeta

booster and adding correctionsfor the new

geometry. The predictedLID versus angle of

attackforthe boosterisshown in Figure 7. The

effectofenginebypass flowwhich isdumped into
the base area was not accounted for in the

analysis.It is anticipatedthat taking thisflow

into account should reduce the predictedbase

drag. Perturbationon the booster design (e.g.

nose finenessratio,wing sweep,area ruling,etc.)

may produce additionalimprovements in the

aerodynamic performance.

The booster is exc]usively powered by
airbreathing propulsion from takeoff through the
Mach 6.5 staging. The propulsion system consists
of a nacelle mounted on each side of the fuselage.
Each nacelle contains five proposed High Speed
Civil Transport (HSCT) derivative turbine bypass
engines (TBE) and a conventional ramjet module
mounted in an over/under configuration as shown

in Figure 8. The TBEs are full afterburning and
use conventional JP fuel. They operate from
takeoff up to Mach 3. The ramjets are hydrogen
fueled. They are cold-flowed below Mach 1 to

reduce the drag. The ramjets are ignited
transonically; however, they do not produce
significant net thrust until nearly Mach 2. A
complete description of the engine module design
is given in reference 7.

The final configuration that was pursued
in detail through the remainder of the study was
the Mach 6.5 staged hydrogen/JP fueled design.
The booster phase of the flight is entirely powered
by airbreathing propulsion; a combination of JP
fueled turbojets and hydrogen fueled ramjets.
The new booster and orbiter configuration that
was designed and analyzed will now be discussed
in detail.

Beta II Booster Design

Like the original Beta design, the Beta II
booster carries the orbiter stage partially
embedded inside an open cavity in its belly. This
configuration is shown in Figure 5. The flight

The Beta II inlet incorporates a two-
dimensional two-ramp system. The first ramp is
a variable angle straight ramp. The second ramp
is an isentropic compression ramp which can vary
its shape along its entire length to provide shock-
free compression. Contrary to a conventionally
designed inlet, the Beta II inlet capture area is
not sized to supply the airflow demanded by the
ramjet at Mach 6.5. Instead, the inlet is sized to

provide maximum performance through the
critical transonic region, while providing
adequate thrust margin at the design condition.
A complete description of the inlet design is given
in reference 8.



Propulsion system performance and
weight were generated using this new propulsion
system configuration. The size of both the TBEs
and the ramjets were independently optimized.
The resulting takeoff thrust-to-weight ratio of the
TBEs was .67. This thrust-te-weight is higher
than the preliminary trade study predicted
because the transonic L/D of the Beta II is lower

than that of the Beta vehicle (Beta aerodynamic
data was used in the preliminary trade study).
The ramjets were sized to produce a total peak
thrust of I million pounds. The maximum thrust
occurs at Mach 4.

The structure was designed and weighed
using the ground rule assumption of near-term
material technology. The design uses a "warm"
metal structure. Thermal insulation and active

cooling outside the propulsion system are not
employed. However, because the high heat loads
are only encountered for a short time, the

internal structure only warms slightly during the
boost phase. Aerothermal heating analysis of the
vehicle shows the highest equilibrium

temperatures occur on the nose cap, wing and
horizontaltaftleading edges and the cowl lip.

Columbium is used to protectthese areas as

depictedinFigure 9. Rene' 41 honeycomb panels

are requiredforan additionalsectionofthe under

side of the nose, and wing. Inconel 718

honeycomb panelsare used forthe remainder of
the vehicle.

The structural design employs a
conventional semimonocoque structure with non-
integral hydrogen tanks. A modular structural
concept is used to provide access and removal of

the fuel tanks and engines. Because of the
uncertainty that results from the complexity of
the booster design, a 20 percent growth margin
was included in the booster weights analysis.
(Growth margin is a percentage of the empty
weight added into the weight prediction to cover
any underpredictions that may have occurred in
the analysis). This large margin makes the
booster design conservative.

The GLOW ofthe Beta IIis1.2millionIbs

with a booster stage burn out weight of .88

millionpounds. This weightismuch higherthan

that predictedin the preliminarytrade study

(Figure4)because ofrefinementsin the analysis.

The degraded transonic aerodynamic

performancerequireda much higherTBE thrust-

to-weightratioas previouslydiscussed.Also the

incorporationof a 20 percent growth margin

added significant weight. (The original analysis
only included a 2 percent margin.) A systems
weight breakout is shown in Figure 10. The

payload weight shown for the booster is the fully
loaded orbiter weight including a crew of two.

Beta II Orbiter Desi__n

No significantcross-range requirement
was specifiedforthe study mission. Therefore,a

simpledesignwas chosen forthe Beta IIorbiter

compared to the slenderliftingbody designused

in the originalBeta study. The Beta IIdesignis
essentiallya wing-body design as shown in

Figure 11. A nearlycylindricalcrosssectionwas

chosen for the body for maximum structural

efficiency. This design resulted in a maximum

liD 30% lower than the original orbiter design.
However, this reduction had very little impact on
the ascent propellent since the orbiter trajectory

quickly leaves the atmosphere, as shown in figure
6. The biggest impact of the lowered L/D is on re-
entrycrossrange which as statedabove was not a

requirement forthe study mission. The stageis
powered by a singleSSME which is firedfrom

stagingtoorbitinsertion.

The 10,000 lb payload is contained in a 14

ft diameter by 20 ft long payload bay near the
center of the vehicle. The payload bay volume is
large enough to carry typical payloads that are
heavier than 10,000 lbs. Thus, an alternative
mission with this same vehicle could deliver two

crew members and 15,800 lbs of payload (or ten
crew members and 10,000 lbs of payload) to the
Space Station, which is in a lower energy orbit
than the one defined for the baseline mission.

For missions to the Space Station which require
very large payloads, an expendable second stage
which would carry 30,000 lbs of payload could be
launched using the same booster vehicle.

Liquid hydrogen fuelisstoredin a tank

forward of the payload bay and liquidoxygen is

storedto the rear ofthe payload bay. Since the

orbiterengine is not firedprior to staging a
propellantcross feed system is not required
between the boosterand the orbiter. Thermal

protectionof the vehicleis affordedby using a
removeable externalthermal protectionsystem.

Twin verticaltailsare incorporatedin order to

provide the necessarydirectionalstabilitywhile
keeping the span short enough for efficient

integrationwithinthe booster.

The orbiter weight at staging is 346,000
lb. The weight breakdown for the orbiter, shown



in Figure 12, shows the stage is largely

propellant. Because the orbiter design is much
more conventional than that of the booster, only a
10% growth margin was included. The resulting
empty weight to gross weight fraction of .15 for
this stage is within the capabilities of current
technology designs. For comparison, the shuttle
orbiter and external tank have an empty weight
to gross weight ratio of .12.

This study indicatesthat a fullyreusable
TSTO vehicle incorporating conservative

structures,materialsand designisfeasiblewith a

reasonableGLOW. The resultsshow thatusing

allairbreathingpropulsionin the boosterstage

resultsin a lower GLOW than using a mixture of

rocketand airbreathingengines. The propulsion

technology was kept low-risk by using HSCT

derivativeturbine engines,conventionalramjets
and SSME rocketengines. The Mach 6.5staging

produced heat loads that were low enough to

allow the design of a conventional structure

withoutactivecoolingorexoticmaterials.

The ensuing Beta II design is very
versatile. The baseline mission can deliver a

10,000 lb payload to polar orbit. This size of
vehicle covers the majority of projected NASA
payloads. For example, an alternate mission can
deliver 10,000 lbs and 10 crew members to the

Space Station. If an expendable stage is used in
place of the orbiter, a 30,000 pound payload can
be delivered to the Space Station. The design also
incorporates unique features which give it the
potential for low cost operations. The bottom
loader configuration simplifies stage mating,
eliminating the need for special cranes. The
boosterstage can also serve as a ferryaircraft,

eliminatingthe need fora specialaircraftforthat
purpose. Airplane-likeoperationeliminatesthe
need for launch towers and their associated

facilities.This typeofoperationalsoprovidesfor

an intact,safeabortprocedure.

This study was only the first phase of a
program to define a viable TSTO system. With
the positive results of this study, work is
continuing to further optimize the Beta II design.

The Beta II design is continuing to be
optimized and analyzed in more depth.
Alternative turbine engine cycles are being
investigated and the inlet, engine and nozzle

integrations are being further optimized. A
detailed analysis of the propulsion system
weights, structure and thermal loads is
underway. Vehicle aerodynamics are being
refined, particularly in the critical transonic
region, to include the effect of the engine bypass
flow on reducing the base drag. A reasonable
GLOW was used as the primary criteria in
determining the merit of the Beta II system.
However, it is recognized that low cost is a much
more important criteria. Therefore, a study of the
Beta II vehicle costs and operational costs has
begun.

Alternatives to the baseline Beta II

configuration are also being considered. One
option uses endothermic fuels in the booster and
storable rocket propellants in the orbiter. This

concept would completely eliminate cryogenic
propellants from both the booster and the orbiter,
thereby simplifying the design. Another option
uses an air collection system that could separate
oxygen out of excess air brought on board during
the first stage boost phase and then store this in
the orbiter. Although this adds complexity to the
system, it has the potential of reducing the
system GLOW.

o

o
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Figure 3. USAF/Boeing two-stageBeta vehicle
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Figure 5. Beta II booster configuration
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Figure 9. Beta II booster material selections
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Figure 11. Beta II orbiter configuration
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