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As Mohamed said, I will be discussing the mission and vehicle integration trades and so I

am not going to say anything about reactors, neutronics or anything else. The issue here

is that you can make a reactor or an engine, but unless you can hang it into a vehicle it

won't go anywhere. So I would like to address some of these issues.

You have to go through all of these factors (Figure 1) before you know if the vehicle can

fly. You have to look at the whole vehicle. You can have all kinds of efficiencies you

want in the reactor, but if it doesn't fly, it won't go anywhere.

Here are some of the trades done back then during the NERVA program (Figure 2).

What shape is your tank and where do you put your rocket engine and your reactor?

You go in with some distance to avoid the radiation (this will cause feed system

problems), then you begin to play with geometry; the optimum that came out is a 15

degree cone angle.

Figure 3 shows the mass and radiation breakdown for the shielding from the previous

chart that I showed you. The 15-degree cone angle gives you the lowest radiation for a

given shield mass. So, based on this chart it was decided that we would pick the 15-

degree cone angle as the bottom of the tank.

There were many other trades that were done. Here is what the problem looked like;

you are not going to Mars and get rid of the reactor, you are going to fire it, shut it

down, and then you have to cool it. When you use propellant as coolant, you lose

specific impulse. The trades done back then show what happens to your specificimpulse

as you cool the reactor down (Figure 4). So you have to go through these trades as well.

As to radiation maps (Figure 5), I am not a radiation expert, but these were done back

for the NERVA engine. You have neutron flux, you have gamma radiation, a reference

point up there and we are talking about a 1575 megawatt reactors operating for 53
minutes and so on. So all these factors have to be addressed.

Then as to what happens after shut down (Figure 6), you have a decay which goes as

shown, and here is the radiation versus distance, which continues on, and so on.
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In our present studies (Figures 7-9) we are moving from the 1960's to the 1980's and

1990's via computer programs. We had a very good correlation between the calculations

from the old NERVA data that we got out of the design handbooks. The same thing

was found for a small engine that was supposed to operate an ROTV out of the space

shuttle, (if you can believe that) (Figure 7).

For a pellet bed reactor mission to Mars, just the other day one of our guys gave me

these numbers (Figure 10). If you fly on May 11, 2018, taking 250 days for the total trip,

with 30 days stay, these are your Delta-V breakdowns. So on the basis of this, we can

take a thrust, an engine, and hang it on the vehicle and start calculating some system

masses and see what happens.

This is what happens when you plot Delta velocity versus mass (Figure 11). The way we

break things down is shown in Figure 12. We have a Delta velocity and a specific

impulse of 1,000 seconds when we calculated with our program. We come up with a

payload of 36 metric tons, the thrust is 315 kilo-Newtons. That's about 70,000 pounds or

so, including the mass of the shield. This is the output. I must say this mass ratio is not

payload fraction. Payload fraction is shown in Figure 13. This is for the top curve, the

heaviest vehicle that we got and that's almost a half a million kilograms there. Pretty big

stuff!

Looking at it parametrically in terms of payload fraction, we show that, as you demand

more and more velocity out of a fixed performance, your vehicle becomes almost like the

chemicals we have today, which have something like three to four percent payload

fraction. This says that what you want to do is increase the specific impulse. And by the

way, if you go to a single stage Delta V, which is like nine to ten kilometers per second

with a nuclear vehicle, you begin to approach 25 percent of payload fraction.

I was talking to airplane people who design airplanes being flown for money and they

say that of their takeoff weight, fuel is something like 40 percent. What we would like to

do is drive the space vehicles in that direction.

We didn't do anything on cost for this workshop, but we did a lot of work on cost back

in the 1970's. There is a whole bunch of reports that I sent NASA, and one written on

February 1973 cost data, 1973 dollars. Oh, do they look good. I suggest that you take

that to Congress when you go and talk to them.
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DESIGN TRADE STUDIES

• Propellant Tank Geometries

• Weight
• Volumetric Efficiency
• Radiation Considerations

• Skirts and Interlaces

• Handling, Transportation and Launching Factors

• Reusable vs Expendable

• Refueling, Refurbishing

• Start, Shutdown, Restart Factors

• Fluid Transients
• Heat Soak Back
• Post Shutdown Cooling

Performance Loss/Recovery
Figure 1
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SHIELD WEIGHT REQUIREMENTS FOR
CONVENTIONAL TANK CONFIGURATIONS
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RADIATION MAP
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CLASS 1 SINGLE-MODULE HYBRID RNS
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SPACE TRANSFER VEHICLE DESIGN DATA
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TOTAL OI'V MASS vs. VELOCITY INCREMENT
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Ell.LIT lid NUCLEAR O1V MASS BREAKDOWN

Input PIrmmeters

Delta V (&V) 15,000 m/s

Sped_lmpulse 1000 s
Payload Mass 36,000 kg
Thrust 315 kN

Engine Mass 1,875 kg
Shield Mass 4,000 kg

Calculated Parlmeter=

Mass Ratio R 4.611

Propellant Fraction (Mp/Mo) 0.857
Payfi)ad Fraction (Mpl/Mo) 0.086

Tank Volume 5,249 m=
Bum Time 170 min

Component Miss Breakdown

Propellant (H=) 364,568 kg
Prop_lant Tank 34,703 kg
Thrust Structure 649 kg

Pressurization System (He) 4,365 kg
Meteoroid/Thermal 9,1 64 kg

Total Vehide Mass 455,324 kg

263 Figure 12



4e-_vNar=_ _OUOLAI , Space Exp/oraffon InlUaUve m

PAYLOAD FRACTION VS. VELOCITY INCREMENT
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