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The most basic design feature of the droplet core nuclear reactor (Figure 1 & 2) is to

spray liquid uranium into the core in the form of droplets on the order of five to ten

microns in size, to bring the reactor to critical conditions. The liquid uranium fuel

ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor

to about one and a half meters from the top. High temperature hydrogen is expanded

through a nozzle to produce thrust.

The hydrogen pressure in the system can be somewhere between 50 and 500

atmospheres; the higher pressure is more desirable. In this system, uranium droplets are

intimately mixed with hydrogen. The fission energy transferred to the gas is 30-40%

direct. In the uranium (Figure 2), the mean free path of neutrons is very short; most of

the fission occurs close to the surface and from 20-40% of the fission fragments is

directly stopped in hydrogen. Heat is also transferred from droplets to the hydrogen

directly by conduction and also by radiation. In about one and a half meters from the

top, the uranium droplets and hydrogen temperature reach close to 4,000 degrees K.

From our own calculations, it is evident that uranium impingement on the wall is a

function of droplet size and flow conditions in the core. That's a function of the size of

the droplet in the boundary layer. If uranium droplets that are larger than about 30

microns enter the boundary layer, they have a tendency to go toward the wall. However,

the hydrogen inflow brings back smaller droplets to the center of the reactor.

In the lower core region (about one and a half meters from the top), hydrogen is

tangentially injected to serve two purposes: one, to provide a swirling flow to protect the

wall from impingement of hot uranium droplets; two, to generate a vortex flow that can

be used for fuel separation.

Tangential injection driven vortex flow is ceased after about one meter, where liquid

lithium is injected downward along the wall. After tangential hydrogen is stopped,

droplets escape in the direction of their tangential velocities, and land on the lithium-6

film on the wall. Liquid uranium is cooled down on the lithium-6 and flows along the

wall to a separator where lithium and hydrogen are separated and the uranium is

recirculated to the system.

The hydrogen can reach temperatures of 5,000 to 7,000 degrees, depending on the

pressure at which the nuclear engine operates. If pressure is 500 atmospheres, which is

what we have used for our base-line analysis, the boiling point of uranium is 9,500
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Kelvin. The systemcan be operated to heat-up the hydrogen to 6,000 degrees or so.

That's the basis for our calculations and the conceptual design analysis of DCNR.

As is shown in Figure 2, for the first one and a half meters, uranium and hydrogen are

intimately mixed. Because of tangential flow and vortex, the droplets are contained and

prevented from impacting the wall. Once the tangential injection in the lower region is

removed, heavier fuel droplets move in the direction of their tangential velocities and

follow a diverging helical trajectory to the wall. That mechanism provides for fuel

separation right at the end of the reactor. The nuclear engine is also designed such that

about 70 to 80 percent of the power is generated in the upper part of the reactor.

Neutron flux peaks at the upper part of the reactor and is highly depressed at the last
half meter of the reactor.

The proposed nuclear reactor is about one meter in diameter and three meters in length,

which provides for the type of energy release and power distribution need6d to operate

at very high temperatures.

Design of this core concept has evolved from the colloid core reactor concept that was

proposed in the 1960's (Figure 3 & 4). The colloid core concept utilizes fine particles of

uranium-zirconium carbide and vortex flow to confine the fuel particles in the reactor. A

very important result of the colloid core study was that Anderson and his colleagues

(Figure 3) have demonstrated the vortex flow confinement of the particles. They

performed an experiment using tungsten particles and also talcum powder to show that

particles indeed can be confined in the core. In the liquid uranium droplet concept, we

are not trying to confine droplets in the reactor; they can leave the reactor, and be

recirculated. However, in the colloide core concept, complete confinement of the fuel

was desired. The effectiveness of the vortex confinement process is rather limited. As a

result, the uranium loss might be very significant (six kilograms for six minutes or so),

and not acceptable for long missions.

The liquid annulus concept (based on what I have read in the open literature) utilizes

solid and liquid uranium compound fuel. Hydrogen is forced to bubble through the

liquid fuel to reach 5,000K at the core exit. The reactor core has to be rotated at the

rate of 7,000 RPM to contain liquid fuel on the wall. Since hydrogen is bubbled though

the liquid uranium at high velocities, the fuel loss due to forced vaporization and

entrainment can be very high, and beyond the level acceptable to any mission.

In 1987-88 we developed the droplet core reactor concept, primarily for a multi

megawatt space power reactor system (Figure 4). For the past few years, we have

studied the properties of droplet fuel transport, heat transfer, thermal hydraulics,

neutronics, and material aspects of this concept.

The droplet core concept is different from the rotating liquid core concept mainly due to

the fact that uranium is not confined in the core but is actually recirculated. Based on
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our studies we have concluded that due to the axial velocity of uranium, it is very

difficult to achieve effective core confinement. In the droplet core reactor concept, we

try to redirect and bring the droplets close to the walland then separate and re-circulate
them.

Uranium has a very broad and stable liquid phase (Figure 5). At 500 atmospheres,

uranium melts at 1,400 K and boils at about 9,000 K.

To spray liquid uranium in very small sizes, hydrogen should be injected at velocities

ranging from 500 to 2,000 meters per second. This is in the nozzle spray system; to

obtain smaller droplet sizes (<5microns), one has to blow hydrogen at higher velocities

(Figure 6). However, once the gas comes into the reactor, the average velocity drops to

tens of meters/see. At the top region of the reactor, the average velocity is about four

to five meters per second, and near the core exit it is about 30 to 40 meters per second.

At these moderate velocities, the uranium droplets and the hydrogen gas do not have a

significant relative velocity, which minimizes the forced evaporation of uranium.

In mid-core region, the established method of vortex flow is used to keep droplets having

very high temperature away from the wall. The reverse process is used in lower core

region to separate the droplets and bring them toward the wall where it is injected by

lithium-6. Since lithium, as you know, has enormously high latent heat of vaporization

(21MJ/kg), it provides a lot of heat sink capacity to cool uranium droplets from about

6,000 or 6,500 degrees to about 2,000 degrees, which can then be handled in the fuel

storage and recirculation system.

As for the hydrogen transport, this system relaxes two major design restrictions. First,

the rocket engine is not thrust limited because the hydrogen flow rates can be very high.

The liquid uranium volume in the core is about two liters, so loading in a core of this

size is about 20 kilograms. The total volume of the core is about 2,5000 liters, so the

void fraction for this system is about 99.9. Therefore, hydrogen is practically free

flowing, and the mass flow rate of hydrogen is unlimited by core losses and so is the

thrust. The heat transfer area is not limited; about 40 percent of the fission fragments

energy is directly deposited into the hydrogen propellant. Furthermore, the heat transfer

area for fuel droplets is very large. It is about four orders of magnitude larger tfian any

other non-colloid fuel reactor concept.

Another important feature of this nuclear propulsion concept is that it can augment the

Isp beyond the temperature limits by radiation-induced dissociation and subsequent

recombination of the hydrogen. Since the reactor is operated at a high temperature,

even at 500 atmospheres pressure, thermal dissociation of hydrogen is significant (Figure

7). At this pressure, in addition to 20 percent dissociation at 6,000 degrees, there is

nuclear enhanced ionization of the hydrogen.

Primary and secondary electronics that are generated by fission fragments increase the
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dissociation of hydrogen. The dissociationenergyof thesehydrogenmolecules is fully
recoveredafter expansionthrough the nozzlebecauseof their non-equilibrium
conditions. This is on the top of the thermal dissociationthat can further enhancethe
Isp for the system. For the baseline design,a total of 20% dissociation and
recombination is assumed. This leadsto 2,000secondsof lsp.

Materials play a very significant role when you are talking about suchextreme
temperatures(Figure 8). Tungsten and tantalum are the only two refractory metals that
are fully compatible with uranium. Uranium neither dissolvesnor forms any kind of
metallic or chemical bond with thesemetals. However, uranium at high temperature
attacksboth tungsten and tantalum by diffusion through the grain boundary.

But if we usesingle crystal tungstenor tantalum, the granular attack by uranium can be
mitigated. There is existing technologyfor growing single crystal tungsten,but for
tantalum it is still under investigation.

Many other high temperature materials that have becomeavailable in recent years can
help with the development of high Isp rocket technology. For example, tungsten-
rhenium-hafnium carbide alloys (Figure 9) have outstanding mechanicalproperties at
temperatures above3,000K, even up to 3,400K. Thesealloys have been demonstrated
to have acceptablemechanicalproperties that can be usedas structural materials for
large reactor vessels.

Let's summarize the basic designfeatures of (Figure 10) uranium fuel droplets and

hydrogen propellant when they are intimately mixed. The energy transfer, in addition to

direct deposition of fission fragments, is through the high surface area of droplets. In

this system, the fuel surface area density (mZ/cubic meters of fuel) is about four orders

of magnitude larger than solid core reactor concepts.

Very high propellant temperature can be reached in this rocket engine (3,000 to 7,000K).

For the baseline analysis we have used 6,000 degrees. The hydrogen flow rate in this

systems is not restricted by fuel heat transfer area.

If pumping power is available, hydrogen can be pumped though the system even at 1,000

kilograms per second. There is no limiting factor for hydrogen flow, although a very

high rate of hydrogen flow for this mission is not needed. For the desired thrust for this

concept, 17 kilograms per second of hydrogen should be actually pumped though the

reactor.

For the baseline design, at 6,000 K propellant temperatures and 20 percent dissociation

and recombination, an Isp of 2,000 sec. is calculated.

There is also a very important safety feature for this system. The reactor can be loaded

in orbit. Uranium powder can be used for initial start-up. Therefore, the reactor does
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not need to be launchedwith the fuel in the core.

Another feature that could be a liability, (or also could be a benefit of this concept), is
that most of the fission fragmentsescapefrom the core. It reducesthe radioactive
loading of the reactor. This is the good aspectof the design if radioactive material
release is acceptable.

From my standpoint, the fission fragment releaseis a benefit of this design. This is a
good safety feature of this system,becausethe reactor is drained of radioactive materials
and removes the shielding requirement for non-prompt radiation. This allows for reactor
repair after initial start-up.

Low uranium loading is neededfor this concept. About 20 kilograms of 95% enriched
uranium is needed to reach critical conditions. If the systemis optimized, it is expected
to reduce the core loading to about ten kilograms. This core loading is defined basedon
minimum uranium-235 concentrated in the core. In my calculation, it is 20 kilograms of
fully enriched uranium. The total inventory of about 100 kilograms of uranium is

circulated in the system.

The reactor is designed to maximize the energy generation in the upper region of the

core. This is where we have a thick reflector (Figure 11). The core is three meters in

length. Figure 14 shows the thermal flux and the fast flux in the core and the reflector.

As you can see, the power decreases in the lower core region where lithium-6 is injected.

In this region the flux goes down by four to five orders of magnitude. At the end of the

reactor, the power generation is minimized.

Again, to summarize (Figure 12), the system can result in an Isp of 2,000 seconds, and a

thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can

reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen

consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 50
metric tons.

The engine dimensions are as follows: the inner diameter is basically one meter and the

core is three meters in length. The total length of the engine and the reactor is about 13

meters and the thrust to weight ratio with the shield is about 1.6.

The hydrogen flow rate and the reactor power can be scaled up without changing the

core dimensions. The same reactor can be made critical and can be operated at

different power levels and thrusts. For the baseline, the hydrogen flow rate is 17

kilograms per second and it can go to 25 or maybe even to 150 kilograms per second

without changing the dimensions of the reactor.

The only change that can be made by increasing the hydrogen flow rate is the uranium

injection rate into the core. This is also regulated by hydrogen flow that drives the liquid
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uranium spray system. The maximum level is ultimately limited by the nozzle flow
capability. This is obviously a major problem. To expandmolecular and atomic
hydrogen at 6,000K through the nozzle,the heat flux would be extremely high and
beyond the current technological capabilities. It may force a reduction in the maximum
core outlet temperature. However, this is a generic problem for all advancedconcepts.

Critical technical issuesthat need to be addressedare listed in Figure 11. I do not have
time to go though all of them. One is modeling of the uranium droplet transport in the
hydrogen. This needsto be tested, and the energytransfer processmust be analyzed.
Droplet fuel separation and uranium lossmust be accuratelyanalyzed,especially
uranium loss. If uranium lossdue to evaporization is high, we have to seedhydrogen
with depleted uranium hydride. Uranium hydride at 500 atmospheresdissociatesat
1,200K; it becomesuranium vapor and hydrogen. This cansuppressthe enriched
uranium evaporation and loss. The lossof depleted uranium from the nozzle results in a
penalty of 5-10% loss in Isp.

The hydrogen driven uranium spraynozzle designneedsto be investigated. For mercury
and helium, the weight ratio is not ashigh as uranium hydrogen.

After separation from lithium and hydrogen,liquid uranium fuel is pumped and
recirculated. Pumping of liquid uranium at temperaturesand flow rates of interest to
this concept hasnot been doneyet. Although the technology of pumping uranium
compoundsin molten salt reactors is well developed,the forced recirculation and
pumping of liquid uranium have to be investigated.

The materials compatibility and fabrication technologyfor refractory alloys are issues
that must be investigated. Last but not least, the rocket nozzle designfor operation in a
molecular and atomic hydrogenenvironment at about 6,000degreesis another key
technical issuethat must be investigated. And here basically I would like to stop.

A VOICE: You have the gasbeing rotated in the lower part of the vesselin order to
send the uranium to the wall and be collected,whereas in the upper part you want the
uranium to be in a colloid. Yet if the rotational motion of the gas in the lower part will
also causethe gasin the upper part to rotate to somedegree,that will sendyour colloid
to the wall asa liquid layer.

How canyou maintain a colloid under thoseconditions?

MR. ANGHAIE: You mean droplet liquid?

A VOICE: It seemsto me that the gasrotation in the lower part of the vesselwill
translate into somegas rotation in the upper part. It will take this mixture of droplets
and causethem to precipitate against the walls of the machineand, thus, instead of
getting this very large heat transfer area with all thesedroplets and suspension,you will

302



just get a simple liquid layer along the perimeter of the vessel.

MR ANGHAIE: For separation of uranium you do not need very high rotational

velocity. Then the forces acting on droplets are (1) the drag force (2) the thermoforetic

force that is due to the temperature difference and that pushes the uranium droplets

toward the wall; and (3) the dynamic force due to the pressure difference between the

walls and the core centerline, which is moving at maximum velocity. This force tends to

bring droplets toward the center.

In the upper regions of the core, the pressure difference due to lower velocity at the wall

and higher velocity at the center keeps droplets away from the wall. With the type of

rotational velocity and because of uranium density that is 300,000 times larger than the

density of hydrogen, we don't believe that very high rotational velocities are needed.

Therefore, the rotational momentum added in the mid-core regions cannot diffuse to the

upper core region. Furthermore, even if droplets would go to the wall, the temperature

of uranium droplets is not more than 3,000 to 4,000 degrees in that region, and, again,

hydrogen is being injected in the upper core region so it doesn't seem to be a problem in

this regard. However, optimization has to be done regarding the balance of the vortex

flow containment and separation of liquid uranium.

A VOICE: Well, the rotational lower part has to be substantial or else the uranium will

be convected out the bottom of the machine. It won't have time to fall against your

collection device unless it is a high G force.

MR. ANGHAIE: It really doesn't need high G force. Once you remove the force,

uranium droplets just escape in the direction of their tangential velocities. The axial

velocity in this system is about 20 to 30 meters in the upper part. What you need is a

velocity of a few meters per second -- because the drag force by axially flowing hydrogen

is not that large. Calculation has shown that vortex flow separation is a serious problem;

however, this problem has to be further investigated.
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ZNNOVATZVE NUCLEAR SPACE

POWER _ PROPULSZON ZNSTZTUTE

EVOLUTZON OF DROPLET CORE REACTOR DESZGN

1. COLLOZD CORE CONCEPTS (Y.S. TANG ET AL. 1970)

* U-C-ZR FZNE PARTZCLES CONFINED ZN A VORTEX FLOM CAVXTY

* COMPACT CORE, T=3700K, Isp=1100s, T=20,000Lm

* VORTEX PROPERTZES OF COLLOXD CORE REACTOR MERE

DEMONSTRATED (L.A. ANDERSON ET AL., 1972)

* VERY HZGH RATE OF U LOSS (100 G/S)

2. LZOUZD CORE CONCEPT (J.P. McGUZRK, 1972)

* CORE CONTAZNMENT USZNG CENTRZFUGAL FORCE (ROTATZNG AT

7000 rPM)

* FORCZNG HYDROGEN TO BUBBLE THROUGH UC-ZRC LZQUZD FUEL

* T=4800K, Isp=1500s, T=9000LB

* HZGH RATE OF URANZUM LOSS, LACK
MECHANZSM FOR ROTATZON AT 7000 RPM

ZNNOVATZVE NUCLEAR SPACE
POWER _ PROPULSZON ZNSTZTUTE

OF A REL][ABLE

Figure 3

EVOLUT][ON OF DROPLET CORE REACTOR DESTGN

3. DROPLET CORE REACTOR (S. ANGHAZE 1988)

* REC][RCULATZON OF URANTUM 1"NSTEAD OF CONFTNEMENT

_k

_k

UTZLZZATI"ON OF VERY STABLE URANZUM LZQUZD PHASE (_ 500

ATM T.E_T = 1400K, T,,ozL = 9500K)

FULL ENTRAZNMENT OF DROPLETS SZGNZFZCANTLY REDUCES THE

FORCED EVAPORATZON AND MZNZMZZES THE URANZUM LOSS
(LESS THAN 50 KG/MZSSZON)

_r ESTABLZSHED METHOD OF TANGENTZAL ZN3ECTZON ZNDUCED

VORTEX FLOW ZS USED FOR MALL PROTECTZON AGAZNST

URANZUM DROPLETS AND SUBSEQUENT SEPARATZON.

_r
MAXZMXZES HYDROGEN FLOW AREA AND RELAXES THRUST
LZMZTATZONS (2500<T<400,000LB)

¢r NUCLEAR ENHANCED DZSSOCZATZONOF HYDROGENZNCREASES

ISP (1500<Isp<3OOOs) 3]6 Figure4
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POWER _ PROPULSZON INSTITUTE

VAPOR PRESSURE OF URANIUH AS A FUNCTION
OF TEHPERATURE
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AVERAGE URANIUM DROPLET ST-- AS A FUNCTZON OF HYDROGEN FLOW

VELOCITY IN THE NOZZLE S; 31'7 SYSTEM Figure 6



INNOVATIVE NUCLEAR SPACE

POWER _ PROPULSION INSTITUTE

7.0
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INNOVATIVE NUCLEAR SPACE

POWER _ PROPULSION INSTITUTE

otm

1,0 arm

I Qtm

I , 1

0.2 0.4 0.6 0.8 1,0

MOLE FRACTIONOF DIb-_SOCIATEDHYDROGENATOMS

NEW MATERIAL TECHNOLOGY
' I II I

Figure 7

REQU I REMENTS : SUPERIOR THERMAL CAPABILITIES AND ULTRAHIGH

TEMPERATURE MECHANICAL PROPERTIES

SINGLE CRYSTAL TUNGSTENf W

SINGLE CRYSTAL TANTALUM, TA

Cl,

GLOSSY CARBON ("1_ POROSITY)
f

W-RE-HFC ALLOYS (W-3.6RE-0.4HFC,
W-4RE-0.33HFC, T ~ 3700K)

M

W-TH0 z

T-222

ALLOYS (W-1TH02, W-2TH0 z)

318

(TA-10W-2.5HF-0.01c) Figure 8
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DROPLET CORE NUCLEAR ROCKET (DCNR)
II

le DROPLET FUEL AND PROPELLANT ARE INTIMATELY HIXED.

* ENERGY TRANSFER SURFACE AREA DENSITY (>10 6 HZ/H 3)

* ABOUT 1/2 OF FISSION ENERGY IS DIRECTLY DEPOSITED TO PROPELLANT.
* DROPLET FUEL PROVIDES HORE THAN 3 ORDERS OF MAGNITUDE IMPROVEMENT

ON HEAT TRANSFER AREA.

2. HIGH PROPELLANT TEMPERATURES AND FLOW RATES MTTH VERY LOW FUEL LOSS

HYDROGEN TEMPERATURES -- 3000 TO 7000K

HYDROGEN FLOW RATES -" 1 TO 1000 KG/S

3. HIGH DEGREE OF NONEOUZLIBRZUM DISSOCZATION OF HYDROGEN MOLECULES DUE

TO FISSION FRAGMENTS

ISP : 2000 S (@ T=6000K AND 20_ DZSSOCZATZON/RECOIHBZNATION)

4. VERY HIGH THRUST-TO-WEIGHT RATIO. (NUCLEAR THERMAL ROCKET, RADIATION
SHZELDS ANO ASSOCIATED POWER GENERATIOH SYSTEH)

.

THRUST-TO-WEIGHT RATIO = 5 AT 75 KLB (333KN), 1500 _/E
1.6 (SHIELDED)

IMPROVED SAFETY FEATURES

* IN-ORBIT FUEL LOADING
* A LARGE PORTION OF RADIOACTIVE FISSION FRAGMENTS LEAVE THE CORE
* LOW URANIUM LOADZNG (ABOUT 20 KG ZN CORE AND 100 KG TOTAL)

319 Figure 10
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DROPLET CORE NUCLEAR ROCKET
CHARACTERISTICS

* REDUCES MZSSZON DURATION TO LESS THAN 200 DAYS

REDUCES HYDROGENPROPELLANT CONSUI'4PTTONRATE BY A FACTOR
OF 2 TO 3

SYSTEH DESIGN PARAHETERS

lsP 2000 SEC

I_NG'rNE DZHENSZONS:

REACTOR X.D./LENGTH 1/3 N
REACTOR O.D./LENGTH 2/4 N

ENGZNE LENGTH 13 M
THRUST/IdEZGHT (UI 3_0 ELDED) 5

THRUST/HEZGHT (ShxELDED) 1.6
Figure 12



ZNNOVATZVE NUCLEAR SPACE
POWER & PROPULSZON ZNSTZTUTE

CRITICAL TECHNICAL ISSUES
II I

* MODELTNG OF TWO-PHASE FLON DYNAMZCS AND ENERGY TRANSFER

* DROPLET FUEL SEPARATlrON AND URANIUM LOSS

* HYDROGEN DRlrVEN URANZUM SPRAY NOZZLE DESIrGN

* RECZRCULATZON OF LZOUZD URANZUM

MATERZALS COMPATZBZLZTY ZN ULTRAHZGH TEMPERATURE LZOUZD
U, LZOUZD AND VAPOR Lz AND HYDROGEN ENVZRONMENTS
(CORROSZONe EROSZON, ZNTERGRANULAR ATTACK...)

_r ROCKET NOZZLE DESZGN
ENVZRONMENT OPERATIONS

FOR 6000 TO 7000K HYDROGEN

Figure 13
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