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Figure 1 describes INSPI's charter, participating institutions and projects. Essentially we

have been in existence for five years and we have been funded to work on advanced

nuclear space power reactors, including gas cores. A significant amount of work has

been done recently.

Earlier research used small amounts of UF6, flowing it in argon. We did critical

experiments at 20 kilowatts. One time we went to a hundred kilowatts for a few seconds,

got there and came down. Most of the fuel was in the cavity, about 4 kilograms of

uranium hexafluoride. We still had solid fuel elements, but we did have a critical system

with a significant amount of UF-6 in it. A lot of testing was done on it -- both steady

state and dynamic testing. We looked at the characteristics of the system and we

validated many of our codes.

Initially, we were having as many as four groups doing different gas core analysis, and

eventually a decision was made to focus research on just one concept.

Many research issues were addressed (Figure 2). For example, it became obvious that

uranium tetrafluoride is a most preferred fuel over uranium hexafluoride. Every time we

start with uranium hexafluoride and go to even lower temperatures (700 K), we end up

with uranium tetrafluoride. So why fight mother nature? UF-4 doesn't have the

problems UF-6 has, and it has a very attractive vaporization point; 1 atmosphere at 1800

degrees Kelvin. So it is a temperature that's not enormously high, yet hot enough.

We also looked at materials compatible with uranium tetrafluoride, like tungsten,

molybdenum, rhenium, carbon. We find that in the molten state, UF-4 and uranium

attacked most everything, but in the vapor state they are not that bad. A lot of materials

contained them in the vapor state. We identified compatible materials for both the

liquid and vapor states.

We actually established a series of analyses to determine how the cavity should be

designed. For example, unless your central fuel region is as large as 0.85 of the cavity,

the system could be inherently unstable.

We did a series of experiments to determine the properties of the fluid, including

enhancements of the electrical conductivity of the system. We now have CFD's and

experimental programs that deal with most of the major issues.
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We also said that if we do not do nuclear testing from the beginning, eventually we

would going to lose our credibility. We performed some small, controlled nuclear testing

that gives the gas core credibility.

The beauty of the gas core is that nuclear experiments are easily done. They are rapidly

assembled. That is one of their advantages. You can make a gas core with an

aluminum tank and a barrel of UF-6. We can design and build and put a gas core in

operation in three months.

The only issue is safeguards. Do you have access to the kilograms of uranium that you
need?

When working on solid cores, the problem comes down to the fuel. And it will always be

like that because as long as you have solid fuel, you are limited (Figure 3).

We nuclear engineers should be using radiation. We stopped using radiation to use heat.

That's the way we were trained, that's what we learned. We can use radiation because

the vapor cores have an unlimited fuel temperature (Figure 4). They have inherent hot

spot equalizers, tremendously high burnup. Limitations are established by the wall

cooling, not by the temperature of the heat you can transfer.

The things that are no longer available to you with the solid cores, become the heart and

the furnace of your system. You can do all of the things better with vapor cores.

NERVA, which is the standard, is a solid fuel reactor. It might be the only one that we

will be able to put out there. My point with this technology is that regardless of how we

go, the high temperature technology needs to be developed. It should be done in steps,

not jumping to an enormously high temperatures, because temperature costs money and
takes time.

What would be the best gas core reactor? Vapor core reactor (Figure 5). Well, it's very

simple. The best gas core reactor is one in which the fuel is as hot as you can get it and

the fuel is separated from the propellant. The fuel is confined, the propellant goes out

and that would be great. So that dream of these two wonderful substances, one

fissioning, depositing the energy, and the other coming out -- they cannot coexist unless

you want to have really significant separation.

The second best gas core will be one in which you have intimate mixing of the fuel and

the propellant, and then you can separate it by some means that might include more

than just a vortex flow. You might include some mechanical means of separation.

I am going to initiate the technical part of my talk by looking at what can be done with

gas cores and what they are.
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We have heard of gas core concepts in which the temperature of the fuel is very, very

high, and the mode of heat transfer is preferably by radiation heat transfer. So, you

need extremely high heat t'ransfer rates. Then you need a series of complicated yet

potentially achievable containment techniques. But, because it is radiative heat transfer,

you have to work at very, very high temperatures, and that creates a significant problem

as far as how soon we can get this.

There is a second region in which the fuel and the propellant are mixed. The mixture

uses some of the best things of the gas cores; the intimate contact, direct molecular

collision using direct fission deposition and everything else. Here you have to separate

the uranium because the cost of the uranium would be prohibitive, if not economically,

then politically.

At less than 5000 degrees Kelvin, there is a region that is of enormous interest to the

development of the gas core. That is a region in which the gas core is completely

separated from the propellant by a physical wall. The minute you do that you reduce the

potential of the gas core. You are now almost a solid core, but not quite. What this

allows you to do is to get rid of the limitations of solid cores (Figure 6).

Here you start with a vapor fuel. It has the capacity to occupy different geometrical

shapes. The vapor core is a better fuel than standard fuel elements because temperature

is no longer limited. Heat transfer is limited by conductance only.

The minute you use a physical barrier, you are severely limiting the heat transfer area.

We can use all of the energy transfer mechanisms: direct molecular conduction, fission

fragment energy deposition, molecular collision, and radiative heat transfer. Again, the

area and the mode of heat transfer are very, very important considerations.

The fundamental features of the vapor reactor (Figure 7) include the fact that energy

conversion is not limited by fuel temperature, but rather by wall cooling. The core

fission power density is not limited by fuel thermal-mechanical or thermal-hydraulic

considerations. There are no geometric constraints on the fuel configuration. If we want

to trap it a little bit inside the wall, there are no limitations on the lifetime of the reactor

due to the fuel. It also has a much higher burn up because you can burn not only the

outside of a fuel element, but you can actually burn the entire load. The gas core has

the capability of doing direct ionization, so we can improve the optical and electrical

properties of the gas.

We have talked about the advantages of the design features (Figure 8); high fuel

utilization, no fuel fabrication, simplified fuel management. There is also inherent hot

spot compensation, which means that if you have a hot spot, as fission increases, it gets

hot, and it moves into another region. It's a very interesting effect. Density decreases

with temperature, which will decrease power in that region. Moving on then, fission

product removal is possible.
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There is inherent stability in the fuel. The fuel core geometry constraints are minimized.

Fuel density can be varied and you can have different power densities in different

regions by separation.

Disadvantages include confinement, containment, and recirculation of fuel. Fuel

recirculation loops create new problems. One of the main reasons for having a solid fuel

is to keep the radioactivity in the fuel. With circulated fuel we have an added problem.

Figure 9 is going to be very familiar to you all. We just took the NERVA core and

decided we were going to do a few things to it. What we did is create a cell with a

hydrogen core. We put in a graphite wall made of carbon-carbon. Reactivity dropped

effectively from 1.4 to 1.07. It really took a beating, but it's still critical. So the cell is

arranged with hydrogen, carbon-carbon wall, moderation, uranium tetrafluoride and

helium. UF-4 is a poor heat conductor. We added helium to improve heat transfer.

This is a very simple design. Instead of the fuel being dispersed through the matrix, it is

now a vapor. But it basically uses all of the NERVA technology.

We do have some significant changes. We put a beryllium reflector on the top because

we needed reactivity. We put a graphite reflector on the bottom. This does make the

system heavy. Now we could probably do away with those two things if we put 25

centimeters of NERVA fuel in here at the very top. In our calculations, the system K

effective increased to about 1.7, and we generated almost two-thirds of the power in

here. Why would you do that? Because the solid core has that high power density.

To summarize, Figure 10 shows baseline system parameters for two systems, one is the

NVR, which we could call a super NERVA. The other is a generic Vortex Confined

Vapor Reactor (VCVR), which is sketched out in Figure 11 (and was discussed by S.

Anghaie).

As far as technology readiness is concerned, practically everything is a 2 or 3, except for

fuel confinement with internal heat generation (Figure 12). That's not been done at all.

We have now capabilities to do research both with very high temperature and nuclear

and nonnuclear testing in lab prototypes. Figure 13 and 14 list tasks that should'be

preformed to rapidly come up to a level in which we can determine what the options are.

Figure 15 lists critical test requirements and safety issues. Many things have been done in

the previous five years that actually impact the cost and schedule. We have the fluid

dynamics, the high temperature cross sections, and the capabilities of doing experiments

at very high temperatures (up to 10000 degrees Kelvin). We also have the facilities.

I think it's critical to get this concept going.
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Figure 16 shows research and development costs. It's not a very expensive thing.
However, the numbers do not include facilities, so whenever you have to use a facility,

you have to add the cost in. I don't know what the facility costs are. They keep
changing all the time. So you could easily add $100 million to this for facilities, and

once you start doing your prototype you might have to add $200 million to it.

I terminate this at ten years. Beyond this point the gas core and solid core cost the
same. The reason is that in the first ten years we don't have to have fuel fabricated,

tested and qualified. We can have fuel tomorrow.

UF-4 is a nice substance. We can do things more quickly and more economically than
anybody else because we have the fuel in the form that we want it. We don't have to do

anything to it; we don't have to test it; we don't have to verify it. That provides an

enormous saving in time and money.

Note: For Bibliography, See DCNR (S. Anghaie)
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INNOVATIVE NUCLEAR SPACE

POWER & PROPULSION INSTITUTE

INNOVATIVE NUCLEAR SPACE POWER

PROPULSION INSTITUTE

INSPI WAS CHARTERED AND SPONSORED BY SDI0/IST, BEGINNING IN SEPTEMBER,
1985. ZT HAS BEEN OPERATING AS A NATIONAL CONSORTIUM OF UNIVERSITIES
AND HIGH TECHNOLOGY BUSINESSES PERFORMING MULTI-DISCIPLINARY, MULTI-
INSTITUTIONAL RESEARCH ON ADVANCED AND INNOVATIVE NUCLEAR SPACE POMER
REACTORS AND ENERGY CONVERSION SYSTEMS. ITS GOVERNMENT CONTRACTS ARE
ADMINISTERED BY WPAFB. ZNSPPI IS AN INSTITUTE OF THE STATE UNIVERSITY

SYSTEM OF FLORIDA.

THE INSTITUTIONS AND PROJECTS FROM SEPTFJ4BER '85 - PRESENT INCLUDED:

HM_ GAS CORE REACTORS

CALIFORNIA STATE UHIVERSITY, LO#G BEACH AVC0
UNIVERSITY OF CALIFORNIA, LOS ANGELES RICHARD ROSA, HSU (CONSULTANT)
UNIVERSITY OF FLORIDA, GAINESVILLE LANL
GA TECHNOLOGIES RTS, INC.
MAXWELL S SPACE POWER, INC.

J. DORNING ASSOC. (UNIV. OF VIRGINIA) SRI, INTERNATIONAL

PACIFIC SIERRA RESEARCH CORP.

INDUCTIVE COUPLING THERMIONICS (TRICE) NUCLE0-CHEMICAL CONVERSION

RASOR ASSOCIATES ANN ARBOR NUCLEAR, INC.

OREGON GRADUATE RESEARCH CENTER (0SU) UNIVERSITY OF MICHIGAN

SPACE POWER, INC.
THERMOELECTRON

M_TA_ VAPOR TURB_-A_T_RNATOR

SPACE POWERe INC.

UNIVERSITY OF NEBRASKA Figure I

INNOVATIVE NUCLEAR SPACE

POWER _ PROPULSION INSTZTUTE

RECENT VAPOR CORE REACTOR RESEARCH

[NSPI HAS BEEN AODRESSINGTHE CRITICAL SCIENCE AND TECHNOLOGY OF VAPOR
(GAS) CORE REACTORS SINCE 1985 FOR SDI0

MANY CONCEPTS WERE EXAMINED AND A PROGRAM CENTERPIECE CONCEPT (AND
ALTERNATE) SELECTED TO FOCUS THE RESEARCH IN OCTOBER 19_8.

A UF./KF VAPOR CORE-MHD SYSTEM IN A CLOSED RANKINE CYCLE IS THE PRIMARY
CONCEPT.

RESEARCH PROGRAM IS NOW FOCUSED ON EXPERIMENTAL VERIFICATION AND
MODELING OF SCIENTIFIC FEASIBILITY AND CRITICAL TECHNOLOGY ISSUES.

SIGNIFICANT RESEARCH ACCOMPLISHMENTS

UF 4 IS PREFERRED CHEMICAL FUEL FORM FOR T<5000K,
U-METAL DROPLETS FOR 3000KxT<7000K,
U-VAPOR FOR T>6000K
We MOe RE, C AND THEIR ALLOYS _ CARBIDES IDENTIFIED AS MATERIALS COMPATEBLE WITH

UF 4 ABOVE 1800K

NEUTRONIC STABILITY OF EXTERNALLY MODERATED GAS CORE ZNCREASES AS FUEL DENSZTT

DISTRIBUTION APPROACHES CAVITY WALL

-- FOR CENTRALLY-PEAKED DISTRIBUTION, Vfue2>0,85 Vcore FOR STABZLITY
ENHANCED ELECTRICAL CONDUCTZVITY & MHD ELECTRZCAL PRODUCTION CAN RE ACHIEVED YIA

DIRECT CHARGED PARTICLE IONIZATION

EXPERIMENTAL AND COMPUTATIONAL FACILITIES ESTABLISHED FOR HIGH TEMPERATURE VAPOR

CORE NEUTRONICS, FLUID FLOWp HUT TRANSFER+ MHD & HATERIALS ANALYSIS.

Figure 2
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HeM Is transferred from and through fuel through cladding and/or coating.
Llndll: fucf/clKIdinqj temperature, flssiolVccJ, thermal and mcchanlc41
proql_rtlcs, bumup, Peaking factors, hot spots, etc.

Solid Reactor Fuel

Figure 3
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Vapor (Gas) Core Reactors
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INNOVATIVE NUCLEAR SPACE
POWER _ PROPULSION INSTITUTE

VAPOR (GAS) CORE REACTORS:

FUNDAMENTAL FEATURES

THE NUCLEAR REACTOR AND THE ENERGY C0NVERSZON SYSTEM ARE NOT LIMITED

BY FUEL TEMPERATURE BUT BY WALL-COOLING CAPABILITIES.

CORE FISSION POWER DENSITY IS NOT LIMITED BY FUEL THERMAL MECHANICAL
OR THERMAL HYDRAULIC CONSIDERATIONS.

THERE ARE NO GEOMETRICAL CONSTRAINTS ON FUEL CONFIGURATION.

DIRECT IONIZATION (NONEGUILIBRIUM) OF WORKING FLUID CAN IMPROVE THE
OPTICAL (LA$ING) AND ELECTRICAL PROPERTIES OF THE FISSIONING GAS

THERE ARE THREE ADDITIONAL ENERGY TRANSFER MODES BEYOND THOSE OF SOLID
FUEL REACTORS:

DIRECT FISSION FRAGMENT ENERGY DEPOSITION
DIRECT MOLECULAR COLLISION BETWEEN FUEL AND PROPELLANT
RADIATIVE HEAT TRANSFER VIA BLACK BODY AND LINE RADIATION

Figure 7

INNOVATIVE NUCLEAR SPACE

POWER _ PROPULSION INSTITUTE

VAPOR (GAS) CORE

DESIGN FEATURES

REACTOR:

ADVANTAGES

HZGH FUEL UTZLZZATZON (BURNUP - 200,000 HWD/XT)
ELZMZNATZON OF FUEL FABRZCATZON, TESTZNGt VERZFZCATZON
SIMPLIFIED FUEL MANAGEMENT
INHERENT HOT SPOT COMPENSATZON; DENSITY DECREASES WITH
TEMPERATURE, DECREASING POWER

FZSSZON PRODUCT REMOVAL POSSIBLE WZTH UF 4 SLIP STREAM
(POTENTIAL RADIOISOTOPE RECOVERY)

ZNHERENT STABILITY DUE TO EXPANDZNG FUEL; POWER
DISTRIBUTION CAN BE SHAPED BY DENSITY VARIATIONS (NVR)
FUEL CORE GEOMETRICAL CONSTRAINTS NZNZMZZED
FUEL DENSITY CAN BE VARIED REGZONWZSE TO FIT POWER
DENSITY AND TEMPERATURE DISTRIBUTION

DISADVANTAGES

CONFZNEMENTr CONTAINMENT! RECZRCULATZON OF FUEL
FUEL RECZRCULATZON LOOPS CREATE NEW AND UNIQUE PROBLEMS
RANGING FROM EX-CORE CRITICALITY CONSIDERATIONS AND
SHIELDING TO MULTIPLE COMPONENT MATERIAL LIMITATIONS.

367 Figure 8



I-"
ILl

¢.,1
C_

rv,
C)
C1.

>

C¢
LLJ
--.I
¢.,1
::)
Z

Figure 9

VAPOR CORE REACTORS

BASELINE SYSTEM DESIGN PARAMETERS

REQUIREMENT PARAMETER UNITS : NVR VCVR

ENGINE AVAILABILITY YEAR

THRUST PER ENGINE ELm(F)

NUMBER OF ENGINES NUMBER

REACTOR POWER (THERMAL) _(T)

DUAL HOOE-LOW ELECTRIC POWER K_E

DUAL HOOE-HZGH ELECTRIC POWER _E

CORE WEIGHT - UNSHZELDEU ELl

CORE WEIGHT - WITH 0.75M SHIELD KLB

ENGINE THRUST/WEIGHT KLs(F)/KLB(N)

SPECIFIC ZNPULSE SECONDS

NOZZLE EXPANSION RATIO RATIO

PROPULSION OPERATING TIME/MISSION MINUTES

NUMBER OF MISSIONS NUMBER

NUMBER OF STARTUP CYCLES/LZFETZME NUMIER

AVERAGE MISSION DURATION DAYS

RELIABILITY

Z015

75

1-7

1250

50

33

55
1-Z

1280

50:1

PROPELLANT-

LIMITED

Z

lZ
310

?

2020

75

1

1550
25-50

1-3

31
53

1-2

1810

50:1

PRUPELLANT-

LIMITED

1

6
Z40

?

_8 Figure 10
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Figure 11

VAPOR CORE PROPULSION REACTORS

SCIENTIFIC/TECHNICAL ISSUE

TECHNOLOGY READZNESS LEVEL

NW

CORE CRITICALITY & DYNAMICS

CAVITY OR CHAMBER MALL COOLING

FUEL CONFINEMENT/SEPARATION

- WITHOUT INTERNAL HEAT GENERATION
- WITH INTERNAL HEAT GENERATION

VAPOR FUEL

- HECZRCULATION
- VAPORIZATION _ CONDENSATION

FUEL/WORKING FLUID CHARACTERIZATION

ENERGY TRANSFER AND TRANSPORT

MATERIALS COMPATIBILITY

THERMAL MANAGEMENT

3 2

3 Z-3

Z

314 2-3

4 Z-3

Z-3 Z-3

3-4 2-3

*SLIP STREAH ONLY, FOR REACTOR CONTROL & POTENTIAL RADZOZSOTOPE RECOYERY

Figure 12



INNOVATIVE NUCLEAR SPACE

POWER & PROPULSION INSTITUTE
REQUIRED TECHNICAL DEVELOPMENT

I I

91-92

UF4 FUELED MINI-CAVITIES

- TEST AT HIGH TEMPERATURE, NO NEUTRONS

- TEST AT LOW TEMPERATURE, 108-1012 N/CM2SEC

- TEST AT FFTF, 1000 K, HI
T, &p VS T, p

DESTRUCTIVE ANALYSIS

UTREC FACILITY

- NOZZLE TEST FACILITY UPGRADE

- RUN WITH UF4-CF4-HE

Figure 13

INNOVATIVE NUCLEAR SPACE
POWER _ PROPULSZON ZNSTZTUTE

REQUIRED

(CONT'D)
TECHNICAL DEVELOPMENT

LOW POWER ('20-100

CRITICAL FACILITY
KtCrH), UF4 FUELED, FLOWING

USE BE (KIWI) AND PLASMA CORE CAVITY (PCC) AT

PAOARITO SITE, LANL (SHIELD PCC, RUN @ 20-100

KNTH OR HIGHER, UF6) @ 500K

UPGRADE CAVITY DESIGN, MATERIALS

FLOWING UF4
TO T = 2500K,

370 Figure 14



INNOVATZVE NUCLEAR SPACE
POWER _ PROPULSZON INSTITUTE

CRITICAL TEST REQUIREMENTS

THERMOPHYSICAL PROPERTIES OF UF4-CF4-HE SYSTEM

UF 4 HANDLING, RECTRCULATZON AND FLOW

MATERIALS T NTERACTION/COMPATZBILTTY

REACTOR/REACTIVITY DYNAMICS AND STABILITY VIA FUEL DENSITY
FEEEDBACK CONTROL

ACHIEVEMENT OF REOUZRED POMER DENSTTY

CRITZCALITY AT POWER, TEMPERATURE CONOTTIONS; TNTERNALLY MODERATED
AND CAVITY REACTOR

INTEGRAL REACTOR/COOLANT ENGINE TEST

SAFETY ISSUES

REACTOR TRANSTENT RESPONSE

• OUT-OF-CORE CRITICALITY

FUEL PLATEOUT (MASS TRANSPORT)

TUBE RUPTURE ANALYSTS Figure 15

40

Nuclear Vapor Rocket Research & Development Cost
to Scientific & Engineering Feasibility

Prototype
Dc-_topmalt

)_4Major decision points

Cost to scicntlflc fuslbility-$11LM

Cost to cmjIncedng fuslblllty-$90M

10
$8M total

1 2 3 4 5 6 7 8
Years

10
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