ROBOT GRAPHIC SIMULATION TESTBED

Final Report
National Aeronautics and Space Administration
Marshall Space Flight Center

Prepared by:

Dr George E. Cook
Dr Janos Sztipanovits
Dr Csaba Biegl
Dr Gabor Karsai
James F. Springfield

Department of Electrical Engineering
Vanderbilt University
Nashville, TN 37235, USA

Contracting Officer Representative: Dr Kenneth R. Fernandez

NASA Grant No. NAG8-690

August, 1991 - , '
BRIGINAL fovTaAmNs
SOLOR MLUSTEATIENS

(NASA-CR-188998) ROBOT GRAPHIC SIMULATION N92-11637
TESTBED Final Report (Vanderbilt Univ.)
119 p CSCL 06K

Unclas

G3/54 0048373



Contents

gRIGINAL SENTAINS

S3AR ILLEITEATIORS

Bl

1 Executive Summary

2 Introduction

3 Workstation Implementation of ROBOSIM

3.1 The HP350SRX Graphics Workstation . . . . . . ... ... .........
32 The MD Program . . . .. . . ... .. i,
33 TheR2Program . . . ... . . ... i i i,
3.4 Simulation Library and Environment . . . . . .. ... ... .. 00000
3.5 Inverse Kinematics . . . . . .. .. ... ... . o oL
3.6 Collision Detection . . . . . . ... .. .. . o o oo
3.7 Example: Surgical Positioner . . . . ... ... ... ... 0000
3.8 Port to the Intergraph Workstation . . . . . ... ... .. ... .......
4 Intelligent Graphic Modeling Environment

4.1 Critique of the Basic Graphical Modeling Technique . . . .. .. ... ...
4.2 System Design of the Graphic Simulation Environment . . . . . . ... . ..
4.3 Agentcommandinterface . . ... ... ... . oL o L oL
431 Commandformat. ... ........... ... .. ...
432 Errorreporting . . . . . . . .. i i i e
4.3.3 Object creationcommands . . .. ... ... .............
4.3.4 Object transformationcommands. . . . . . ... ... ........
4.3.5 Compositeobjects . . . . .. ... L L Lo e
4.3.6 ROBOSIMobjects . . ... ..... e e e e e e e e e e e e e e
437 Agents. . . . . . e e
438 Objectremoval . . . . .. ... ... L L o oo
439 Agentpositioning. . . ... .. ... ... L oo,
4.3.10 Positionreporting . . . . ... ... ... oL
4.3.11 Graspiif . . .« ¢ v v i e e e e e e e
4.3.12 General graphicssetup . . . . . .. ... ... oL
4.3.13 General commands . . . .. .. ... L oo

4.4 Automation Interface for Robot Modeling Systems . . . . .. .. ... ...
4.5 The HDL System . . . . . . . . .. .. i i it

10
12
28
29
30
35
39



451 Introduction . . .. . ...« .. i e 64

4.5.2 Semanticsof HDL . . . .. e e e e e e e e e e e e e e 65

4.5.3 Declaration of Primitive Modules . . . . ... ... ... ....... 65

4.5.4 Declaration of Compound Modules . . . . . ... ... ........ 67

4.5.5 HDL Programmatic Interface . . . . .. .. ... ... ........ 70

456 Monitor . . . . . ¢ i v i i e e e e e e e e e e e e 72

457 Anexample . . . . . . . .. i e e e 74

4.6 Interfacing of HDL to Agent . . . . . . . . . .. .. ... L. 77

5 Case Studies 78
5.1 Space Station Modeling Using ROBOSIM . . ... ... ........... 78
5.2 Operational Modeling of the Space Station . . ... ... .......... 80
5.3 Study of the Space Station ECLSS . . . . ... ................ 87
5.3.1 Objectivesof the ECLSSstudy . . . ... ... ... ......... 88

5.3.2 Model-based diagnosticsystem . . ... .. ... ... ... ..., 89

5.4 ECLSS Study: Diagnosticsand Repair . . . . . .. ... ... ........ 93
5.4.1 Process and Fault Modeling for the ECLSS . .. ... ... .. ... 93

5.4.2 Hierarchical Process Model (HPM) of the ECLSS . . . . .. ... .. 93

5.4.3 Declarative Formofthe HPM . . . . .. . .. ... ... ... ..., 95

5.4.4 Hierarchical Fault Models (HFM) for the ECLSS/PWP . . ... .. 95

5.4.5 Definition of repair actions . . . . . .. ... ... ... 97

5.4.6 Integrated monitoring and diagnostics with robot simulation . ... 99

6 Suggestions for Future Work 101
A Structure Declarations for the Simulation Library 103
B Simulation Library Functions 107
C HDL/C Interface 110
C.1 HDL/ClInterface . . . . . .« v v i i ittt e e e 110
C.1.1 HDL Parameters . . . . . . « ¢ v v v v v v v it et e e e e e 110

C.1.2 HDL Context Tables . . . . . . .. . ... i, 111

C.1.3 Preparing and loading “Plain” Cscripts . . . . . ... ........ 112

C.1.4 Preparing “Embedded” Cscripts . . . . .. ... ... ... .... 115



List of Figures

3.1 Creating acustomobject . .. ... ... ... ... 00 L 20
3.2 Cylinder and custom object before and after attachment . . . . . ... ... 21
3.3 Base link with joints being checked . . . . . ... ... ... 0000 22
3.4 Base link being saved and compiled by ROBOSIM . .. ... ........ 23
3.5 First link being saved and compiled by ROBOSIM . . . ... ........ 24
4.1 Main functional components of the simulation environment . ... ... .. 43
4.2 Layers of the Multigraph Architecture . . . .. .. ... ... ........ 56
4.3 Structure of the Multigraph Architecture . .. ... ... ... ....... 57
4.4 Graphical model for a reconfigurable controller . . . . . ... ........ 60
4.5 Structureofthe MEE . . . . . .. .. ... ... .. o L 63
51 Solarpanels-I ... ... .. ... .. i 80
52 Solarpanels-IL. . ... .. ... . ... ... L 81
53 ServicingRobot . . . . . ... .. ... oo 82
54 Middletrussassembly . . ... .. ... ... .. o oo, 83
5.5 SpaceStation Model . . . . . ... ... Lo ool 84
56 Solar Panel Motion . . . . . . . ... .. . .. . e e 85
5.7 A Hierarchical Process Model . . . . . . ... ... ... ... ........ 91
5.8 Fault Propagation Digraph of a Process . . . ... ... ... ........ 92
5.9 Process Hierarchyof the ECLSS . . . ... ... ... ... ... ... 94
5.10 Declarative form of the AirControl Process . . .. ... ... ........ 96
5.11 Fault Diagnosis Declarative Form . . . . . .. ... ... ... ........ 98
5.12 Integrated 3D models and fault monitoring/repair system . ... ... ... 100



Chapter 1

Executive Summary

The objective of this research program was twofold. First, the basic capabilities of RO-
BOSIM (a graphical simulation system developed jointly by NASA-MSFC and Vanderbilt
University) were improved and extended by taking advantage of advanced graphic work-
station technology and artificial intelligence (AI) programming techniques. Second, the
scope of the graphic simulation testbed was extended to include general problems of Space
Station automation.

The first objective is a logical continuation of the joint NASA /Vanderbilt ROBOSIM
development. State-of-the-art graphic workstations offer new opportunities for simulation
of complex, linked geometrical structures. Hardware support for 3-D graphics and high
processing performance make high resolution solid modeling, collision detection, and sim-
ulation of structural dynamics computationally feasible. With the introduction of new Al
programming techniques, graphic structural simulation can be combined with high-level,
Al-based control functions; thus the simulation testbed can support studies in task level
planning and in other issues of autonomous control.

The Space Station is a vastly complex system with many interacting subsystems. Au-
tomation, being a decisive factor in crew productivity and safety, is expected to play a
major role in the Space Station operation. The rationale for the second objective of this
project is based on the fact that formulation and testing of automation concepts require
understanding the behavior of and the interactions among the various subsystems. For
example, the Environmental Control and Life Support System (ECLSS), which is one of
the most complex subsystems in the Space Station, is an aggregate of interdependent me-
chanical, chemical and electrical processes. These processes interact with each other and
impose constraints on the operation of other subsystems in many levels. The following list
includes a few examples for these interactions:

e the air temperature control in the ECLSS is directly related to the Thermal subsys-
tem,

e the ECLSS is one of the major electric energy consumers in the Space Station,

o therefore its operation interacts with the Electric Power Supply subsystem,
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o effects of the ECLSS operation on the utility consumers (air, potable water, hygienic
water, wash water, etc.),

e waste material removal may interact with low-gravity experiments.

Design and testing of automation concepts demand modeling of the affected processes,
their interactions and that of the proposed control systems. These models may vary in
objective and sophistication, in accordance with the level of control functions to be studied.
The analysis of elementary control loops that maintain the value of a process variable
require the use of high fidelity dynamic simulation. The testing and validation of higher
level and autonomous controllers will necessitate the use of Al-based models representing
qualitative as well as quantitative features of processes. Extended modeling techniques
include the explicit description of hierarchical process structures, causal relations, fault
propagation models and component hierarchies.

The automation testbed was designed to facilitate studies in Space Station automation
concepts. Its main purpose is to provide cost-effective solutions for the analysis of the
interactions among work packages, and for experiments with the scars and hooks provided
by the IOC automation concepts for advanced automation. Supplementing the ROBOSIM
graphical simulation package with the required new capabilities is a complex task. It
requires significant extension of the system in many ways, including the incorporation of
Al-based modeling tools, the application of automatic program generation facilities for
fast prototyping, and the introduction of advanced software engineering techniques for
managing large-scale models.

In this Report, the steps of this process are discussed. In the first section the new
capabilities of the graphic workstation version of ROBOSIM are described. The work ac-
complished in the first year of the project has resulted in significantly improved 3-D graphic
capabilities, interactive model building tools, and a solution for collision detection. The sec-
ond section discusses the design details and implementation of a new graphical simulation
package. The new design makes it possible to integrate the system with tools supporting
automation studies as well. The third section provides case studies that demonstrate the
usage and capabilities of an integrated structural modeling and automation testbed. The
case studies include the structural model of the Space Station, and a process and failure
model of the ECLSS Potable Water Processing subsystem coupled with the geometrical
modeling environment. The fourth section describes some suggestions for future research
and development work.

The work described in this paper has been mostly performed on a Hewlett Packard
9000/350 SRX graphics workstation and on an Intergraph graphics workstation. We would
like to express our gratitude to the Industrual Application Center of the Hewlett Packard
Company and Intergraph Corp. for their support which made this research possible.



Chapter 2

Introduction

This report is organized into five chapters. Chapter 3 which follows the introduction
describes the work done in porting ROBOSIM to the HP350SRX graphics workstation.
New additional ROBOSIM features, like collision detection and new kinematics simulation
methods are also discussed here. The chapter concludes with a brief description of the
ROBOSIM port to the Intergraph workstation.

Chapter 4 can be divided into three parts. In the first part - based on the experiences
of the work on ROBOSIM - we describe a new graphics structural modeling environment,
which is a part of a new knowledge-based multiple aspect modeling testbed. The second
part of the chapter contains a description of the knowledge-based modeling methodologies
and tools already available to us. The chapter concludes with the description of a model-
based package which can be used for designing and simulating robot controllers, together
with the graphics modeling environment mentioned above.

Chapter 5 contains three case studies in the area of Space Station automation. First a
geometrical structural model of the station is presented. This model was developed using
the ROBOSIM package. Next the possible application areas of an integrated modeling
environment in the testing of different Space Station operations are discussed. One of these
possible application areas is the modeling of the Environmental Control and Life Support
System (ECLSS), which is one of the most complex subsystems of the station. Using the
multiple aspect modeling methodology presented in Chapter 3 we built a fault propagation
model of this system and integrated it with the geometrical modeling environment: this is
described at the end of the chapter.

Chapter 6 concludes the report by suggesting possible future research directions for the
application of these modeling techniques in automation systems.



Chapter 3

Workstation Implementation of
ROBOSIM

This chapter describes the work which has been done in order to enhance the capabilities of
the ROBOSIM graphical structure modeling package. ROBOSIM in its original form was a
command-oriented modeling language, with a not too user friendly programming interface.
Furthermore its graphics capabilities were limited, due to the fact that originally it was
designed for use on a remote graphics terminal attached to a VAX-like processor, which
did not offer many of the features available on modern graphics engineering workstations.
Further additions include simulation libraries for collision detection and dynamics, which
are also described later in this chapter.

3.1 The HP350SRX Graphics Workstation

Since part of the impetus for extending ROBOSIM was the capabilities provided by graph-
ics workstations, it is necessary to understand these capabilities. All of the information
that follows is specifically oriented towards the HP350SRX workstation; however, much is
generally applicable to other workstations.

The HP350SRX workstation has a pixel resolution of 1280x1024 pixels. There are
16 image planes and 4 overlay planes. Each plane is one bit per pixel. Typically the
image planes are used for graphics and the overlay planes are used for XWindows. When
the image planes are rapidly changed (animation) flickering results if the images are not
double buffered. This means that only 8 image planes are actually available. While one
set of image planes are being displayed, the other set is being changed. Then, the sets
are switched. This results in flicker-free motion at the cost of reduced numbers of colors.
Since only eight planes are used at one time, only 256 colors can be displayed at one time.
The overlay planes, if used, will hide the image planes. Therefore, if X is being used, a
transparent window is created. This allows X applications to be run while seeing what is
in the image planes.

The most important capability of the workstation is the increased speed and facilities
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provided by the Starbase graphics library and the hardware graphics accelerator. These
facilities allow display of three dimensional graphics objects with options such as hidden
surface removal, shading, perspective views, and colors.

The hardware accelerator includes a matrix multiplier. This allows multiplication of
4x4 matrices much faster than could be done in software. This facility is used to a great
extent in display of objects. There are many coordinate transformations occurring during
display such as rotation and translation of objects in modeling coordinates, conversion
of modeling to world coordinates, perspective transformations, world to virtual device
coordinates, and virtual device to device coordinates. Each of these involves multiplying
by matrices; also, there can be many levels of transformations in modeling coordinates.
All graphic objects are “put through the pipeline” of transformations, and the hardware
multiplier is a key part in providing real-time speed. There is one difference between the
transformation matrices used in Starbase and the ones traditionally used by roboticists.
The graphics standard uses matrices that are the transpose of the ones used in robotics.
Therefore, all matrices in the programs are represented in the graphics standard form. For
this reason, all matrix equations had to be the reverse of those used in robotics.

Another useful feature of Starbase is the display list. A display list is made up of
segments. Each segment can be thought of as a procedure. One segment can call another
and the called segment returns to the calling segment when finished. Almost any Starbase
function can be placed in a segment. Then, whenever that segment is traversed those
commands are executed. This is very useful; for instance, all of the Starbase polygon
procedure calls that make up a robot link can be placed in a segment with a transformation
matrix that represents the transformation resulting from a particular value for that link’s
joint variable. Then, changing the transformation matrix in the display list will result
in that link “moving” the next time that display list is traversed. A segment network is
shown below. It has been printed from the simulation program for an actual robot. It has
been abbreviated in parts. “fd” is the file descriptor returned by Starbase when a display
is opened for graphic output. The {} indicate an array that has not been printed out.
Segment #0 is the main segment. It has a call to segment #1. Segment #1 is for a robot.
If there were another robot, then there would be another call in segment #0. Segment
#1 first pushes a matrix onto the transformation stack. This transformation corresponds
to the position of the robot in the world. Next, segments 2 — 9 are called. In segment
#2 the first concat_transformation3d is a transformation describing the structure of the
link. The second transformation describes the current value of the joint variable. Concat
multiplies the matrix by whatever is currently on the transformation stack and pushes the
result back on the stack. Now, the polygons in segment #2 are displayed after first being
transformed by whatever is on top of the transformation stack. Segment #2 then returns
control to segment #1, and traversal continues through segment #9. When segment #9
returns, the top of the matrix is popped off and returned to the state it was in before
traversal began.

segment O begin
move3d( fd, 0, 0, 0)
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dl_label( fd, 1)
call_segment( fd, 1)
segment 0 end

segment 1 begin
push_matrix3d( fd, {})
call_segment( fd, 2)
call_segment( fd, 3)
call_segment( fd, 4)
call_segment( fd, 5)
call_segment( fd, 6)
call_segment( fd, 7)
call_segment( fd, 8)
call_segment( fd, 9)
pop_matrix( fd)

segment 1 end

segment 2 begin
concat_transformation3d( fd, {}, 0, 0)
concat_transformation3d( fd, {}, 0, 0)
polygon3d( fd, {}, 5, 1)

polygon3d( fd, {}, 5, 1)
segment 2 end

segment 9 begin
concat_transformation3d( £d, {}, 0, 0)
concat_transformation3d( fd, {}, 0, 0)
polygon3d( fd, {}, 5, 1)

polygon3d( fd, {}, 5, 1)
segment 9 end

The ability to pick an object that is displayed on the screen is a very important part
in the graphics editor. Starbase provides a simple way to do this. When a display list is
displayed on the screen the points making up an object are eventually converted to actual
device coordinates. Now, given a range of coordinates, Starbase can return information
regarding what is displayed in that range. This consists of the segment number, the most
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recent label within that segment (if any), and the offset from that label. For instance, if the
first polygon in segment #9 fell within that window, then Starbase would return segment
#9, label #0 (there is no label in segment #9), and an offset of 3 (the first polygon is
the third command in segment #9). Starbase can even return the entire path through the
display list, giving all called segments and offsets leading up to the polygon in segment
#9.

XWindows provides the ability to read the mouse position. A program can read the
position of the mouse and convert that position to the form required by Starbase. Thus,
one can use the mouse to point to an object on the screen, and a program can figure out
what is being pointed to.

XWindows also provides many other facilities that proved to be useful in implementing
this work. One of the most useful aspects of X is the menus. Using X, one can implement
menus very easily. This allows user-friendly interfaces to be written without having to deal
with the complexities introduced. For instance, a set of menus can be created to manipulate
some display list. The menu entries are created and X is told which procedures to execute
upon selection of the corresponding menu entry. A transparent window in the center of
the screen allows the image planes (graphics planes) to be seen through the X application.

There are also two other peripherals which have been extensively used. The button
box and the knob box provide very easily used input capabilities. Once the devices have
been opened for use by a program it is quite simple to poll them. The button box returns
an integer corresponding to the button pushed, if any. The knob box is just as simple to
poll, but it has additional features. The knob box has nine knobs and each can be set
differently. A knob’s range can be set; for example, a knob can return a number between
1. and 1. or it can return a number between 10. and 100. Also, the knob can be preset
to a particular value. This means that whatever position the knob is m, that position
corresponds to the set value.

The features of the HP350SRX workstation make it ideal for use in high-performance
graphics applications. The resolution and color capability allow for sophisticated graphics.
The graphics accelerator provides speed, and the display lists provide easy access to graph-
ics hardware. XWindows allows friendly and generic user interfaces to be written simply
and easily. And the peripherals such as the mouse, button box, and knob box provide a
flexible and diverse range of input.

3.2 The MD Program

Porting ROBOSIM to the HP350SRX workstation added no additional features to those
found in the VAX version. ROBOSIM on the HP no longer used the TEKTRONIX 4014
interface, although XWindows allowed certain windows to operate in a TEKTRONIX
emulator mode. ROBOSIM was adapted to use the Starbase graphics move and draw
commands. ROBOSIM still performed all transformations internally, but used a window
from X and Starbase graphics for output. This allowed one window in which to run the
process and another in which to see the output. This capability spurred an early attempt
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at allowing an interactive mode of operation in which ROBOSIM commands were typed
_in, and the effects were immediately seen in the display window. However, this method
was never effectively implemented or used.

The MD program originally evolved as a means of displaying a robot that had been
generated by ROBOSIM. Through this program, a user could display a robot and set colors
and other attributes such as hidden surface removal, shading, and specular reflection. Also,
the camera position (i.e. the position from which the object is looked at) could be changed
to provide views of the object from many different perspectives.

Extensions to the basic MD allowed multiple robots and objects, and it even has pro-
visions to accept joint angles and other parameters from a separate process. With this
feature, a primitive simulation can be run. An early use of this involved a lisp process
piping commands to a space station model that would orient the solar collectors to receive
maximum exposure. MD was also able to run in a mode in which joint angles were read
from a file and the robot’s joints were cycled through these. This feature was used for
simple simulations of downhand welding. Two robots, one a six degree of freedom robot,
and the other a two degree of freedom positioner, were simulated. The robot performed
the welding and the positioner assisted in maintaining the downhand position and proper
orientation of the wire feed to the direction of movement of the torch. The joint angles
were generated by a separate program and stored in two files. Using MD, one could look
at the robots from various positions to visually verify that the downhand welding was

working correctly.

The basic structure of MD involves loading the link files of a robot and creating display
segments corresponding to each link. Each segment has a transformation matrix and a
polygon list. Also, there is a segment for the entire robot that has a transformation matrix
describing the position of the robot in the world, and commands that set the color and
other parameters for the robot. The input devices for MD are the button box and the
knob box. These devices provide the ability to turn functions of Starbase on and off and
to adjust parameters of Starbase. For most functions, there is a one-to-one correspondence
between Starbase functions and MD functions. MD is useful for looking at a robot after it
has been made by ROBOSIM. The robot can be brought up on the screen, looked at from
various positions, and the joints can be moved.

The capabilities of MD for more complicated simulation were very limited, and further
work on MD was replaced by the development of the simulation library and environment.
MD is still used for photographing robots and other structures such as the space station.
It is also still used for quickly verifying robots or other structures that have been con-
structed with ROBOSIM. Although it is not used directly for simulation purposes now,
the components of it dealing with graphics manipulations are still used in R2 and other

programs.
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3.3 The R2 Program

The development of R2 arose from the capabilities provided by MD and the need for
an easier to use and more flexible interface to ROBOSIM. R2 was designed to overcome
some of the limitations of ROBOSIM while taking advantage of the facilities available
on graphics workstations. However, complete compatibility with ROBOSIM was desired;
this was accomplished by the output of R2 being ROBOSIM code. Having R2 generate
ROBOSIM code allowed R2 to be much simpler. It was not necessary to reimplement
what ROBOSIM already provided. This method has proved to be the most flexible. Now,
robots can be designed by writing a ROBOSIM program, using R2 to generate a ROBOSIM
program, directly generating files from custom programs, or any combination thereof.

ROBOSIM provides a simple way in which to design robots. Based on the specifications
in a user-written ’program’ a file for each link is generated. This file contains the vector list
that is used to draw the robot, the A-matrix, the Denavit-Hartenburg parameters, joint
types, and the pseudo-inertia matrix. However, this method requires the user to maintain
a lot of information that the computer can handle much more easily. Since ROBOSIM
creates every object at the origin, the user must keep track of each objects’ dimensions in
order to place it such that it will be in the proper position and orientation with respect
to the other objects in a link. The only other method that ROBOSIM allows is to load
in data files that have been generated by some other method. This requires a custom
written FORTRAN program with appropriate calls to ROBOSIM functions. This is the
most flexible way in which to use ROBOSIM, but also the most difficult. What is needed
is a flexible, but user-friendly, environment in which to design robots.

Before discussing the internals of R2, it is useful to see how it works from a user’s point
of view. What follows is basically a user’s manual for R2. However, some knowledge of
ROBOSIM is expected. For information see the ROBOSIM manual and tutorial. It is
recommended to read the following while running R2. Proper execution of all capabilities
requires the proper setup of several files and directories. This is explained in the ROBOSIM
manual. Execute R2 from your ’source’ directory.

First, R2 is designed to run under XWindows. Therefore, type xstart to run XWindows.
To execute the program type: r2 [-t terminall [-m message_levell. The default
terminal type is “hp98721”. The only other terminal currently recognized is a “hp300h”.
The message_level refers to the amount of help that is available; the default level is
level 0. At this level only error messages are displayed. At level 1, a small window is
created in the upper left corner. then, whenever the program is waiting for input from
the user, an appropriate message is displayed. Level 2 is the highest level; after any menu
item is selected, a window with information describing the command is displayed. When
the information has been read, the user clicks the mouse on the “OK” button. The user
interface consists of the graphics window, where the model is displayed, a line of menus
across the top, a diagram showing the current meaning of the buttons, and a diagram of
the knobs showing their meaning. The use of the button box and knob box in R2 is the
same as that in MD.
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e Mouse: R2 is designed to make extensive use of the mouse. The only time at which
the user uses the keyboard is when it would be more difficult to use the mouse. This
only occurs when requesting a file name for the robot, or environment. At all other
times, input is received from the mouse, the button box, or the knob box. To select
a menu move the mouse’s cursor until the desired menu heading is highlighted. Now,
press either of the mouse’s buttons and hold it. The menu will appear below. While
holding the button down, move the cursor down the menu until the desired menu
entry is highlighted; then release the button. If (before releasing the button) you
decide that the wrong menu has been selected, move the cursor out of the menu and
release the button. If you have already selected a menu item, most functions provide
a means to cancel them with no effects.

e Numeric input window: Many functions make use of this window. It consists of
the numbers 0-9, a decimal point, a minus sign, CANCEL, END, and a set of param-
eters (such as RADIUS and HEIGHT for a cylinder, or X,Y, and Z for translate).
When invoked, all parameters are initialized to zero. However, all objects that are
made must have positive values. To select a parameter move the mouse cursor over
the desired parameter and press the left button on the mouse. Then use the mouse to
enter the desired value. If you make a mistake, simply press the parameter “button”
again, which will set the parameter to zero and allow you to reenter that parameter.
When finished entering parameters, select END. If all is well, the command will be
executed. If at any point you decide to abort this command, then press the CANCEL
button in the window.

¢ Quit menu:

Exits from the program.

Deletes the current model from memory, but does not exit the program.
e Make object menu:

Uses the numeric input window (described above). This command has three
parameters: X, y, and z. These three parameters are the dimensions of the box
along the three coordinate axes.

Cylinder: | Uses the numeric input window (described above). This command has
two parameters: RADIUS and HEIGHT. The cylinder is created with height

along the z-axis.

Uses the numeric input window (described above). This command has two
parameters: RADIUS and HEIGHT.

[Truncated cone:| Uses the numeric input window (described above). This
command has three parameters: UPPER RADIUS, LOWER RADIUS, and

HEIGHT.
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Uses the numeric input window (described above). This command has
one parameter, the RADIUS of the sphere.

[Special surfaceﬂ h This command is used for creating custom objects. You do this
by first creating a polygon and then extruding or revolving it to create a solid
object. The right button selects the starting point. The left button draws a line.
To adjust the scale push the scale button, and enter a value at least two times
the amount of your largest coordinate. The resolution is useful for specifying
the smallest unit that will be differentiated. If every point is a multiple of five,
then set the resolution to five. (Special note: you must define the polygon in a
counterclockwise direction for extrude and clockwise for revolve.) Warning: due
to implementation constraints in the simulator’s collision detection algorithm,
all polygons must be convex. at this time no correction or detection of concave
polygons is made, so it is the responsibility of the user to provide this check.

Allows the copying of an object. This is especially useful for copying the
custom designed objects since they require the most work. After selecting clone,

" select the object to be cloned, with the mouse.

e Manip object menu:

Uses numeric input window (see description above). This command has

X, y, z, and HOME for parameters. Translations are relative (i.e. they occur
relative to the current position). To return an object to its home position, press

HOME, “1”, and END.

|Rotate absolute:J Uses numeric input window. However, the x,y, and z here rep-
resent rotations around the corresponding axes. Rotations are absolute, not
additive. If you specify a rotation on an object, and then later another rota-
tion, the first rotation is lost and the new rotation is from the objects’ home

position.

lRotate relative:l Same as rotate above, except that these rotations are from the
current position.

Waits for you to select an object for deletion. Use the mouse to select the

object. Pressing the left button of the mouse while not on an object cancels
this command.

Lets one object be attached to another object. First, use the mouse to
select the base object, then select the polygon of the base object where the
attachment is to be. Then, select the object to be attached and finally the
polygon of the attached object. This command will attach the two objects
selected such that the two polygons selected line up. This attachment creates
a hierarchy such that the movement of the base object occurs to the attached
object, but a movement of the attached object will not affect the base object.
The new home position of the attached object is its position as attached to the
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base object. Once an object is attached it can not be unattached. The object
must be deleted and made again.

Lets an object be resized. It is especially useful along with the attach
function. If several objects are created and attached together, then any of them
can be resized and the relationship between them will be maintained. After
selecting resize, the object to be resized is selected with the mouse. Then a
window identical to the one used to create it appears. Enter the new dimensions,
select END and the object will be resized.

e Links menu:

Revolute joint HPrismatic joirLtI, lFixed joint:] These three commands create
a joint of the corresponding type. After selecting an entry the user is prompted
to select whether it is to be an i-joint or an i+1-joint. An i-joint is the place of
attachment to the previous link, and an i+1-joint is the place of attachment to

the next link.

[Rotatﬂ, IRranslate], [Relet&l, IAttach:] These commands operate just like the
ones in the “Manip object” menu. The reason to have separate commands for
joints is that it is difficult to select them on the screen with the mouse.

ICheck joints for validity:] This command checks the relationship between the i
and the 1i+1 joint to make sure that it follows the Denavit-Hartenberg conven-
tion, as required by ROBOSIM.

e File Management Menu: This menu provides three basic capabilities: save a
session, load a session, generate ROBOSIM code, and run MD.

This command saves the current model. The user is prompted as to

whether it is to be saved as an environment file, a link file, or to exit this com-
mand. Then the user is prompted for a robot name and then for an extension.

Load file:| This command loads a previously saved model. The user is prompted

in the same way as save file above.

| Generate ROBOSIM File: | This command prompts first as to whether the file
to be generated is for a robot or environment. Then the name is asked for. The
ROBOSIM file is then generated, ROBOSIM is called and the file is executed.
Control is then passed back to R2. The robot or environment can now be viewed
by MD, if R2 is running on an hp98721 display.

This command executes the MD program. This allows the robot to be viewed
completely. Does not work with environment files presently. Also, can not be
executed on an hp300h.

e HP300 Menu: This menu implements some functions on the hp300h. Since this
machine does not have the button box or knob box it is necessary to implement them

this way.
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[Look From:| This command uses the numeric input window. Specify the X, Y,
and Z coordinates to look from. At least one must be non-zero.’

Look At:| This command uses the numeric input window. Specify the X, Y, and

7 coordinates to look at.

Although the interface gives the appearance of an object oriented structure, it is not
implemented in this manner. The basic structure in this program is an array of pointers.
Currently, this is set to a size limit of 100. This means that the most objects that can
be in one link is 100 primitives. However, this number can be set to anything and the
program recompiled. A better structure would be a linked list of objects that is dynamically
allocated. At present, however, this method has not been a problem. The actual C
structure declarations are shown below.

#define MAXOBS 100
#define MAXKIDS 10

typedef struct vertex {
float x;
float y;
float z;
float md;
} vertextype;

typedef struct {

int s_p; /*source polygon*/
int d_o; /*destination object*/
int d_p; /*destination polygon*/

} childtype;

typedef struct object {
char *name;
int  type;
int vertices;
vertextype *model;
int custom_vertices;
float custom_extrude;
vertextype *custom_model;
float sizel[5];
float amat[4][4];
float ref[4][4];
int display_list;
childtype kids[MAXKIDS];
} objecttype;
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Whenever an object is created, enough memory for a structure of type objecttype is
allocated and the pointer to this memory is stored in the array. All information relating to
a particular object is stored in this structure. The first element in this structure is the name
of the object. This name is actually the ROBOSIM command that is used to generate this
object (i.e. BOX, R-JOINT-I). The name also directly corresponds to the next element:
the type. The type is an integer that represents the ROBOSIM command. The variable
‘vertices’ is the number of points in the model. The variable 'model’ is a pointer to the
list of vertices that describe the graphic model. The custom_vertices is the number of
points in the polygon that is used to generate a custom surface (REV-SURFACE and
EXTRUDE-SURFACE). Custom_extrude is used in an extrude-surface object; it is the
amount the object is extruded. The custom_model is a pointer to the polygon that is
used in a custom surface. The ’size’ array is an array of parameters that can be used as
the arguments to primitive calls. For instance, if the object is a box, then the first three
elements of ’size’ will be used to store the x,y, and z dimensions. The ’amat’ variable is a
matrix representing a transformation (rotation and translation) on the object. The ’ref’
variable is also a transformation, but it is used to define the home position of the object.
The display_list variable is an integer that is the descriptor of the display_list in
which this object is stored. The display_list is a set of graphics functions that when
traversed will result in the graphic object being displayed. The ’kids’ array is an array
describing the children of an object. One object becomes another object’s child when the
child object is attached to the parent object. Currently, the maximum number of children
one object can have is ten. However, this value can be changed. Each child is described
by three integers. The first, s_p or source polygon is the number of the polygon of the
parent where the child is attached. The d_o or destination object is the array index of the
object that is attached. The d_p or destination polygon is the polygon of the child object
that is attached to the parent.

After an object is selected from the menus and the parameters have been entered, the
object is created. The FORTRAN code that generates the primitives in ROBOSIM is also
used in R2. The use of the same code ensures that what is seen in the editor is the same
as what will be by ROBOSIM. The FORTRAN routines store the vector lists in an array
that is passed to them. After getting this information, the editor stores it in the structure
allocated for the object and in a slightly different form in a display list. The other variables
in the structure are filled out, the transformation matrices are set to identity, and a call
to the newly created display list is inserted into the root display list. Now, the next time
the display_list is traversed the object will be displayed.

Once an object has been created (i.e. an instance is made of the object), 'messages’
can be sent to it. From the user’s point of view, this is what is done. However, the
implementation is different. The object is selected by picking it with the mouse. R2
waits for a mouse button to be pressed and then reads the (x,y) location of the mouse.
These coordinates are then used by Starbase to determine what primitive is in that area.
Starbase returns the display list number, a label number (if any), and the offset from the
label. With this information, R2 can decide which object and polygon have been selected.
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Translations and rotations result in changes to the transformation matrix: ’amat’. A
matrix representing the appropriate translation or rotation is made and then multiplied
by ’amat’. The result is put back into ’amat’. The new ’amat’ also replaces the old matrix
in the display list.

Attaching an object to another object is a complex procedure. First the object to
be attached (child object) is selected and then the polygon attachment point is selected.
The same is done for the base object. R2 then knows the two objects and the polygon
faces where they are to be attached. The center points of the polygons are computed
along with the normals to the polygons. Next, the normal direction for each polygon is
set to the ’Z’ axis. Vectors for the X’ and 'Y’ axes must also be constructed for each
polygon. Two matrices are created that represent the positions and orientations for the
point of attachment. The inverse of the matrix for the base object is multiplied by the
matrix for the child object. This yields a matrix which describes the transformation of the
child object in the base object’s coordinate frame. This is the transformation on the child
object necessary to line up the attach points. This matrix is stored in the child object’s
'ref’ matrix. Also, the child object’s ’amat’ is set to identity. This cancels any rotations or
translations on the child object and forces the two objects to line up as specified. Rotations
and translations can be done on a child object but will now be relative to the base object.
The base object’s ’kids’ array is updated to show that the attaching object is now a child
of the base object. The ’ref’ matrix is put in the display list for the child object and a call
to the child’s display list is put at the end of the parent (base) object’s display list.

Deleting an object would be a simple procedure were it not for the complexity intro-
duced by attachments. The simplest method of handling this is deleting all children of an
object that is deleted. However, this is not desirable. Therefore, when an object is deleted,
all of its children are unattached and restored to normal status. One problem exists: child
objects positions are defined by matrices that are relative to the parent object’s position.
Therefore, the child object’s 'ref’ matrix is not set back to identity, but is instead multi-
plied by the product of its parent’s 'ref’ and ’amat’ matrices. This results in the object
not moving from its current position in the world. One can think of this as a virtual object
(invisible object) existing where the old parent object existed. This virtual object provides
invisible support to the child objects, preventing them from collapsing inward.

Resizing an object is another procedure that would be simple if one did not have to
deal with attached objects. After an object has been picked to be resized and the new
parameters have been entered, a completely new object is created. If it is a child object,
then its parent is looked for. The information regarding attachment points is stored in
the parent. The polygons are the same as before except that the dimensions are different.
New attachment points are calculated based on the new coordinates of the new object and
the ’ref’ matrix is calculated. The ’kids’ array of the parent is modified to point to the
new object and the old object is removed. If the resized object is itself a parent then the
old object’s ’kids’ array is copied to the new object and all of the ’ref’ matrices of the child
objects are recalculated. Also, all references in display lists to the old object are changed
to the new object and calls to any children are placed in the new display list. The old
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object’s display list is removed and the memory allocated to the object is freed.

When the link (or other structure) is complete, it is saved in a form able to be read by
~ R2. R2 can not take ROBOSIM code and create editor structures from that. Therefore,
one must save any files that might possibly be edited again. After all the links of a robot
have been edited, ROBOSIM code can be generated. Currently, the editor is set up in
such a way that after generating the ROBOSIM code, ROBOSIM is automatically called
and the appropriate filename passed to it. ROBOSIM then generates the link files for the
robot. If the user is on a terminal capable of using MD, then MD is automatically executed
with the robot name passed to it. In this manner, it is much quicker and more flexible to
use the editor, since the user does not have to exit the editor, run ROBOSIM, and then

run MD.

R2 generates ROBOSIM code in a fairly straightforward, though not necessarily intu-
itive (especially when looking at the ROBOSIM code), way. The method used resulted
from the difficulties involved in creating more “readable” ROBOSIM code. One method
would have required a breadth-first traversal of the editor’s hierarchical structures starting
at the deepest level of the tree (the thickest part). Another method would have required
more registers than ROBOSIM has if there were more than four child objects to any object.
The method used can be thought of as resolving the hierarchical structure dependencies
into a simple list. Remember that the position and orientation of an object affects all of
its children objects by the fact that the children’s position and orientation are described
in the coordinate frame of the parent. All that has to be done is multiply all of the trans-
formations down the tree and get one absolute transformation for each object. Then, the
first object is created, moved and rotated, and then stored in register B. Each additional
object is handled the same way except that register B is added to it and the result stored in
register B. Once all the objects in a link have been processed, a “STORE-LIN K” command
is added. Each link is processed the same way until no more links are left.

Pictures 3.1 through 3.5 show two links of a robot being built. First, a cylinder is
created and moved to one side. Then, a custom object is created. Next, the custom object
is attached to the cylinder. The final steps for this link are a fixed joint attached to the base
of the cylinder and a revolute joint attached to the custom object. Then, the link is saved.
Another link, a simple box, is created. The input and output joints are made and attached
to the link. Then, that link is saved. After these links have been saved, ROBOSIM code
is generated for them and passed to ROBOSIM. The output from ROBOSIM can be seen,
also. Now, the files describing these two links have been created and they can be looked
at with MD. The ROBOSIM code generated for the base link (LOC link) is listed in Table
1. The structure of the link file generated by ROBOSIM is shown in Table 2.
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Figure 3.1: Creating a custom object
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Figure 3.2: Cylinder and custom object before and after attachment
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LOOK-FROM X=-100., Y=100., Z=45.
LOOK-AT X=0., Y=0., Z=8.
CLEAR
STORE B
R-JOINT-I+1
ROTATE X=-45.000
ROTATE Z=90.000
TRANSLATE X=-5.000, Y=-30.000, Z=55.000
ADD B
STORE B
CLEAR

MOVE X=-10.000, Y=-10.000, Z=0.000
DRAW X=-10.000, Y=10.000, Z=0.000
DRAW X=15.000, Y=10.000, Z=0.000
DRAW X=25.000, Y=0.000, Z=0.000
DRAW X=15.000, Y=-10.000, Z=0.000
DRAW X=-10.000, Y=-10.000, Z=0.000
EXTRUDE-SURFACE Z=10.000

ROTATE X=-90.000

ROTATE Y=-90.000

TRANSLATE X=0.000, Y=-30.000, Z=35.000
ADD B
STORE B
CLEAR

F-JOINT-I
TRANSLATE X=0.000, Y=-30.000, Z=-25.000
ADD B
STORE B
CLEAR

CYLINDER R=10.000, H=50.000
TRANSLATE X=0.000, Y=-30.000, Z=0.000
ADD B
STORE B
CLEAR

LOAD B
STORE-LINK C.LOC
VIEW

END

Table 1. ROBOSIM code generated by R2
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Row Col 1 Col 2 Col 3 Col 4
. 1 THET | vz | DA | APEA |
2 1 i | me | JreEs | gTveE2 |
s o1 e
o AN x|
oo ANT-Te e
s 1 war x|
i | NEC | UNUSED | UNUSED | UNUSED |
0 1 x 1 v o oz | bt
a2 1 x2 | v | = | o2 |
WEC+19 | XNVEC | YNEC | ZWVEC | DWEC |

Variable Definitions:

THETA

DZ

DA

ALPHA
JA1,JA2
JTYPE-I,I+1
AINERT
AJNT-I,I+1
AMAT

NVEC
Xi,Yi,Zi
Di

Denavit-Hartenberg parameter
Denavit-Hartenberg parameter
Denavit-Hartenberg parameter
Denavit-Hartenberg parameter

joint defined flag

joint type =-> Revolute,Prismatic,Fixed
generalized link inertia

transforms of input and output frames
link’s A-matrix

number of vectors in list

x,y, and z component of vector

move or draw vector

Table 2. Structure of Link File Created by ROBOSIM
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3.4 Simulation Library and Environment

The simulation library and environment provides methods to access the data structures
created by ROBOSIM. The robots and other objects are specified and loaded into memory.
These structures remain resident in memory while the simulation is running. The library
provides an interface to these structures so that the user does not have to understand what
is happening at that level. The library provides higher level facilities much like an actual
robot programming language.

The simulation package allows one to use the robots that have been designed. The
package consists of a library of C functions that operate on the files created by ROBOSIM.
Although this package is far from complete, it allows simple simulations to be run. Also,
it provides a framework in which to test the major components for the simulator: collision
detection and dynamics. Having the simulator be a library of C routines allows more
flexible methods for running simulations. Very specific and efficient simulations can be
written in C and which call the simulation functions directly. However, even at this level,
much of the internal data structures is hidden from the user. This level of programming
roughly corresponds to programming a robot in its programming language. For instance,
one can tell a robot to move along a straight line or move a particular joint. A complete
reference of simulation functions available can be found in Appendix B. Using these same
routines a very flexible, user-friendly interface can be built up, allowing an interactive way
to do simulations that are not too complicated, or that do not require great speed.

ROBOSIM provides most of the information required by the simulator by way of the
files it creates. However, some information is not directly provided, but it can be deter-
mined from what is there. This involves the information required by the collision detection
algorithm. ROBOSIM provides the Denavit-Hartenburg parameters, the A matrix, the
pseudo-inertia matrix, and a list of points which describe the physical structure of the
robot. The internal data structure also includes areas that are not currently used, but
will be at a later time. These include minimum and maximum joint angles, velocities, and
accelerations. The structure also includes information related to Starbase graphics. The
actual C structure declarations used can be found in Appendix A. The simulation package
acts as intermediary between the user and the internal representation.

The simulation program that the user writes can turn on collision detection, request
solutions to inverse kinematics problems, and display results graphically. The user can
use the general numerical Jacobian method for inverse kinematics or provide an exact
solution for his robot. The user simply passes the address of the function to the simulator,
and the simulator will then use that function when solving inverse kinematics for that
robot. A proposed extension to the simulator will allow the recognition of the twenty-four
possible robot configurations for which exact solutions exist. The exact solutions to these
configurations would then be used instead of a numerical method, freeing the user from
having to solve and code it himself. A good use of the simulation system can be found
in a later case study section. This case study uses most of the features of the simulation

system, as well as R2.
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The simulation library’s commands correspond to real robot programming commands
found in many robot languages. Interfaces to many different robot languagues are planned.
This will allow actual robots to be simulated, and then have a verified program downloaded
to the robot. Additionally, the simulation could be run in parallel with the robot, with
a planner or some other type of higher-level process sending the same commands to the
simulation as well as to the actual robot. This can be used for verification, or even more
importantly as part of a feedback loop to the planner. This will allow the planner to receive
information from the simulation that it can not get from the actual robot. For instance,
the simulation could provide forces and torques if the robot does not have sensors for
that. Also, the planner could check out a plan of action on the simulation before actually
driving the robot. This would let the simulation check for collisions or other dangers
without risking the real robot.

3.5 Inverse Kinematics

The current default method for solving the inverse kinematics problem is the Newton-
Raphson method. This method is an iterative method which uses the Jacobian of a robot.
It is limited to six degree of freedom arms and has many other problems. The Jacobian is
a six by six matrix that relates differential changes in joint angles to differential changes
in world coordinate space. In other words, if you take the vector of joint velocities and
premultiply it by the Jacobian the result will be the velocities of the end effector in coor-
dinate space. Now, if you invert the Jacobian matrix, then you have a matrix that relates
differential changes in coordinate space to differential changes in joint angles. Now, if the
robot end effector is at a certain place and you want to know what joint variables would
put it there then do the following procedure.

First, record the current joint angles. Then, compute the Jacobian and invert it. Now,
subtrace the current position of the robot in coordinate space from the desired location
in coordinate space. Multiply the inverse Jacobian by this difference. This yields a set of
differences in the joint angles. Add this set of differences to the joint angles. Compute the
new position of the end effector. Iterate this procedure until the error is acceptable low.

There are many problems with this procedure. First, due to singularities in the Jaco-
bian, the method often does not converge. Second, when it does converge, you get only one
possible solution and there is no way to get the others. Third, it is very slow. However,
there are some robot configurations in which there is no exact solution, and therefore this
is the only general way.

The implementation used does not yield very good results. However, it is faster than
that used in the original ROBOSIM. This probably results from the use of LU decompo-
sition instead of actually computing the inverse of the Jacobian. For example, if you are
trying to solve the matrix equation ( Y = JX ) for X, one way would be to invert J and
premultiply both sides by that. However, there is a faster way to solve this. J can be
expressed as the product of two matrices, an upper diagonal matrix and a lower diagonal
matrix. With J in this form, X can be solved by back substitution.
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The best way to solve the inverse kinematics problem is to provide the exact solution.
Although this is usually difficult, there are only 24 distinct configurations. This means
that if a robot has an exact solution, its inverse solution can be expressed by one set
of equations out of a possible 24. Currently, only one set of equations is implemented:
the one corresponding to the PUMA 560. However, it is in a general form, in which six
parameters ( the lengths of the links) can vary. This method also allows one to get all
possible solutions to the problem. In this way, additional constraints can be checked for,
such as limitations of joints and checking different solutions to find one that does not
collide with itself or other objects. This method is also faster by two orders of magnitude.
Also, most commercially available robots have configurations that have exact solutions. It
is not possible to run a simulation in real time using the numerical method, at least not
without a floating point accelerator.

The only other method involves solving for five of the six joint angles analytically
and using the Newton-Raphson method on one joint. This method will work on some
configurations that do not have exact solutions. The usefulness of the method is better,
yielding more solutions than the full Newton-Raphson method. In addition, the numerical
part of the algorithm is not as sensitive to singularities, since it involves only one equation.
This algorithm is not currently provided in the simulation, but the user could provide his
own.

3.6 Collision Detection

Collision detection is very important in simulation of robots. One usually wants to know
if the robot has collided with its environment or with itself. The following discussion
does not delve into the theory behind the methods used, nor does it give an overview of
collision detection. For a complete discussion of collision detection methods see Walter’s
dissertation from Cornell. The collision detection algorithm implemented here is very
similar to-the POCODA (POlygon COllision Detection Algorithm) algorithm given by
Walter. The implementation used is given with special emphasis on those extensions to
POCODA.

The algorithm used can be broken down into several subalgorithms. These will be
discussed from lowest level to highest level. The assumptions used here is that all objects
are defined by convex planar polygons. The problems involved in collision detection are
as follows. Given a polygon and a point in the plane of the polygon determine whether
that point is inside of the polygon. Given a polygon and a line segment determine whether
the line segment crosses the plane of the polygon. Given two polygons determine whether
they intersect. Given two objects determine whether they intersect. Given two bounding
volumes around two objects determine whether they overlap.

The one equation to keep in mind throughout this discussion is the plane normal form

of the plane equation.

#(P) = N.P+nd (3.1)
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Where N is normal to the plane, P is the point, and nd is the distance from plane to
origin.

The plane described by this equation is the set of points P such that ¢(P) is zero.
Also, given N, nd, and a point P, the residue (@) is zero if P is in the plane, positive if P
is above the plane, and negative if P is below the plane.

The point-in-polygon problem is the most time-consuming operation. The method used
to solve this problem is the reason why the polygons must be convex. The algorithm is to
follow the polygon’s edges around the polygon checking to see which side of each edge the
point is on. If the point is to the same side of each edge then that point is inside of the
polygon. This is checked by substituting the point into each edge’s penalty function. The
penalty function is a plane equation such that the edge lies in the plane and the plane is
perpendicular to the plane of the polygon. The penalty function is calculated once for each
edge and stored in the internal structure. See Appendix A for the C simulation structure.

pen(P)=M - -P+md (3.2)
M = (N x E)| E| (3.3)
md=—M - Ple (3.4)

M is the normal vector to the penalty plane; it is the cross product of the normal to
the polygon plane and the directed edge normalized with respect to the directed edge. md
is the distance of the penalty plane from the origin. This penalty function can now be
used to determine which side of an edge a point is on.

The algorithm for determining if a line segment crosses the plane of a polygon should
be obvious from the above discussion. The two endpoints of the line segment are both
substituted into the equation of the plane in which the polygon lies. If the residues of the
two points are the same sign then both points lie on one side of the plane. Therefore, the
line segment did not cross the plane. If, however, the residues have different signs, then
the point at which the line segment crosses the plane must be determined so as to use it in
the point-in-polygon algorithm. Given two points P1 and P2 which are the endpoints of
a line segment and ¢(P1) and ¢(P2) which are the residues of P1 and P2 in the polygon
plane, then the point along the line segment that intersects the polygon plane is Pc,

Pc = P1+ (P2 - P1)- ¢(P1)((P1) — $(P2)) - (3.5)

Each object in a simulation is composed of polygons, but due to speed and efficiency
requirements the above tests would be prohibitive. Therefore, some simpler tests are
required which can quickly eliminate some objects from the more exhaustive tests. The
method used is to perform tests on bounding boxes of the objects. A bounding box is
described by a point and a vector. The point is the center of the box, and the vector is
the half-diagonal vector of the box (i.e. it points from the center of the box to a corner).
These values are determined by first determining the maximum and minimum values of
the object along the x, y, and z axes. The center is calculated by averaging the maximum
and minimum values along each axis. The half-diagonal vector is calculated by taking half
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of the difference between the maximum and minimum along each axis. For instance, along
the X axis:
Cz = (Xmaz + Xmin)/2 (3.6)

Dz = (Xmaz — Xmin)/2 (3.7)

Now, two bounding boxes overlap if the distances between the centers along every axis is
Jess than the sum of the half-diagonal components along the corresponding axes. However,
the two bounding boxes must be defined in the same coordinate frame. Typically, each
object is defined in its own coordinate frame and has a transformation matrix describing the
position and orientation of the object in the world coordinate frame. Therefore, a method
is needed to transform a bounding box from one frame to the other. Given two bounding
boxes, Bl = (C1,D1) and B2 = (C2,D2), and two transformations T1 and T2 which
are 4x4 matrices describing position and orientation of boxes Bl and B2, respectively, let
C1,C2 and D1,D2 be the center and half-diagonal vector of B1 in coordinate frame 2.

C1,2 = [C)[T1)([T2] - 1) (3.8)

D1,2 = D1Q[T1)([T2] - 1) (3.9)

where @ is the dilation product, an operation between two matrices which can be expressed
as the product of two matrices whose elements have all been changed to their absolute
values.

In order to test for bounding box overlap given two boxes, one first has to express Blin
coordinate frame 2 and check for an overlap. Then convert B2 to coordinate frame 1 and
check for an overlap. Only if both checks indicate an overlap is there one. If an overlap is
indicated then further checks have to be made to determine if there is a collision.

Once a possible collision is indicated by overlap of bounding boxes, more exhaustive
tests have to be performed. First, all points in one object must be transformed to the
other object’s coordinate frame. This can be done using Eq3.8 above where C1 is a point
in object 1. Once this is done, a first approach would be to check every edge in each object
against every polygon in the other object. However, there are some ways to reduce the
number of edges which must be checked. First, each edge in object 1 is checked against
the bounding box of object 2. Only if the edge falls within the bounding box could it
intersect the object. Each edge that could intersect a polygon is saved in the reduced edge
array. Now, each edge in the reduced edge array is checked against the polygons in object
2. However, each polygon from object 2 is first checked to see if the plane it lies in could
intersect the bounding box of object 1. If it does not, there is no need to check edges
against it. Finally, each possible edge is checked against each possible polygon, using the
methods described above, to determine if a collision exists. If not, then all points of object
9 are transformed to the frame of object 1 and the procedure repeated. The following
summary is from Walter’s thesis.

o Compare the bounding boxes of each object.
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(a) If the bounding boxes overlap then the likelihood of a collision is high and further
checks are required, and the procedure continued.

(b) Otherwise the two objects cannot possibly collide. They may be declared
collison-free, and the procedure is exited.

e The objects are transformed to a common reference frame by tranforming the points
of j into the reference frame of k. The new object is referred to as (j, k).

¢ Edges in (j, k) are compared with the bounding box of k.

(a) If an edge intersects the bounding box it is retained for further tests by inserting
it into the reduced edge array.

(b) Otherwise the edge is excluded from further tests.

o Check each polygon in k.

(a) Check whether the polygon plane intersects with the bounding box of (7, k). It
means comparing the polygon against all the reduced edges in (j, k).

A. If the polygon intersects with an edge then a collision has occurred, and the
procedure is exited with a collision condition.

B. Otherwise, continue until all edges are considered.

(b) Otherwise, the polygon cannot possibly be a source of collision, and is excluded
from further tests between the two objects.

¢ Evaluate progress.

(a) If this is the first time to this step then, interchange the roles of j and k and
repeat all steps after (2), since a collision is still possible, although undetected

this far.

(b) Otherwise, the two objects do not collide. They may be declared collision-free,
and the procedure exited.

This algorithm is the one used in the simulation library and environment with one
difference. At step 3, Walter checks every edge in (j, k) against the bounding box of k. A
much simpler first check is to check the plane of the polygon that contains the edge against
the bounding box first. If that polygon does not intersect the box, then all the edges of
that polygon are excluded. This is a much faster check than checking an edge against a
box. This is similar to what is done for the k object in step 4.

ROBOSIM does not directly generate all the information required for collision detec-
tion. However, it can be calculated from what is provided, namely the vector list. The
vector list is a list of points that define the polygons of the object. This vector list is split
into separate polygons as it is read from a file. Then the normal and normal distance
for each polygon is calculated and stored. Next, the penalty function for each edge is
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calculated and stored. As the vector list is read in, the maximum and minimum z, y, and
2 values are saved and used to calculate the bounding box. The internal data structure
now contains all of the information necessary for collision detection.

The use of this algorithm requires some special considerations when used with robots.
The technique used employs a bounding box around each object in the environment, a
bounding box around each link of each robot, and a bounding box around each robot.
The bounding boxes around each object and each link are computed at load time, but the
bounding boxes around robots must be computed as needed. This is because the bounding
boxes around robots change as the joint angles in the robots change. Whenever a collision
is checked for, bounding boxes are created around the robots. They are calculated by using
the bounding boxes around the links. The minimum and maximum extents along the x,
y, and z axes of the bounding boxes around the links are computed. Then a bounding box
around all these bounding boxes is computed from the minimum and maximum extents.
The purpose for bounding boxes around robots is that if there is more than one robot,
even bounding box checks become expensive. If there are two robots, each with nine links
(6 movable and 3 fixed), 81 bounding box checks would be required every time. And if
there were three robots, 729 bounding box checks would be required. With three robots,
and therefore three bounding boxes, only three bounding box checks are required. If there
is a collision between two bounding boxes, only the two robots need be checked.

Previously, there was a transformation matrix associated with each link that described
the coordinate frame of that link with the previous link. This is not adequate for collision
detection, however. This matrix can be obtained by multiplying all of the matrices of
the previous links together, yielding a transformation of the current link in the world
coordinate frame. It is much simpler, and faster, to calculate this matrix for each link
whenever joint variables are changed in the robot rather than waiting until needed by
collision detection. This is especially true since collision detection checks are made from
the end effector inward, as a collision is more likely with the end effector. Whenever a
joint variable in a robot is changed by a library function, the transformation matrix of the
link in the previous link’s frame as well as the world frame is calculated and stored in the
link’s structure. Then, it is used by the collision detection algorithm as needed.

Another problem that requires special treatment is collisions involving the robot with
itself. This is especially difficult when one considers that the design of the robot may
include overlap of adjacent links. If this is the case, then if links of the robot are checked
with other links of the same robot, then collisions might be seen that aren’t really valid.
Therefore, collisions are not checked for against adjacent links. The simulator has internal
provisions for joint constraints. Therefore, any possible collision could be provided for by
limiting the joint angles. However, given legal joint values, it is possible for non-adjacent
links to collide. Therefore, collision detection of the robot with itself must be made. Given
a nine link robot, 28 bounding box checks must be made to ensure no collisions with itself.
However, this self-collision detection may be controlled separately (i.e. it can be turned
on and off independently of the other collision detection), since the user may not require

these tests.
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Since many objects and robots may be loaded before they are actually used in the
simulation, the collision detection uses the list that is created by the USE command. The
USE command adds its argument to a linked list of objects, and inserts a call to it in the
display list. Therefore, it will be displayed when the display list is traversed. Also, the
collision detection uses the linked list of objects to check for collisions. If an object is not
in use, the collision detection does not waste time checking it.

Once collision detection is turned on, checks for collisions are made any time the library
functions are used to move a robot. If there is a collision then a collision structure is filled
out. This structure returns pointers to the objects and link numbers if the objects are
robots. The library functions pertaining to collision detection are included in Appendix
B.

The collision detection algorithm has only two weak points. It does not handle concave
polygons, and it will not signal a collision if one object is completely inside of another.
The stipulation concerning concave polygons is not serious. ROBOSIM does not generate
concave polygons unless they are the result of an custom object. Although R2 does not
check for concave polygons, this feature could be implemented. In fact, algorithms exist to
split concave polygons into convex polygons. Either of these features could be implemented
fairly simply. The problem of not detecting a collision if one object is completely inside
another derives from the fact the algorithm used is a polygonal collision detection algorithm
and not a solid object one. However, assuming two objects start off outside of each other
and movements are sufficiently small, then this should not prove to be a problem. This
condition also prevents the ability of one object to pass through another (i.e. a movement
is large enough that two objects do not overlap at any point). This algorithm does not
detect collisions in the volume swept by an object moving between positions with another
object, but rather only overlap of the objects at the starting and ending positions. But, if
the distance between the positions is smaller than the smallest object, then there should
be no problems.

The collision detection has been implemented very effectively. The low level collision
routines require transforming points in one coordinate frame to the other. This requires
multiplying all points by a transformation matrix. The Starbase graphics package provides
routines to do this, as well as to multiply 4x4 matrices together. When there is a graphics
accelerator in the system, Starbase uses it to do the calculations. This allows matrix
multiplication as well as transformation of points to be done in hardware, which is much
faster than in software.

3.7 Example': Surgical Positioner

Everything described up to this point has been tested, and is in use. R2 and the simulation
package are being used presently to aid in designing a kinematic surgical positioner. Its
application would be specifically for brain surgery. The idea behind it is this: the robot
would not be capable of motion on its own. It would be attached to a surgical collar,
and after calibration would be positioned by the surgeon, with joint encoders sending the
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values of the joint angles to a computer. The computer would show the position of the
robot superimposed on a CAT scan. In this way, a surgeon can quickly determine points
of entry. Currently, this is accomplished by precomputing where the points would be and
then determining them using the collar as a reference. Having a way to immediately see
what the positions are would prove to be much more flexible. Additionally, a hollow tube
could be attached to the end effector. With this, the robot could maintain a particular
orientation while the surgeon takes a biopsy.

Current research is to determine whether a robot of sufficient accuracy can be built.
ROBOSIM provides an excellent test bed to perform this development. R2 has been used
to design the arm and specify the dimensions of the links. A basic configuration similar
to that of the PUMA 560 has been used. Therefore, an exact inverse kinematics solution
exists and is used. The simulation library and environment is used to test the arm. The
tests include ability to reach all the required points on the head (without passing through
it). The inverse kinematics equations generate eight different solutions. These solutions
are checked using the collision detection algorithm to ensure that there exists at least one
which will reach the desired position without touching the head.

An additional requirement is that the positional accuracy of this robot be small. How-
ever, the size and cost are also important factors, so the smallest joint encoders would
be desirable. The relation of world positional accuracy to joint accuracy is fairly easy to
determine. Given a joint encoder of a certain number of bits, the accuracy is the range
divided by two to the number of bits. This gives an angular measure of the amount a joint
encoder could be off. This is used with the Jacobian to determine the maximum positional
error. The Jacobian relates differential changes in joint angles to differential changes in
world coordinates. The error in position caused by each joint is first determined. Then,
the sum of the errors is computed. This gives the maximum amount that the positioner
could be off. (It assumes each joint is off in the direction to give maximum error.)

Once a robot is generated, the simulation can run without the user. All data is saved
in a file for later analysis. The simulation can run without displaying any graphics, or the
user can watch it as the robot is put through its paces. The part of the simulation written
by the user is shown below. It is not a general type of simulation that would be applicable
to a wide variety of problems. However, it is sufficiently general in that it encapsulates
the requirements of the project, but it does so without being limiting. For instance, the
requirements are that it reach certain points on a head (cylinder) without any part of the
robot touching the head. The user cycles through the points that are required, and the
simulation sends back information concerning whether the robot specified can reach the
points without colliding with the head.

#include '"sim.h"
#include <math.h>
#include <stdio.h>

#define TRUE 1
#define FALSE 0
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int 1i;

FILE *fopen(), *fpout;
int puma_inv();

sim()

{
ROBOT
0BJ
JOINT
float
float
extern
char
float
float

/*

* PRE does transformation along world axes

*/

r1=GET_ROBOT("/users/robosim/source/manipulators/jo/models/T");

ri=0;

01=0;

array;

Jlelle];

angle;

COLLISION S_CO;
*filename="testout";
m[4][4];

CONV = M_PI/180.;

PRETRANSLATE(r1,25.,0.,0.);
USE(r1);

ol =

GET_0BJ("/users/robosim/source/manipulators/jo/models/HEAD.OBJ");

PRETRANSLATE(01,0.,0.,0.);
USE(o1);

C_SWITCH(TRUE) ;
SET_INV(ri,puma_inv);

/*

* cover head in increments of 1lcm over the length and 5§ degrees
* from 75 to 295 output results to file testout

*/

fpout = fopen(filename,"w");
set_joint_error();

for (i= -20; i<21; i++) {

for (angle=0.; angle<105.%CONV; angle+=5.%CONV) {

get_location(angle,m);
fprintf(fpout,"\n");

fprintf(fpout,"%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",
1lo[0],10(1],10[2],10(3],10[4],10[5]);
if (KINV(r1,m,array,TRUE)) {

36
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¥

JACOB(array,J);

error(J);

if (!MOVEJI(r1,array,1)) {
printf(“collision, y = %d, angle = %f\n",i,angle);
printf("link %d\n",S_C0.L1);

}

}

else {
fprintf(fpout,"point did not converge\n");
printf("point did not converge\n");

}

}
}
fclose(fpout);

get_location(j,m)

}

float j;
float m[4]([4];

m[2][0] = -cos(j);
m[2][2] = -sin(j);
m[2][1] = 0.;

m[0][0] = m[0][2] = 0.;
m[0][1] = 1.;

cross(m[2],m[0],m[1],1.);

m[3][0] = (float) -20.1% m[2][0];
m[3][2] = (float) -20.1* m[2][2];
m[3] (1] = (float) i;

m[0] [3] = m[1][3] = m[2][3] = 0.;
m[3][3] = 1.;

return(1);

float NUM_BITS[] = { 12.0, 12.0, 12.0, 12.0, 12.0, 12.0};
float single_joint_error([6];

set_joint_error()

{

int i;
for (i=0; i<6; i++) {
single_joint_error[i] = 2.*M_PI/pow(2.0,NUM_BITS[i]l);

37
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}
}
error (m)
float m[6][6];
{

int  i,j;
float err([6];

for(i=0; i<6; i++) {
err[i] = 0.;
for(j=0; j<6;j++) {
err[i] += (float)fabs((double)m[i][j] =*
single_joint_error[j]);
}
}
fprintf (fpout,"dX = %f dY = §f dZ = Uf",err[0],err[1],err[2]);
fprintf(fpout," X = 4f rY = Uf rZ = %f\n",err[3],err[4],err(5]);
fprintf(fpout,"distance error %f\n",
(float) sqrt((double)
err[0]*err[0]+err[1]*err{1]+err[2]*err(2]));
}

Currently, various configurations with twelve bit joint encoders are being investigated.
It appears that twelve bit encoders will provide the necessary accuracy. The use of R2 and
the ability to resize objects provide a simple means to quickly create a new configuration.
The generalness of the simulation library allows the same simulation to be used with no
modification. A detailed description of the simulation library commands is provided in
Appendix B.

3.8 Port to the Intergraph Workstation

To make ROBOSIM available on as many platforms as possible, we have ported the basic
ROBOSIM package and the simulation library to an Intergraph 3260 workstation. The
Intergraph 3260 workstation is the high-performance version of the 360 model. It is based
on the Clipper processor chip (which means it is code compatible with lower-grade models),
and runs the CLIX operating system (which is a derivative of ATT Unix System V). It
is e quipped with two graphics screens, which are suitable for applications requiring dual
displays. The configuration received by us has a large amount of main and secondary
memory, which makes it very appropriate for large-scale program development efforts.
The graphical programming interface is realized through various libraries which offer
many facilities, including line and polygon drawing, shading, etc. The capabilities of the



Workstation Implementation of ROBOSIM 39

libraries are compatible with those of the Starbase library on the HP machines. One
notable difference is the lack of display list libraries on Intergraph.

The basic ROBOSIM modeling environment and the simulation library were ported to
the Intergraph workstation. The porting involved two steps:

¢ the modification of the graphic library calls (because of the differences in the graphic
libraries), and

o the substitution of the Starbase display list calls with appropriate modules (because
of the lack of display list facilities).

The result of the port is a fully functional basic ROBOSIM package.



Chapter 4

Intelligent Graphic Modeling
Environment

The ROBOSIM package, together with the enhancements described in the previous chap-
ter, provides a powerful graphic tool for designing and simulating geometrical objects
(including robots, of course) using an engineering workstation. But the real power of this
approach can be utilized only by integrating the services of a graphic modeling toolkit
with knowledge-based techniques. This chapter describes the first results of the ongoing
research efforts to create such an integrated modeling environment.

First a critical review of the graphical modeling techniques of the basic ROBOSIM
package is given, followed by the description of the system design and implementational
considerations for an enhanced modeling and simulation package, called Agent, which was
created on top of the ROBOSIM package. The simulation package is accessible through
an object-oriented command interface, and it incorporates and extends the facilities of the
basic ROBOSIM code, as well as those of the simulation library described earlier. One
automation testbed facility (which also utilizes the MULTIGRAPH architecture) is the
Hierarchical Description Language, the subsequent sections discuss the features of this
declarative language, together with the interfacing techniques to the modeling environ-

ment.

4.1 Critique of the Basic Graphical Modeling Tech-
nique

The extensions to the ROBOSIM package described in the previous chapter greatly en-
hanced its capabilities in modeling different geometrical objects and systems. But we
think that a graphics modeling environment should provide some additional features in
order to fully utilize the potential of knowledge-based techniques in the graphic simulation
of geometric systems. These additional features are summarized below:

40
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e Need for separate representation of objects: Currently the ROBOSIM mod-
eling environment does not support the separate representation of different graphic
objects in its workspace. The display lists representing these objects are concate-
nated together every time a new object is added to the system. This makes the
modification of complex objects very difficult, because the whole ROBOSIM com-
mand sequence creating the complex object must be re-executed whenever one of its
parts is modified. This is especially a problem during the editing phase, since such
operations are quite frequently needed here. The solution would be to maintain these
objects separately — at least during the editing phase of the modeling. On the other
hand, concatenating together the parts of a complex solid object would speed up
the graphic simulation, so the desirable solution is to maintain both representation
forms and use the appropriate one for each step of the modeling process.

e Need for more graphics objects in the workspace: A large graphics simulation
program typically contains several independently moving objects. The programming
model offered by ROBOSIM (graphic registers) limits the number of these objects
- i.e. the complexity of the systems which can be modeled with it. The desirable
solution is to allocate the graphic objects dynamically, which does not limit their
number. Then each of these independent objects could be controlled separately
during the simulation.

e Multiple aspect object representation: Many of the enhancements to the RO-
BOSIM package (collision detection, dynamics, etc..), described in the previous chap-
ter are basically "add-on” packages to the original system, with separated data rep-
resentation schemes. The system design could be made much more understandable
if a central data base would be used, containing every aspect of each of the models
stored in it.

The next section of this chapter describes the system design and the implementational
considerations of the enhanced modeling package Agent.

4.2 System Design of the Graphic Simulation Envi-
ronment

The system design architecture of the Agent package can be seen in Figure 4.1. The
architecture is centered around a database which stores datastructures which contain in-

formation about:

e the geometrical properties of the entities of the world model,
e the part-whole relationships between the entities,

e the information necessary for displaying these entities (display lists),
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Figure 4.1: Main functional components of the simulation environment

e the information necessary for the collision detection algorithm,

o the information necessary for the forward and inverse kinematics simulation of the
system (either in the form of data necessary for the default iterative methods, or in
the form of analytical equations if these are available), and

e the information necessary for the forward and inverse dynamic simulation of the
system. '

Basically, the database contains all the information which was necessary to operate the
models in the enhanced ROBOSIM package described in the previous chapter, but in a
much better structured form. Unlike in ROBOSIM, where there was a limitation on the
number of objects which can be handled by the system (fixed number of graphics registers),
the objects in the database can be generated dynamically with no preset limit on their
number or complexity.

In many cases the objects in the database are complex structures built of either less
complex structures or elementary building blocks (like boxes, cylinders, spheres, etc..).
Frequently there are objects having the same structure but with different parameters of
their building blocks.

Structures (ie. robots) described in the ROBOSIM language can be instantiated in as
many copies as it is required. This is made possible by the database which can also store
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structural declarations of these complex objects which can be instantiated with the desired
. parameters whenever a new entity has to be generated. This way we can avoid having to
build these objects from scratch.

The database is implemented as a set of data structures shared by the other active
components shown in Figure 4.1. These active components, are the functional blocks of
the system and they are based on the basic ROBOSIM package and the simulation library
described earlier.

These blocks and their functionalities are as follows:

¢ Object-oriented Command Interface: Communicates with the user, interprets
the user commands and builds and keeps track of the various objects.

¢ Robosim Interface and Shape Generator: Reads in and interprets files written
using the (basic) Robosim language, and creates necessary objects using the Robosim
shape generator facilities. '

¢ Inverse kinematics: One of the basic robot simulation facilities. It solves the
inverse kinematics equations, while the simulation is running. There are facilities
for incorporating user-defined inverse kinematics routines (which solve the equations
using analytical formulas and are typically very fast).

e Collision detection: Checks for and detects collisions, as it was described earlier.

e Trajectory generator: Generates joint angles dynamically, using various tech-
niques (e.g. joint-interpolated motion, straight-line motion, etc.)

¢ Portable graphical interface: Interfaces the database to the graphical library (or
hardware) available on the computer.

In the next section we describe the command interface to the package.

4.3 Agent command interface

The purpose of the Agent package is to act as a robot simulation environment which can
receive commands from a user or from another program, for example an Al system’s high-
level planner. It provides features for environment configuration, manipulator control, and
status reporting. The execution of the commands is performed in a graphics simulation
environment. V

The Agentis an interactive program, the commands entered by the user are immediately
executed, and their results are printed or displayed on the screen. The program code is
contained in one executable file typically named ’agent’. Typing ’agent’ at the shell prompt
will invoke it. Upon startup the agent initializes the graphics display and loads in some
initial commands from the file named ’setup.cmd’ if this file exists on the current directory.
After this the agent’s prompt appears on the screen indicating that it is ready to accept
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commands from the user. The agent’s input and output streams can be redirected to pipes,
this way it is possible to issue commands by these programs.

4.3.1 Command format

The agent uses a character stream command protocol. Commands can be entered from the
system console, loaded in from a file, or sent by another program using the pipe mechanism
provided by the operating system. The general command format is:

[<label>:] <command-name> <argumenti> ... <argumentN> [; comment]

with the following rules:
1. One command per line.
2. command parameters are separated by at least one white space (SP,TAB) character

3. There might be an optional semicolon at the end of the command, anything be-
tween this character and the end of the line will be considered as a comment. Lines
beginning with a semicolon will be considered comment lines.

4. There is a way to create multiple line commands, by inserting a backslash character
immediately before the line terminator character.

5. There is an optional label field in the command line. Labels are immediately followed
by a colon character.

6. Movement commands can be issued only to the agents (robots) in the workspace.

7. Multiple agent movement commands per command line are possible. The individual
commands are separated by commas in this case. Each of these should be directed
to a different agent in the system, which will execute the commands parallelly. The
execution of the next command line begins, when the last agent finished its operation.
In contrast, if commands to two different agents are placed into consecutive command
lines, the execution of these commands will be sequential.

4.3.2 Error reporting

While processing the environment configuration commands, the Agent generates an error
log stream. For each command line which could not be processed, there will be an entry
in this stream. The format of this entry is the following:

*x*x* Error in line [label:NNN|NNN] --- <error code> <error message>
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If there was a label preceding the command containing the error, then the error message
will contain the name of the last seen label and the number of lines read since the last label
was encountered. If the command stream did not contain labels, then the error message
will contain the number of the command line counted from the beginning of the stream.
(Line numbering is zero-based, that is the first line of a stream, or the line containing a
label has offset 0.) Currently the following error messages are defined:

1 Undefined command: <command>
Unknown object: <command>
Too many arguments

2

3

4 Missing argument(s)

5 Illegal argument: <index of command argument>
6

Internal error (This error message will be given if the agent itself did not find any error
in the command, but the execution of the command failed in ROBOSIM or in the
simulation environment.)

7 Object not an agent: <command>
8 Multiple commands for the same agent: <2nd. command for agent>

9 Illegal coordinates: <command> (This message will be given if the desired coordinates
are out of the agent’s workspace, so no inverse kinematics solution exists.)

10 Joint violation: <agent> <joint index>
11 Collision: <type> <object1> <object2> [<joint1> [<joint2>]], where type:

0 object to object
1 agent to object (1 joint field)
2 agent to agent (2 joint fields)

The optional joint fields are filled out in the error report if agents are involved in the
collision.

12 Internal movement error. (This message is reserved for unforeseen execution errors
within the Simulation Library.)

13 Hand is already holding object: <object>
14 Hand is not holding object: <object>

Note that in case the error message contains the original command line, only the
offending command will be included from multiple agent commands.
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4.3.3 Object creation commands

make-object <object name> <object type> <parameters>

This command creates an object in the workspace of the agent. Various object types
have been defined, they and their parameters are described below.

line <xend> <yend> <zend> [<color>]

polyline <x1> <y1> ... <xn> <yn> [<color>]

polygon <x1> <y1> ... <xn> <yn> [<color>]

All lines objects are created with their starting point at the origin of the coordinate
system. Polylines and polygons are always created in the XY plane, they can be rotated
later if necessary. The optional color parameter is the name of a user defined color (see
later). All other parameters are numbers. The agent does not make any assumptions
about the physical units used, it is the responsibility of the user to specify the sizes of each
object in a coherent way.

box <xsize> <ysize> <zsize> [<color>]

cylinder <radius> <height> [<color>]

cone <radius> <height> [<color>]

truncated-cone <radiusi> <radius2> <height> [<color>]

sphere <radius> [<color>]

All solid objects are created with their center of mass at the origin of the coordinate
system and their principal axis parallel with the Z axis. The color parameter is used in a
manner identical to its usage at the line objects.

4.3.4 Object transformation commands

translate-object <object> x=<xtran> y=<ytran> z=<ztran>

rotate-object <object> x=<xrot> y=<yrot> z=<zrot>

These commands have a slightly different argument structure which serves the purpose
of using defaults. If any coordinate direction is missing from the arguments, it is supposed
to be 0. The order of the arguments is up to the user, i.e.:

translate-object boxl x=12 y=23 z=)

translate-object boxl y=23 z=5 x=12

are both accepted. Transformations are performed in the order of the arguments in the
argument list. (This may make a difference in the case of rotations.) The rotate command
expects its arguments in degrees.
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4.3.5 Composite objects

make-composite-object <name> <objectl> <object2> .....

link-objects <name> <objectl> <object2> .....

These commands create a new composite object by joining the objects in the argument
list permanently. They do not perform any transformations on the argument objects,
but simply use their current positions. The first command will create a new object and
leave the components in the workspace, while the second one will remove all components
from the workspace after creating the composite object. Composite objects can be used
(transformed, operated on by agents, etc..) in a manner identical to the elementary objects.

4.3.6 ROBOSIM objects

make-robosim-object <name> <filename> <objectname> [<color>]

This command can be used to create a composite object using its ROBOSIM source
code model. The specified file is scanned until a STORE-FILE command is encountered with
the specified object name as its argument. (See the ROBOSIM manual for more details.)
As ROBOSIM does not have services for coloring objects, an optional color parameter is
also accepted. It will be used to color the whole object. (I.e. regardless of the complexity
of the ROBOSIM model, the whole object will be colored with the same color.)

4.3.7 Agents

make-agent <name> <agent-type> [<color>]

Creates an agent. Agents are basically robots whose models have been precompiled
using ROBOSIM. Currently one example agent is available, the PUMA 560 manipulator.
This agent model uses the real dimensions of the puma arm in millimeters, so size the
other objects accordingly!

4.3.8 Object removal

destroy-object <object>
This command removes the descriptor of the named object from the agent’s workspace.
It might be useful when building composite objects and then selectively removing the

unneeded parts.
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4.3.9 Agent positioning

drive <agent> <joint angles>|<joint angle vector name>

drive-find <agent> <joint angles>|<joint angle vector name>

move-straight <agent> <coordinates>

move-inter <agent> <coordinates>

find-path <agent> <coordinates>

move-straight-to <agent> <object> <coordinates>

move-inter-to <agent> <object> <coordinates>

find-path-to <agent> <object> <coordinates>

Each of the above commands positions the agent. The coordinate specifications are
agent specific, for the PUMA arms they must contain six values of either joint angles (only
for the drive and drive-find commands) or rectangular coordinates (x, y ,z, roll, pitch,
yaw) either workspace absolute or object relative (xxxx-to commands). The movement
can be straight line (move-straight, move-straight-to) or joint-interpolated (drive, move-
inter, move-inter-to), or the agent can be instructed to find a path to the desired location
based on its knowledge of the workspace configuration (drive-find, find-path, find-path-to).
The drive and drive-find commands also accept a previously recorded joint angle vector.
(See later.)

translate-agent <agent> x=<xtran> y=<ytran> z=<ztran>

rotate-agent <agent> x=<xrot> y=<yrot> z=<zrot>

These commands are useful when small incremental motions of the robot arm are
needed. They always perform straight-line motion. The coordinate specification uses the
same scheme as the object transformation commands, that is the coordinates are named,
and any unspecified coordinate direction is supposed to be 0.

drive2 <agentl> <agenti> <anglesi>|<vector1l> <angles2>|<vector2>

This is a version of the drive command for two manipulators. It is included only for
backward compatibility, new programs should use the multiple commands per line feature.
The parameter structure is identical to the single manipulator drive command.

movexy <agent> <x> <y> <z> <roll> <pitch> <yaw>

This command is useful for quickly positioning the agent. It will move the agent to
the desired location (always interpreted as workspace absolute coordinates) in one step,
without path synthesis and collision checking. It is useful for seeing target locations. This
command will never operate a real robot manipulator, even if one is attached.

shift <agent> x=<xtran> y=<ytran> z=<ztran>

This is a single step version of the ’translate-agent’ command. Its operation is similar
to the 'movexy’ command, and its parameter structure is identical to the ’translate-agent’
command. NOTE: the 'movexy’ and ’shift’ commands cannot be used in multiple agent
movement command lines!

minimal-step <value>
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This command sets the robot movement simulation step size for the movement com-
mands.

set-solution <agent> <value>

This command selects the inverse kinematics solution used for the agent. The cur-
rent inverse kinematics method for the PUMA 560 arm provides 8 different solutions for
(almost) any location. Some of these solutions are typically invalid due to joint angle
constraints. The accepted range for ’value’ is 0 ... 7. The argument to the ’set-solution’
command sets the configuration the following way:

right handed: 0..3 (bit 2 = 0)
left handed: 4..7 (bit 2 = 1)

elbow down: 0,1,4,5 (bit 1 = 0)
elbow up: 2,3,6,7 (bit 1 = 1)
wrist down: 0,2,4,6 (bit 0 = 0)
wrist up: 1,3,5,7 (bit 0 = 1)

The command also accepts the special value of -1 which instructs the agent to select
the most suitable solution automatically. This is the default operation of the agent. Note
that setting a fixed configuration index will more likely result in joint limit violation error
messages, since the agent has no chance for switching solutions. For small movements
the automatic selection is based upon choosing a valid configuration which is closest to
the current joint variable values. This strategy works best when the agent is performing
various tasks in a relatively small part of the workspace. However for a major position shift
this may not be the best approach. In such cases the agent will select a new configuration
which offers the most room (i.e. all joint angles are as far from their respective limits
as possible) for moving around in the vincinity of the new location. To determine which
strategy tois to be used the agent compares the joint angles of the old and new positions. If
the difference is larger than a preset threshold, then the second method is used, otherwise
the first. This threshold value can be set with the following command (default value is 45
degrees): :

set-large-move-limit <limit>

In most cases this strategy should work fine. However it is possible that in some cases
explicit control of the robot arm configuration is necessary. (It is most likely to occur if
relatively large straight-line motion segments are needed. In straight-line motion mode
the agent considers a configuration change an error, since it would result in an abrupt
reorganization of the links during the motion segment.) For such situations the agent
offers the following configuration management commands:

get-solution <agent>

prints out the currently used configuration index. Note that you will get a value between
0 and 7 even if you use the automatic selection method.

get-valid-solutions <agent>
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prints out the indices of all valid configurations for the current position.

freeze-solution <agent>

is equivalent to using ’set-solution’ with the value obtained by using ’get-solution’.

The agent also performs collision testing while moving the robots in the workspace.
The collision testing can be enabled/disabled with the following command:

set-collision-check <flag>

If the flag value is nonzero, collision checking is turned on, otherwise it is turned off.
Initially the collision checking is enabled.

display-tries <flag>

This command can be used to enable/disable the display of the collision avoidance
attempts performed by the agent (when using the ’find’ family of the agent movement
commands . If the flag value is nonzero, the avoidance attempts will be displayed, otherwise
not. If the display is disabled, only the beginning phase of the operation (until the first
collision is detected) and the complete collision free path (if found) will be shown. Initially
the display of the avoidance attempts is enabled.

4.3.10 Position reporting

get-position <agent>

get-angles <agent>

record-angles <agent> <joint vector name>

These commands write a line of the following format to the report stream:

position of agent <a> in line [label:NNN|NNN] --- <coords or angles>

These commands behave differently based on the operating mode of the agent. If the
agent is in simulation only mode, then the manipulator model’s joint angles or coordinates
are reported. If the agent is connected with a real robot manipulator then the robot
hardware is queried for the actual joint angles, the agent’s model is updated with the
reported angles, and these angles are printed out. This way the usage of these commands
will synchronize the agent’s model with the actual manipulator. For the line numbering
convention in the report stream see the explanation at the error report messages. The
get-position command prints the position in world (rectangular) coordinates, while the
get-angles command in joint angles (in degrees). The record-angles command is similar to
the get-angles command, but it also records the angles in a coordinate vector which will be
associated with the symbol specified in the command line. Coordinate vectors can be used
as parameters for drive commands, and they are generally useful for recording important
locations in the robot’s workspace. The coordinate vector data base can be saved and
restored with the following two commands:

save-positions <filename>

load-positions <filename>
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As an additional safety measure against inadvertently losing important data, the agent
automatically saves the current coordinate vector set into the last used file if either a save
or a load command was executed previously.

4.3.11 Grasping

The agent’s grasping operations are based on grasping attributes associated with each
object in the workspace. These are the grasping coordinates — in an object relative coor-
dinate frame — and the grasping opening used to establish contact with the object. The
grasping attributes are best specified immediately after object creation, when its location
is still known, and then the grasping coordinates will be transformed any time the object
is moved. Commands:

define-grasping-point <object> <x> <y> <z> <roll> <pitch> <yaw>

establishes the grasping point and hand orientation in an object- relative coordinate
frame.

define-grasping-opening <object> <distance>

establishes the hand opening which is used to grasp the object. The hand is CLOSED
to the above distance upon grasping...

define-default-grasping-gap <distance>

This is the EXTRA hand opening above the value specified above when the hand is
moving in to grasp the object. This is a global value, but may be overwritten for individual
object by using...

define-approach-opening <object> <distance>

The default approach opening (= grasping opening + default gap) can be overwritten
for individual objects using this call. '

move-to-grasp <agent> <object>

This command moves the hand to the grasping point of the object and opens it to
the approach opening (defined using either the default gap or the individual approach
opening commands). It will give an error message if the hand already holds an object.
This command uses the ’find-path’ command’s method to get to the desired point.

grasp <agent> <object>

This command grasps the selected object. The hand is already supposed to have been
moved to the grasping point of the object, if not, an error message is generated. If the hand
is not empty an error message is generated. Otherwise the hand closes to the grasping
opening associated with the object, and in the simulation’s data base a temporary link is
set up between the object and the last link of the robot manipulator.

release <agent> <object>

This is the opposite of grasp. It gives an error message if the hand is not holding the
specified object. NOTE: the agent does not model effects like gravity, etc.. If an object is
released in the ’air’ it will stay there in the simulated environment, but of course it will
drop in the real world - leading to inconsistencies between the world and its model.
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4.3.12 General graphics setup

look-from <x> <y> <z>

look-at <x> <y> <z>

twist-camera <angle> <incremental>

Establish parameters for the viewing transformation.

define-color <name> <r> <g> <b>

Specify color. Red Green and Blue intensities are 0.0 ... 1.0

light-source <x> <y> <z> <color> <ambient>

Specify light source. They are not needed for wire frame display, only for the other
types. The ambient parameter just serves as a place holder, its value is not important. If
it is present then the light source is ambient, otherwise it is directional.

display-type wireframe|solid|shade

Define graphics display option to be used.

4.3.13 General commands

load <filename>

Take commands from the specified file. Returns when end of file or the ’exit’ (or ’end’)
command is encountered. Loads may be nested.

set-echo <flag>

Controls the echoing of the commands read from a load file. If the flag value is non-zero,
echoing is enabled, otherwise it is disabled (it is the default upon startup).

exit

end

If given from the standard input exits the program. If given in a load file, finishes
loading.

clear

Removes all object, agent, color, etc... declarations from the system.

This concludes the description of the command interface of the Agent package.

4.4 Automation Interface for Robot Modeling Sys-
tems

Previously we summarized the features we think are expected from a graphics modeling
system to utilize the power of knowledge-based techniques in three dimensional world
modeling. This section describes some of these knowledge-based techniques themselves.
The Department of Electrical Engineering at Vanderbilt University has a long history of
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building large knowledge-based engineering applications in the fields of instrumentation,
process control, simulation and testing. In the course of this work we have developed
numerous knowledge-based tools for this specific purpose.

The design of large-scale engineering systems that must operate in unstable, chang-
ing situations is one of the foremost challenges of the information sciences. Conventional
design methodologies are based on the availability of a priori information about the envi-
ronment and the system to be observed and controlled. The information is expressed in
the form of models representing relevant aspects of the environment. The basic modeling
principles of the system sciences such as separation, selection, and model economy are the
key approaches for managing complexity. The essence of these principles is simplification
until a model of manageable size is obtained. By imposing constraints on the possible be-
havior of the environment, the analysis and/or synthesis of the corresponding automation
system becomes feasible.

There are two main ways how knowledge-based techniques can be used to satisfy the
above goals. In many cases the more traditional rule-based, shallow modeling techniques
can provide quite satisfactory results. The other approach is to use as much structural
information about the environment as possible, in order to create a structural, deep model
of the system. Both approaches have advantages over each other, so the best strategy is
to use them together to solve complex engineering problems.

The graphics modeling toolkit described previously is intended to be used together
with knowledge-based controllers. For the intelligent controllers using structural, deep
modeling techniques, we use the MULTIGRAPH programming environment (developed at
Vanderbilt) described later in this section.

We think that the two knowledge-based techniques can ’peacefully coexist’ in complex
systems using geometric, structural modeling. For example, in one possible application
area, in Space Station automation, a typical scenario for the joint usage of the different
techniques might be the following;:

e Application areas for geometric modeling techniques:

— The geometric model of the Station itself

— Models of different manipulators operating on the outside or in the inside of the
Station

— Other moveable attachments to the Station, like solar panels, hatches, etc..
e Application areas for knowledge-based (rule-based) techniques:

— Scheduling of different operations on the Station

— Task Planning for robotics applications on the Station

— Creating qualitative models of those subsystems which can not be modeled
analytically due to their complexity or lack of information

e Application areas for structural modeling techniques (MULTIGRAPH):
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— Modeling those subsystems where the structural and operational data is avail-
able to create qualitative, structural models

— Modeling control systems

— Fault propagation modeling and failure analysis

Of the above three techniques, the geometrical structural modeling toolkit has already
been described in this report, and the rule-based techniques are supposed to be well-
known, since they have been in use for quite a long time. But we think, that the struc-
tural knowledge-based modeling methodology and its run-time environment (the MULTI-
GRAPH architecture, which has been developed at Vanderbilt), deserves some more ex-

planation.
Model-based knowledge-based methodologies have great potential in implementing au-
tomation systems for a wide range of applications. The main idea is quite straightforward

and includes the following steps.

e A dynamic model of the environment (the system to be observed or controlled) is
included in the higher-level knowledge-based controller of the automation system.

e The model is continuously updated based on observations.

e The control system is modified (structure and parameters) if state changes in the
model require it.

We will focus on the computational problems of creating structurally adaptive con-
trollers by using model-based techniques. The purpose of the discussion is to show the
key components of a programming and execution environment that can be used for imple-
menting this new system category.

The main computational requirements in the implementation of structurally adaptive
controllers are the followings:

e The dynamic model of the environment and its interactions with the structure of the
control system must be represented.

e The representation must be used as part of the control process, i.e. changes in
the environment model must be mapped into changes in the structure of selected
automation system components.

e The structural changes must be executed without suspending the system operation.

By using artificial intelligence terminology, the first requirement creates a knowledge
representation problem. Naturally, the model-based approach demands the explicit rep-
resentation of automation system models. The key issue is what kind of representation
techniques can be used for this purpose? The second requirement addresses the problem of
knowledge utilization. The knowledge which represents the interactions between the envi-
ronment and the structure of the control system has to be actively used for modifying the
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system operation. The problem is how to ”convert” this knowledge dynamically into im-
plementation specific terms? The third requirement is closely related to the computational
model used in the execution environment of the control system. The question is what kind
of computational model can support the dynamic reconfiguration of a processing system
in execution time?

The main difficulty in the technology of intelligent adaptive automation systems is that
realistic implementation can not be built without finding satisfactory solution for each of
these problems. In the followings we will focus on the description of the components of
the Multigraph Architecture which has been designed to serve as a generic programming
and execution environment for this system category.

The Multigraph Architecture (MA) has been developed for building a broad category
of intelligent systems operating in real-time environment. The MA has been used as
a framework for intelligent instrumentation, automatic test configuration, and process
control systems. The basic layers of the MA are the: (1) hardware layer, (2) system layer,
(3) module layer, and (4) knowledge layer (Fig 4.2). In Fig4.3, the three main levels of the
MA are shown from the user’s point of view.

¢ Model Designer. The design and implementation of model-based, intelligent con-
trol systems requires extensive modeling. Because the unforeseen operational condi-
tions might require structural modifications in the control system, the models must
be hybrid. Hybrid models explicitly represent not only quantitative, but qualitative,
structural attributes of the environment and the control system. Model designers
must be supported by appropriate tools to build and validate these models.

e Application Programmer. The models that are used in the design and imple-
mentation of intelligent automation system are domain specific by their very nature.
The form of the models (concepts, relationships) are different in chemical processes,
mechanical processes, information processing systems etc., because the models must
reflect the selected properties of these systems. However, some of the basic model-
ing principles, such as composition techniques, organization in levels of abstraction,
multiple-aspect representation, etc. are quite universal. This generality makes it pos-
sible that the creation of domain specific modeling tools can be supported by general
methodologies. The application programmer level in MA includes those components
that are used for building various, domain specific modeling environments.

e System Programmer. The lowest level of MA provides interfaces to the com-
ponents of the Multigraph Execution Environment (MEE). The central element of
MEE is the Multigraph Kernel (MK), which is the run-time support of the Multi-
graph Computational Model (MCM). MCM is a macro-dataflow model which satisfies
the required dynamic behavior mentioned before.

The models that are created during the modeling process are complex structures rep-
resenting different aspects of the environment, the control system and their interactions.
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It is important to note that in these models the structural complexity is the dominant
factor, the algorithmic complexity is typically negligible. This fact had deep influence on
the properties of the Multigraph Programming Environment (MPE). The two basic tech-
niques used for supporting this activity are (1) multiple-aspect model building and (2)
declarative/graphic programming.

e Multiple-aspect model building. Characterization of objects from different as-
pects is a well known method in modeling. There are artificial intelligence (AI) tools
that directly support the creation of "multiple views”. According to our experiences,
the real difficulty is not the representation of different aspects but the expression of
the interactions among them. The critical question is how to facilitate the well struc-
tured representation of these interactions? MPE allows the declaration of structurally
independent (SI) and structurally dependent (SD) modeling aspects.

e Declarative/graphic model building tools. Modeling requires tools for repre-
senting the models. The representation technique has to satisfy two contradictory re-
quirements. First, the representation system must provide “interface” for the model
designer, i.e. the represented model has to be easily comprehensible by humans.
Second, the represented model has to be machine readable, because the models con-
stitute the "knowledge-base” which determines the system operation. Based on these
requirements and on the fact that the models express dominantly structural infor-
mation, MPE supports two equivalent representation form: declarative languages
and the corresponding graphic representation. The model building process, which
is performed by the model designers is fully graphical and directly supports SD and
SI modeling.

Figure 4.4 shows the graphic model a reconfigurable controller for a simple robot
arm. The arm is controlled by (a) a proportional controller, or (b) a PID controller.
The reconfiguration occurs when the ”Checker” finds the performance of one of the
controller unacceptable. The figure shows only the top level structure of the con-
trollers and the simulation model of the arm. Each of the boxes have an internal
structure on the lower levels of the hierarchy. The graphic model has been built
by using the iconic editor of MPE. There exist an equivalent declarative language
representation of the model. This declarative language is a variation of the ”frame
languages”, which can be easily defined for the different modeling domains.

o Test and Validation Tools. Declarative languages offer excellent opportunity for
automatic test and validation. The basic approach used in the test and validation
toolset of MPE includes the following steps:

— the declarative language forms are mapped into a unified graph structure,
— test and validation criteria are defined for the different modeling aspects,
— the criteria are expressed as graph properties, and

— graph algorithms are used to check the properties.
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The methodology supports the automatic consistency testing of the individual mod-
eling aspects and the consistency testing among the SD aspects. A serious limitation
of the test approach is that only static properties of the models can be tested this
way. In a new research direction we address the problem of testing the dynamic,
run-time behavior of the system.

An important goal of MPE is to facilitate the definition of declarative languages and
the corresponding graphic editors for new application domains. Generic tools belonging
to the level of the Application Programmer support this task which includes the following
steps: (1) definition of the syntax of the declarative languages, and (2) configuration of
the corresponding graphic editor. The two programming tools developed for this purpose
are the Declarative Language Language (DLL), and the Programmable Graphic Editor

(PGE), respectively.

Multiple-aspect models of the external environment (platforms, signal sources, etc.),
the various components of the control system (monitoring systems, controllers, etc.), and



Intelligent Graphic Modeling Environment 60

their interrelationships embody the information that is necessary to generate a specific
instance of the knowledge-based controller for the automation system. The problem of
system integration is to generate this instance from the models, or in other words, to
map the models into an appropriate executable program. Because of the implementation
method of this mapping, we will call this process model interpretation.

‘The complexity of the model interpretation process largely depends on the nature of the
models. If it includes only the symbolic, static model of a specific system, e.g. the model
of a controller, the model interpretation process is reduced to the complexity of simple
application generator systems. In the general case, the structurally adaptive controllers
require the following capabilities from the model interpretation process.

e Multiple-aspect interpretation. The result of the model interpretation process
must generate more than one subsystems. Multiple-aspect model interpretation
means that the mapping process must interpret the models from the aspects of
the various subsystems to be generated.

e Decision making. The complexity of the mapping process is largely the conse-
quence of the fact that the models are not structured according to the subsystems
of the system to be generated. (Except the simple application generator problems,
where modeling is usually constrained to specific computation systems to be gen-
erated.) Indeed, in model building time the natural way of thinking is to focus on
selected aspects of the environment, the control system and their interactions with-
out any explicit considerations to the actual way of implementation. The model
interpretation process has to be "smart enough” (1) to collect the relevant infor-
mation from the models for the various subsystems, and (2) during this process to
make decisions on the actual structure of the computation system by analyzing the
interaction of the different modeling aspects.

e Dynamic behavior. The essence of any structurally adaptive system is the ca-
pability for dynamic reconfiguration of subsystems after a change in the working
environment has been detected. It means that the model interpretation process has
to be restartable from that point which has been effected by the detected change.

These capabilities required the elaboration of a special computation model in the Multi-
graph Execution Environment (MEE). MEE provides a system integration tool by sup-
porting the dynamic configuration of application programs from a library of precompiled
elementary processing modules. This configuration process can be performed by the higher-
level knowledge-based system components using an appropriate builder interface of the
MEE. Frequently the usage of the MEE also enables the utilization of the inherent struc-
tural parallelism in the application programs, since it is quite typical that many of the
processing modules of an application configured using the above method can be executed
concurrently, provided that the underlying hardware architecture supports this.

MEE uses a macro-dataflow model as its basic computational model. The reasons
for this choice were (1) the well-known nature of the dataflow computations due to the



Intelligent Graphic Modeling Environment 61

significant amount of research conducted on exploring the theoretical properties and im-
plementational issues of these, and (2) the fact that many engineering system models (for
example the signal flow graphs used in signal processing and process control systems) can
easily be mapped into dataflow graphs. Some extensions were added to the “typical”
dataflow computational concepts, because the MEE serves as a unified run-time support
for the different parts of the intelligent automation systems, and these parts might use
different models of computation (for example signal-flow graphs, discrete event simulators,
rule interpreters, constraint propagation networks, etc..).

The applications in the MEE are mapped into a control graph. A control graph in
the MEE is defined by its actornodes, datanodes and connection specifications. The
actornodes are the active components of the graphs. They execute an application module
(the script) which can be written either in Lisp or in other non-symbolic languages (C,
Fortran, Pascal). The scripts are position independent, they communicate with the other
graph components using the communication primitives of the MEE and the ports attached
to the actor node. If the code of the script is reentrant, it can be attached to several
actornodes. The MEE provides a way to pass a local parameter structure to the scripts,
which is called the context of the actornode. Beside the typical dataflow control principle
(a node can be fired whenever all of its inputs are present - ifall mode) MEE also supports
another mode of actornode execution, where a single input data is enough to fire a node
(ifany triggering mode).

The datanodes are the passive components of the control graphs. Their function is to
store the data generated by the actornodes. They can store either a stream of data, or
only the last data sent to them.

MEE supports several operation modes of a control graph. A graph can be operated
either in data-driven or demand-driven mode, or in a combination of the two modes.
In the data-driven mode, the data sent to a datanode propagates a control token to the
following actornodes, which will fire after collecting the necessary tokens. The demand-
driven mode means that an attempted read operation on an empty datanode will send a
request token to all possible sources (ie. the connected actornodes) of the information.

MEE provides an environment and task structure which is used to assign the various
system resources of the system hardware and software (processors, tasks, special hardware
units, etc..) to the execution of the actornodes in the computational graphs.

The structure of a typical implementation of the MEE can be seen in Fig4.5. MEE
can be depicted as a set of protected data structures which can be accessed through the

following three interfaces:

e Module Interface: which provides the data and request propagation calls for the
application modules attached to the actornodes.

o System Interface: which is responsible for scheduling the elementary computations
using the system resources provided by the host operating system.

e Builder and Control Interface: which provides the control graph building and
execution control facilities for the higher-level knowledge-based system components.
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The services of this interface can operate on an already active computational graph,
which enables the dynamic reconfiguration of the application programs.

MEE offers a set of debugging tools which are especially helpful in concurrent systems.
These include a stepper/tracer facility and a graphic monitor, which generates and displays
the graphic layout of selected parts of the control graph, and dynamically displays the

status of the nodes in the graphic window.
The computational model and the details of its implementation were selected such

that the Kernel can provide the same execution environment on a variety of computer
architectures, by hiding the details of the (possibly parallel) execution from the application
modules, which can be simple sequential procedures in every case.

4.5 The HDL System

The Hierarchical Description Language (HDL), described below, is an important compo-
nent of the automation testbed. Robot simulation should involve simulation of the robot
control system, and this is the place where HDL plays the role of the knowledge-based
component. It supports the definition of signal processing systems using very high-level
facilities. These facilities include a graphical editor for editing HDL declarations (i.e. block
diagrams). The HDL system is embedded in a Lisp environment which can communicate
with the Agent system described above.

4.5.1 Introduction

This system has been developed for the generation and dynamic modification of real-
time signal processing systems. It includes: (1) a declarative language, HDL for the
hierarchical representation of procedural networks, (2) an interpreter which builds a specific
version of the signal processing system, and (3) an execution environment. The execution
environment is provided by the Multigraph Kernel (MK), which is the run-time support
of the Multigraph Computational Model (MCM).

The system works like a hierarchical, planner in the following sense:

e the signal processing system (or more generally, a procedural network) is built ac-
cording to a set of specifications, which is defined as goal for the interpreter,

e the “selection rules” driven by the required specifications are structured hierarchi-

cally,

e the building process can be contingent upon events detected in the execution envi-
ronment,

e events can be fed back to the building process, and may initiate the modification of
the existing signal processing system.
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The outcome of the planning process is a signal processing system (procedural network)
which runs under the control of the Multigraph Kernel. The run-time environment can
be parallel, the network may run on a single- or tightly—coupled multiprocessor configu-
rations. The implementation also supports the distributed computing environments, i.e.
large procedural networks can be generated for computer networks. The building process
generates a dynamic user interface and execution monitor for the network, which can be
used for controlling and monitoring the system operation. A graphic monitoring facility is
also available for displaying the hierarchical structure definitions.

This manual was written for those, who are already familiar with the Multigraph Com-
putational Model, the basic representational principle used in HDL [1], and who have
experiences with the Multigraph Kernel [2].

First, the semantics of the HDL is described, then the monitor and the user interface
are discussed. The last section contains an example program. In the Appendix C the “C”
interface of the system is described.

4.5.2 Semantics of HDL

The representation scheme used in HDL is described in [1]. The basic concept of the lan-
guage is the module. A module can be either primitive or compound. Primitive modules
do not have internal components, compound modules consist of other (primitive or com-
pound) components. It is obvious that the primitives are related to actornodes executing
a primitive algorithm while the compounds can mean a group of actornodes with internal
connections. The module descriptions (in the sense of the language) are only structural
specifications i.e. definitions and declarations, and do not include directly the code of the
primitives.

An important feature of HDL is the parametrization of the structures. The parameters
are entities which determine some properties of the structure. Parameters can be either
static or dynamic. The static parameters are fixed during the interpretation of the structure
and there is no way to change them without generating of a new structure. The dynamic
parameters can be changed dynamically, and can be used for controlling the operation of
the signal processing system. (This is why we usually use the term “control parameters”
for the dynamic parameters.) A typical dynamic parameter is the “Start-Stop-Signal” for
a module, or a the “tuna