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Abstract

This paper describes a method for the parallel solution of tr/ans_lar

sets of equations, appropriate when there are many rlght-hand sides.

By preproceuing, the method can reduce the number of parsl/el steps

required to solve Zz = b compared to parallel forward or backsolve.
AppUcations are to iterative solvers with tzian_d&r preconditioners, to

structural sns]ysds, or to power system= applications, where there may

be many right-hand sides (not all available = p_o_.

The inverse of £ is represented as a product of sparse trian_als_

factors. The problem considered in this paper is to find a factored

representation of this inverse of L with the smsllest number of factors
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(or partitions), subject to the requirement that no new nonzero ele-
ments be crested in the formation of these invex_e factors. A method

from an earlier reference is shown to solve this problem. This paper
improves upon this method by contructing a permutation of the rows
and columns of L that preserves triangularity and allows for the best
possible such partition.

A number of practical examples and algorithmic details are pre-
sented. The paral]ellsm attainable is i]/nstrated by means of elim/ns-

tion trees and cliques trees.
Keywords: Spsmty, sparse matrices, numerical linear algebra, trian-

g_ar matrices, matrix partitioning, parallel computation.

1 Introduction

This paper considers the problem of solving a nonsingular lower triangul_

set of sparse equations Lz = b in a parallel environment. (All our results

extend in a trivial way to upper triangular systems, a fact we shah not

mention again.) We consider the case where the problem must be solved for

multiple right hand side vectors b, and these vectors are not available all at

once. By preprocessing, we reduce the number of parallel steps reded.

Important applications where multiple right-hand-sides arise include fi-

nite element applications, preconditioned iterative solvers for linear systems,

solution of initial value problems by implicit methods, and variants of New-

ton's method for the solution of nonlinear equations. Often, L is a triangular

factor computed by LU decomposition of a sparse matrix. In this case, L

is a perfect elimination matrix (its graph is chordal). Our results do not

require this. Thus, L may arise from an incomplete factorization or any

other process.

There are two possible approaches to the parallel solution of triangular

systems of equations. The usual approach is to exploit whatever parallelism

is available in the nsmd substitution algorithm [4, 10]. The second, which

requires preprocessing, works with some representation of L -I. In sequential

sparse matrix computation, substitution is universally favored because it

retains the sparsity of the problem [7]. If L is dense, its inverse L -I is also

dense. If L is sparse, its inverse is usually much denser than L itself [9].



Hereweconsidera factorization

z=l = 1_ Qk (1)
k=l

with sparse factors. Such a factorization is possible in which the factors have

no more nonzeros than L [2, 3, 9]. The chief advantage of a factorization

of L -I is that all the necessary multiplications for the computation of Qkz

can be performed concurrently. Thus, it is possible to take advantage of

more parallelism in the solution of these equations. The necessary additions

can be done in at most log 2 m operations, where m is the largest number of

nonzeros in a row of Qk.

The remainder of this introduction reviews the use of partitioned inverses

of L. Any triangular matrix L can be expressed as a product of elementary
matrices:

L = L1L2" "L.-z (2)

where

(Lk)_ = L_k for k<_i<_n,

(zk)i_ - 1 for j#t,
(Lk)_j - 0 otherwise.

The matrices Lk are known as elementary lower tria_gul_ matrices.

They can be grouped into several factors,

where

and

L = II A (3)
k.=.l

Pk = Le_._I+IL=,._=+=""-L=,.

O=eo <el <...<e,, =n-1.

(4)

(5)
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Here{ek}k___0is a monotonically increasing integer sequence. The factor Pk is

lower triangular and is zero below its diagonal in a]] columns except columns

ek-1 + 1 through ek, where it is identical to L. Consider, for example:

L ._

1000

0200

3230

4011

By choosing e0 = 0; el = 2; e2 = 3, L can be partitioned as follows:

L = LIL_L3 = (L1L2)Ls = P1P2

1000

0200

3210

4001
10001

0100

0030

0011

The solution of the partitioned problem proceeds as follows. Prom (3) it
follows that

z = I,-lb = _ P_lb.

Thus, one may compute z as follows:

(6)

z-b;

for k = 1 to m do

In computing the matrix-vector products, we may exploit parallelism

fully, computing the results in _og_ max-row(P_'l)] time with r/(P_ "1) pro-

cessors. Here r/(X) denotes the number ofnonzeroes in X and max-row(X) =

(numberofnon_eroesin rowi ofx) = m_(_(e_x)).
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Our viewpoint, which is the use of a partitioned inverse of L, is computa-

tional]y qttite similar to frontal methods for factorization [8] and to methods

using supernodes [5].

2 Problem Definition

This section defines some terminology and the two problems that are ad-

dressed in this paper.

Definition 1 X is invertible in place ifz_j _ 0 ¢_ (X-I)_j _ O.

The elementary lower triangular matrices are invertible in place. There

therefore always is at least one partition (3) of L with factors that invert in

place. A partition in which the factors Pk are invertible in place is ca]led a

"no-fill" partition. The objective here is to find a no-fill partition with the

smallest possible number of factors.

Problem 1 Determine m and ex,...,em-x st_h that each Pt, 1 <_ k <_

m, is invertible in place and m is minimum. Denote this minimum m by

rain-fact(L).

Definition 2 A solution to Problem I is a rninimllrn no-fill partition of L.

Problem 2 Determine a permutation matriz 1T such that Ln - ILLITT re.

mains lower triangular and min-fact(LH) is minimized.

2.1 Graph Theory Concepts

Let G(L) be a digraph with vertices V = {1, 2,..., n} and directed edges

E = E(L) - {(i,j) [ Lij _ 0}. Think of the edge (i,j) as an arrow going

from vertex j to vertex i. If L is lower triangular, then for all edges (i, j)

we have i > j. G(L) is therefore an acyclic digraph, or DAG.

Definition 3 The inde_ree of a vertez i is the number of vertices j such

that (i,j) E.

' 5



Theindegreeof vertex i is the number of nonzeros in the $'_ row of L.

Definition 4 Let G = G(L). For j E V, rnadj(j) is the set of higher num-

bered neighbors of j, i.e. the set {i > j I Lij _ 0}.

The set rnadj(j) is the set of rows that are nonzero in the jth column of L.

Definition 5 For (i, j) E E we say that j is a predecessor of i and i is a

successor o/j.

In anticipation of forthcoming theorems, we need to establish two lem-

IIla,S.

Lemma 1 If L is a nonsin_ar lower triam3elar matriz, then (i, j) /8 an

_ge of G(L -1) i_ there is a _th from j to i in G(L).

Proof: For all 1 < i < n, (i,i) G E(L)f3E(L-x), since both are nonsingulax

and triangu]ax. We induct on i - j. For i > j

o = (LL-_),j
i

p=j

,_1= 1
\_r=j /

The second term above is nonzero hT L_ _ _ 0. The first term is nonzero

iff at least one product Lif, L_ _ 0, j _< p <_ i - 1. By the inductive

hypothesis (since for any such p, p-j < i-j) this holds iff there is an edge

(i, p) and a path from j to p. Together, these constitute the required j -_ i

path. D

Definition 6 The digraph G = (V,E) is closed if (i,k) £ E and (k,j) e

E =_ (i,j) G E.
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Definition 7 Let G = (V, E) be a digraph _sociated with a triangular ma.

triz L. Given a subset S of V, define the cohmm subgraph Gs = (V, Es)

(whereEs -- {(i,j) _ Eli _ S}) as the _aph of the tower t,_ng_tar mat_
obtained by zeroing all columns of L not in S.

Theorem 2 Let a partition (5) and corresponding factorization (3) be given.

The factors Pk are invertible in place iff each column subgraph G(Pk) =

G{e__l+l .....eh} /8 closed.

Proof: By Lemma 1 (p_-1),$ _ 0 iif there is a j -_ i path in G(Pk). The

following are therefore equivalent:

• Pk is invertible in place

• (p_1)_j # 0 _ (A)_j # 0

• for every j --, i path, (P_)i$ _ 0

• G(A) is dosed.

[]

Leranm 3 Let L1 and L: be lower triangular. Then (i,i) E E(L1L:) iff

the_ _ so_e k, _th i < k < i su_ _t (i,k) _ E(L1) and (k,i) _ E(L_).

Proof: For all i > j, (L1L2)ij = _-_._=j(Lx)_(L2)hj. See Figure 1.

2.2 Partitioning the Inverse

Consider Problem I, that of representing L -I by partitioning its factoriza-

tion with the smallest possible number of factors that invert in place. The

following algorithm was proposed by Alvarado, Yu and Betancourt (who ca]]

it PA2)[3]:



Q j<i

LI

Figure 1: Proof of Lemms 3.

Algorithm PI:

Input: L = LIL=... L,,-I

Output: A partition of L.

i _ 1; k 4- 1;

while (i < n- 1) do

let r be the largmt integer greater than i such that Lx-.. L,

is invertible in place;

P_ _ LI...L,;

k _- k+l; i _ r-l- 1;

od

A]varado, Yu, and Betancourt did not mention the issue of minim_llty.

Here we show that Alsorithm P1 determinm a mlnlm,m no-fill partition.

Lemma 4 If Lx... L, is ineertible in place, then L=... L, is, too.



Proof: Obvious.

Theorem 5 Algorithm P1 produces a minimum partition (it solves Problem

1).

Proof: Suppose Algorithm P1 produces a partition L = Px"" P,n- Clearly

there does not exist a no-fdl partition with el any larger than that produced

by Algorithm P1.

Now we show by induction on n that there is no better partition. Let

L = PI"'" Pro, be a diiTerent no-fill partition. Suppose PI = _61- By the

induction hypothesis, Algorithm P1 when applied to P2""-Pro, produces a

minimum no-fill partition, i.e. m - 1 factors is least possible. Thus, m _ >__m.

On the other hand, perhaps 1_I = LI.--L,_ with e_ < el, i.e. /_i has

fewer nonzero columns than does PI. The matrix Q -/_2"'" P,_' has a no-

fd] partition with (mt - 1) factors. By the previous lemma, we may remove
the ]eftmost elementary lower triangttlar factor of {_ and still have an m I - 1

factor no-fill partition. Continuing in this way we find such a partition of

Q. But by the inductive hypothesis, any no-fill partition of Q has at least

m - I factors. Thus, we again see that m I >_.m. n

Minimum partitions are not unique. For example,

L

X

0 0 x x

(r)

has minimum partitions:

L = (L1L2Ls)L4

and

L -- (LIL2)(L3L4).



Figure 2: Illustration of the m_|,rmm partition for a graph without re-

ordering. Five factors are required.

2.3 Triangular Permutation

Consider the graph illustrated in Figure 2 for which L ]ms a mlnlrm_m par-
tition:

z = (z_)(z=)(zs)(z_)(z6)(z_)

This partition has six factors. It is possible to symmetrically permute

the rows and colurnnl of L such that L renmitls a lower triangular and G(L)

is as illustrated in Figure 3. A mlnirnnm partition of L for this new graph
is:

Z = (z_z=)(ZsL4)(/;_Z6Z_)

This permuted partitioned matrix has only three factors.
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V

Figure 3: Illustration of the r,;=_mllrn partition for a re-ordered graph. Only

three factors are required.

Definition 8 A triangular orderin_ of an acydic digraph _ a numbering of

vertices in which (i, j) E E implies i > j.

Every acydic digraph has triangular orderings. The digraph of every

triangular matrix is acyclic; moreover1 its conventional ordering is triangu]_.

If G(L) is re-ordered so that vertex i is numbered v(i) and the new ordering

is triangular, then the symmetric permutation of rows and columns that

moves row i to row v(i) leaves/; _.

2.4 Level of a Vertex

Let G = (V, E) be a DAG. Define level(i), i E V as follows [6]:

1. If indegree(i) = 01 then level(i) = O.

2. Otherwise, level(i) = 1 + ]evd(i_)l where i _ is the vertex corresponding

to i in the subgraph of G obtained by deleting all vertices at level 0

and their outgoing edges.

11



Level o

Level 1

Level 2

t

Figure 4: nhstration of the concept of Level

Figure 4 must-rates the concept of leveL In general, level(/) is the length

of the longest path that ends at/. The computation of levels is straightfor-

ward, _ 0(17(/,)) t_.

3 Best Partitioning with Re-orderlng

This section describes two new algorithma for solving Problem 2. Each

of them finds a triangular ordering of a DAG (_ such that the re-ordered

graph has a minimum no-f-d/partition with the smallest possible nmnber

of factors. The first algorithm (RPI) is a fairly straightforward "greedy"

algorithm. The second algorithm, RP2, is a faster but more complicated

implementation of the same idea.

12



Algorithm RP1 (Re-order,Permute1):

Inpu_.__t:A directed, dosed acyclJc digraph G(L)o

Output: A permutation v : V _ {1_..., n} and a partition of L.

Compute level(v) for all v E V;

ma -level
i_1; k_l; eo_O;

while i < n do

Sk,--0; ek_i;

l _- min{j I there is an unnumbered vertex at level j);

repeat

for every vertex v at level / do

if (([Condition 1] v is unnumbered ) &&

([Condition 2] Every predecessor of v has been numbered ) &&

([Condition 3] Every successor of v is a successor of all

u E St such that u is a predecessor of v) ) then

v(v) ,-- i:, i ,- i + t;

Sk_SsU{v); ek *-- ek + 1;
fl

od

l*-- t+ 1;

until l > max-level or no vertices at level l - 1 were included in Sk;

Pk _ Let_t """Let; k _-- k + 1!
od

The algorithm works by finding a partition V = Ll__: $k for which the

column sabgraphs Gs, are dosed. Moreover, Sx is a source node in the

quotient graph, i.e. there are no edges directed into Sa. If Sx and its out-

edges are removed, then $2 is a source node, etc. Thus, we are carrying

out a partitioning of G as well as of L. We shall call the subsets Sj, in this

partition factors in analogy with their corresponding factors PI, of L.

Proposition 1 The factor Sa chosen by RPI is the largest possible, i.e., $1

includes all of level O; all allowable nodes from level 1; all allowable nodes

from level 2; etc. This is also true of Sj,j > I, which is the largest possible

13
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Figure 5: mustration of Condition 3. Successors of predecessors of a node
must be successors of the node itself. Node 5 can be included in the same

factor as nodes I and 2, but node 6 cannot be included with 3 and 4. Factors

are denoted by shapes and sh_iing.

first facWr of the graph obtained by deleting all _ and incident edges

of

This proposition is self-evident. We mustrate it with the example in

Figures 5 and 6. These figures illustrate the elimination tree [13] ofa n_trix,

and illustrate all successors of each node as well as the next element in the

tree. Different node shapes are used to denote different factors. In Figure 5

it is possible to combine nodes 1, 2 and 5 into the same factor according

to Cond/tion 3: a[/the successors of the predecessors of 5 are successors

of 5 itself. It is not possible, however, to combine node 6 into the same

factors as nodes 3 and 4 because this rule is v/olated. F/_re 6 _]]ustrates

a case where it would be possible to merge node 5 into the same factor as

nodes 2 and 3, but not all the predecessors of 5 are numbered when node 5

becomes eligible (node 4 is not yet numbered when node 5 is considered).

This violates Condition 2. Thus, node 5 nmst be in a different factor.

Theorem 6 Procedure RPI solves Problem _.

14



4

Figure 6: Illustration of Condition 2. A node must be excluded from a factor

because some of its predecessors are not numbered. One predecessor of node

5 (node 4) has not been numbered by the time node 5 becomes eligible to

join the factor containing nodes 2 and 3.
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Proof: By inductionon n. Consider any permutation 1_ and partition LI" -

rLr T = A with Pk defined by (4) and (5), and with Pk invertible in

place. We claim that the partition point el is no larger than that produced

by P_I. For it follows from the construction of/)I that any vertex of G(L)

not included in S I by RP1 either has an unnumbered predecessor, or else

its inclusion renders G$I not dosed. Hence the subset $I selected by RP1

is maxima]. Now, by the inductive hypothesis, RP1 partitions G \ Si, using

m - 1 invertible-in-place factors. Moreover, by Lemma 4, a graph obtained

by adding source vertices to G \ Sl requires at least m - 1 factors in any

optimal partition. Thus, ff we take a subset _] of Sl as the first factor, we

can achieve nothing better. []

We would like to insure that running time is bounded by a sms_ constant

multiple of _(L). But the running time of Algorithm RP1 is large in some

cases. Consider a dense lower triangular matrix of order n. RP1 takes O(n z)

time in this case, since the cost of checking whether all successors of vertex

j are also successors of its predecessors is O (j(n - j)).

We now introduce two new data structures in order to improve the dil-

ciency of P_I. We can improve the performance of B.P1 (to O(I?(L)) for a

dense matrix) by insuring that a vertex is not examined for possible inclu-

sion in S_ until all of its predecessors have been numbered. To do so, for

every vertex we count the number of its Immlmhered predecessors. Initially,

this is its indegree. When the count reaches zero we can consider the vertex
for inclusion in a factor.

Second, we can avoid much of the work associated with the checking at
Condition 3 of RP1. Let u and v be numbered vertices both of which have

been included in the current factor Sa,. Assume that v is a successor of u.

Then we must have that madj(v) C_madj(u), otherwise _ would have failed

the test at Condition 3. Thus, we need not consider vertex u when applying

the requirements of Condition 3 to a vertex that is also a successor of v. We

shall make use of this in the faster implementation (tiP2, below) by keeping

track of the set of predecessors of each vertex that may need to be examined

in checking Condition 3. In the situations above, when _ is included in Sk

we remove u from the predecessor sets of v's successors, thus avoiding the

unnecessary checking.
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Algorithm RP2 (Re-order, Permute 2):

Input: A directed, closed acydic digraph G(L).

Output: A permutation and s partition of L.

foraU v E V do

pred(v) .- {., [ L.,,. # 0};

count(.,) .-- i-degree(,,);

Compute level(v);
od

m -lev .-
i *-- 1; k _ 1; eo *- O;

E ,- {t, e V [ count(v) = 0};
while i < n do

Sk,--0; ek_i;

l 4- min{j [ there is an unnumbered vertex at level j};

repeat

for every vertex v E E at level t do

if ( [Condition 3'] Every successor of v is a successor of all

u E pred(v) ) then

u(v) _ i; i _ i + l;

SL *-- SL u (v}; eL *-- eL + 1;
for every successor w of v do

pred(w) *-- pred(w) \ pred(v);

count(,,,).- t;
if count(w) = 0 then E _ E t.J{w};
od

fl

od

l_l+l;

until l > max-levd or no vertices at level l - I were included in SL;

Pk *" L,,_z "".L,_; k _ k + 1;
od

The computation of pred(v) is straightforward, requiring O(_I(L)) time.

Clearly, the innermost loop of Algorithm RP2 is executed r/(L) times. For

17



we have that the sum of count(v) over all vertices v is just _(L), and this

sum decreases by one for every execution of this innermost loop. The other

statements in the scope of the then clause are executed no more than n

times. It is still possible that testing Condition 3' will be costly. Indeed,

one can construct examples for which the running time is greater than y/(L),

but in practice this is unlikely to happen. 1

4 Examples

This section illustrates several examples of the performance of the proposed

algorithms for matrix partitioning, and compares the behavior of the pro-

posed algorithm with the performance of previous algorithms. Two tables

of comparative data are presented. Table 1 uses five power system matrices

ranging is size from 118 to 1993. Table 2 gives results for matrices arising

from five-point finite difference discretizations.

In each case, the original coefficient matrix is first ordered and flus are

added to make it a perfect elimination matrix. We need to distinguish

this first fi]/-reducing ordering of A from the re-ordering of L found by

RP1 and ILP2. We call the ordering of A the primary ordering. Three

primary ordering procedures are used: the rn|nirrmm degree algorithm [14],

the multiple minimum degree (MMD) algorithm [11], and the minimum

level, minimum degree (MLMD) algorithm [6].

For each matrix and primary ordering algorithm, two partitioning meth-

ods are compared: Algorithm Pi, which simply partitions L optimally with-

out re-ordering it, and Algorithm RP1 whichre-orders the matrix and gen-

erates an optimal partition. In most cases, Algorithm RP1 gives a smaller

number of factors than PAl, while in a few cases both algorithms give the
same number of factors.

The main observation justified by these data is that KP1 reduces the

number of factors at no expense in added fills. Its effect is most dramatic

if the underlying primary ordering is the minimnm degree algorithm. On

the other hand, the best results are obtained when the MLMI) algorithm

is used for the primary ordering, even though the relative improvement

SConsider s graph with 3k vertices arranged in 3 levelJ of k each. All vertices st level
l are sdjsccmt to all st level l+ 1, for l _ 1,2. Running time is O(n(L) s/=) again.

18
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Figure 7: Five-point finite difference m_trix for 10 by 10 grid. Matrix or-

dered by the min/mmn degree algorithm, then partitioned by P1. Twenty
factors result.

attainable by Algorithm KP1 over Algorithm P1 is small The results for

the MMI) algorithm fail somewhere between mi,,i,,,,,mdegree and MLMI).

The reduction in the number of factors schJeved by KP1 in comparison with

P1 is quite dramatic when MMI) is the primary ordering.

Figures ? through 10 provide a different mustration of the effect of all

four algorithmic combinations considered. All four f_,ures use a 10 by 10

finite difference grid. Figure 7 illustrates the original matrix ordered by

the mi_iml,rn degree method, fills added, and its partition obtained ush_g

Algorithm P1. Twenty factors can be seen. Figure 8 mustrates the same ma-

trix after re-ordering it by tLP1. Although the matrix has been re-ordered,

its topology is identical with that of Figure 7, but on/y twelve factors are

required. Figure 7 illustrates the originAL matrix ordered by the M:LMI)

algorithm after fills are added (its DAG is chordal). The topology of L is

different f_om the one in the previous two figures. It is, in fact, a little

denser. It can be partitioned with Algorithm P1 using only nine factors.

Finally, if the original matrix is ordered with the MLM:D ,_lgorithm and

then re-ordered and partitioned with R_I, the result is a matrix with the
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Figure S: Five-point finite difference matrix for 10 by 10 grid. Mat'_ or-

dered by the m|,inn, m degree a]gorit]z_ then re-ordered _d partitioned

by RP1. Twelve factors result.
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Figure 9: Five-point finite dii_erence matrix for 10 by 10 grid. Matrix or-

de.red by MLMI)_ then paztitioned by P1. Nine factors result.
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Figure 10: F|ve-point finite difference mstrix for 10 by 10 grid. Matrix

ordered by M:LM:D, then re-ordered and partitioned by EP1. Seven factors

resu]t.
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same topology but where only seven factors are required, as illustrated in

Figure 10.

Yet another way to look at the same information is to view the _];ml-

nation trees associated with these matrices. Figure 11 illustrates the elimi-

nation tree associated with the 10 by 10 finite difference matrix ordered by

MLMD and partitioned by P1. The corresponding matrix for this tree is

shown in Figure 9. The height of the elimination tree is thirty-two. But

there is a no-fill partition with only nine factors, which makes it possible to

aggregate elements from many levels into a single partition. If the matrix

is re-ordered once more using RP1 and then partitioned, the height of the

tree and its shape remain identical, as illustrated in Figure 12, but greater

grouping from among different levels is possible, resulting in only seven fac-

tors. In these figures, the elements from each partition are distinguished by

using different shapes as well as shading.

To illustrate the very different kinds of tree shapes attainable, Figure 13

illustrates the partitioned factorization tree associated with the primly

MLM'D ordering of the size 118 power system example, re-ordered and par-

titioned by RP1.

The reader may wonder about the relationship of the present work and

earner work on exploitation of dense submatrices on sparse elimination. This

work is all related to clique structures in the graph of L. (A clique is vertex

subset that is completely interconnected. A maximal clique is a clique that

is not a proper subset of another clique. A simplicial clique of G(L + L r) is

a clique all of whose members have exactly the same nonclique neighbors.)

Pothen and other authors give a number of applications of clique and clique

tree representations of sparse matrix factors. [12] The partitioning of this

paper is not the same as the partitioning into simplicial cliques or supernodes

that has appeared previously. Indeed, all members of a simplicial clique of

G(L) are included in the same factor by Algorithms RP1 and RP2, but
the converse is not true. Several shnp]iclal cliques may belong to the same

factor, as illustrated in Figure 13. The ten nodes denoted by shaded squares

in this figure can all be included m a single factor, but they do not constitute

a simplicial clique. Figure 14 illustrates the clique tree corresponding to the

_ation tree of Figure 13.
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Figure 11: Elimination tree for finite difference grid matrix with MLMD

primary ordering and partitioned using P1. The nine partitions are denoted

by different shapes and shadings of the nodes (a tenth psrtition involving

the last node only is trivial),
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Figure 12: _.];mi_tion tree for finite dL_erence grid matrix with MLIV[D

primm 7 ordering, re-ordered and partitioned using P_I. Seven factors.
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Figure 13: Elimination tree for 118 node power system matrix with MLMD

primary ordering, re-ordered and partitioned usin8 RP1. Pive factors.
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Figure 14: Clique tree for 118 node power system matrix with MLM]) pri-

mary ordering, re-ordered and partitioned using R.PI. This matrix has 99

maximal cliques and seven levels.
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Table I: Comparisonof the numberof partitions usingfive powersystem
matrices,three initial orderingalgorithms,and simplepartitioning (P1) or
partitioning after reorderingwith RP1.

Min. Degree MMD M_LMD

Size P1 I RP1 PI I RP1 P1 I 11]'1

118 53 14 10 10 6 5

352 132 21 13 12 8 8

707 213 26 23 18 ii i0

1084 309 26 33 24 14 11

1993 563 35 41 25 15 15

Table 2: Comparison of the number of partitions using five-point finite dif-

ference matrices for a square grid, three initial ordering algorithms, and

simple partitioning (P1) or partitioning after reordering with RP1.

Min. Degree MMD MLMI)

Grid Size P1,.J RP1 P1 I RP1 P1 J RP1

5'by5 10 7 6 I 6 5 5

10byl0 20 12 15 { 11 9 7

15 by 15 20 12 16 { 14 11 8
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Conclusions

An algorithm for no-fiU partitioning of lower triangular matrices with the

fewest possible factors has been presented and proven to be optimal. This

should reduce the number of steps required for the parallel solution of sparse

triangular matrices when the same matrix is repeatedly used.

We have done a number of experiments with the triangular factors of

sparse matrices, .4. The structure of these factors is influenced by the or-

dering of rows and columns of .4. (This ordering is chosen to reduce fills

during the factorization process.) For such triangular factors, the ordering

used in the factorization strongly influences the benefits air,able by the

proposed algorithm. If L is constructed with the rni_irnllrn degree algorithm,

the minimum no-fill partition of L (without a change of ordering) tends to

have a large number of factors. This number can be reduced significantly

with the proposed re-ordering and partitioning algorithm. The same is true

if the primary ordering is MM:D. The results are better in this case than

those obtained with primary m|r_m1_m degree orderings. If A is ordered by

the I_LM'D algorithm, the number of factors obtained without a change in

the ordering is considerably smaller. The re-ordered partitioning algorithm

can reduced further the number of factors, but its effect is not as dramatic

as in the mlnlrmzrn degree case. Nevertheless, the total number of factors

when the M'LM'D ordering of A is used is smaller than that if the minimum

degree or MMD algorithm is used.

We also have provided a graphic illustration of the effect of partitioning

on elimination trees and on clique trees. An the experiments and illustra-

tions were done with the aid of the first author's Sparse Matrix Manipulation

System [I].
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