
Research Institute for Advanced Computer Science
NASA Ames Research Center

Optimal Expression Evaluation
for Data Parallel Architectures

//v-

_3 o _40

John R. Gilbert and Robert Schreiber

April 1990

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 90.15

NASA Cooperative Agreement Number NCC 2-387

L

(NASA-CR-187773) OPTIMAL EXPRESSION

£VALUATION FOR DATA PARALLEL ARCHITECTURES

(Research Inst. for Advanced Computer

Science) lq p CSCL 09B
G3/62

N92-I1696

Unc|as

O043050





Optimal Expression Evaluation
for Data Parallel Architectures

.John R. Gilbert and Robert Schreiber

Research Institute for Advanced Computer Science
NASA Ames Research Center- MS: 230-5

Moffett Field, CA 94035

RIACS Technical Report 90.15

April 1990

Tile Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported hereiu was supported in part by Cooperative Agreements NCC 2-387 between the National
Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).









Optimal Expression Evaluation for Data Parallel

Architectures

John R. Gilbert* Robert Schreiber t

April 24, 1990

Abstract

A data parallel machine represents an array or other composite data

structure by allocating one processor (at least conceptually) per data

item. A pointwise operation can be performed between two such arrays

in unit time, provided their corresponding elements are allocated in the

same processors.

If the arrays are not aligned in this fashion, the cost of moving one

or both of them is part of the cost of the operation. The choice of

where to perform the operation then affects this cost. If an expression

with several operands is to be evaluated, there may be many choices

of where to perform the intermediate operations.

We give an efficient algorithm to find the minimum-cost way to
evaluate an expression, for several different data parallel architectures.

Our algorithm applies to any architecture in which the metric describ-

ing the cost of moving an array has a property we call "robustness."

This encompasses most of the common data parallel communication

architectures, including meshes of arbitrary dimension and hypercubes.

We remark on several variations of the problem, some of which we solve

and some of which remain open.

Keywords: data parallel architecture, compilers for parallel comput-

ers, Steiner trees.

"Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304.
IResearch Institute for Advanced Computer Science, MS 230-5, NASA Ames Research

Center, Moffett Field, CA 94035. This author's work was supported by the NAS Systems
Division and DARPA via Cooperative Agreement NCC 2-387 between NASA and the
Universities Space Research Association (USRA).









1 Introduction

1.1 Tile problem

Massively parallel architectures are an emerging fact in scientific computing.

They offer very high peak computation rates but in general they must be

carefully programmed to avoid performance bottlenecks that can be caused

by poor load balancing or by excessive interprocessor or memory traffic. Sev-

eral such architectures provide especially fast communication paths between

neighboring processors on a grid of one, two, or more dimensions. Commer-

ically available examples include such SIMD machines as the MPP, AMT

DAP, Connection Machine, and MasPar MP-1, and such MIMD message-

passing machines as those from Intel and Ncube.

We shall be concerned in this paper with the following problem: Given

n arrays of data A1,... ,An, all of the same shape, we wish to evaluate an

arithmetic expression involving these arrays, arbitrary binary operations (to

be applied elementwlse), and parentheses. We assume that the arrays are

situated at various places in a multicomputer consisting of processors with

local memory, connected in some regular fashion. A given metric describes

the cost of moving an array from one position to another within the ma-

chine. The problem is to determine the positions at which to carry out the

individual operations in the expression.

Figure 1 is an example for a two-dimensional grid of processors. Four

arrays w, z, y, and z occupy different parts of a two-dimensional grid of

processors. Define the "position" of an array to be the position of its upper

left, or (1,1), element. We want to evaluate the expression

(w e x) ® e z),

where (_, ®, and e are operations that act elementwise on the array. Sup-

pose that moving an entire array one position north, south, east, or west has

unit cost. Then the metric is the two-dimensional It "Manhattan metric."

We could for example move all the arrays to the position of array u_ at a cost

of 185 (30 for z, 90 for y, and 65 for z); or we could move w to z's position

end perform (_ (cost 30), move y and z to position (30, 60) and perform @

(cost 80), end move that result to z's position to perform ® (cost 35), for a
totM cost of 145.

In this paper we give an efficient algorithm to find the minimum-cost

evaluation procedure for an arbitrary expression, provided the metric sat-

isfies a conditionthat we callrobustness.Among the cases in which our

" 2



Figure 1: Four arrays are to be combined in the expression (w (_ z) @ (y @

z). The upper left-hand element of to is at (10,80), of z at (30,90), of y

at (80, 60), and of z at (25, 30).



resultsapply are the I1 metric in any number of dimensions, the loo metric

in two dimensions, the discrete metric, and the Hamming distance metric

describing shortest distance in a hypercube. We expect that the chief use

of these results will be in compiler and run time optimization for massively

parallel machines.

This tree embedding problem one of a large class of so-called Steiner

problems, which have applications in many areas [8]. The work most closely

related to ours is in the context of describing an evolutionary tree in biology.

Several specific metrics have been studied, including 11 [1], the discrete met-

ric [2, 4], and a string mutation distance metric [7]. Our results on robust

metrics include those of [1, 2, 4] as special cases.

Several variations of the problem are of interest, including the following.

A position may be specified in which the final result is to be placed.

As described in Section 5, this variant reduces easily to the case where

the final result position is free.

Various metrics are of interest for different architectures. The most

realistic metrics include the one-dimensional Euclidean metric, higher-

dimensional Ii and loo metrics, the hypercube metric, and some com-

binations of these metrics with discrete metrics.

We could distinguish between arrays stored by rows and arrays stored

by columns, and include the cost of any necessary transpositions. More

generally we could include the possibility of translating among several

alternative representations of a data structure. This does not change

the problem; it just makes the metric a bit more complicated.

We could allow associative and/or commutative rearrangement of the

expression tree. As described below, this makes the problem easier in

one dimension and harder in higher dimensions.

We could take common subexpressions into account, possibly even

allowing copies of the arrays to be left in strategic positions during a

move. This is probably very hard.

1.2 Definitions

We are given a universe P of possible positions (corresponding to processors),
and a function d that describes the cost of moving data from one position

to another. The function d is a metric:

4



• d(p, q) -- d(q,p) >_ O.

• d(p, q) = 0 if and only if p = q.

• d(p,q) -t- d(q,r) >_ d(p,r).

IfX and Y axe sets of positions then d(X,Y) = inf{d(x,y) : x E X,9 E Y}.

(If P is finite we can replace inf by rain.) The triangle inequality implies

that d(X,p) + d(p,Y) >_ d(X,Y) ifp is a position and X and Y axe sets of

positions.

Now we make several definitions that allow us to identify a class of

metrics for which we can efficiently find minimum-cost tree embeddings.

The generalized intersection of two sets X and Y of positions is defined

as

X n Y = {p E P I d(p,X) + d(p,Y) = d(X,Y)}.

IfXNY is nonempty and closed then XnY = X_Y. IfX and Y are disjoint

intervals on the real line and d is Euclidean distance then XNY is the closure

of the set of points between X and Y. Figure 2 shows three examples of

generalized intersections in the 11 metric in two dimensions, using as data

the positions of the upper left corners of the arrays in Figure 1.

For an arbitrary metric d, we define sets of positions called generalized

intervals in terms of N as follows: A generalized interval is either a set

containing a single position, or the generalized intersection of two generalized

intervals. Thus, for example, the generalized intervals on the Euclidean real

line axe the nonempty closed bounded intervals. We will need generalized

intervals to be nonempty and compact. This is true whenever P is finite

(which is the only realistic case), or indeed whenever P is a finite-dimensional

complete normed vector space.

A metric d is called robust if all generalized intervals are nonempty and

compact and

d(p,I) -t- d(p,J) >_ d(p,l n J) "t- d(I,J)

holds for all positions p and all generalized intervals I and J. For example,

the Euclidean metric on the real line is robust. We will see that the Euclidean

metric 12 in two dimensions is not robust, although the Ii and loo metrics in

two dimensions are robust.

The following lemma is easy to verify.

Lemma 1 The sum of two robust metrics is a robust metric. 1



X

A

B

Figure 2: Generalized intersections in the lz metric on a two-dimensional

grid. Region A is {w} n {x}, region B is {y} _ {z}, and region C is A n B.

We conclude with some definitions concerning embeddings of a tree into

a metric space.

Let T be a rooted binary tree in which each node is either a lea/with no

children or an internal node with two children. We will use lower-case italic

z,y,.., for nodes.

If z is a node in a tree T, then T(z) is the subtree of T rooted at x. An

embedding of T is a choice of a position z'(z) for every node z of T. The cost

of an embedding z- of T is cost(_r, T), which we wiU write as cost(T) when

the embedding is implicit. It is defined as

edg_ (x, v} ot"T

In our problems the positions of the leaves of T are fixed. The cost

of a minimum-cost embedding of T subject to those fixed leaf positions is

mincost(T). The leaf positions are always fixed in the sequel, and we will

not mention the fact explicitly gain.

° 6



If z is a node of T, we define Opt(z) as the set of possible values of 7r(z)

in minimum-cost embeddings of T(z). That is,

Opt(x) = {p e e [3 a rain-costembedding 7rof T(z) with _r(x)= p}.

Notice that Opt(x) minimizes only the costof the subtreerooted at z, not
allofT.

2 Robust metrics

In thissectionwe presentan efficientalgorithmfor constructingminimum-

cost embeddings for robust metrics. Throughout the section,we consider

the variantin which the finalresultpositionisfree,and commutative and

associativerearrangement ofthe expressionare not allowed.

The main theorem about robust metricssays that every subtreehas a

locallyoptimal embedding that can be extended to an embedding of the

entiretree.

Theorem 2 Let d be a robust metric on a universe P of positions. Let T be

a binary expression tree with positions specified for its leaves. The following

are true for any internal node z of T with children y and z.

i. opt(z) = opt(v) 5 Opt(z).

2. Every embedding r ofT(x) satisfies

cost(r,T(z)) > mincost(T(z)) + d(r(z), Opt(z)).

3. For all p E Opt(z) there is a minimum-cost embedding rc ofT(z) with

_r(z) = p, _r(v)e Opt(v), and ,r(z) e Opt(z).

Proof. We induct on the size of T(z). If the root is a leaf there is

nothing to prove. For the inductive step, let z be an internal node with

children y and z. Let G = Opt(y) f_ Opt(z), let % = mincost(T(y)), and let

e, = mincost(T(z)). Note that G is nonempty because d is robust and, by

the inductive hypothesis, Opt(y) and Opt(z) axe generalized intervals.

For any embedding a" of T(z), we have

cost(T(z)) = d(r(z),r(y)) + cost(T(y)) + d(Tr(z),Ir(z)) + cost(T(z)).

7
@



Applying part (2) of the inductive hypothesis to T(F) and T(z), and then

using the triangle inequality, we get

cost(T(z)) >_ d(a'(x),Opt(y)) + % + d(x(x), Opt(z)) + ex.

Because d is robust we have d(Tr(z), Opt(y))+d(r(z), Opt(z)) >_ d(Tr(x), G)+

d(Opt(y), Opt(z)). Therefore

costiT(x)) >__% +cz +d(Opt(y),Opt(z))+d(x(x),G). (1)

Now consider any Pz E G. Since Opt(y) and Opt(z) are compact, there

are positions p_ E Opt(y) and pz E Opt(z) with d(px,p_) = d(pz, Opt(y))

and d(px,pz) = d(px, Opt(z)). By the induction hypothesis there are era-

beddings of T(y) and T(z) of cost % and cz with _r(y) = py and _r(z) = pz.

Because G = Opt(y) I_lOpt(z), we have d(pz, Opt(y)) + d(pz, Opt(z)) =

d(Opt(y), Opt(z)). If 7r(z) = px, then, we have

cost(T(x)) = % + ca + d(Opt(y), Opt(z)).

Inequality (1) says that we can do no better, and that if a,(x) _ G then

cost(T(z)) > % + cz + d(Opt(y),Opt(z)). Therefore mincost(T(x)) =

cv + cz + d(Opt(y), Opt(z)) and G = Opt(z), proving conclusion (1). Then
inequality (1) is exactly conclusion (2). Conclusion (3) follows from the

construction, finishing the proof. II

We can find a minimum-cost embedding in linear time by using conclu-

sions (1) and (3) of this theorem, provided we can efficiently compute the

generalized intersection of two generalized intervals and find the point of a

generalized interval closest to a given position.
Here is the algorithm for the general case (assuming a robust metric).

The input is a tree T with root r, and specified values a'(n:) for every leaf z.

The output is an optimal choice of lr(x) for every internal node of T. Sec-

tion 4 describes the algorithm in more detail for some specific metrics.

Step 1. Set Opt(z) -- {_r(x)} for each leaf r..

Step 2. Traverse the tree in postorder, computing Opt(z) = Opt(y)

Opt(z) for each internal node with children y and z.

Step 3. Set _r(r) to be any element of Opt(r).

Step 4. Traverse the tree in preorder, computing _r as follows: Place the

child y of x at the point of Opt(y) closest to _r(z).
• I



3 Specific metrics

Here we considerseveralpossiblemetrics.Throughout the section,we con-

siderthe variantin which the finalresultpositionisfree,and commutative

and associativerearrangement of the expressionare not allowed.

Ifthe setof positionsisk-dimensionalspace,the Ipmetric (forinteger

p > 0) has

\ lip

In the loo metric, the distance between z and y is maxi Izi - y_[. In the

discrete metric, the dista_nce between z and y is 0 if x -- y, or I if x _ Z/.

One dimension. In one dimension on either the real line or (more real-

istica/ly) a finite interval of the integers, M/ the lp metrics axe the
same as normal Euclidean distance. This is a realistic metric for one-

dimensional processor arrays. As mentioned in Section 2, this metric

is robust and the algorithm gives a minimum-cost embedding in time
linear in the size of the tree.

The

The

I1 metric in more than one dimension. This is a realistic metric

for a grid of processors with connections to their nearest neighbors.

The metric is the sum of the one-dimensional 11 dista_nces along each

coordinate axis, so Lemma I implies that it is robust. In fact, the prob-

lem separates into an independent one-dimensionaJ Euclidean problem

for each coordinate. For fixed dimension, therefore, the optimal layout

can be found in linear time. Section 4 gives a detailed algorithm.

Ioo metric in more than one dimension. This is a realistic metric

for a grid of processors with connections to their nearest neighbors

and also to their diagonM neighbors. In two dimensions, for example,

this is realistic for a nine-point mesh of processors. The leo metric is

robust in two dimensions--in fact it is just a rotation and scaling of

the ll metric, so minimum-cost embeddings can still be found in linear

time. Section 4 gives a detailed algorithm. We do not know whether

loo is robust in more than two dimensions or not.

The 12 metric in more than one dimension. This is normal Euclidean

distance, which is not realistic for any existing processor architec-
ture. The metric is not robust in two or more dimensions. For a



The

two-dimensionaJexample, considerI = {(0,1)},Y = {(0,-1)}, and

p = (1,0I.Then InJ isthe dosed intervalon the y axisfrom (0,1)to

(0,-1). We have d(p,I) -1-d(p,J) - 2V/'2 < 3 = d(p,I n J) + d(I,J).

This example also shows that Theorem 2 falls to hold for 12: If y is

the parent of leaves fixed at I and J and z is the parent of y and a
m

leaf fixed at p, then Opt(y) = Ifl J but there is no minimum-cost

embedding of T(z) with x(y) E Opt(I/). Using a different approach

based on work of Melzak [6], Hwang [5] gives a Unear-time algorithm

to find a minimum-cost embedding in the 12 metric in two dimensions.

hypercube metric. Here the positions are vertices of a hypercube

and the metric is Hamming distance, or shortest path length in the

hypercube. This metric is robust, although representing a generalized

interval requires one datum for each dimension so the running time

of the algorithm increases with dimension. This problem is just the

ll-metric problem for a space of the dimension of the hypercube. Thus

the hypercube-metric problem (without rearrangement) can be solved

in O(nk) time, where n is the size of the tree and k is the dimension
of the cube.

The discrete metric. This metric is realistic for a single processor if the

data structure can be represented in several different ways and there

is a fixed cost to translate_ from one to another. The metric is ro-

bust. Every nonempty set is a generalized interval. The generalized

intersection Afl B is A 13./3 if A I'1B is nonempty, or A t.I B otherwise.

Transposing arrays. As an example of a more complicated metric that is

still robust, suppose that arrays may be stored either by rows or by

columns. Then some operands must be transposed as well as moved.

We can include this possibility in any of these metrics if the cost of

transposing simply adds to the cost of moving. The discrete metric

with two positions "by rows" and "by columns" is robust, so adding

it to a robust metric still gives a robust metric.

The power-of-two-news metric. Here the positions axe a k-dimensional

grid, and the metric is the length of a shortest path whose step lengths

are all powers of two. This metric may be realistic in some cases, such

as the "power-of-two news" moves in the Connection Machine. We do

not have any results for it.

10



Toroldal metrics. We could extend the 11metricstothe torus,by allowing

the extremes ofa k-dlmensionalgridofprocessorstobe connected. We

do not have any resultsforthismetric.....

String mutation distance. Here the positions are finite strings of sym-

bols over a finite alphabet. The distance between two strings is the

smallest number of one-symbol deletions, insertions, and substitutions

required to transform one into the other. This metric has nothing to

do with parallel computing (presumably), but it has been studied as

a model of evolutionary trees of DNA sequences. Sankoff [7] gives an

exponential-time algorithm to find an optimal embedding.

4 Algorithms for 11 and

For definiteness, we now present explicit pseudocode for the ll norm (k-

dimensional grids and hypercubes) and the two-dimensional l_o norm (nine-

point meshes).

The input is the expression tree, represented by a node called root which

is the top-level operation of the expression, and two node arrays left-child(x)

and right-child(z) that give the two subexpressions combined at node z.

The position of node z is lr(z), which is a k-vector (lq(z),... ,_rk(x)) r

of coordinates. Initially the positions of the leaves of the tree are given; on

output, the positions of all the nodes have been filled in.

The algorithm uses two recursive procedures find-opt, which fills in the

Opt values from the leaves of the tree up to the root, and find-pos, which

fills in the positions 7r from the root down to the leaves.

4.1 Grids and hypercubes

This is the 11 norm in k dimensions. In this case our algorithm reduces to

a method first suggested by Farris [1] in the context of evolutionaxy trees.

We present it herein a somewhat different form.

The Opt values are generalized intervals. In the Ix norm, these are just

k-dimensional rectangles. Such a rectangle is represented by its minimum

and may, imum coordinate in each dimension. We compute the generalized

intersection of two k-dimensional rectangles, c - a _ b, as follows. Each

dimension of the generalized intersection is computed independently. One

dimension of a rectangle is a closed interval on the real line; say dimension

i of a is the interval ai --[a_',a+], and similarly for b and c. If ai and bi

• .. '!#

ii



overlap then c/is just their intersection. If ai and bl do not overlap, then ci

is the closed intervM lying between al and bl. (In every case, c i- is the second

smallest of the four values {a_,a+,b_,b_}, and c+ is the second largest.)

We omit the code for procedure general-int, wldch does this computation.

In find-pos, we need to compute the closest point p of a generalized

interval a to a given point lr(z). Again this done independently in each

dimension. In dimension i, if Jri(z) lies inside the interval [a_,a+], then

Pl = 7ri(z). If 7ri(z) lies outside the interval, then Pi is the closer of a7 and

a_+ to _ri(z). We omit the code for procedure closest-point, which does this

computation.

For brevity we assume that all the data structures are globM, so the only

parameter to the recursive calls is the current node of the tree.

procedure optimal-evaluation;

/* Input is a tree represented by root, left.child, and right-child,

and positions 7r(x) for the leaves. Output is lr(z) for MI nodes. */

find-opt(root);

7r(root) 4- any point in Opt(root);

find- pos( root )

end optimal-evaluation;

procedure find-opt(node z);

/* Determine the Opt intervals for z and its descendants. */

if z is a ha/then

Opt(z) .- {a'(z)}
else

v .- left-chi (z);
z *- right-child(z);

find-op ( );
find-opt(z);

Opt(x) _ general-int(Opt(v), Opt(z))

fl end find-opt;

procedure find-pos(node z);

/* Determine the positions for all proper descendants of z. */

- 12



/* 7r(z) has already been computed. */
ifz is a leaf then

/* Do nothing */
else

U *'- taft-third(x);

z ,-- rioht-child(z);

7r(U) *-- closest-point(Opt(y), _r(x));

7r(z) ,-- closest-point( Opt( z), Ir(x ) ) ;

find-pos(U);
find-pos(z )

fl end find-pos;

As an example, consider the expression mentioned in Figure 1. Proce-

dure find.opt will compute the three rectangles shown in Figure 2 as the Opt

values for the three subexpressions. Rectangle C, from (25,60) to (30,80),
is Opt(root), so the root position will be placed arbitrarily in that rectangle.

Suppose the root position is placed at (25, 70). Then find.pos will place the

node for w _ z at (25,80) and the node for U @ z at (25,60). The total cost

of the moves to those positions is 135.

Procedures general-int and closest-point each take O(k) time. Proce-

dures find-opt and find-pos are each called once for each node in the tree.

Therefore the entire computation takes O(kn) time for an expression with

n operands in k dimensions. This is linear for a fixed-dimensional grid.

4.2 Nine-point meshes

A nine-point mesh in two dimensions represents the loo metric. This metric

is just a rotated and scaled version of the Ii metric. Let A and B be the

matrices

A= 1 1 ' B--_ -1 1 '

which are inverses of each other. Then the optimum loo positions can

be found by applying the 11 procedure optimal-evaluation to leaf positions

It'(z) = Air(x). The node positions 7r'(z) returned are then converted back

to the original metric by 7r(x) = Br'(z).

Again this whole procedure takes time linear in the number of operands

of the expression.

13



5 Other variations

5.1 Commutative and associative rearrangement: One di-

mension

For the Euclidean metric in one dimension, allowing commutative and as-

sociative rearrangement does not make the problem harder. First, if all the

operations in the expression are the same then the problem is trivial.

Lemma 3 Suppose positions in one dimension are specified for the leaves

z l,. . . , zr, of an ezpression consisting entirely of one kind of operation. If as-

sociative and commutative rearrangements are allowed, the minimum cost of

any embedding of any tree with those leaves is the difference between the po-

sitions of the leflmost and rightmost leaves. In a minimum-cost embedding,

the root may be placed anywhere in the closed interval between the leftmost

and rightmost leaves. If the root is outside that interval by a distance of k,

then the cost of the tree is at least k more than optimal

Proof. Suppose the leaves are numbered so that _r(zl) _< 7r(z2) _ ... _(

_r(z,). Given a position p such that 7r(z_) _< p _< _r(x_+l), we consider the

tree corresponding to the parenthesization

(...((z_+ z2)+ z3)+-..+z,)+(z,+_+ ...+(zn_2+ (zn__+x_))...).

We place the root at position p, assign each internal node of the left subtree

to the same position as its right child, and assign each internal node of

the right subtree to the same position as its left child. The cost of this

embedding is _r(zn) - _r(zl).

This cost is clearly optimal, because some path in the tree must join

zl and zn. If the root is outside the interval [lr(xl),_r(zn)] by k, one of

the paths in the tree joining the root to zl or zn must have cost at least

• (z_) - _(zl) + k. II

If the expression has mort than one kind of operation in it, we can find a

minimum-cost embedding in linear time by partitioning the given expression

into connected subtrees with only one kind of operation. Then rearrange-

ment is allowed within these homogeneous subtrees but not between them.

We compute Opt(z) in postorder as usual, except that for each homogeneous

subtree we use the lemma to find Opt(z) for its root z. Then we compute

in preorder, using the lemma to place the internal nodes of homogeneous
subtrees.

14



5.2 Commutative and associative rearrangement: Higher di-

mensions

The problem becomes much harder in two or more dimensions if rearrange-

ment is allowed. The two-dimensional problem in which all operations are

the same is the Geometric Steiner Tree problem [3], which is NP-hard for

the Ii, 12, and [oo metrics. Many heuristics have been studied; Winter [8]

gives a survey.

5.3 Specifying the position of the result

Consider the variation in which the position of the final result is specified

and rearrangement is not allowed. We reduce this to the free-root problem

as follows: Suppose the given tree is T with root r, and the final result

is constrained to have position p. Let T t be T, plus a new root r' whose

children are r and a new leaf z _. In T' we require the same leaf positions as

in T, except that the root is unconstrained and we require 7r(z') - p. An

optimal layout for T' gives an optimal layout for T.

Acknowledgements

We gratefully acknowledge helpful conversations with David Eppstein, who

pointed out that the hypercube metric is just 11, and Marshall Bern, whose

encyclopediac knowledge of Steiner problems pointed us to the biological

literature on the subject.

References

[1] James S. Farris. Methods for computing Wagner trees. Systematic Zo-

ology, 19:83-92, 1970.

[2] Walter M. Fitch. Toward defining the course of evolution: Minimum

change for a specific tree topology. Systematic Zoology, 20:406-416, 1971.

[3] Michael R. Garey and David S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of lgP.CompleteneSs. W. H. Freeman and

Company, 1979.

[4] J. A. Hartigan. Minimum mutation fitsto a given tree. Biometrics,

29:53-65,1973.

15•



[5] F. K. Hwang. A linear time algorithm for full Steiner trees. Operations

Research Letters, 4:235-237, 1986.

[6] Z. A. Melzak. On the problem of Steiner. Canadian Mathematics Bul-

letin, 4:143-148, 1961.

[7] David Sankoff. Minimal mutation trees of sequences. SIAM Journal on

Applied Mathematics, 28:35-42, 1975.

[8] Pawel Winter. Steiner problem in networks: A survey. Networks, 17:129-

167, 1987.

16




