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Abstract

We analyze the limits on deviations of the lepton and quark weak-couplings from
their standard model values in a general class of models where the known fermions are
allowed to mix with new heavy particles with exotic SU(2)xU(1) quantum number
assignments (left-handed singlets or rlght-handed doublets). These mixlngs appear
in many extensions of the electroweak theory such as models with mirror fermions,
E6 models, etc. Our results update previous analyses and improve considerably the
existing bounds. As experimental constraints we use the new results on Mz, rz, on
the Z partial decay-widths and on the asymmetries measured at the Z resonance, as
well as updated results on the W mass, on deep-inelastic v-q and v-e scattering and
on atomic parity violation. Present constraints on lepton universality, unitarlty of the
quark mixing matrix and induced right-handed currents are also included. A global

analysis of all these data leads to upper limits on the mixing factors 82 - sin20mix.
When just one mixing is constrained at a time, we obtain for most of the fermions the

tight limits s2 _ 0.002 + 0.01 at 90 % c.1.. For ua, ca and u, the bounds are s 2 < 0.03,

however if u,. mixes with an ordinary heavy neutrino the constraint is s 2 _ 0.1 and

a signal of non-zero mixing at 90 % c.1. is found. For sR and bR we £nd the much
weaker bounds s 2 _ 0.35. The constraints are weakened by a factor between 2 and 5

if accidental cancellations among different mixings are allowed to occur.
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0 Introduction

In the last few years the ever increasing accumulation of precise electroweak experi-

ments have been regularly employed to check the consistency of the standard model

(SM), to determine sin20w and to make predictions for the still unknown value of the

top mass. Possible indirect signatures of physics beyond the SM, such as the effects

of additional gauge bosons or of mixings of the standard fermions with exotic ones, as

well as the contributions of non-decoupled physics to radiative corrections, have also

been constrained by these measurements.

The first pre-LEP analyses [1,2,3] used the available information on gauge boson

masses from colliders, neutral current (NC) data on u scattering, parity violation,

fermion asymmetries in e+e - annihilation below the Z resonance, and in some cases

charged current (CC) constraints. By now the situation has improved considerably.

k remarkable improvement has been achieved in the determination of the W boson

mass from UA2 and CDF [4]. In the NC sector, there are new measurements on

atomic parity violation in Cs [5] and new calculations of the atomic matrix elements

involved [6], there are new results on u_,e scattering [7,8,9] as well as new and updated

analyses of the c and b asymmetries in _f-Z interference processes at PEP and PE-

TRA [10,11,12]. In the CC sector, new constraints are available on the universality of

the lepton couplings and on the unitarlty of the quark mixing matrix, and the prob-

lem of the charm quark threshold [13], that affects the vq CC cross section used to

normalize the deep-inelastic NC experiments, has been studied in more detail. The

really new input, however, comes from the large set of accurate measurements carried

out at the Z-peak at LEP and SLC. Besides Mz, that is now very precisely known,

the determination of the total and of the partial Z-widths and of the on-resonance

forward-backward and r polarization asymmetries has provided very precise informa-

tions about the fermion couplings to the Z.

Some of these data have been recently used to update the predictions on rn_ [14]

and to constrain extensions of the SM with extra U(1) gauge bosons [15], as well



as technicolour models, strongly interacting Higgs-bosonsand other kinds o£ heavy

physics that could manifest itself through radiative corrections [16].

It is our purpose here to update the bounds on possible mixings between the

known fermions and new exotic ones. There have been several earlier analyses of the

limits on fermion mixings [17], and the first (pre-LEP) global analysis of this kind

of new physics was done by Langacker and London [3]. Subsequently, two of us [18]

showed that the very first LEP data already improved some bounds significantly, more

recently, Langacker, Luo and Mann [19] have also discussed the sensitivity to some

exotic mixings that will be attained with the forseeable precision of the ongoing or

planned precision electroweak experiments.

The existence of new fermions with exotic weak couplings is a quite common

feature in most of the extensions of the SM, being the _superstrlng inspired' Ee models

well known and still popular examples [20] of these. A mixing between ordinary and

exotic fermions is allowed whenever their SU(3)c ×U(i)e,., quantum numbers are the

same. If at the same time the new fermions have non canonical SU(2)_ assignments,

the couplings of the light states with both the W and the Z vector bosons will be

modified, leading to deviations from the SM expectations. This is the kind of effects

we aim to constrain by means of a careful analysis of the available experimental results.

The general formalism to describe fermion mixing that was introduced in [3]

will be briefly surveyed in section II. We then present in section III the theoretical

expressions for the different observables that we have used to work out the constraints.

A brief description of each measurement and a discussion of the experimental data

are also given in this section. In section IV we comment on the results of the global

analysis. The results are presented as 90 % c.1. upper limits on the ordinary-exotic

mixing parameters, both in the case in which only one fermion is allowed to mix at

a time and in the case were all mixlngs are simultaneously present so that accidental

cancellations may occur. Finally, in section V we draw our conclusions.

0 Formalism

The lack of observation of new particles in the last accelerator runs indicates that if



possible new fermions exist, they wKl generally have large masses (> 50 - 100 GeV).

Even if these particles cannot be dlrectly produced with the experimental facilities

available at present, it is still possible that their effects are indirectly detected as small

deviations of the observed fermion couplings from the standard ones. In particular, this

happens if the exotic fermlons have non-canoaical SU(2)L × U(1) assignments and they

mix with the ordinary ones. We consider a fermlon to have canonical SU(2)L quantum

numbers if it is a left-handed 5U(2)L doublet or a right-handed SU(2)r_ singlet. These

are called ordinary fermions while fermions with non-canonical quantum numbers

are classified as exotics. Exotic fermlons can appear in mirror models [21] in which

generally whole mirror generations with R-doublets and L-singlets are introduced,

in models with vector doublets (singlets) where both left and right fermlons have

the same transformation properties under weak-isospin, or as slnglet Weyl neutrinos.

Fermions with exotic charges or colour assignments caunot mix with the known quarks

and leptons and thus we will not consider them.

In order to describe the mixing between ordinary and exotic charged fermions,

we introduce [3] two vectors for the left and right-handed ordinary and exotic weak

o = ,_E)L(R), and two differentvectors for the light and heavyeigenstates _TIL(R) (IT_) o T

mass eigenstates _L(R) = (_/l, T_a)L(a)- The weak and mass eigenstates are related

by unitary transformations

_Tl°n(R) -- UL( R) _T_L( R).

It is convenient to decompose the matrix U as

ULCR) F G L(R)

(2.1)

(2.2)

where A and F describe the overlap of the light eigenstates with the ordinary and

exotic fermions respectively. Since we have included fermions of sequential families

or canonical members of vector multiplets as ordinary states, the labels 'light' and

'heavy' should be taken as suggestive only. From the unitarity of U it follows that

AtA + FiF = AA t + EE ? = I. (2.3)

Hence, the matrix A describing the mixing with the ordinary fermions is non-unltary

by small terms quadratic in the ordinary-exotic fermion mixings present in F.

The fermion current coupling to the Z is

Ij_

!

(2.4)
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where PL,R = _(i _=75) are the L and I% chiralprojectors,8_v = sin28w, Qf and _

denote charge and third isospin component of f and IL,R project onto the subspaces

of the ordinary and exotic weak doublets o£ _°, i.e.

0..:(0o) ..: :) (2.5)

Hence, (omitting the label l) the light fermions-Z vertex is given by the Lagrangian

with

(2.6)

L ! = _!AItA ! - q/s_,$ L L
(2.z)

R/= t/F/iF/- Q/8_v.3 R R

Although the matrices AtA and FtF are in principle quite general, non-vanishing

oi_ diagonal terms would induce FCNC that are experimentally known to be very

suppressed [3].Hence, we willassume that differentlightmass eigenstatesdo not mix

with the same exotic partner, in which case the absence of FCNC is automatically

guaranteed. With this assumption one gets

(FJF.),_= (4)26,_, a= _,R, (2.s)

where (,_)2 - 1 - (c_)2 -- sin_0_, and OL(R)d is the mixing angle between L(R) light

and heavy partners.

Then the neutral-current couplings for the light fermlons can be written as

_L(Y,) -- (L!). = t_'(4') _ -- Q!"_
(2.9)

and we see that while the L-mixings reduce the strength of the isospin current, the

presence of R-mixlngs induces a rlght-handed current. Clearly the electromagnetic

current is le£tunchanged. The vector and axial-vector couplings in the presence o£

mixing are (omitting the generation index i)

_,--,,.c_)+_cs)=,_'[(4)'+(,'J]- _Q',_
(2.10)

o,- ,=c_)-,_cs)=,: [(o'_)'-(4)'1.
L J



Henceforth v/ and a/ will always denote the true couplings of the light fermions

including mixing terms.

The charged current between light states is

-- 'I',,'y"(VLPL+ VRPR)'I'd. (2.11)

The first 3 components of the vectors _., _d represent the standard quarks, while the

remaining n -- 3 'light' fields correspond to possible extra sequential, or vector dou-

blet, quarks. VL = A_'A_ and VR = F_tF_z generalize the SM Cabibbo-Kobayashl-

Maskawa (CKM) quark mixing. In particular, the matrix VL is non unitary due to

the mixing with the exotic quarks, however it can be decomposed as

_u_ dj rl-
VLd j -_ c. L c L .rt.Ldj, (2.12)

where KL is unitary [3]. For the induced right-hemded currents, it is convenient to

introduce the parameters

VR,j (2.13)
_ij -- KL_i '

which are quadratic in the light-heavy mixings.

For the neutral fermions the situationismore complicated because in the presence

of Majorana mass terms three kinds ofneutral fieldswith di_erent isospinassignments

can mix at the same time, and alsobecause due to the lack ofexperimental constraints

the assumption on the absence of FCNC must be released. Besides the ordinary

neutrinos that appear in L-doublets (n_),e_-)T, we can have exoticstatesthat appear

in the CP conjugates of SU(2) R-doublets _S_°+--o"_JL,_T(these can mix with n_ through

AL = 4-2 Majorana mass terms) and alsoexotic slnglctsn_r. can be present.

In analogy with the charged fcrmlon case,wc write the weak and mass eigenstatcs

as

These statesare related through n_ = UnTiL . The unitary matrix U can be decom-

posed as

uL = ,
L

5



with A, P, H describing the overlap of the light neutrinos with n_, n_ and n_

respectively.

Note that we do not distinguish between left handed neutrinos and antineutrinos,

they are all described by fields hr. and the right handed fields will be denoted as

n_t = C_ T. Clearly n_: = Uan_ with Us = U_.

The LEP measurements of the number of light neutrino species implies that if

neutrinos with large exotic n_ components exist, their masses must be heavier than

Mz/2. Light sin81ets , however, as in the ease of Dirac neutrino masses, could be

present and a mixing with exotic doublets would allow them to couple to the Z boson.

For simplicity we will not consider this case, but our results are largely independent of

this restriction. In conclusion we will assume the light neutrinos to be mainly ordinary

states so that we will consider the elements of F and H as small light-heavy mixings.

We will chose the flavour basis such that the charged lepton flavour eigenstates

coincide with the charged mass eigenstates up to light-heavy mixing effects. Hence,

the charged current between light mass eigenstates reeds

(2.16)

The first term in this equation is the usual left-handed current with the overall strength

reduced by the effect of llght-heavy mixing, while the second term corresponds to an

induced right-handed current that can produce neutrinos of the wrong helicity in weak

decays. This term is present when both the light neutrino and charged lepton mix

with the components of an exotic doublet.

It is convenient to write A _t = K",4 _'t, where the matrix K _ is unitary and, being

the leptonic analog of the CKM matrix, it is non-trivial if the light neutrinos have

masses and ordinary mixings. The exotic mixings appear only in .4, which deviates

from the identity only by terms of O(s 2 ). In the charged current processes that we will

consider, a sum has to be taken over the unobserved final neutrino mass eigenstates

(the kinematical erects of u masses are negligible) and thus the information in K _ is

lost. In weak decays, for example, the mixings induce a change in the decay rate with

respect to the SM rate ro that, to O(s 2) and restricting ourself to the primary vertex,

can be written as

1
-- ) (-4LA L )as + 0(84),ro Z

i

(2.1z)
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where(A"A"')..= (_4"_t )°.= (c_-)'accountsforthe_eutrinonght-heavy_xing
As we see,the sum over the llnaiundetected statesallows us to take just one mixing

angle per neutrino flavour to describe the exotic mixings, although in genera/ the

matrix Ain't.4v isnot diagonal.

The weak neutral current for the lightneutrino statesis

_."z= -_,_"(A_tA_- (2.1S)

where ApA_, and F['tF_ originaterespectivelyfrom the ordinary n_ and exotic n_

neutrinos that have opposite isospin assignments.

Up to mixing ei_ectsin the target,and summing again over the undetected light

n_ neutrinos, the scatteringprocess no ---*n_ is modified with respect to the norton/

ca8e

1 (A"(A"'A" - F_'F_)'A_')._

O'° i

= i- 2(X-,(_.F_,F-+ H_'H")_)..+ O(_'), (2.19)

where the factor (c_')2 in the denominator comes from the normalization of the na

produced in the weak decay of e_. In (2.19)we have used the unitarityof UL as well as

the decomposition of the matrix A into the unitary K matrix, and we have ncglcctcd

Q ]M__ r.,'._2 and (KtHtHK)_, - AH(S L )2terms O(s4). Defining now (K?F?FK)o,, - "FV'L

we finallyget

k _ _(_. _. _,) = 1 - A.(,_-)2 + ocs'). (2.20)
O"o .

S

Since the sum of the Aa' s is Constrained to be _< 1 from the unitarity of UL in (2.15),

the value of the effcctive parameter A_ - 4A_ + 2A_ must lie between 0 and 4,

depending on the mixing involved. If the light states are mixed with ordinary states

(that will be mainly heavy) then the couplings are not affected and A_ = 0. If only

singlet states n_ mix with the known neutrinos then A, = 2 while A_ = 4 describes

mixings involving only exotic states n_.

The decay rate of the Z boson into undetected neutrinos is proportional to the

sum of the square of the neutrino neutral-current couplings. Using the same approx-

imations as in the previous case we find

Zr(A_tA _ - F"tF") 2 = 3- E A_(s_" )2 + O(s4), (2.21)
(1

and we see that the effcctive paramctcr A_ could largely influence the reduction in the

dccay rate.



5 Observables

In this section we discuss the measurements that we have used to constrain the fermion

mixing angles. In comparing the experimental results with the corresponding theoret-

ical expressions some care is needed, since indirect effects of the mixings that depend

on the particular experimental procedure used to extract the data could be present.

To match the precision reached by the 'last-generation' experiments, l-loop effects

should be taken into account in the evaluation of the theoretical expressions. We have

followed the general attitude of including only the set of SM radiative corrections,

which are nowadays completely known, neglecting the effect of mixings in them as well

as the contribution of the additional states in the loops. We should stress however

that the large number of exotic fermlons present in the models under investigation

could give rise to non negligible higher order effects [16] especially in the case of non-

degenerate doublets [22]. QCD corrections have also been included in all the relevant

cases when hadronic final states were involved.

Our set of fundamental input parameters consists of the QED coupling constant

a measured at q2 : 0, the mass of the Z boson Mz and the Fermi coupling constant

GF. The numerical values of a and Mz as extracted from experiments are not af-

fected by the mlxlngs. The position of the resonance-peak does not depend on the

exact form of the fermion couplings with the Z (the shape and height of the peak,

in contrast, are modified by the mlxings) and the standard set of QED corrections

needed to reconstruct the exact peak-position can be safely applied, since also the

electromagnetic current is not modified.

Throughout this work we will fix the Z-mass at the value Mz = 91.175 GeV [23]

since the theoretical uncertainties induced by the present experimental error of +21

MeV are negligible.

In contrast with the previous two parameters, the Fermi coupling constant ex-

tracted from the measured life--time of the p-lepton, G_ - 1.16637(2) × 10 -s GeV -2, is

affected by fermion mixlngs. The relation between GF and the effective p-decay cou-

pling constant (neglecting the 0(8 4) effect of induced right handed currents (RHC))

is

G_ _ :_.___e _. (3.1)= _.rFC L c L CL_. L.

Clearly, this indirect dependence on the light lepton mixing angles is propagated in all



the expressions that contain GF. This is the case for example for the W boson mass,

for which no other explicit dependence on mixings appears.

In addition, also the value of the top-quark mt and Higgs boson MH masses must

be specified, since they enter the expressions via loop corrections. The dependence

on MH is soft, and we keep its value fixed at 100 GeV. In contrast, varying the value

of mt can induce sizeable effects. We have chosen to £x the top mess at the value

mt= 120 GeV that corresponds approximately to the minimum of our X2 function

when all the mixing parameters are set to zero.

Whenever some other experimental parameter enters our theoretical expressions,

we have used those experimental determinations for which mixing effects are absent

or negligible. This will be the case e.g. of the strong coupling constant a,(M_), of

the semileptonic branching ratio Br(b --* t + X) end of the B ° -/_0 mixing parameter

XB on which we will further comment in the following.

Experimental errors have been evaluated by adding statistical end systematic

uncertainties in quadrature and correlations have been taken into account in all the

relevant cases.

The W mass

The standard way of computing the value of the W mess is to compare the

amplitude for W exchange at q2 __ 0 in _ decay with the effective strength of the

Fermi interaction. Radiative corrections are large and must be included [24]. The

theoretical expression for the W mass reads

i+ --+ a,-.-)],
G_ 4.4 [ 1

GF pl_ _ 1 --Aa
(3.2)

where .4.= _Iv_G_. The il(i - A,_) term renormalizes the QED low energy

coupling to the A_z scale and resume to all orders the large logs contained in the

photon vacuum polarization function. The leading top effects, quadratic in rnt, are

included in the parameter p __ 1 + 3G_rr_/8_/2_ "2 [22]. We have taken p = 1 at the

tree level, that corresponds to the absence of non-doublet Higgs VEV's and of extra

U(1) gauge bosons with non-zero mixing with the standard Z. The non-leadlng top

effects, Higgs and other small corrections are included in the _r rein term. We refer

to [25] for a detailed discussion of all these corrections.
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The expression for Mw in (3.2) is affected by the mixings ozLly indirectly via the

G_,/GF ratio. We note that increasing values of both the mixing angles and of the top

mass tend to increase Mw. Since the same interdependence enters also the expression

for the effective weak-mixing angle that defines the neutral-current couplings of the

fermions, a sizeable a_aticorrdation between mt and the Light lepton mixings is to be

expected, resulting into a stronger constrain for laxger values of mr.

Experimentally the value of the W mass, as measured by CDF, is Mw = 79.01 +

0.39 GeV [4]. The UA2 collaboration has measured the ratio of the W and Z masses,

for which many systematic errors cancel, obtaining Mw/Mz = 0.8831 4- 0.0055 [4].

Using the LEP value for Mz and averaging the two results yldds

Mw = 80.13 4-0.31GeV. (3.3)

Charged currents

i) Lepton universality

The ratios gt,/ge and g./ge of the leptonic couplings to the W boson, which in the

SM axe predicted to be unity (universality), axe modified by fermion mixings according

to

()'g, (c_)'(c;,)' + (,_)'(,_)' ~ (c_)'(_')" (3.4)

Experimentally these ratios can be determined by comparing two different lep-

tonic decay processes. In table I we give the values of (gJge) 2 extracted from sever-]

experiments:

1) from the ratios of the partial cross sections

_(_ -4 w)BCW -. 1,_)
_(p_ + w)B(w _ _,)

as measured by UA1 and UA2 [26];

2) from the ratios o£ the r and _ decay rates

r(_ -+ _)
r(_ -+ _)'

i = _,r (3.5)

r(_ _ _)
r(_ -+e_)'

(3.6)

10



that cau be evaluated using the experimental values of the v brauchlng fractions into

• end p end the measured r-llfetlme [27]. Combining the averages of [27] with two

very recent measurement of the L3 and OPAL collaborations [28] we obtain Br(r ---*

pv_,v,.) = 0.175 4- 0.003 end Br(r ---* ev, v_.) = 0.178 4- 0.003 from which the values in

table I are derived.

3) Finally, the ratios

pv)
r(.

r(K+

computed from the values reported in [27], have been also used for constraining uni-

versality of the/t end e couplings.

TABLE I. Charged Current experimental constraints on lepton univer-

sality (9d9.'), unitarity of the quark mixing matrix _j, end induced

hadronic RHC (_ij).

Quantity Experimental value Correlation Processes

(g_/ge) 2 1.00 4- 0.20 W ---* Iv

(9_.19,) 2 1.00 4- 0.12

(gt./ge) 2 1.016 4- 0.026 0.40 r -* luP end
(9,/9,) 2 0.952 4- 0.031 p _ evP

(g_,/ge) = 1.014 4- 0.011 a" --* Iv

" 1.013 4- 0.046 K _ Iv

3
Y]i=a {V,,il2 0.9981 4- 0.0021

3
_-_i=a [V¢il2 1.08 4- 0.37

hadrons decays

v-d scarf, and Des

Re(n,,d) 0 4- 0.0037 K _ 3_', 2_
Re(e;=,) 0 4- 0.0037

ii) CKM unitarity

11



Fermion mixings lead to violations of the 3-generation unitarity of the observable

CKM matrix _j, (i,j = 1, 2, 3), as is apparent from eq. (2.11-2.13). Thus, a measure-

ment of the deviation from unity of the sum of the I_j] 2, for each matrix row, puts

constraints on the mlxings. V,d and V,, are obtained by dividing by Gg the measured

vector coupling in _ decay and in K,_ and hyperon decays, respectively. Hence [3],

GF
w=,= _---(vL=,+ vR=,)c$c;., i = d,_. (3.8)

The value of [V,,b[, obtained from the analysis of semileptonic B decays, is negligibly

small for our purposes. Using the unitarity of the matrix Kr. introduced in (2.12),

and neglecting terms of O(s 4) and O(s 2 _":_=, IgLu,12),

.
i=1 = \ G_ / ,= _=1

(3.9)

where we have approximated ]Knuil 2 with the experimental values IVuil _- in the coef-

ficients of the O(s 2) terms.

Vca is determined from the di-muon production rate of charm off valence d-quarks

[29] while Vc, is extracted from D,3 decays [27]. Hence

lVodl2 c__ ( x,) [Kr._d[a, IV_°l=__ IKL_°la[(c_,)a(c_) 2 + 2Re(_¢.)l (3.10)

where, due to the comparatively large uncertainty affecting these measurements, those

mixings that are more effectively constrained by other experiments have been ne-

glected. Taking the sum, and neglecting also I_bl 2 and O(s 4) terms, we obtain

3 n

y_ 1V_,[2 _ (C_L)_- -- _ ]KLc_] 2 + [2Re(°e,) - (s_)2]IV_°[ 2.
i_ 1 i----4

(3.11)

For the [_jl's we use the values given in ref. [27], and the experimental constraints

from unitarlty are listed in table I. 1

iii) Right handed currents

1 Recent analyses [30] have reduced the error on Vud. However, still unsettled theoret-
ical issues concerning atomic corrections affect these conclusions [31], so we used the more

conservative values of [27]. Similar considerations apply also for Vc°.

12



The RHC's induced by mlxings with exotic quarks allow to constrain the _ij

parameters of the hadronlc sector.

Very stringent limits on the _RT"dR and _RT_'sR RHC's were set [32] from the

observation that the K --+ 37r amplitude and slope parameters are predicted, within

an accuracy of--, 10%, by PCAC and by the measured K --* 2a" matrix elements. The

resulting limits
8 × 10 -4

IRe _,d[,IRe _=,I < [V,dlIV,,[_- 0.0037 (3.12)

will be treated as 1_, experiments/constraints [3] on Re(_ud) and Re(_,,.).

Limits on the aRT"dR, _RT_'SR RHC's were set by the CDHS collaboration [29]

from the analysis of the y distribution in the di-muon charm production (ud, v8

#-c), from which the following 95% confidence level bound was obtained

I' o 1+ I' o.I2
<o.o7. (3.13)

1 + ,_, _

Here U, D, S denote the quark content of the isoscalar target [29], and ]Veal and Ivo,I

have been introduced to approximate iKLcdl and [KLe, i. Using the experimental

estimate [29] for v. U_D we can derive from this bound an experiments/constraint

on the parameters _cd and _c0.

The leptonic RHC's are limited by the measurements of the # and _" Michel

parameters, as well as by the electron polarization in _ decays. The corresponding

bounds on parameters such as s_° 8_" have not improved with respect to those obtained

in [3], so we will not repeat them here.

Neutral currents

Neutrs/-current experimental results are conveniently given as fits to the cou-

plings appearing in the effective Lagrangians that describe the corresponding four-

£ermion processes [27]. The form of these effective Lagrangians relies only on the as-

sumption of spin-one gauge boson exchange and of massless left-handed neutrinos,

and thus the experimental values of the phenomenologics/parameters are essentially

model independent.

We will treat separately the v - q, u - e and the parity-vlolatlng e - q sectors.

For clarity we will only display the tree level expressions, but in our numerical com-

putations the SM radiative corrections [33,34] have been included as well.

13



i) Neutrino - quark sector

The effective Lagranglan for the neutral current interaction of the light neutrinos

with quarks is

C_ P'_(1 -'ys)v [¢_(q)q'y_(1 -'ys)q + ¢RCq)q'Y_(1 +'y_)q] • (3.14)

The values of the quark couplings eL,R(q) are extracted from deep-inelastic scattering

experiments off isoscalar and proton targets, normalized to the charged current cross

sections, i.e. from the ratios

_(_,_N -4 _,-X)
o'(p_,N --* PX) (3.15)

, R,_= o-(_,N _ p.+X)'

In comparin 8 the experimental results with the theoretical expressions, the effect of

the mixings in the norma_zation factors has to be taken into account as well [3],

since the fermlon charged-current couplings are modified according to (2.11) and, as

discussed in the previous subsection, also the value of the CKM element V=d obtained

from E-decay experiments is affected.

Using now (2.6), (2.10) and (2.20) and taking the normalization effects prop-

erly into account, the values of the quark couplings as extracted from experiments

correspond to

where

1,FI(a2,a:)(ve -I-ae), (3.16)
eL,R(q) - -_

1- A.(s_,")212 (3.17)
Pa(s',_) = 1 - (s_,)2 - (s_")2 _ Re(_,,d)"

In this factor the numerator comes from the modified NC v-couplings while the de-

nominator comes from the experimental normalization.

The experimental values [27] are given in table II in terms of

[.(,,)]
9.2_ e=O,)2+ e=(d)2 , e= - tan-' L_=-=_J = = z,,R (3.18)

that have negligible correlations.

ii} Neutrino - electron sector

The effective Lagrangian for the v - e sector is

-f-.,"_----._ P%,(I -O's)z,'C")'p(g_--g_.vs)e.
(3.19)
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The electron vector and axial-vector couplings are extracted from v_, - e scattering

experiments that, as in the previous case, are normalized with the v_,-ha_on charged-

current cross sections. For hlgh-energy neutrinos llke those of CERN and FERMILAB,

the CC deep-inelastic process leads to the same normalization factor as in the v - q

sector, so that the relation between the couplings extracted from experiments and the

theoretical ones is

g_= FI_, , g_= FIa,. (3.20)

For the low-energy neutrinos of BNL, the CC scatteringisa quasi-elasticprocess so

that the factor Fl(s_,t¢) in eq. (3.20) is replaced by [3]

1- A.(s__)2/2 (3.21)
F2('2)= i- (,_)_- (s_,)2"

In table II we list the values of 9_,A that we have used. The recent CHARM II [8]

results,as well as the CHARM I [7]and BNL [9]data on both v_ and _t,scattering

offelectrons have allbeen included. In particular,CHARM II has measured 9_/9_t

from the ratio between t,and p NC cross sections,leading to a clean measurement of

ve/ae since the FI factor cancels.

iii) Electron - quark sector

iii) The measurements of parity violation effects in atoms and the polarized e - D

scattering experiments are sensitive to weak--electromagnetic interference effects and

allow the determination of the e -- q parity violating couplings C1,2. These parameters

appear in the effectiveLagrangian

= ¢.,.¢+ ¢-,,'-,'¢),
V L.

|

where i = _,d. Their relationwith the theoreticalcouplings is

Cli=21G-'_)acvi , C2i=21G-'_)v_ai.

(3.22)

(3.23)

For the determination of the coemcients Ci, parityviolatingtransitionsin Cs are

quite effectivesince for heavy nucleithe vector couplings of the quarks are coherently

enhanced, in addition since Cs has only a singleelectron outside a completely filled

shell, rather clean theoretical calculations for the atomic effects are available [6]. The
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TABLE II. Neutral Current experimental constraints.

Deep-inelastic v-q

g_ 0.2977 4- 0.0042

g,_ 0.0317 4- 0.0034

8f, 2.50 ± 0.03

OR 4.59 + o.44-- 0.27

v-e scatterin 8 experiment

g_,/g_ 0.047 ± 0.046 CHARM II

g_, -0.06 ± 0.07 CHARM I

g_ -0.57 + 0.07 "

g_ -0.10 ± 0.05 BNL

g_ -0.50 ± 0.04 "

e-q parity violation correlation

C1= -0.249 ± 0.066 -0.99 -0.95

Cld 0.391 ± 0.059 0.95

C2, - } C=d 0.21 ± 0.37

results are expressed in ter_ of the weak charge qw = -2(C1.(2Z + 1V) -t- Cld(Z -t-

whosevaiueis [5] 1,3Qw(s5 Cs) = -71.04 ± 1.58 ± 0.88 (the second error comes

I C2d has been also measuredfrom atomic theory). The particular combination C_= -

in the SLAC polarized e - D scattering experiment [35]. The values of the parity-

violating coe_cients listed in table II have been derived from the quoted value of Qw,

and from the results given in table 1 of ref. [35].

Physics at the Z-peak

The recent experiments performed at the LEP and SLC Z-factorles have provided

us with a set of high precision measurements that are very sensitive to the values of
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the fermion couplings to the Z-bosom

Besides the accurate determination of the value of the Z-mass, that together

with a and Giv completes the set of fundamental input parameters of the SM, also the

total Z width and the partial decay widths into hadronic final states and into each of

the three lepton flavours have been measured at LEP with very high precision. Less

accurate results have been obtained also for the b and c partial widths.

The measurements of the different I'l's are sensitive to the particular combination

of couplings v_ + a_, while the independent combination v/allCv= I + anl) enters the

expressions of the on-resonance forward-backward asymmetries A_ B, that have been

measured for f = e, p, _', c, b, and of the _" polarization asymmetry APt°l. Already

the first experimental results of LEP led to a drastic improvement of the bounds on

the mixings of the heavy quarks and the _'-lepton [18], that were otherwise poorly

constrained [3]. The present accuracy leads to a general improvement of the limits on

all the mixing angles.

i} 7, decay widths

All the four LEP collaborations have measured the total Z-width rz as well as

the hadronlc and the three flavour-dependent leptonic partial widths rh, r_, r_ and

I'_. [23 I.

Due to the very high experimental accuracy, radiative corrections have to be

carefully taken into account in all the theoretical expressions. At 1-loop, the partial

decay width of the Z-boson to f-flavour fermions reads [25]

_z ' ' v3)(1 s_E_)(1 _o_,), (3.24)rz-.t/= N_Z-3-;v_GF_PI(_+ + +

where N_ = 3(1) for quarks (leptons). ffqCD is the gluonlc correction for hadronic

_nalstates(6_CD_--,_o(M})/_inleadingorder).ForthestrongcoupUnsconstantwe
have used the value ao(M_) = 0.118 4- 0.008 determined from jet analysis in hadronic

Z decays [36], and we have neglected the theoretical uncertainty related to the error

on this parameter. 8_/_D is a (small) additional photonlc correction. Electroweak

corrections appear in the p! term as well as in the effective weak mixing angle that

renormalizes the vector-coupling v! :

p! = p + _pT", (3.25)
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dsA/) = i - I + " (3.26)

In these equations the F-term is universal and includes the potentially large heavy-

top effects. Ap_ e'n and A_ em contain, among others, non universal fiavour--dependent

contributions arising from vertex form factors. These contributions are generally small,

except in the case of l_-quarks final states for which loops involvlng the top-quark

appear in the correction to the Zbb vertex [37]. Finite mass effects not c_splayed in

eq. (3.24) have been also taken into account. Analytical formulae for these corrections

can be found in [25]. We note that, since GI,/GF enters the definition of the effective

weak-mixing angle, all the LEP measurements contribute indirectly to bound the four

mixings involved in the/_-decay.

The experimental values of the five width rz, rh, rl (t = e, p, I-) as measured

by the four LEP collaborations are affected by common systematic errors. For the

weighted averages listed in table III we have assigned to rz a common systematic error

of 5 MeV from polnt-to-point error in the LEP energy calibration, and to the partial

widths a 0.5% error from luminosity [38]. Experimentally the widths are determined

by fitting simultaneously the data for the reactions e+e - ---, hadro'ns, e+e -, #+_-,

1"+_"-, and thus they are expected to have correlations that cannot be neglected, but

that unfortunately are not always given. To overcome this inconvenience, we have

adopted the following procedure. A second set of experimental quantities equivalent

to { rz, rh, re, rg, r_ }, but with much cleaner correlations, is provided by { rz,

_, Re, R_,, Rr } where _ is the peak hadronlc cross section corrected for the effect

of initial state radiation, and Rl 0 0= _rh/cr I = ra/rz (l = e,/_,_-). The correspondence

between the two sets is given by

r.r/ (3.27)
=

A remarkable property of thissecond set of quantitiesis that their systematic errors

have in general differentoriginsand that the correlationarisingfrom their functional

relation to the measured observables is negligible,with the exception of the one be-

tween rz and (r_. In order to make a definiteansatz we have assumed an anticor-

relation between these two quantitlcs of-25%. The correlationmatrix for the set of

widths, shown in table Ill,has been worked out via an iteratlveprocedure by requir-

ing that itreproduces thisanticorrelation(together with vanishing small off-diagonal
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coe_cients for the other entries) when we transform to the second set by means of

eq. (3.27). We have explicitly checked that this procedure leads to quite acceptable

results when confronted with the available correlations [23]

A direct measurement of the Z invisible width by single photon counting [39]

Play = 500 -4- 76 MeV has also been included in our analysis.

ii) Leptonic asymmetries.

Forward-backward asymmetries are defined as follows

AB__ O'F -- o'B , (3.28)
_F + O'B

where _F (_rB) is the cross section for events with the f- fermion scattered into the

forward (backward) hemisphere with respect to the electron beam direction.

On resonance this gives

via, vfa! (3.29)= 3 +a----!.+

where again re,! should be expressed in terms of the effective weak mixing-angle

(3.26). For quarks, final state QCD corrections must also be included (see e.g.[40]).

We have taken into account the bulk of the effects of QED initial-state radiation, that

are known to yield large corrections, by convolvlng the e+e - --* ff differential cross

sections with a suitable "radiator" kernel [41]. The convoluted complete s-dependent

formulae [41] (instead of just eq. (3.29)) have then been used to fit the asymmetries.

Even if statistical errors are still large if compared with the uncertainties on

the leptonic partial widths, the leptonic FB asymmetries constitute an additional

important set of quantities for testing universality of the lepton couplings to the Z. In

fact, while the Pl's are mainly sensitive to the squared axial couplings, the asymmetries

are sensitive to the ratios vl/al. The combined measurement of these two sets of

quantities allows for an independent determination of vt and at, and turns out to

be quite effective for constraining both the right and left mixing angles even in the

"joint fits" where all the mixings are allowed to be present simultaneously. In table

III we give the values of the peak asymmetries averaged over the results of the LEP

collaborations, but for the leptonic asymmetries we have also included in our analysis

the data at +1 GeV around resonance in order to increase the statistics. Whenever

available we have used the asymmetries determined from a maximum likelihood fit to
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the angular distribution dtr//dcos 0 1-_cos 2 Z}. 8 ,/FB"_ ,,-r ],--! cos 0 (where 0 is the scattering

angle), otherwise we have used the direct countings of the events and we have corrected

for the relevant angular range of detection in the theoretical expressions.

The 1- polarization asymmetry [42] has been also measured at LEP in r pair

production, using the distributions of its decay products [43]. At the Z resonance this

quantity reads

ApOt -2vra_. (3.30)

and it is very sensitive to the r vector coupling to the Z, having the advantage with

respect to the forward-backward asymmetry that it is not suppressed by the small

electron vector coupling. Experimentally, the r polarization is inferred from the slope

of the energy distribution of the decay products under the assumption of pure V -

A coupling with the W + bosons [42]. The presence of mixing-induced RHC could

then in principle affect the quoted experimental results, but this effect is O(s 4) and

can thus be neglected. The weighted average of the ALEPH and OPAL results [431 is

given in table III.

iii) tteavy flavours

For the measurement of the width of the Z decay into b quarks, different methods

have been used by different collaborations. ALEPH, L3 and OPAL at LEP and MARK

H at SLC [44] used high momentum and high-pT muons and/or electrons to tag the b

quark, thus they measure the quantity l_b/F_ Br(b --* St�X) for l = e,/_ . A value for

the b-branching ratio into electrons and muons is then needed for the determination

of 1_b. This branching has been measured by the L3 collaboration [45] by analysing the

ratio of the events where both b's decay semileptonicsJly to the single lepton events.

The L3 measurement can be combined with the PEP and PETRA determination

of Br(b --, lvX) (quoted in [45]) to obtain a value that is largely independent of

assumptions on the b neutral-current couplings since the first result is, in first order,

independent of rb, and at the e.m. energies of the latter experiments weak effects

contribute only a few percent to b-production' We have used the resulting value

Br(b -4 tvX) = 0.119 :t= 0.006 [45] for deriving Fb/Fh from the average of the first

four measurements. The strategy adopted by DELPHI [44] in order to identify the

b quarks is based on the fact that, due to the larger B-hadrons mass, a greater

"sphericity" is expected for the corresponding jets. This measurement gives a further
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TABLE III. Results on Z-partial widths (in MeV) and on-resonance

asymmetries. The values dlsplayed for the leptonie asymmetries corre-

spond to the peak-data and have been corrected only for angular accep-

tance. Also displayed are the vMues of the b and e axial-vector couplings

extracted from the off-resonance AbT,_ asymmetries (used only in the sin-

g]e fits) and the charm asymmetry measured through/)*-tagging (used

in the joint fits).

Quantity Experimental value Correlation

rz 2487 4-10 0.52 0.52 0.29

r_ 1739 :k13 -0.15 0.55

re 83.2 ± 0.6 -0.08

r_ 83.4 4- 0.9

r_. 82.8 4-1.1

AFB(pe=_) -0.019 4- 0.014

AFB(ne=k) 0.0070 4-0.0079

AFa(ne=/=) 0.099 4- 0.096

AnOl -0.121 + 0.040
1.

rb 367 4-19

r= 299 4- 45

A FB 0.123 -4-0.024

AcFB 0.064 4- 0.049

0.25

0.48

-0.07

0.26

a_ z -0.405 4-0.095 (forsinglefits)
a_ z 0.515 4-0.085
-rz

Ae,D. (29 GeV) --0.101 4- 0.027
(for joint fits)_Z

Ac, D. (35 GeV) --0.161 4- 0.034

direct determination of the rb/rh ratio.

From the overall average of these quantities and using the experimental value

of Ph (table III), we obtain rb = 363 4- 19 MeV, where the overall uncertainty is

dominated by the error on the b-semileptonic branching ratio.

The Z partial decay width into charmed quarks has also been measured, but due
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to the greater diftlculties in the identification of the primary c quarks the accuracy

achieved is worse. ALEPH [46] uses high p and 10T electrons while OPAL uses muons

[46]. Averaging these two measurements and using the value Br(c _ lvX) -- 0.096 -4-

0.006 determined at PEP and PETRA and quoted by L3 in [45] a first value for I'c/Ph

is obtained.

A second determination of the c_ production rate has been performed by OPAL

(last paper in [46]) with a different method. The I'c/ra ratio is determined from the

analysis of the reconstructed D* momentum distribution produced in Z decays. The

same ratio has been determined by the DELPHI collaboration [46] from the inclu-

sive analysis of charged pions from D* + _ z'+D ° decay. In combining these two

measurements, the common systematic error coming from the c -* D* hadroniza-

tion probability has been taken into account. The result of the average of the four

measurement is given in table III.

Three measurements of the b-quark forward-backward asymmetry have been re-

ported [47]. In each case the b channel is selected using electronic and muonic b decays,

with the requirement of high p and pT for the final leptons, the consequent reduction

in the statistics leads to rather large experimental errors. In addition the effect of

B 0 _/]0 mixing has to be taken into account. This effect tends to reduce the asym-

metry since the neutral B ° meson can transform into its charge conjugate before it

decays. The relation between A Fs and the observed asymmetry is [48]

FB

A_ s -- Aob.
1 -- 2XB' (3.31)

where XB is a measure of the probability of a B ° meson to oscillate into a D ° meson.

Several measurements of the B-mixlng parameter have been performed [49]. The

method adopted, which is largely independent of the b--quark neutral couplings, is to

count the ratio between like-sign to opposite-sign b-orlglnated di-lepton events, since

two leptons of the same charge are a signature that one B ° meson has oscillated into

its CP conjugate.

The result quoted in table III for the b forward-backward asymmetry has been

obtained by adjusting all the measurements to XB : 0, and then correcting the average

with XB = 0.146 4- 0.016 that was obtained by averaging the ALEPH, L3 and UA1

measurements [49]. 2

2 We have not includedthe ARGUS and CLEO results[50]sincetheseobservationsstem
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The forward-backward asymmetry for charmed quarks has been measured only

by the ALEPH collaboration [47] in a simultaneous fit with A FB. Their result is

displayed in Tab. III.
-yz

We have included in our analysis also the FB b and c asymmetries Ab,c, mea-

sured in the 7-Z interference region at PEP and PETRA. These asymmetries are

essentially determined by the product of the axial-vector couplings aeab(c), that is a

different combination from what is measured on top of the resonance. High p and

pr leptons have been used for tagging both the heavy quarks [10,12], leading to non

negligible correlations between the two asymmetries. For the c quark also the D*

tagging technique (largely independent of the b couplings) have been used [11,12]

In our individual fits we have used the PEP/PETRA averages for ab and ae quoted

in ref. [10]. In the joint analysis it is no more consistent to include these results since

each axial coupling is determined while keeping the others fixed at their SM value, so

in this case we have restricted our set of data by inducting only the c FB asymmetry

measured with the D'-tagging technique [11,12].

The measurements of the leptonle asymmetries in weak-electromagnetic interfer-

ence do not improve significantly the constraints, and have not been included in our

fit.

4. Results

2To obtain the constraints on the mixing parameters s i we have confronted the theo-

retical expression X_ h for each observable with the corresponding experimental result

X_Z) ) 4- o',-. by constructing a X 2 function

x' = Z (x'..,- x:-) CC_,)..CX "- x;'p) (4.z)

where the C represents the matrix of correlations.

from the analysis of T(4S) decays were only J3d mesons are produced, while at LEP the

relative abundance of Bm to Bd mesons is estimated to be of 0.3-0.4.

23



Some care must be paid in the interpretation of the confidence levels from the

X 2 since the variables s_ are bounded in [0,1]. For each parameter we then assume a

probability distribution

= N, (4.2)

with N_-' -- fo exp(-x'('_)/2) d,_. For the joint fits, in which all mixing parameters

are allowed to vary simultaneously, the X a function in the expression for P(s_) is

minimized with respect to all the remaining parameters for each value of 8_.

The 90% c.1. upper bounds g_ are computed by requiring

(4.3)

under the additional condition X2(i_) > X2(0) that, if not satisfied, would be a signa-

ture for non-zero mixing angles at 90% c.1..

Although there are more than 20 mixing parameters, the large number of observ-

ables aUows to constrain all of them. The inclusion of the recent results from LEP,

together with the updated NC and CC results, have considerably improved almost

all the previous limits [3,18]. Our results for the 90 % c.1. bounds obtained in the

individual and joint analyses are coUected in table IV.

For simplicity we have assumed Ae = A_, = AT (corresponding to ordinary-exotic

mixings of the same kind for the three neutrinos) but these parameters could in prin-

ciple differ. In the individual analysis, since only the bounds on the neutrino mixings

may depend on the value of A, we just show the results for A = 2. Furthermore,

since the electron and muon neutrino mixings are mainly constrained by CC measure-

meats, they are largely independent of the value of A. In contrast, for the _" neutrino

different values of A led to different bounds, since in this case the LEP measure-

ment of Fz gives an important constraint. The upper bounds for vT are respectively

(jg.)2 < 0.098, 0.032, 0.015 for A_. -- 0, 2, 4 corresponding to neutrino mixings with

heavy ordinary doublets in sequential or vector doublets, with heavy singlets and with

exotic doublets respectively. For the joint bounds, we present all the results for A - 0,

2 and4.

One possibility that we have not considered for simplicity is the presence of light

neutrinos that are mainly singlets. These could appear for instance in models where

the light neutrinos are Dirac particles. These light slnglets could mix with exotic

doublets and hence couple to the Z, giving rise to a new invisible decay channel. The
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additional parameters s_ describing these mlxings would then be constrained by the

measurement of Pz. This would affect mainly the bounds on the r neutrino mlxings

in the joint analysis (for A_ _ 0), while the other bounds would essentially remain

unmodified.

In the last column of table IV we list, for each mixing angle, the observables that

are more important for establishing the constraints. Often a tight constraint set by

some accurate measurements can be evaded in the joint analysis, since the deviations

caused by the mixing under consideration may be canceled in these observables by ad-

justing other mixlngs to non-zero values. Other observables, for which the possibilities

of cancellations are more restricted, can then become important in the determination

of the joint bounds even if they were not decisive for the individual fits. In table IV

these observables are labeled with a (*). This happens e.g. for Fz and Ph_J, that are

crucial for the single bounds but that should be supplemented by other constraints in

the joint analyses since they depend on several mixing parameters. Hence, the large

number of measurements at our disposal plays a crucial r61e for setting the limits.

A look at table IV makes apparent that the measurements of the Z partial and to-

tat widths contribute to the limits on all the exotic mixings. The bounds on the leptons

and b-quark mixlngs receive further contributions from the on-resonance asymmetries,

while PEP and PETRA off-resonance asymmetries help to strengthen the bounds for

the c quark.

For the fermions of the first generation and for the #L mid v_ leptons, both the

'low-energy' NC constraints (especially _,-q scattering and to a smaller extent the e-q

sector) and the CC constraints on the unitarity of the CKM matrix are also important.

These last quantities also bound the mixings [V,,i[ and [Vc_[ with sequential or vector

doublets, as well as the parameters _ij, that are further constrained by direct searches

of induced hadronic RHC's.

Due to the fact that the presence of the mixlngs modify the fermion couplings, the

various determinations of the effective weak angle cannot be used as direct measure-

ments. However since the theoretical expression for s_l! depends on the ratio GF/G_,,

besides the direct constraints, the combination of all the LEP and NC experiments

put also important indirect constraints to the mixings that appear in # decay. These

indirect bounds are quite effective for the electron and muon neutrino mixings, and

are of some relevance also for (8_) 2 in the joint analyses. These two indirect sources
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of constraints have been denoted respectively with °e//'LzP and Sel/NCin table IV.

The W boson mass, that aiso constrains the ratio Gj,/GF, is not very important

in the individual analysis due to its present experimental error. However, it gains

relevance in the joint fits since it does not allow for accidental canceUations between

different mixings, as usually happens for LEP measurements.

For the left handed charged leptons and neutrinos, the constraints on lepton

universality are also crucial. Some peculiarities arise in the r - u,, sector, since to

some extent the r-decay measurements are better accounted for with non-universai

CC lepton couplings (see e.g. ref. [51]). In particular, non-vanishing rL and/or v£

mixings weaken the Wrv_ coupling, allowing for a longer r lifetime, as is favoured

by experiments. The excdlent agreement of the accurate LEP measurements with

the SM predictions forces the overall probability distribution to be consistent with

vanishing values for the r and /,,1. mixings. However, if u_ mainly mixes with an

ordinary sequential or vector doublet neutrino (A_ -_ 0), the NC experiments are

ineffective for constraining this mixing. In this ease, both in the individual and in the

joint analyses, we find that the value s_" -- 0 falls out of the 90% confidence regions,

that are respectively 0.0075 < s_" < 0.098 and 0.0057 < s_" < 0.007. However, within

two standard deviations the data are consistent with zero mixing.

Another complication in the analysis is due to a peculiarity in the behaviour of the

observables involving the dR-type quark mlxings. Indeed for 0.3 (q = d, ,, b),

the a _ terms caned against the quadratic ones inside both v_a_ and v_ + a_, that are

the only combinations of couplings measurable at the Z-peak. Since the constraints

on s_ and a_ are provided essentially by LEP experiments, the corresponding X 2

distributions are characterized by two equivalent minima, one lying around vanishing

value for the mixing and a second one near 0.3 and as a consequence the confidence

intervals are split into two disjoint regions. Actually, due to the low central value

of the b-quark axlal-vector coupling as extracted from the asymmetries in the 7-Z

interference region [10], the value (s_) a -_ 0.3 is even in slightly better agreement

with the data. For the bounds in table IV we have conservatively integrated over

both regions, however a restriction to the interval consistent with zero mixing gives

(s_) 2 _ 0.09 and (s_) _ _ 0.10, i.e. about three times tighter limits.

We can add a final comment about the interplay between the mixings and the

bounds on the top mass. A fit to rat leaving a_ the mixings free to vary, indicates
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TABLE IV. 90 % c.1. upper bounds on the ordinary-exotic fermion mixings

for the individual fits, where only one parameter is allowed to vary, and

for the joint flts where cancellations between different mixings can occur.

The observables that mainly contribute to determine the numerical values

of the bounds are listed in the last column (those labeled by an asterisc (.)

are effective only in the joint analyses). LmP Ncae/! and sef ! refer to the effective

weak mixing angle, from Z-peak and NC experiments, which contribute

indirectly to constrain the mixings in GF/G_.

Individual Joint Source

A=2 A=0 A=4

(s_)2 0.0047 0.015 0.0090 0.015 r,, M_v , A FB*, eq*, g:

(a_) a 0.0062 0.010 0.0082 0.010 r., A FB, A FB*, re*
LEP,

(4.)' 0.0017 0.0094 0.0090 o.on v=2,,uq,g,,r,,s.t / ,M_

(s_)' 0.0086 0.014 0.014 0.013 1"_,, A FB

(8_) = 0.011 0.017 0.015 0.017 rr, AFB,gr, A_ °l"

(s_) 2 0.011 0.012 0.014 0.012 r_, A_°I, AFTS , g;

(s_,) 2 0.0045 0.019 0.015 0.019 V_i, rh, rz, eq, vq

(8_) 2 0.018 0.024 0.025 0.024 vq, rh, rz, eq

(,_)2 0.0046 0.019 0.016 0.019 v2,, r_, rz, _q
(sd) 2 0.020 0.030 0.028 0.029 eq, Zh, rz, vq

(a_)= 0.011 0.038 0.039 0.041 rh, rz, v=2i

(s=_) a 1" 0.36 0.67 0.63 0.74 rh, rz

(a_) a 0.013 0.040 0.042 0.042 rh, rz, re', A_cz"

(s_) 2 0.029 0.097 0.10 0.099 rh, rz, A_ z', r:, A FB"

(,_)2 0.011 0.070 0.072 0.069 I'l,, rz, rb, A FB"

(,D2t 0.33 0.39 0.40 0.39 n, r_,r,,, A;'z, .4lB.
LBP NC

(,_o)2 0.0097 0.015 0.016 0.014 a,ff,g,,,,/y,M_f

(8_")2 0.0019 0.015 0.0087 0.011 2 _zPV,_i, g_,, vq, seIf, M_

(s_")= t 0.032 0.064 0.097 0.035 rz, gr

_-'_==,K_i 0.0048 0.014 0.010 0.018 V,_

IIcudl 0.0011 0.0059 0.0060 0.0058 V_i, uq, RHC's, ue*

[,¢.o] 0.0054 0.0061 0.0061 0.0061 V_, RHC's

E;'=, K_', 0.53 0.76 0.76 0.76 v_
II¢¢dl 0.31 0.31 0.31 0.31 R.HC's

[_¢c, I 0.24 0.29 0.29 0.29 VJ, RHC's

t For some peculiaritiesthat occur fora_ and a_, and for a discussionof the bounds on

s_",see text. 27



that the preferred value is shifted downwards by about 25 GeV with respect to the

case when all the mixings are set to zero. As already noted this is mainly due to the

anticorrelation with the mixlngs that appear inside the ratio G_/GF. As a consequence

of the large number of free parameters the error is larger, and the upper bound on mt

is slightly relaxed. However, considering that also the loop effects of the new heavy

fermlons are expected to lower the upper bound on rnt, we can conclude that in general

a 'lisht' top is preferred in models of this kind.

@ Conclusions

As a summary, we have analysed the limits on the mlxings of the known leptons

and quarks with possible heavy fermlons with exotic 5U(2)r. assignments. We have

obtained significant constraints on a very large set of mixing parameters by performing

a detailed global analysis of the available electroweak data.

In order to guarantee the experimentally observed absence of FCNC, we have

assumed that each ordinary charged fermion mixes with a unique exotic state, in

which case just one mixing angle per degree of freedom is enough to describe the

effects of the mixing. For the neutrinos there is no experimental evidence of FCNC

suppression, but since one has to sum over the flavor of the unobserved final v states,

again just one nnm 8 angle per neutrino flavor allows to describe the mlxlngs , with

the addition of an ei_ective parameter (A) that takes into account the type of exotic

neutrinos involved.

In order to constrain the mixing angles we have analyzed the effects that they

could induce in the couplings between the light fermions and the weak bosons. Very

accurate measurements of the fermion weak-couplings are provided by several exper-

iments, as for example tests on CC universality and on the unitarity of the CKM

matrix, limits on induced right-handed currents, collider measurements of ZIw, low-

energy NC experiments (v-scattering, atomic parity violation and polarized e - D

scattering) and in particular the huge amount of data obtained at LEP and SLC from

experiments at the Z-resonance. The results of our analysis are collected in table IV.
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If only one mixing angle is considered at a time, for most of the mixing factors

(sl) 2 the limits are below the 1% level, with the exception of the mixings ofuR, dR, cR

and v_.r. that are of the order of a few percent and those of sR and bR that are still

poorly constrained to values _ 1/3. Allowing for accidental cancellations among

different mixings the constraints are relaxed by a factor between 2 and 5.
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