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1. Introduction

The stmldard model of the early Universe predicts that free electrons and protons

combined to form hydrogen atoms at a redshift of order 1000. After this "recombination"

epoch, almost al! matter is predicted to be in the form of neutral hydrogen. The Gunn-

Peterson [1] test is a way of examining this prediction. In particular, the absence of a dip

in the spectra of distant quasars on the blue side of the Lyman alpha line is convincing

evidence that there is very little neutral hydrogen in the intergalactic medium. To get a

feel for the conflict between the prediction and the observations, consider the limit imposed

by Steidel and Sargent [2] on the intergalactic hydrogen density, nil:

nH< 8.4 x I0-12h cm -3 (1.1)

at a redshift z = 2.64. Here h is the Hubble constant today in units of 100 km sec -1

Mpc -1 and lies between .4 and 1. The standard model prediction [3] for the hydrogen

density at this redshift is roughly 7 x 10 -6 cm -3 , violating the Steidel-Sargent limit by six

orders of magnitude.

It appears then that there is a diffuse spectrum of ionizing radiation permeating the

Universe [4]. What is the source of this radiation? Some years ago Sciama [5] proposed that

neutrinos may be both the dark matter and the source of ionizing radiation Neutrinos are

particularly attractive candidates to serve this dual role because cosmology predicts that

there are many b_.ckground neutrinos; they exist in numbers comparable to t!,.-, L_ckground

photons. If the mass of one of the species of neutrinos is in the range 25 - 100 eV, then

they can be the dark matter [6]. Further, if the lifetime for the process

/_ea.vy "--_I/Light -k (1.2)

is short enough - but longer than the age of the Universe, so most of the heavy neutrinos

are still around to be the dark matter - then the photons coming from neutrino decays

can fully ionize the intergalactic medium [7].

In this paper, we will analyze the Decaying Dark Matter (DDM) scenario and see what

predictions it makes. In particular, for any given values of the neutrino mass and lifetime.

we will calculate the photon spectrum today as a result of all past neutrino decays, and

we will find the predicted value of the neutral hydrogen density. To do this, in Section 3

we derive the Boltzmann equations which govern the photon spectrum and the ionization

ratio. It will be shown that the ionization ratio depends on the electron temperature, so



wewill derive the Boltzmann equation for this quantity as well. Our Boltzmann treatment

complements and - to some extent - extends previous work on the subject [8] [9].

The possibility of radiatively decaying particles has been raised in many different

cosmological contexts [10] [11] [12]. In all of these cases, it is useful to have an expression

for the photon spectrum as a function of redshift. In Section 4, we solve the Boltzmann

equation for the photon spectrum in terms of the ionization ratio. Our discussion is kept

general so it can be applied to different decaying particle scenarios and also to other

proposed explanations of the Gunn-Peterson tests.

In section 5, we present the results of a numerical integi'ation of the Boltzmann equa-

tions. There are two requirements which together bound the neutrino lifetime. The lifetime

must be short enough so that almost all hydrogen atoms are ionized. If the lifetime is too

short, though, we would have observed some of the photons from the neutrino decays in

the diffuse UV background. These complementary bounds constrain the neutrino lifetime

to be of order 1023 - 1024 seconds. Besides the quantitative results, our most striking

prediction is that the photon spectrum today will be sharply cut off at long wavelengths.

First, though, for the purpose of orientation, several general comments are presented

in the next section.

2. General Considerations

With very ix_le work, one can get a feel for the range of neutrino masse_ ,_iti lifetimes

necessary for the DDM scenario to work. First, we note that cosmological neutrinos with

a mass in the desired range are very non-relativistic today. Therefore, the energy of the

photon emitted in a decay is Ev/2 = rnz,12 [as long as the emitted neutrino is much less

massive than the decaying one]. This must be greater than the energy required to ionize

a hydrogen atom, eo - 13.6 eV, so the first constraint is on the mass of the decaying

neutrino:

rnv > 27.2 eV. (2.1)

A second constraint emerges when we note that if the energy density of neutrinos is

enough to set P/Pcritic_l -- _ -- 1, then there is a relationship between the Hubble constant

and the neutrino mass. This follows since

f_vh 2 _ my
91.5 eV" (2.2)
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If we now require f_v + _baryon = 1, then we can express h as a function of mz,:

[ m_ ]:/_•h(rn_) = 91.5 eY + .0125 (2.3)

Here - and throughout - we have set f_b_ryonh 2 = .0125, the favored val.le emerging

from cosmic nucleosynthesis calculations [3]. We note that since my must be greater than

2e0 = 27.2 eV for the emitted photons to be able to ionize hydrogen, h must be greater

than 0.55. Since we are assuming a matter-dominated Universe with f_ = 1, h must be

less than 0.65 in order for the age of the Universe to be greater than 101° years [13]. This

places an upper bound on rnz,:

m_ < 37.5 eV. (2.4)

A final constraint comes from requiring that all the hydrogen atoms in the intergalac-

tic medium have been ionized. If every photon produced ionizes a hydrogen atom, then - if

decaying neutrinos are to be solely responsible for the ionization - the number of neutrinos

which have decayed by now must be greater than the number of hydrogen atoms. But the

number density of neutrinos that have decayed by now is just (to/r)n_(to), where to is

the present age of the Universe; r is the neutrino lifetime; and n_(to) is the cosmological

number density of one species of neutrinos, roughly a third the number density of back-

ground photcn:_. As a first estimate, let us assume that the number density ,_f hydrogen

[ionized or not] in the intergalactic medium is of order the diffuse baryon number density,

4 x 10 -1° tirT..es the number density of background photons. By requirir,_,: ' o, t::, number

density of decayed neutrinos to be greater than the hydrogen number density, we arrive at

the third constraint, this one on the neutrino lifetime:

to < r < 109t0 (2.5)

where the lower limit follows from the requirement that most of the heavy neutrinos have

not yet decayed. We will see in the next few sections that the lower limit is much larger

than _'0 due to ultraviolet constraints [14] and the upper limit is much smaller than 109/0

due to the effects of recombination. The favored regime which emerges - 1023 - 1024

seconds - is extremely interesting. The standard model of particle physics predicts [15] a

lifetime much longer than this for a 30 eV neutrino, so convincing evidence of this scenario

would require drastic modifications of the standard model [16] [17].

How good is the assumption that the number density of diffuse hydrogen today is

of order the cosmological baryon number density? The answer to this question depends
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upon how much and when baryons clumped together. One might imagine that all of

the baryons ch_w._ed together (into pop III objects) shortly after recombination. Such a

scenario would eYplain "the null Gunn-Peterson result but is rather unlikely as a model

of structure formation. It is more likely that in the era in which quasars formed (the

epoch the Gunn-Peterson test probes) virtually all the baryonic matter is still diffuse.

'Subsequently more clumping, though how much is unknown, took place. In order to allow

for this uncertainty we shall introduce a clumping factor f such that

n_ ffuse _= f n_ °sm°l°giCad (2.6)

where f < 1. It is fairly safe to assume that for the oldest quasars f is of order unity,

while today it could be up to three orders of magnitude lower [18].

3. Evolution Equations

In this section we derive the Boltzmann equations which govern the photon spectrum

and the ionization ratio [19]. In a flat FRW Universe, the distribution function f(k, t) of

a particle species ¢ evolves [20] according to the following equation:

o R o
(3.1)

where R(t) is the scale factor of the Universe. The term on the left hand side is the

generalized Liouville operator acting upon f¢, which takes into account the cosmological

expansion. The term on the right side, represents all the physical interactions involving

the particle. For example, for scatterings ¢ + a _ b + c, the collision term is

2E_(k) (27r)32Ea(pa) (2rr)32Eb(pb) (27r)32Ec(pc)

× (2rr)4$*(k + Pa - Pb -- Pc)[]Ml2v+a_.b+cfr_(k)f_(pa)

-- [M]2b+c_a+_,fb(Pb)fc(Pc)].

.(3.2)

2 for any particle i. The matrix elements squaredHere, and throughout, E,(q) =_ v/q 2 + rn i

include summations over the spin states of particles a, b and c but not of _b. Note that we

have not included Pauli (Bose) suppression (enhancement) factors, as they are negligible.
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We shall first consider the distribution function of the photons, f._(k, t). The aim of

this paper is to elucidate the most important physics of the reionization epoch, so accord-

ingly only the dominant terms will be included on the right hand side of tile Boltzmann

equation. For the photons this includes the decay process

'(3.3)

the heavy neutrino decaying into a light neutrino [assumed massless] and a photon. In

analogy to Eq. (3.2), we have

1 f dSp / daq F,,(q,t)iMl2(2_r)4$4(q-p- k) (3.4)Cd,¢,y = 2--k (2_r)32p (21r)a2Ev(q)

where F_(q, t) is the distribution function of the massive neutrinos and [MI 2 is the square

of the amplitude for radiative decay, summed over massive and light neutrino spin states.

The inverse process is unimportant at the temperatures of interest, far below the heavy

neutrino mass.

We know that Fv(q) constrains q to be of order the temperature; since we are interested

in temperatures much less than my, we have

_f[E(q) - Iq- _¢1- k] _ l $(k - m_/2). (3.5)

Using this simplification and the fact that

d3 q ,..,:2 = n.(t)
(3.8)

where n.(t) is the number density of the heavy v and _ [hence the factor of 2]. we find

n,,(_)_ -:

Cdecay -- TIC02 (_(k -- kO).
(3.7)

Here k0 is the energy of the decay-produced photon.

(3.8)

and r, the lifetime of the decaying neutrino, is given by 7- = 16rrnv/lMI 2.



Another important process affecting the photon distribution is photoionization of

hydrogen - 3'(k)H(k') --, e(p)P(p') - and the inverse process, recombination - e(p)P(p') -.-,

_/(k)H(k'). These lead to a collision term

l f d3p' f d3p f d3k'
Cio,/re_ -- -2---£ (2rr)32Ep(p ') (2r)32Ee(p) (27r)32EH(k ') (3.9)

× IM12H,_,p(2_)46'(p + p' - k - k')[h(k)gH(k' ) -- a,(P)gP(P')]

where gn(k'), ge, gP are the distribution functions of hydrogen atoms, electrons and pro-

tons, and M is the amplitude for the process in which a hydrogen atom in the ground

state gets ionized. There is no contribution to the photon spectrum due to ionization from

excited states of hydrogen, since at these low temperatures, all excited states that might

be produced immediately drop down to the ground state: only the n = 1 state is occupied.

[Appendix A treats this question quantitatively.] AU the integrals in Eq. (3.9) can be

carried out assuming thermal equilibrium amongst free electrons, protons, and hydrogen

atoms. Since the rate for elastic scattering - the process which bring the species into

thermal equilibrium - is much greater than the expansion rate, thermal equilibrium is a

good assumption. Consider first the term in Eq. (3.9) with f_gH. The integrals over p

and p' can be rewritten in terms of the cross section for photoionization, and the integral

over k' can be rewritten in terms of nH yielding,

Cionization ---_ --nHaH-_-.epf_(k,t)(9(k -- e0). (3.10)

Now consider the_ term in Eq. (3.9) with gegP. Due to thermal equilibrium: ,:_c!: of these

distribution functions are Maxwellian with a common temperature T,:

e_P_/2m.T, 271" 3/2
g'(P)= 2- \rn,Te/ ; gp(p') = ne _ e -p'2/2MT" (3.11)

where M is the proton mass and the factor of 2 in the denominator for g_ accounts for the

two spin states of electrons [nuclear spin states play no role, since those in gp cancel those

in gill. Note that the proton distribution function, gp, is proportional to np, which we

have set equal to n_ since there are an equal number of free electrons and protons. [Any

difference between the two is due to the small fraction of helium atoms, which we neglect.]

These expressions for the distribution functions together with energy conservation can be

used to do the integrals in Eq. (3.9). Specifically we write

ge(P)gP(P')= '2 \_e_,] _ e--[k--'°+k'2/2Ml/T"

_n___2 ( 2rr "_3/2( 2rr ) 3/2 (MT_'_ 3/2 (3"1-9)- 2 2g (k')
nH \ 2r ]



where the first equality follows from energy conservation and the second from the fact that

gH is also assumed Maxwellian. We can now proceed as before, integrating over p. p', and

k' to find

Crecombination "- [ _r \L 2_t) 3/2 2_neCrH__..,et.,...,,_[k_,0]/T, . (3.13)

Physically we see that at low temperatures the photons produced in recombination will

have energies very close to e0, as expected.

While there are other processes which in principle should be included in the Boltzmann

equation, such as Compton scattering and Bremsstrahlung [21] , since the rates of these

processes are much slower, they can be neglected. Thus the photon equation is

nv(t)r 2
0 ko)Or R rkg

( 2m__Te) 3/2 -, - --[,-,o]/T. nnan.r_.epf.r(k,t)O( k _o)."b "rtea H..r.-.,epe -- --

(3.14)

We must now derive an equation for the neutral hydrogen density. Following the

principles above, we can write the non-integrated equation as

{&0 _kg/;R,O }gH(k',t)

1 dap '
2EH(k') f d3P(2"r)a2Ee(P) f (2r)S2Ep(p ') j dSk 4 4

x [IM[2tp_H.rge(p)gv(p ') -IMI2H.r_,ef.r(k)gH(k')]

(3.!_)

where we have explicitly distinguished the two amplitudes for reasons to be made clear

shortly. Summing over hydrogen spin states and integrating over hydrogen momenta we

find

R_ 3 d 3 i d3p
-_(nHR ) = 2np I a v(o_V g_(p)( eP-H, )

J

(3.16)

f d3 k--2nil (27r)-------_f-y(k)aH.r_ep.

The recombination cross section o'eP_H- r must include capture into all possible states of

hydrogen, since at low electron temperatures, direct recombination to excited states gives

an important contribution to the recombination rate. Since the lifetime of excited states

(even metastables) is much shorter than the time scale of ionization, O'H.r_ep need only

include ionization from the ground state.



To simplify the equation further we define the neutral hydrogen ratio

nH
r - (3.17)

rtB

where nB is the number density of baryons in the intergalactic medium, we are neglecting

the small fraction of helium atoms, so ne ='np = riB(1 -- r). Plugging in the relevant cross

sections for ionization and recombination [22] and performing the integrations, we have

dr

d---t= ns(av)R(e°/Te)l/2(0"43 + 1/21n _e)(1 -- r) 2 - fi.yaxr (3.18)

where

fi_a I _ 2 / d3k

es _ dk (3.19)

o Tf'(k)""-" O'I 7r"_ 0

Here ai = 6.2 × 10 -is cm 2 is the ionization cross section at threshhold, and we have taken

O'H-r--eP to fall off" as k -z. The recombination cross section is (av)R = 5.2 × 10 -14 cm z

sec -1"

Since the recombination rate depends upon the electron temperature, we must derive

an equation for it. We begin with the Boltzmann equation for the electron distribution

g,(p, t). There a,r_ several relevant interactions which must be included on tb, _ ".'i_ht hand

side of the Boltzmann equation. First, there are elastic processes: Coulomb scattering

with other free electron; Coulomb scattering with free protons; and elastic scattering off

hydrogen atoms. We also must include a term representing recombination and its inverse,

photoionization. Finally, a free electron can scatter off` the background photons and lose

energy, so we must include a term for Compton scattering. Thus the equation for the

electron distribution function is

{ OOt -RpR_---p} g_(p, t) = Celastic 3t. Celasti¢ _4_Celastic Jt_ Cion/rec _lFCcompton ._P_ _H (3.20)

We now outline a simple recipe for dealing with the elastic collision terms. (i) Multiply

this equation by the kinetic energy p2/2rn_ and integrate over phase space: number of

spin states xd3p/(27r) 3. (ii) Do the same for all particles with which the electron interacts

elastically. (iii) Add all these equations. Then the integrals over the elastic terms all vanish



due to energy conservation. As an example, consider electron -proton elastic scattering.

The sum of these - after the relevant multiplications and integrations is -

j dSP 2 ep / d3P ' Pe-(_(P /2m,lCel_,,ti¢ + (_)3 (P '2 /2M)C_l_,,ti¢

= / d3P d3p ' d3q '(2_r)a2Ee(p) J (2_r)32Ep(p ') j d3q(2_r)32Ee(q) J (2r)32Eplq ')

× (2_)4 64(P + P' - q - q')E IM[=
spins

x [t)2/2rne + p,2/2M][ge(q)gp(q') - ge(p)gP(P')].

(3.21)

But, by energy conservation, the last line here is

(q2 /2rne + q,2 /2M)g,(q)gp(q,) - (p2 /2rne + p,2 /2M)gt(p)gp(v,). (3.22)

This changes sign under the interchange of dummy variables (q +-, q';p _ p') while the

integration measure is invariant under such a change. Therefore the sum in Eq. (3.21)

vanishes.

The above prescription throws away some of the information contained in the non-

integrated equation. However, we can compensate for this by assuming that the distribu-

tions are Max_e!lian. Then the integrated equation determines the one parameter in the

Maxwellian distribution: the temperature Te. Specifically, it is straightforw0 _'d to show

that the left hand side of the sum of the integrated Boltzmann equations i_

d 3 5 ne-

We can write the densities in terms of r and ns and then use the fact that nmR 3 is constant

to rewrite this as

3 2 d {R2T (2- r)} nBR- {3 (2 r) T_+2_T_ 9_r _= 2rib -- -- _ . (3.24)

If tile right hand side of the Boltzmann equation were zero - that is, in the absence of

any interactions - and if ÷ were 0 then we find that T_ falls as R -2 , a well-known result.

Another good check on Eq. (3.24) is to ignore expansion and interactions. Then as the

neutral hydrogen fraction increases (÷ > 0), T_ increases as well. This reflects the fact that

the temperature is shared by the 3 species: electrons, protons, and hydrogen atoms. If one
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hydrogen atom is added, both an electron and a proton must be subtracted, sothe total

numberof degreesof freedom hasdropped by one. This leadsto a rise in temperature.

It remains -o find the right hand side of the Boltzmann" equation; that is. to integrate

the remaining collision terms in Eq. (3.20) and its proton and hydrogen counterparts.

First consider the recombination/ionization terms. Schematically they sum to

Z ]MI 2 {h(k)gH(k')-ge(p)gp(p')}[(p2/2rne)+(p'2/2M)-(k'2/2M)]. (3.25)

momenta, spins

By energy conservation, the energies in square brackets are just equal to k - e0. Thus,

when integrating over/_g_, the p and p' integrals can be done easily. When integrating

over gegP, we can simply set the energies equal to the electron kinetic energy, since the

heavy atom gains very little kinetic energy in the process. Therefore, the k and k' integrals

in this case are easily performed. The final integral over the electron momentum is just

the thermally averaged cross section multiplied by the temperature. So these two terms

give:

2nil / dzk_-_h(k)(k-eo)(an__,ep) - nenpTe(aV)n(eo/Te)l/2(0.43+ 1/21n _). (3.26)

Finally the Compton term in Eq. (3.20) must be integrated. Note that Compton scattering

off the background photons is not important for protons [and obviously not for neutral hy-

drogen] since the cross section is small than for electrons by a factor of (me/M )'_. Therefore

2r..-I.iwe need only integrate over CCompton of electrons. The result is well- known "'

_f dSP 2 3ne(T2rc- Te)2 (p /2me)Ccompton= (3.27)

where T is the temperature of the background radiation and rc is the Cempton cooling

time
3me

re = = r°(To/T) 4 (3.28)
4p-r O'Thompson

0 7.1 x 1019where the Compton cooling time today (when T = To) is r c = sec. We can

collect equations (3.24),(3.26), and (3.27) to write the evolution equation for the electron

temperature as

_T_ - 2_-----_T¢ = 2r {_)3f._(k)(k--eo)aH__.ep

3 _ eo+ -,-) (T/To) - 1/21n )T .
(3.29)
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4. Photon Spectrum

The set of equations - (3.18), (3.29), and (3.14)- can be numerically integrated to

find the photon spectrum and the ionization fraction at all times. We will display results

of this numerical work in the next section. Here we focus on the equation for the photon

spectrum - Eq. (3.14). For a variety of reasons it is useful to have an analytic expression

for the occupation number, f'r(Y, z). We first derive such an expression and then apply it

to three problems that arise when dealing with a non-equilibrium distribution of photons

in the early Universe: (i) What is the remnant spectrum of photons today? (ii) How many

ionizing photons are present at a given redshift z? and (iii) Why and when is recombination

to the ground state of hydrogen suppressed? This last point - initially made by Peebles

- will be shown to emerge in a straightforward manner from the analytic expression for

f._(y,z).

It is useful first to rewrite the photon equation in terms of dimensionless variables.

Let

Y=--T00; l+z=__ - (4.1)

where the last equality follows from our assumption that the Universe is flat and matter

dominated. By way of orientation in these new variables, we note that all photons are

produced with energy k = k0 and lose energy due to the redshift, so we are interested only

in y < 1. The r_,_in redshifts z of interest are determined by the neutrino lifetiu:_-: roughly,

we will be study;::g the epoch z < 300. Using the facts that (i) the Universe' ib matter

dominated and therefore _- = H0(1 + z) 3/2 (Ho is the Hubble constant today) and (ii) the

baryon and neutrino number densities increase as (1 + z) 3, the photon equation becomes

{ + + ,.<z)<,+
3rr _ tonÈ(to _1)(1+ )3/2

- _ rk0a )6(y z (4.2)

(__._(1+ .:)_,_3/2+ ,t 7_r_ / riB(to)(1 - ,'?e-(k°_-'°)lr'o[y - _olko]

where

ri B( tO )dr l
A -- (4.3)

Ho

The first term on the right in Eq. (4.2) is the source term due to decays and the second

the source term due to recombination. The effect of the ionization sink term is governed
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by the dimensionlessnumber A,which is essentiallythe ratio of the ionization rate to the

Hubble rate. _._ can get a feel for the magnitude of A by taking nB(to) = 2 "< 10 -7 cm -3

- the favored value from cosmic nucleosynthesis. Then the ionization rate today [if all

baryons were in the form of neutral hydrogen] is riB(to)a1 = 3 x 10 -14 sec -1 This is much

larger than the expansion rate today, so _ is a very large number.

For the time being we will call the right hand side of Eq. (4.2) S(y, z) so that the

final form of the solution may be used for any sources of interest. We note, though, that S

typically has [at least] two pieces: the source of ionizing photons - in this case the decaying

neutrinos - and the photons produced in the process of recombination. To solve this partial

differential equation, we first turn it into an ordinary differential equation by introducing

a new variable

[ ÷zlp- -ln_= -ln 1---_ J" (4.4)

The variable p runs along a curve in the (y, z) plane; different curves are labelled by

different values of ze. Along any one curve,

d (1 +z)_ z v0dp - -_ (4.5)

so that in terms of p, Eq. (4.2) becomes

dI_(p)
dp -+ _'i'e°/k°)3 r [(1 + zc)e-P] [(1 + (e-*)3zc)e-"] 312 $(e -p -eo/ko) f"(P) (4.6)

= s [_-., (1+ z0)_-.].

To be explicit, the right hand side here means: take S(y, z) and evaluate it with y set equal

to e -p and 1 + z set equal to (1 + z¢)e -p. For a given Zc, the solution to this ordinary

differential equation is elementary:

/0" [. ]f=,(p) = dp'S e ,(1+ zc)e -p'

{ _pP k((_O/kO)3F [(1-_=x exp -- , dp"

~ _p,, ] 3/2

(_--3p"

(4.7)

Here we have dropped the boundary term, f_(p = 0), since there are no photons with

momentum greater than k0, i.e. with p negative. This solution in terms of p can be

converted back into a solution f_(y, z) by eliminating p [via p = -lny] and zc [via 1 +

12



zc = (1 + z)/y]. It is also convenient to introduce new dummy variables: y' = e-;' and

1 + z' - (1 + z_)e -p'' - i-_e-P". These steps lead to
Y

' aV ,.,r, V]f_(y,z)-- 7_ty ,(1+ z). Y

xexp - X( 0/k0) [( ez'
(4.8)

We can go no further without an explicit form for the source terms, but we note that A

is a very large number - of order 10 3 - so f._(y, z) is negligible unless other factors in the

argument of the exponential are very small. That is, ionization - as represented here by

the argument of the exponential - plays an important role in suppressing the number of

photons coming from any source.

In our case there are two source terms; we focus first on the dominant one: the photons

coming from decaying neutrinos. The contribution to f'r(Y, z) from this term is

#a)(y,z)= dy' 3 ton_,(to)
"'_ --_ - rkg 6(y'- 1) (1+ z)y'/y

x exp _ A(eo/ko) 3 ly r(z')

• (4.9)

a__ to_(to)(1 + z)3/20(i - r/)
-- 2 rk]y3/2

{ I3 [(i+.)/_ dz'
x exp - A(e°/k°)3 j,rnaz[i+,,(i+,)'o--_] (1 + #)5/2 r(z')

where the superscript on f'r refers to the fact that this is the contribution from the first

source term. Eq. (4.9) tells us that the photon spectrum at a given energy y and epoch z

depends on an integration over the amount of neutral hydrogen at redshifts larger than z.

This is reasonable: In the absence of ionization, high energy photons red-shift down and

add to the number of low energy photons at later epochs. If these high energy photons

are lost through ionization, the low energy number at later epochs is correspondingly

suppressed. The integral over r(z) quantifies this suppression. In short, if we are given

r(z) we can do the integral and determine the photon spectrum. In practice things are

not so simple: r(z) depends on f'r- Nonetheless, we will see that in several important

cases, one can make good approximations which considerably simplify the way in which

f-. depends on r.
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We can use Eq. (4.9) to estimate the photon spectrum today when z = 0. Since

z = 0, the integral in the argument of the exponential in Eq. (4.9) ranges from z' = 0 to

1 + z' = 1/y = ko/k. As a first approximation to the effect of ionization, let us hssume

that the Universe is spontaneously ionized at z = zi; i.e. r = 0 for all z < z,. Then the

argument of the exponential vanishes as long as 1 + zi > ko/k. For energies k less than

k0/(1 + z,), the argument of the exponential is huge and' f- t m 0. We can write for the

photon intensity today

I= k dn-r _ k 2 d3k f'r(k'z=O)
dk df't (2_') :3 dk dl2

(4.1o)

- 8_r r \-_o/ O(ko-k)O(k-ko/(1 + zi)).

The first part of this expression is the standard formula for the intensity due to a radiatively

decaying relic particle [10]. Only the last step function - reflecting the ionization process

- is new. Of course the drop in intensity at k0/(1 + zi) is not as dramatic as the step

function indicates; in the next section we will show numerical results.

Another question of interest is : At a given redshift z, how many ionizing photons are

present due to the decaying neutrinos? To find this, we must calculate h.y, as defined in

Eq. (3.19),

[ dy (,0¢1+ d¢1+ z')- exp (1+ '×

J

_o/ko

One simple approximation which is often useful is to neglect completely the effect of

ionization on f'r; this corresponds to setting the exponential in Eq. (4.11) to 1 so that

h_!)(z) -io.i_d n,(t0)t°(1 + z) 3/2 (eo/ko) 3 ko/eo) - 1 . (4.12)
"'_ 7"t.y _ T

where the superscript reminds us that this approximation should be valid only in an ionized

Universe. For if there are very few neutral hydrogen atoms, then the ionization process has

a negligible effect on the photon distribution. Note that as k0 approaches e0, the number

of ionizing photons goes to zero: expansion causes the decay-produced photons to lose

energy, pushing them below threshold.
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The opposite situation occurswhen there are many neutral atoms so that a photon

produced in a neutrino decay immediately ionizesa neutral atom. This correspondsto

a large damping factor in the exponential of Eq. (4.9). In such a situation there is no

time for a photon to lose energy via the red-shift before it is absorbedin an ionization

process.Therefore, there are almost no photons with energy much less than/¢0. We can

take advantageof this fact by expanding the argument of the exponential around y = 1.
This leadsto

_l)(z) nv(t0)
2At J [1 - _' ]5/2

0

4 3 2(aln(1 + z)) 3 +
(4.13)

where the dummy variable v = A(e0/k0)3(1 - g). The upper limit of this integral is quite

large, effectively oo. It is clear that as long as r(z)(1 + z) 3/_ is of order 1, the dominant

contribution comes from v _ 1. Hence the terms of order v/A do not contribute in this

pre-ionization regime. Only when r(z) becomes very small (-- O(A-1(1 + z)-3/2)) do the

higher order terms in the argument of the exponential become significant. Hence as long

as r(z) is not too small,

OG

fi!))(z),, . n.(to)to3(Ir +z)a/'2A /dvexp{-r(z)v(l+z) 3/2}. (4.14)

0

The remaining integral is trivial so that the un-ionized approximation is

_. _   (t0)t0 3
r 2A r(z)" (4.15)

Until now we have focused on the source term for photons coming from decaying neu-

trinos. Now let us consider the source term due to the process ep ---+HT. The contribution

of this process to the photon occupation number can be obtained by inserting the last term

on the right hand side of Eq. (4.- °) into our general expression for f_ (Eq. (4.8)):

1 dy' 3 ( +:)_/Y dz'

"f("a)(g'z) -= -g7-exp - A(e°/k°)3 Jma_[1+:,(l-(-- _.LO__ (1 3V -') 5/2r(Z')
")_0_]

(2rr)3/2 ( [(l + z)g'/g]3 _ 3/2× AnB(to) _ kT_[(l+z)V'/g]/

{ _0y'-_0 } y,×(1-r[(l+z)y'/g])2exp -T_[(l+_-)f/g] O(-eo/ko).

(4.16)
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This term can be shown to be much smaller than f(1). However, it does have one important

implication for the recombination process.

the number density of ionizing photons.

temperature is small,

= n (z)(1 - ,)2 0.8( v)R

Consider the contribution of this term to 5,_,

We show in Appendix B that, if the electron

cQ
1 + ;_(l+=)a/2rTo

(4.17)

This contribution to 5._ must be included in the evolution equation for r (Eq. (3.18)), the

right hand side of which is

ns(av)R(eolT,)l/2(0.43 + 1/21n _-)(1 - r) 2 - _._alr

e0 0.8 (4.18)

- ns(av)a(eo/T,)l/2(0.43 + 1/21n T, 1 + X(I+,),/2,T° -- -- n,_
- ,Q )(1 r) 2 ~(1)air

The new term - coming from 5 (2) - reduces the recombination rate. In fact, if A(1 +

z)S/2rTe/eo is very large, the factor of 0.8 exactly subtracts out recombination to the

ground state. The fact that recombination to the ground state is strongly suppressed

was first noted by Peebles [24] in the context of the standard cosmological scenario and

recently emphasized by Asselin etal. [9] in the context of decaying particle scenarios.

The reason for the _uppression is straightforward: Any recombination to the ground state

produces an l(z_izing photon. If the ionization time is very short compared :o t_:e Hubble

time - i.e. if A(I + z)a/2rTe/eo is very large - then this photon will quickly io_,i,:e another

neutral atom. Thus the total ionization fraction remains unchanged. Only when r becomes

very small does the ionization time become larger than the expansion time; at that point

recombination to the ground state also becomes relevant.

5. Numerical Results

In this section, we present numerical solutions to the coupled equations -(3.18), (3.29),

and (4.8). For definiteness, we will first present results and discuss the details of a 30 eV

neutrino with a lifetime of 1024 seconds. The qualiatative behavior is independent of the

exact neutrino parameters in the parameter space of interest ( 27.2 eV < rn_ < 37.5 eV

and 1022 sec < r < 1026 sec), though, obviously, the exact quantitative results will differ.

First, we shall consider the evolution of the ionization state of the Universe. In Figure

1 we have plotted the neutral hydrogen fraction, r, versus 1 + z. The most striking feature
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of this plot is the precipitous drop in r - four orders of magnitude - while z changes by one

or two. This suggests that reionization was $pontaneou$ at a zi of about 17. If we plot the

complementary quantity, 1 - r, a different picture emerges. In Figure 2 We have plotted

the free electron ratio, 1 - r, versus redshift. The salient characteristic of thi_ plot is the

gradual change in 1 - r until total ionization. Is the ionization spontaneous or not? That

depends upon what question is being asked. If ond is interested in how often CBR photons

scatter of[" free electrons, then the important scale is the scattering rate of the photons

which is proportional to neaWhomp,on, where n, = (1 -r)nB. The opacity- roughly the

scattering rate divided by the Hubble rate - changes gradually, as suggested by Fig. 2.

This is the issue analyzed and the conclusion reached by Scott, Rees, and Sciama [25].

On the other hand, we are interested in how reionization affects the spectrum of decay

photons. The relevant scale is nHaI, where nH -- rnB. The relevant plot is Fig. 1 in

which it is s.een that the opacity changes very rapidly for these photons.

The scale which characterizes the ionization rate is fi-raI. In Figure 3 we have plotted

the ratio of ionizing photons to baryons as a function of redshift. The two solid lines

correspond to the two sources of ionizing photons: decaying neutrinos (Eq. (4.11)) and

recombinations (Eq. (4.17)). This plot corroborates the claim made in the last section

that the recombination source is always less important than the decaying particle source,

and thus its co_tr!hution to the photon spectrum is negligible. The importar, ce of this

term lies in the correction it provides to the recombination rate. In the pre ionization

regime, when t'_e r_tio of these photons to neutral atoms is much smaller than unlty, every

recombination photon immediately reionizes a neutral atom. Thus direct recombination to

the ground state is suppressed. However, in the post-ionization regime direct recombination

to the ground state is unsuppressed. It is reassuring that in our formalism this comes out

naturally.

The shape of the recombination photon density curve provides insight about the var-

ious mechanisms driving recombination. Early on, when the Universe is nearly neutral,

there is very little recombination, and hence n_ 2) is very small. As the Universe becomes

reionized recombinations become more common, so there is a rise in n(_ 2). Eventually, due

to the Hubble expansion, the free electron-proton density turns around again, and the

number of recombination photons correspondingly drops. The rise in r_(_2) at z -_ zi corre-

sponds to the physical fact that recombination [to all levels] is an important process at this

epoch. As an example of this, we can estimate what zi would have been in the absence of

recombination. Then, once the number of photons produced by neutrinos was equal to the
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number of baryons, the Universe would be ionized. That is, a simple estimate would give

n_,t,/r - nB_ or zi - ((3/11)t0/r/r) _/a. With the parameters under consideration, this

estimates z1 -_ 45. The fact that zi is actually closer to 20 illustrates that re,_ombir/ation

delays the onset of full ionization[26].

We have also included in this figure the two approximations to fi(.r1) discussed in the

last section. The dashed curve corresponds to Eq.(4.15), 'and the dotted curve to Eq.

(4.12). It is evident from these plots that each approximation is extremely good in a

particular epoch. The first approximation is virtually exact up until z _ zi. The reason

this approximation is so good in the un-ionized regime is straightforward. Let's rewrite

Eq. (4.15) in the more transparent notation,

(5.1)
nH(t)az

This says that the number of photons is approximately equal to the rate of neutrino

decay divided by the rate of ionization. When the ratio of photons to neutral atoms

is so small that every photon will immediately ionize a neutral atom then the Hubble

expansion is unimportant, and the approximate equality is virtually exact. With our

sample parameters it turns out that even at z -- zi, there are about 160 neutral atoms for

each decay pheto:_, so it is not suprising that the approximation is so good _,.p _mtil this

point. It is only when the number of neutral atoms per photon is of order u_i_ _md less,

i.e. for z < z,, that _pproximation (5.1) breaks down. We see here that this i:. _n extremely

good approximation until r falls below 10 -4. If one is interested in calculating the density

of free electrons then this approximation is sufficient. However, if one is interested in a

calculation of the neutral atom fraction for z < zi, then this approximation breaks down

tOO soon.

The post-ionization approximation, Eq. (4.12), becomes accurate a few redshifts

after the un-ionized approximation becomes invalid. Recall from the discussion in the last

section that this approximation neglects ionization totally. In Fig. 1, we see, however, that

r continues to drop even in the post-ionization regime. The residual fraction of neutral

atoms is not strictly frozen, but rather continues to get smaller, so there still is some

ionization happening. Since the ratio of the ionization rate to the Hubble rate decreases

at lower redshifts, this approximation becomes virtually exact. Nonetheless, there is a

regime, albeit a fairly small one, in which neither approximation obtains, so numerical

integration of the photon spectrum, eq (3.19), is critical.
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The DDM scenariopredicts a diffuse spectrum today. Armed with the ionization

history of the Universein the reionizationepoch,weareable to calculateit, by numerically

integrating Eq. (4.9) with z = 0. Others who have considered the DDM'scena_'_o [10] have

ignored this effect.

In Fig. 4 we have plotted the correct DDM spectrum (solid line). For comparison's

sake we have also plotted the uncorrected spectrum, i.e. the one which ignores ionization

effects (dashed line). The two spectra are identical for photon energies greater than a

few eV. At a low photon energy (for our sample parameters at about k = .9 eV ), the

DDM flux drops quite abruptly to zero. This is readily understood in light of previous

discussions. At z _ zi there is a precipitous drop in opacity. Photons today with energies

k < _ would have been emitted while the Universe was still opaque, i.e. when z > zi.
l+zl

Essentially every photon produced in this pre-ionization regime is used up in the process

of reionization. Photons today with energy k > _ were produced in a transparent
l+zi

Universe, so accordingly travel freely. In the last section this was approximated as a

step function at k = k0/(1 + zi). The numerical result verifies that this is a reasonable

approximation.

Fig. 4 also shows several sets of data points. The two in the low energy regime

[27] are represeutative of upper limits in the cosmic flux: no detection has been made.

Any predicted cosmic flux must be lower than this. It is seen that the uppe: limit is far

above the predicted levels even in the absence of ionization. Therefore, while data in this

regime may ultimately be used to detect the radiation emitted by unstable neutrinos and

in particular the characteristic drop in intensity due to ionization by early photons, the

present upper limit is several orders of magnitude away from this goal.

The second set of data points in Fig. 4 lie between 6 - 10 eV [28]. They purport to be

actual measurements of a cosmic background flux with all local contaminants subtracted

off. These measurements are much closer to the spectrum produced in the DDM scenario

for two reasons: first, the observed magnitude is an order of magnitude or so lower than

the upper limit at 3 eV and, second, the predicted flux is larger here, since it grows as

k 3/2. Therefore, this regime is most likely to be of use in detecting photons from unstable

neutrinos. The only unfortunate aspect of this is that the sharp drop in intensity due to

ionization occurs at lower energies than this most favorable regime.

Since the predicted spectrum is a function of (rn_, r), the observed points can be

turned into constraints on the neutrino mass and lifetime. We will see shortly that this set
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of constraints complementsthe constraints coming from the Gunn-Petersontest to allow

only a small wk--_.:_win parameter space.

For completenesswe include a plot of electrontemperature versusredshift (Figure 5).

It is seenthat the temperature doesnot changevery drastically. In fact the temperature

remains low enoughsothat collisional ionization canbe justifiably neglected.We alsonote

that the thermal evolution is insensitive to the initial temperature. Compton s_attering

insuresthat the electron temperature tracks the photon temperature until the decaysset

in.

The secondprediction of the DDM scenariois that there is a relic abundanceof neutral

hydrogen. When Sciama and others [5] first consideredthe DDM hypothesis in light of

Gunn-Peterson,they required simply that total reionization occur by z = 4.7 since this is

the epoch of the earliest test [29]. As discussed earlier, the approximations they made do

not allow a precise calculation of the neutral atom abundance for z < zi. By computing r

all the way to z = 0, we can simply calculate

= =  ( )fnB(t0)(1 + z)3 (5.2)

where f is the clumping factor defined in Eq. (2.6). This is plotted in Fig. 6 for f = 1.

The impor: :,a,:e of this prediction is that the neutral hydrogen density _,:,L_be probed

obser_ationally via the Gunn-Peterson test. In figure 6 we have also plct_e,'_ d_e upper

limits on the neutral hydrogen density coming from three different Gunn-Pe,_e_'_:,,*.: tests at

z = 4.7, 4.1 and 2.64 [29][30] [2].

The major uncertainty in our calculation of the neutral hydrogen abundance stems

from the uncertainty in clumping. Throughout we have assumed a homogeneous and

isotropic Universe, but clearly once quasars, whose observation allows one to deduce the

neutral hydrogen density in the IGM, are formed (and possibly earlier) the Universe is no

longer homogeneous. While the data point at 1 + z = 5.7 appears to impose the least

stringent requirement, we have included it since at higher redshifts it is safer to assume

that f is of order unity.

Finally, we are in a position to summarize the constraints on the mass and lifetime

of the dark matter particle in the DDM scenario. In Figure 7, we have collected the

constraints coming from the Gunn-Peterson tests(with f = 1) and from the UV flux data.

W_e have presented the constraints coming from two G-P tests [29][30]. The dashed line

corresponds to the constraint coming from the z = 4.1 quasar. This appears to impose the
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strictest constraint, leaving only region A in parameter space. In particular the smallest

allowedmassis 28.5eV with a 2 × 1023sec. lifetime. The dotted line, correspondingto

the z = 4.7 Gunn-Peterson constraint, allows region B in parameter space, as well. This

does not rule out, for example, a 27.7 eV dark matter particle (Sciama's preferred value

[7] ), provided the lifetime is larger than 2.5 x 1023 seconds. We have included this less

stringent constraint because it is the one in which our approximations - homogeneity and

no other sources heating the electrons - are most likely to be valid.

One feature of this plot should be explicitly noted. That is the fact that as mv

approaches 27.2 eV the upper limit on the lifetime drops steeply. It turns out that in order

to satisfy the Gunn-Peterson tests, it is necessary that some ionization take place in the

ionized regime. As discussed in section 4, the number of ionizing photons in the ionized

regime goes to 0 as k0 approaches e0. The only way to compensate for this reduction

in ionizing photon number is to lower the lifetime. Consequently, in order to satisfy the

Gunn-Peterson tests, for masses close to 27.2 eV, the lifetime of the decaying particle must

be short.

More realistic accounting of clumping and electron heating may well modify some of

these quantitative conclusions. We note, though, that the three sets of observations - of the

Hubble parameter; diffuse photon spectrum; and neutral hydrogen density - complement

each other. Measurement of the Hubble parameter (or the age of the Universe) seems to

require the _eutrino mass to be less than 37.5eV. Measurement of the diffuse photon

spectrum con3t,.'ai_ls the neutrino lifetime to be grea_.er than 1023 seconds "_w Gunn-

Peterson tests complement these two by providing an upper limit on the neutrino lifetime

and a lower limit on the neutrino mass.

6. Conclusion

We have quantitatively analyzed a scenariio of reionizing the Universe. The numerical

results allow accurate comparison between theory and observation. In particular, we are

able to derive strict constraints on the parameters of the decaying neutirno scenario - i.e.

on the neutrino mass and lifetime - by requiring the Universe to be ionized enough to

satis_" the Gunn-Peterson tests and by limiting the ultraviolet radiation produced to be

under the observational limits.

Several aspects of this work may be of use in other reionization scenarios and in more

general work on the early Universe.
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(i) We have derived an expression,Eq. (4.8), for the photon spectrum due to a general

sourcein the presenceof a backgroundof neutral hydrogen atoms.

(ii) A qualitative feature of the photon spectrum in sucha situation is a sharp drop in the

spectrum today. Photons with energieslower than this cut-oof would have be_nproduced

beforethe Universewas ionized. Hence,they wereimmediately absorbedin the ionization

processand are no longer present today. '

(iii) The number of neutral hydrogen atoms drops dramatically at the time of ionization.

This is completely consistent with the point made by several groups that the number of

free ions rises gradually. In our language r changes rapidly while 1 - r changes very slowly.
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Appendix A. _onization From Excited States

Here we justify our claim that direct ionization of excited hydrogen atoms can be

neglected. It is useful to first review the standard recombination scenario as described by

Peebles [24]. Recombination occurs when there are essentially no thermal photons available

to ionize ground state neutral atoms. In fact the only photons around with energy greater

than a Rydberg come from recombination to the ground state. These photons immediately

reionize the atoms, effectively cancelling every recombination to the ground state, such that

neither recombination or ionization involving ground state atoms needs to be included in

the ionization equation. The important physical processes are direct recombination to

excited states, ionization of excited atoms, radiative transitions between atomic levels and

the Hubble expansion. Peebles derived the following equation to describe the ionization

ratio,

dr [ ,_ rlezc -{10.2 eV/T)]nH
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where C is a time-dependent factor (defined explicitly in [24]) which incorporates the

effects of the physical processes mentioned above; aezc is the excited state recombination

coefficient, of order (av)R(eo/Te); _exc is the rate of ionization of excited atoms_ and nezc

is the number density of hydrogen atoms in excited states. The ionization rate is well-

approximated by na.4ax where n3.4 is the number of photons with energy greater than 3.4

eV. The upshot is that even though the the fractional pepulation of excited states is small,

since there is an exact cancellation between ionization and recombination of ground state

atoms, the relevant physics concerns the excited states.

In the reionization epoch, z < 300. all of these physical processes are still taking place,

so the two terms in (A.1) in principle should be included in the ionization ratio equation.

(We note that through out this epoch, the multiplicative factor, C, is equal to unity.)

However, in this epoch there is a source of photons energetic enough to ionize ground state

_ ,_(i)
atoms decays. Thus to Eq. (A.I) we need to add the ionization term, -'"r O'Irtgg//RB,

where ngs isthe number density of hydrogen atoms in the ground state.

Now let us focus on the ionization terms. Because of the exponential suppression, the

ionization term of (A. 1) - i.e. the second term on the right hand side - is clearly negligible.

We need to examine the new term, fi(_l)o'lng_/ns and determine whether ionization of

excited atoms by decay photons needs to be included. We will be justified in neglecting

these ionizations if the per volume rate of ionization of excited atoms is much smaller than

the per volume rate of ionization of ground state atoms,

J_ezcr_ezc 723.4Ftezc

<< 1. (A.2)
fi(1)a nI go fi_l)ng8

In the opaque era, z > zi, it is easy to estimate Eq. (A.2). First of all, n3.4 "_ fi_l)

since the photons immediately ionize and do not get redshifted. Secondly, because there

are virtually no resonant decay photons, the fraction of excited atoms is given by the

expression derived by Peebles,

( )n ez___.£ _ (A.3)
ngs k, 1 + ICAnH

,t2
where /( - (_0_(t)3y and A = 8.227sec -1 is the decay rate of the 2s state. The ratio

in Eq. (A.3) is negligibly small, always less than 10 -15, so the condition (A.2) is easily

satisfied. For z < z,, when photons travel freely through the universe and get redshifted,

(1) by up to two orders of magnitude. However, even though therethen ha.4 is larger than n_

are some resonant photons around to pump atoms from the ground state to the excited

states, adding another term to Eq. (A.3), the fractional population of excited states is still

negligibly small, so criterion (A.2) is again satisfied.
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Appendix B. Recombination Photons

In this appendix we calculate the number density of ionizing photons coming from

recombination. This is

= (2_(1+ z)3) '/_m, _n_(t0)__ ¢_ dy fu 1 dy'ol,oT V

j,+. (1 + z')_/2r(z') (S.1)

(
T, [(1+ _)u,/y]

where we have inserted f(2) from Eq. (4.16). The exponential e-(_ou'-_o)l T. is very small

except when y' is very close to eo/ko. But y' > y > eo/ko, so y must also be close to eo/ko

and, of course, close to y' as well. We can therefore expand y' about y and expect the

leading terms to give the largest contributions. Consider, for example, the integral in the

argument of the first exponential:

(1 + _,)_/_r(z') - (1+ _35yt_ - _) 1+o(_' - _) (S.2)

Since y' - y ,,, Te/eo, the higher order terms may be dropped. Keeping only the leading

terms arnouonts to setting y' = y everywhere in the integrand of Eq. (B.1) except in the

exponentials, where only the linear terms in y' - y need be retmned. Therefore;

,_(_0/k0)3(1+ z)3/2rx exp y4 (yl __ y)

= (27r(l_+z)3)3/2 AnB(to)e30(l_r)2 foe
\ rn_T_ r2 olko

dy

koy' -- eO ]

_r:
e-(koY-_o)/T_

T_ y2

(B.3)

Neglecting terms of order T,/eo, the y- integral can be performed by setting y = e0/k0

(except in the exponential), leading to

fi_2)(z) _ [ns(t°)(l+z)3] (1-r)2[e2(2rr)3/2][2 3/2,-rd/2 1 + eO
r I. JLr rn_ 1_ A(l+z)3/2rT e

-1

(B.4)
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The first factor in squarebracketsis just ns(z) since the baryon number density scales as

(1 + z) _ . The second factor in square brackets is the ratio of the ground state recombination

cross section to the ionization cross section: (av)o/az. The ground state recombination

cross section, though, is g(eo)(av)R where g is the gaunt factor, roughly 0.8 at threshhold.

We therefore recapture Eq. (4.17).
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Figure Captions

1. The neutral hydrogen ratio as a function of redshift in a universe with a decaying

neutrino of mass 30 eV and lifetime 1024 sec.

2. The free electron ratio as a function of redshift in a universe v, itL a decaying

neutrino of mass 30 eV and lifetime 1024 sec.

3. The density of ionizing photons as a function of redshift. The solid lines are exact

solutions: fi(1) (decay photons)is labelled (1) and fi(2) (recombination photons)is labelled

(2). The dashed line corresponds to the un-ionized approximation, Eq. (4.15), and the

dotted line to the ionized approximation, Eq. (4.12).

4. The predicted photon spectrum due to a decaying neutrino with mass 30 eV and

lifetime 1024 sec. The solid line is the correct predicted spectrum. The dashed line ignores

corrections due to ionization effects. The arrows mark upper limits and the crosses mark

observations, discussed in the text.

5. The electron temperature as a function of redshift in a universe with a decaying

neutrino of mass 30 eV and lifetime 1024 sec.

6. The predicted amount of neutral hydrogen as a function of redshift in the DDM

scenario with a neutrino mass 30 eV and lifetime 1024 sec. The clumping [:actor, f, has

been set equM tc 1. The data points are upper limits: any prediction must be bc_,ow these

levels.

7. The allowed values of m_ and r when the clumping factor f is set to 1. The solid

line represents the constraint coming from observations of the diffuse UV background. The

dashed line represents the constraint coming from the z = 4.1 Gunn-Peterson test, mad

the dotted line from the 4.7 Gunn-Peterson test. Region A satisfies all three constraints.

Region B appears to be ruled out by the z = 4.1 test, though it satisfies the z = 4.7 and

the UV constarints.
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