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Perhaps one of the most powerful
symbols of the United States'
technological prowess is the Mission
Control Center (MCC) at the Lyndon B.
Johnson Space Center in Houston, Texas.
The rooms at Mission Control have been
witness to major milestones in the
history of American technology such as
the first lunar landing, the rescue of
Skylab, and the first launch of the Space
Shuttle. When Mission Control was first
activated in the early 1960's, it was truly
a technological marvel. This facility
however has received only modest
upgrades since the Apollo program.
Until recently it maintained a single
mainframe based architecture that

displayed data and left the job of data
analysis to human beings. The display
technology utilized in this system was
monochrome and primarily displayed
text information only with limited
graphics (picture 1). An example display
of 250 communication parameters is
shown in picture 2.

The system processed incoming data
and displayed it to the flight controllers,
however it performed few functions to
turn raw data into information. The job
of turning data into information upon
which flight decisions could be made
was performed by the flight controllers.
In some cases, where additional
computational support was required,
small offline personal computers were
added to the complex. Flight controllers
visually copied data off th_ console
display screens, and manually entered
the data nto the small personal
computers where off line analysis could
be performed.

Although, this system was
technorogically outdated, it contained
years of customizing efforts and served
NASA well through the early Space
Shuttle Program. Several factors are
now driving NASA to change the
architecture of Mission Control to
accommodate advanced automation.
First is the requirement to support an
increased flight rate without major
growth in the number of personnel
assigned to flight control duties. We are
attempting to fly more missions with the
same staff to control operational costs:

Real Time Data Acquisition For Expert Systems
in Unix Workstations at Space Shuttle Mission Control

John F. Muratore, Troy A. Heindel and Terri B. Murphy
National Aeronautics and Space Administration

Arthur N. Rasmussen and MArk Gnabasik
MITRE Corporation

Robert Z. McFarland
Unisys Corporation

Samuel A. Bailey
Dual and Associates

NASA is using automation to expand the
capabilities of individuals so they can
accomplish more work. This concept of
"more work for the same dollar is very
different from trying to automate a

factory where the desire is to replace
humans with robotics and do the same
work for less dollars." In Mission
Control, the goal is to support the
human operator, and not to eliminate
the human.
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Picture I - Space Shuttle Mission Control
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A second major concern is loss of
corporate knowledge due to the unique
bimodal age distribution of NASA.
Hiring freezes between the Apollo and
Shuttle programs have resulted in two
primary groups in NASA. Approxi-
mately, half of NASA consists of Apollo
veterans within 5 years of retirement.
The other half consist of personnel
under _S with Shuttle-only experience.
NASA Considers it highly desirable to

capture the corporate knowledge of the
Apollo veterans in knowledge based
systems before they retire. Because the
mainframe complex is primarily oriented
to data display, it is a poor environment
for capturing and utilizing knowledge.

These factors have resulted in aggressive
efforts by NASA's Mission Operations
Directorate to utilize a distributed
system of Unix (TM) engineering-class
workstations to run a mix of online real
time expert systems and traditional
automation to allow flight controllers to
perform more tasks andto capture the
corporate knowledge of senior
personnel. Starting with the first flight
of the Space Shuttle after the
Challenger accident, this effort, named
the Real Time Data System (RTDS), has
played an increasingly significant role in
the flight-critical decision making
process.

APPLICATIONS EXAMPLES

The application o!,these techniques has
resulted in a new look and feel to
Mission Control. Picture 3 shows an
telemetry-animated schematic of the
Shuttle's communication and tracking
system. This display contains all of the
information contained on the

traditional monochrome text display
shown in picture 2. The display utilizes
color graphics to organize the
information into a schematic. It also
contains rules which draw inferences
about the systems performance and
operation from the telemetry.
Previously, a major part of an operator's
training was to learn how to look at
complex displays of digital data and
build a mental model of the system.
Only after this training was complete,
could an operator be trained to evaluate
the situation and make recom-
mendations. Utilizing the RTDS
approach allows the operator to utilize
the expertise of senior operators
captured in the display program to build
a mental model of the system and jump
to learning how to evaluate the system.

This effort has also resulted in dramatic
new and unexpected capabilities. For

example, fl!ght controllers who monitor
the Shuttle s Remote Manipulator

System (RMS) traditionally determined
the position of the robotarm" by

Picture 3 - Telemetry-Animated
Con_munlcatlons Schematic On
Workstation

observing digital readouts of the angles
of each of the arms joints. A combina-
tion of offline tools and mental
gymnastics allowed operators to
determine the arm's position and advise
astronauts on operation. Picture 4
shows an RTDS application which
acquires real time telemetry of the arm's
angles and animates a view of the
Shuttle showing the arm's position. This
application not only lowers the flight
controller's workload, but also allows
the controller to visually monitor for
potential collisions of the Shuttle and
payloads.

Picture 4 - Remote Manipulator System
Workstation Display

5.1-2
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In another example, flight controllers

typically monitored the performance of
the Shuttle s flight instrumentsby
watching digital displays of instrument
telemetry describing the Shuttle's roll,
pitch andyaw attitude angles or the
bearing to the landing site. Picture S
shows an RTDS display which acquires
the real time telemetry on the flight
instruments and displays an emulation
of the flight instruments on a work-
station screen.

Picture 5 - Workstation Emulation of

Shuttle Flight Instruments

RTDS has also been applied to real time
data sources other than telemetry. One
of the most significant applications has
been in the evaluation of weather data.
The Flight Director is the NASA
individual in Mission Control with final
authority on all flight decisions. One of
the most difficult tasks for the Flight
Director during landing is the selection
of runways based on winds. Because the
Shuttle during landing is essentially a
very large glider, it has very critical
crosswind limitg. Traditionally, during
landings the Weather Officer would
read out wind values from the landing
site and the Flight Director was required
to determine if the winds were within
limits by consulting a paper crosswind
graph. This could get quite hectic as
there are several runways and the winds
at Edwards Air Force Base are
notoriously variable. In RTDS we built
an application which receives the wind
reports electronically from the landing
sites, computes crosswind components,
applies flight rules to determine if winds
are within limits, and displays the results
graphically to the Flight Director in real
time. This application dramatically
lowers the Flight Director's workload
and enhances the safety of flight.

In developing RTDS, NASA met several
challenges in the use of Unix (TM)
workstations to operate in real time and
to provide real time expert systems and
color graphics in mission-critical
environments. All of these applications
required access to real time data. The
remainder of this paper explains the
techniques developed to acquire real
time data under Unix and supply it to
expert systems. The techniques
described in this paper have not only
been used on Space Shuttle but also on
aeronautics applications. Systems have
been developed usingRTDS for aircraft
flight test operations by NASA s Dryden
Flight Research Facility (reference 1) for
monitoring the X-29 and by the Air
Force Flight Test Center (reference 2) for

monitoring the F-15 short takeoff and
landing demonstrator aircraft.

HARD AND SOFT REAL TIME
CONSTRAINTS

The most important item to understand
in developing real time Unix
applications is the difference between
hard and soft real time constraints. As
defined by Stankovic (Reference 3) real
time systems are those where the
correctness of a computation is a
function of both the result of the
computation and the time at which the
computation is delivered. Hard real
time systems are those where the
funct!on is completely failed if the
computation does not always meet the
time constraint. Soft real time systems
are those where system performance is
degraded if the time constraint is not
always met, but can be fulfilled if the
conditions are met with a response
distribution. A typical hard real time
system is an aircraft flight control system
where loss of control occurs if the system
does not meet time constraints. An

example of a soft real time s_/stem
would be an airline reservaUon system
where slow response results in degraded
operations but not system failure.

In RTDS we had to meet both hard and
soft real time constraints. The hard real
time constraint occurred in the
acquisition of real time data into
workstations. The soft real time
constraints were in the performance of
fault detection algorithms, fault
detection rule based expert systems and
data displays. Understanding the
difference in these types of constraints is
the key to successful implementation.

Unix Data Acquisition is A Hard Real
Time Constraint

In RTDS we tapped into Space Shuttle
telemetry as soon as the data reached
the Mission Control (Diagram 1).
Telemetry is a uniquely structured data

I
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stream. In order to minimize hard real
time processing in the Unix workstations
the basic telemetry processingroles of
bit, frame, and subframe synchroniza-
tion, and parameter extraction
(decommutation) were performed in a
dedicated telemetry processor (Loral
Instrumentation ADS-100 or System
500). The extracted parameters
(approximately 5,000 16-bit words per
second) were communicated to the
workstations (Concurrent 6600) via a
Direct Memory Access (DMA) interface.
The DMA is based on the Digital
Equipment Corporation (DEC) DR-11W
standard using an Ikon Corporation
interface board installed in the
Masscomp. The telemetry processor
buffers the incoming telemetry data in a
1,000 word First In First Out (FIFO)
buffer. The buffer unloads over the
interface when polled by the
workstation. The hard real time
constraint was that the FIFO buffer
would lose data (overflow) and require
a reset if it was not polled before it
filled. The Unix workstation had to poll
the system sufficiently to drain the
buffer before it overflowed.

Unix has some well-kn0wn problems
that hinder its use in hard real time
applications. Unix normally does not
provide the capability to assign hard

priorities to tasks. This makes it
impossible to require that a task execute
at a given rate, such aspolling a
telemetry processor at four times a
second. This is complicated by the fact
that in most Unix implementations the
kernel cannot be pre-empted. Thus,
even if an external device, such as a
_.elemetry processor, needs service, the
kernel may block its servicing.
Additionally,,most Unix schedulers,
reduce a task s switching priority in
proportion to the processor time used.

328

This is a problem when data acquisition
is to be performed continuously over a
several day mission, Most Unix
implementations perform task
swapping; in addition, virtual memory
versions also perform on-demand
paging. If a task has critical code or data
paged to secondary memo_ or if the
entire task is swapped out, then the
time to recover critical code and data
may violate real time constraints. Unix
also typically buffers all disk transactions
in buffer cache in primary memory. This
introduces an uncontrolled factor in
critical disk I/O tasks such as data

logging. Concurrent Corporation's Real
Time Unix (RTU -TM Reference 4) has

eCific features to allow the user to
al with these constraints. In specific

RTU allows tasks to lock a memory
segment, and to circumvent the normal
changes in switching priority by *
specifyinga fixed real time switching
priority. RTU provides contiguously
allocated disk files that allow the user to
byRass the clisk buffer cache mechanism
and perform direct I/O to disk. RTU
provides kernel pre-emption within
specified time constraints.

Even with these capabilities, data
acquisition systems and real time
applications under Unix must be - _
carefully structured. Specifically, the
tasks performing data acquisition must
be isolated from applications processing
so that increasing the applications load
does not prevent the data acquisition
from meeting the hard real time
constraints. In order to deal with this
problem, a technique was developed to
take advantage of multiprocessing
capabilities (Diagram 2).

_/_.._/_ _ e DATA ACQUISITION SOFTWARE



In this technique a single "stripped-
down', task manages the DMA
controller, instructing it to fill different
sediments of a ringbuffer in sequence.
This "Ring Stuffer TM was identified as the
highest priority real time task in the
_stem. A second task, called the

Buffer Stuffer', reads the ring and

performs decoding steps toplace data
into time homogeneous buffers in
shared memory that can be accessed in
parallel by many applications.

The two stuffers interact in several ways.
The buffer stuffer is set to a real time
c_riority so that its switching priority

oes not degrade with accumulated CPU
time, but at a lower priority than the
ring stuffer to prevent interfering with
the hard real time performance of the
ringstuffer. The Ring and Buffer
stuffers communicate their position in
the ringthrough shared memory. If a
bufferbeing accessed by the Buffer
Stuffer is about to be overwritten by the
Ring Stuffer, then the Ring Stuffer still
performs DMA to meet the real time
constraint and prevent overflow of the
telemetry processor FIFO. The data is
transferred into a "bit bucket', a spare
buffer dedicated for this purpose.
Although this mechanism can lose data,
acquired data is not contaminated.
Whenever data is lost, tasks are notified
by flags in shared memory. When two
processors are available in a
workstation, the two stuffers are run in
parallel on separate CPU's to prevent
contention.

This dual-stuffer technique was also
implemented in a 80386 Personal
Computer running the Lynx (TM) real
time operating system to acquire
weather data for the Flight Director
Winds application. The weather data
was acquired over an asynchronous
serial line and placed in a ring by one
task, and organized for evaluation in
time homogeneous buffers by another
task.

Shared memory is vital for interprocess
communication i_nthis approach. The

Unix AT&T System V shared memory
implementation is very good for real
time data acquisition and distribution.
It is important to perform the data
acquisition task as a service and make
acquired data available to all
applications by shared memory. If
shared memory is not available, then
each application would have to perform
significant data acquisition tasks and
this would severely limit the number of
simultaneous applications. Shared
memory was also an important
troubleshooting tool for the data
acquisition software. Normal
debugging techniques typically involve
messages written into files or to the
terminal. This assumes that the

debugging techniques will not impact
the proper operation of the process.
However, in a real time environment the
use of such techniques significantly
affects the timing characteristics of the
system and cannot be used. Instead,
RTDS logs information about the data
acquisition (such as pointers, number of
bytes transferred, overflow flags) to
shared memory. This allowed us to build
graphic monitors which can be observed
i-n real time to troubleshoot data

acquisition problems.

Several other RTU features are critical to
the performance of RTDS. These
included the ability of an application to
delay for time periods less than 1
second. This function was required
because high priority tasks such as the
buffer stuffer had to delay for incoming
data and the standard Unix minimum

sleep of 1 second was too long to meet
rate constraints. RTUprovides a
mechanism allowing delays as short as 1
millisecond. RTU also provided a time of
day clock (for rate calculations) and
signals for trapping floating point
errors. Floating point error traps are
critical because noise in data can cause
floating point errors and applications
must trap and handle these errors. Real
time tasks that perform continuous
cyclic display also need the capability to
poll for user input without holding.
Conventional Unix terminal drivers

provide the O NDELAY option to allow
a single application to read the
keyboard without delay. This however
does not provide a mechanism for
controlling which applications should
receive the keyboard input. An X
Windows approach would be the
modern solution to this problem and is
being used by RTDS in its newest
applications. At the time we started
RTDS however, X Windows was not
available on our equipment, so we used
mouse button signals with signal
handlers to provide inputs to
applications. The mouse signals did not
require polling, so cyclic displays would
not delay for user input. AI/ofthe
applications received any mouse input
so that the handlers were required to
determine from the cursor location if
the inputs were intended for their
application.

This technique has been highly
successful in processing real time data.
During a recent mission, a workstation
running a moderate applications load
ran for over 3 days without an overflow
occurring. With a heavily loaded
workstation we experience an overflow
every 10-12 hours. This vulnerability
occurs because the ring stuffer runs as a
Unix application. It context switches
from application state to kernel state

5.1-5
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wheneveritexecutes the DMA Con-
troller driver. If another application
requests a kernel service while the ring
stuffer is in applications state, the
context switch of the ring stuffer can be
delayed. To minimize the effects of this
case we modified the telemetry
processor board to automatically reset
itself when an overflow occurs. This is
not completely satisfactory as data loss
occurs during the reset and we are
currently developing a version of the
DMA driver that performs all of the ring
stuffer activity in the kernel.

RTDS is an interesting statement on the
power of current engineering
workstations. The Apollo Mission
Control Center used for the lunar
landings in 1969 processed less than

1,000 parameters a second in the large
mainframes of the time. RTDS processes
4,000 parameters a second in a single
workstation.

Data Display and Expert Systems are Soft
Real Time Tasks

When we started RTDS we thouc_ht of
data display and computation along
traditional mainframe-based terms.
Specifically, we expected all data to be
displayed and all computations to run
on every data sample. After some early
experimentation it became clear that it
would not be possible to display data
and run rule based expert systems in a
hard constrained fashion. The nature of
rule based expert systems makes it
difficult to guarantee hard real-time
performance. In rule based expert
systems, computational load varies
based on the number of rules fired and
this varies with circumstances being
monitored.
Examining the actual monitoring tasks
performed by flight controllers reveals
that although data is displayed at once
,t)er second, it is not monitored at that
rate. Flight controllers are themselves
multitasking and monitor several
screens, event lights, and voi_e loops as
well as using other materials such as
proced,ures and schematics. The human
monitor is a "soft" real time
implementation.

We also found that the tasks could be
structured so that only key detection
logic was being evaluatedevery second.
Supporting logic was only activated
when primary logic detected a problem.
This significantly improved our real time
performance. In specific, a rule-based
expert system monitoring the Shuttle's
communications system utilized
approximately S00 rules. These were
initially implemented in CLIPS, a rule
based expert system tool developed by
the Mission Planning and Analysis
Division at Johnson Space Center. This
tool does not have any special real-time

support. By structuring the rules into
phases and enforcing certain

precedence, we found that
approximately 100 rules were required
to capture the key detection logic. In
the Unix environment, CLIPS was able to
fire these 100 rules approximately 2 to 3
times a second. When the key logic rules
detected problems, additional rules
fired, which slowed down the system
and caused only momentary violation of
real time constraints.

It is important to realize that the Shuttle
systems do not normally operate with
continuous failures being introduced.
One of the goals of the expert systems is
to provide expert evaluation when
failures occur. If the system slows down
when the failure occurs, but is still able
to provide the expertise, then it is
meeting its desired function.

When we performed tests on the
)erformance of the fault detection, we
ound that a large percentage of the

processing was meeting the once-a-
second constraint and all of the
processing was being performed on a 2
to 3 second cycle. This was not
detectable by flight Controllers looking
at the RTDS displays.

We also found that RTDS displays
telemetry 3 to 4 seconds ahead of the
mainframe complex. This is because the
RTDS architecture minimizes the
number of data transfers between
processors. Because the mainframe
performs such a large number of
computations, it requires extensive
minicomputer preprocessing to meet
real time constraints. This introduces
significant delay in the mainframe
system.

On several occasions during actual
Shuttle flight, RTDS has detected
problems and brought them to the
attention of flight controllers before
they noticed the problems on the
conventional displays. In several cases,
the mainframe displays have been
completely removed from the Control
center andthe controllers rely entirely
on the workstation based displays.

SUPPORTTECHNIQUES FOR REAL TIME
EXPERT SYSTEMS

In developing the real time data
acquisition support for expert systems
we utilized several critical techniques.
The most important technique is that of
the time homogeneous buffers. If task
automation or a rule based expert
system is to combine several different
pieces of sampled information and
make a decision on them, then the time
relationship of these samples must be
known. Typically we try to only combine
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datafromt:hesamedataacquisition
samplingcycleormajorframe.Amajor
frameisthetimeperiodinasam.pied
datasystemwhenallmeasurementsare
sampledatleastonce.On Space Shuttle
the maior frame is sampled and
transmitted once per second. All
measurements from a given major
frame represent a time homogeneous
dataset bounded by the sampling rate.

An example of the importance of this
type of relationship is detecting a failed
reaction control system jet thruster on
the Space Shuttle. There are two
conditions that we want to detect. A jet
that does not fire in response to
command is considered failed off. A jet
that does not turn off when the
command is removed is failed on. So we
have two rules :

a. Ifjet command ison and jet
chamber pressure is low,then jet is not
firing andfailed off.

b. If jet command is off and jet
chamber pressure is high,then jet is
firing andfailed on.

If the jet command telemetry parameter
is not from the same sampling period as
the jet chamber pressure command, two
things can happen which cause a normal
jet firing to be misdiagnosed as a failure.
If the command measurement leads the
response measurement, then the first
rule will be satisfied indicating that the
jet is not responding to commands. If

the command lags the response, then
the second rule will be satisfied

indicating that the jet is firing without a
command. It is only when the command
and response are from the same frame
that a normal firing will be properly
evaluated.

In RTDS we placed data into time
homogeneous buffers in shared memory
on major frame boundaries. We use
four buffers on a round robin basis. The
Buffer Stuffer places telemetry
parameters in the round robin buffers in
named locations where they can be
extracted by applications using standard
library routines. Whenever a parameter
is placed in the buffer it is marked as
valid for that major frame. The stuffer
also searches for the frame markers in
the telemetry stream. When a major
frame marker is detected, the buffer
stuffer closes the buffer being updated
and makes it available to applications
for reading. Flags are set in shared
memory to indicate the most recently
updated buffer. After releasing the
completed buffer to applications, the
Buffer Stuffer then opens the next
round robin buffer. Before starting to
fill this new buffer, data from the last
major frame period is copied into the
new buffer. All data is marked as invalid

5.1-7

for the new major frame when it is
copied forward. As each parameter is
processed in the new major frame, the
parameter status is updated to valid. By
copying forward the most recently
received data, we ensure that
applications always have access to the
most recently received data (with
appropriately marked validity), even if
the data is not received in a given major
frame due to errors in transmission. By
switching buffers and making them
available to applications at major frame
boundaries, we maintain the time
homogeneity of the original sampled
data stream.

In order to maintain major frame time-
homogeneity in the applications, it was
necessary to ensure that once the data
acquisition library starts to pull data

from a buffer, that all of the parameters
are pulled from only that one buffer
(major frame). This must happen while
Unix is switching applications, paging
and swapping. It make take more than 1
second for an application to complete its
computation cycle between data
acquisitions. The four round-robin
buffer design gives an application three
major frame times to complete an
acquisition before the buffer is
overwritten.

This major frame buffer technique
maintains the data time characteristics
for automated monitoring and expert
systems. Alternative approaches have
been used in other telemetry computer
systems which lose this critical time
relationship information. An alternative
technique that has been implemented in
at least one major NASA system and two
new commercial off-the-shelf telemetry
monitoring systems is called the Current
Value Table (CVT). In CVT, telemetry
data is acquired and the most current
values of parameters are placed in a
single table without regard to the major
frame. When an application requests
data, the CVT ships out the most current
value received for the requested
parameters. Because the requests occur
asynchronously with the data
acquisition, it is almost certain that data
from multiple major frames are in the
same data request. This technique may
be acceptable for low rate data displays
and limited automated monitoring but
is not acceptable for advanced
automation using rule-based systems.

Major Frame Buffers For Logging and
Distribution

The major frame buffers are also a
powerful structure for logging data. In
RTDS, the buffer stuffer logs all
parameters to disk in contiguous files.
RTDS has an "instant replay" mode
where real time data acquisition is
stopped and a "replay stuffer" is used to
stuff data into the major frame buffers.
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Inthiswayalloftherealtime
applicationscanbeusedinplaybacks.
Thereplaystufferhasacontrolpanel
whichisfashionedafteraconventional
VideocassetteRecordercontrolpanel.
Wechosethisinterfacebecauseitwas
familiartoalmosteveryone and it has all
of the functionality needed. With the
VCR control panel users can playback
data, view in fast forward, "rewind, or
Shuttle between set points. Speed of
the playback can be adjusted for slow-
motion analysis.

This capabilityhas turned out to be
essential for three reasons. First, the
capability was essential for debugging
the automation applications. Data
signatures captured during actual flight
or simulations can be replayed time and
time again to work out bugs in
automation and expert systems as well
as to perform regression testing.
Second, as a real time tool this capability
has enabled operators to significantly
cut the time required to view playback
data. This capability was used
dramatically after the pad engine
shutdown and countdown abort on the
first STS-34 launch attempt. RTDS
enabled engineers and managers to
replay the shutdown within minutes to
troubleshoot the cause. This is a big
improvement over the current playback
systems which can take from 30 minutes
to 5 hours to retrieve playback data. In
fact, the director of Mission Operation
has stated that RTDS paid for its entire
development in those few minutes.
third, there has been an unexpected

training benefit from the playback
capability. Flight controllers can record
simulations and then play them back at
their convenience for training. Several
training objectives in flight controller
certification are now met by this
technique. This saves the large costs
associated with meeting training
objectives by a full-up simulations with
the entire simulator, control center, and
flight team in place.

The major frame buffer is also natural
format for distributing data over local
area networks. In RTDS we distribute
major frame buffers over Ethernet (TM).

This enables RTDS to provide remote
telemetry monitoring and software
checkout, even on computers which
could not normally support real time
data acquisition. The User Datagram
Protocol (UDP) subset of TCP/IP was used
to provide a connectionless
unacknowledged data transfer. This
allowed the transmitting workstation to
be unaffected by the receiver
workstation if the receiver was unable
to keep up with the transmitter. This
capability has allowed us to conduct
operational demonstrations where
flight controiTers-=mor_i_tored data out of
their offices. We sent the data to the

experts, rather than sending the experts
to the control center. This technique
will become more important as NASA
pursues long term missions such as Space
Station where it becomes less feasible to
tie experts down to a central location.

Data Quality of Frames and Individual
Parameters

In order for expert systems and task
automation to use real time data, it is
necessary to determine the quality of
the data. There are two measures of
data quality, the quality of a major
frameand the validity status of
individual parameters.

In order to determine the validity of a
frame of data, we utilized the fact that
each major frame of telemetry is is
divided into a number of smaller frames,
called minor frames. Each minor frame
contains an identifying counter. In
Shuttle there are 100 minor frames per
major frame and one major frame per
second. Parameters are spread across
the minor frarnes_ in telemetry systems,
data can be interrupted due to radio-
frequency noise on the space-to-ground
link. Typically noise is of short duration
and will only affect one or two minor
frames.

In order to inform applications when
noise was present, the minor frame
counter is transferred via DMA to the
workstation. The Buffer Stuffer

examines each frame counter to ensure
that all 100 frames are received in
sequence for a given major frame. This
Quality parameter is expressed as a
number from 0 to 100 indicating a
rough percentage of the quality of the
data. The Quality parameter is placed in
shared memory, with one quality
estimate for each major frame buffer.
Applications receive the buffer Quality
value whenever they request data from
a buffer. In this way applications can
chose to display or discard data based on
overall data quality. In many data
display tasks in RTDS we chose to display
all of the data even in high noise (low
Quality) conditions. In critical task
automation, we discard all data that
does not have a 100 percent quality to
prevent erroneous results.

There are approximately 32,000
arameters in the Space Shuttle system
ut only approximately half of them are

being downlinked at any one time. This
is due to the restriction of the downlink
bandwidth of the telemetry system and
recognizes the fact that certain data is
not required during all flight phases. For
example, engine data is only needed
during launch. If during a major frame,
data is not in the specific telemetry
format, then RTDS marks the individual
parameter status as invalid. When an



applicationattemptstoacquirethe
parameter,theapplicationreceivesboth
thevalueandthestatusofthe
parameterfromthebuffer.

Individualparametervaliditystatusisan
importanttechniquethathasbeen
overlookedinseveralNASAand
commercial systems and caused serious
architectural problems when retrofitted
into these systems. This function must
be providedby the data acquisition
subsystem. Without a system solution,
each application must contain sufficient
format definition information to
independently assess validity. This is a
severe software maintenance and leaves
the possibility that applications might
function improperly due to stale data.

Calibration and Conversion

In typical flight vehicle telemetry
systems data originates from one of two
major sources. Some data is acquired
directly from sensors and other data is
the result of computations in the
onboard computer. Calibration is the
function of calculating engineering unit
values (temperature, pressure, etc..)
from sensor telemetry. Conversion is the
process of transforming values from the
word formats of the flight vehicle
computer into the word formats of the

round computer. Both of these
nctions must be performed if an

expert system is to use telemetry.

Typical sensors convert some physical
quantity (e.g. temperature, pressure)
into an analog value proportional over a
specified range (Diagram 4). Sensor
output voltages are normally amplified
and then converted to a digitalvalue.
These values are usually called ' counts."
The sensor value in counts (8, 10, 11,12
and 16 bit are popular sizes) is placed in
a serial stream for transmission to the

ground. On the ground, the computer
system converts these to a number
representing a physical quantity. This is
because it is much easier for humans and

expert systems to reason about physical
quantities than 'counts." This is done
with a calibration curve of the form:

y = A(0) + A(1)*JX + A(2)*X 2 + A(3)*X _ +.

wher_ the counts are supplied as the X
values and the A(N) values are the
coefficients. In RTDS we use the Shuttle
program standard fifth order
polynomials. The coefficients for this
polynomial are stored in shared memory
so they can be viewed and altered and
to assure they are common to all

applications. Acquired, data is placed in
the shared memory in counts and
when applications request data, the
shared memory is examined to obtain
and apply the calibration curve.
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CAUBRAnON ¢ONCEPn

Flight vehicle computers historically
have unique architectures due to the
demands on weight, size, power
consumption and reliability in hostile
environments. In fact,the Space Station
program is the first NASA manned
program to specify a hardened standard
commercial-off-the-shelf architecture
for a flight computer (80386). Because
flight computers tend to be unique, the)
usually have unique floating point
formats (Diagram S). Unix workstations
usually use IEEE standard floating point
formats or manufacturers variants. The
data acquisition subsystem must be able
to convert between these different
number representation subsystems if
the display user or expert system is to
interpret the data. In RTDSwe keep the
parameter conversion information in
shared memory together with the
calibration curve. Data is kept in the
flight vehicle form in the shared
memory. When an application requests
data, the shared memory is used to
select and apply the appropriate
conversions. Twelve different types of
conversions are required on Space
Shuttle. Override modes for both
calibration and conversion are provided
in the library calls so that user
applications can acquire raw data
directly as it was downlinked from the
vehicle.

Noise Filtering

Even when the quality and individual
parameter validity mechanisms are used,
there still is the possibility of getting
incorrect data into a real time expert
system. There ace two basic sources of
error. First, communications noise may
be of very short duration so as to only
affect a small number of bits. If the
noise doesn't affect a frame counter or

frame synchronization marker, then it is
difficult to determine (from a data
communications standpoint) that an
error has occurred. Some telemetry
systems use parity bits on individual
parameters and frames or a forward-
error-correction technique but these are
not available on Shuttle. The second

333



S_TtLE

o ,

SHUTTLE FLOATING pOINT FORMAT VS.

IEEE STANDARD

(IBM BIT NUMBERING CONVENTION)

,lee --

source of noise is the sensor itself.
Sensors are nonideal devices and can be
noisy. In RTDS we applied "noise-
filtering" techniques to minimize the
effects of these errors on applications.

The first technique was applicable to
discrete (binary 1 or 0) values, such as
switch settings and valve positions.
Whenever one of these items changed,
it would not be provided to the expert
system unless the change was present
for a specified number of seconds (N).
This N-count noise filter is a technique
which has been used successfully in the
onboard automation of the Space
Shuttle. The problem with this filter is
that a "chattering" sensor is not
detected if it changes state faster or at
the same rate as the noise filter.
Operationally, the N-count algorithm
worked well for our applications.

The second technique was applicable to
numbers. A numeric value maytake
many values. In a slowly changing
situation the same N Count algorithm
used for discretes can be used. But
where values change rapidly, comparing
updates to the last value can result in no
updates being made available to the
expert system because the last value
never stabilizes. For fast changing
numeric values we used reasonableness
tests. The expert systems and
automation would reject values that
were not in a specified reasonable range
for that parameter.

In some cases, these checks were
performed within the expert system or
automation. But in many cases the same
noise-filtered value was required by
several applications (automated fault
detection, displays etc...). In these cases,
we wanted a single authoritative copy
for all applications. We used another
shared memory buffer to which the
noise filtering routines could write. This
"signal buffer" was accessible by all
applications by requesting parameter
names through a library routine. This
"signal buffer' did not represent a
major frame time-homogeneous buffer.

5.1-t0
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Because noise filters are set at different
values for each parameter, there was no
way to maintain time homogeneity" The
mechanism however worked very well
as both a repository for best-estimate"
values for low dynamics tasks and a
general purpose mechanism for
communicating results between
applications. Many applications used
this mechanism.

FLIGHT TEST- THE SKY'S NO LONGER
THE LIMIT

It is appropriate that this conference's
title includes the statement that the sky
is no longer the limit for flight test.
RTDS and similar systems will be used in
the next few years by NASA to perform
the most extensive set of space flight
technology tests since the early 1960's.
NASA's manifest for the next few years
contains several missions which will
flight test new technologies such as
tethers, aerobrakes, and free-flying
telerobots in near-earth orbit. All of
these missions require advanced
telemetry monitoring and visualization
techniques similar to those developed in
the RTDS project.

The Tethersat will be flown on STS-46,
currently scheduled for late 1991
(picture 6). This will be the first attempt
to ever use a large scale tether between
two orbiting objects. This flight will
explore the motion and electrodynamics
of tethers in orbit.

Picture 6 - Tethersat

ORiGiNAL PAGE tS

OF POOR QUALITY

m



Also in late 1991, STS-49 will test
elements of the Flight Telerobotic
Servicer (FTS picture 7). The FTS is being
developed by Goddard Space Flight
Center as a tool to assist in the assembly
of the Space Station. It can operate in
free-flying mode or attached on the end
of the RMS. The STS-49 flight wil be
used to conduct flight experiments on
prototype hardware elements. The first
actual flight of the complete FTS will be
performed on STS-72 in late 1993. This
will qualify the equipment for use in
Space Station assembly in 1995.

Picture 7 - Flight Tele-Robotlc Servicer

In late 1994 the Aero-Assist Flight
Experiment (AAFE) will be flown on STS-
82 This flight will deploy an unmanned
free-flying vehicle which will fly a
aerobraking profile (picture 8) to
demonstrate the feasibility of using
atmospheric aerodynamic braking to
alter orbits. This technology is
considered crucial for capturing vehicles
returning to earth from the moon in
future lunar exploration programs_

An Aeroa.ssist Flight Experiment (AFE) mission scenario calls

for the AFE to be deployed from the cargo bay orthe Space

Shuttle. A solid rockel motor (SR M) will accelerate the vehicle

tO 33,800 feet per second simulating the speed a! which a

spacecraft trave]s in geosynch ronous orbi! A fief the burn, the

SR M is jettlsoned A dip through the Earth's upper atmosphere

is expected to slow the AFE so it can rendezvous with and be

retrieved by the Shuttle. Back in the cargo bay, I he AFE will be

retu rned to Earth for in depth anal ysis

Picture 8 - Aero-Assist Flight Experiment

CONCLUSIONS

The advances in workstations and real
time Unix have enabled small
programming teams to implement real
time telemetry systems that have made
major improvements in NASA space and
aeronautics mission operations. Several
real time adjustments must be made to
Unix and applications properly
structured to meet ard and soft real time
demands. Many monitoring problems
are actually soft real time problems and
thus can be implemented using current
workstations and expert system
technology. New techniques in data
acquisition have been developed to
ensure that the correctness of the expert
system recommendations is not affected
by the data acquisition process. These
mechanisms are general and can be
applied to any real time expert system.
Although, these techniques are more
traditionally associated with real time
systems or process control rather than
expert systems, they must be applied for
real time expert systems to provide
useful information in mission critical
environments.
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