
NASA Technical Memorandum 104540

Numerical and Experimental

Study of Curved and Planar

Frequency Selective Surfaces
with Arbitrary Illumination

Armen Caroglanian

April 1991

(NA'_A-T_-104540) NIJ_ERTCAL AND EXP_R.[HENTAL

STUDY OF CURV_.O AN0 PLANAR FREQUENCY

SELECTIVE SURFACES WITH ARBITRARY
-" ILLUMINATION M.S. Thesis - Maryland Univ.,

= 1089 (NASA) 97 p CSCL 09C 83/33

N92-12185

Unclas

0052267

I

BI/ A



r

w



NASA Technical Memorandum 104540

Numerical and Experimental

Study of Curved and Planar

Frequency Selective Surfaces

with Arbitrary Illumination

Armen Caroglanian

Goddard Space Flight Center

Greenbelt, Maryland

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, MD

1991



_"_'-'__'_^_au_ ir_.w



ABSTRACT

Title of Thesis: NUMERICAL AND EXPERIMENTAL STUDY

OF CURVED AND PLANAR FREQUENCY

SELECTIVE SURFACES WITH ARBITRARY

ILLUMINATION

Name of degree candidate: Armen Caroglanian

Degree and Year: Master of Science, 1989

Thesis directed by: Dr. Kevin J. Webb

Assistant Professor

Electrical Engineering Department

A frequency selective surface (FSS) composed of apertures in a metallic

sheet is known as an inductive FSS. The infinite inductive FSS theory'is de-

rived and the aperture fields are solved by a spectral domain formulation with

method of moments solution. Both full domain and subsectional basis func-

tions axe studied. A locally planar technique (LPT) is used to determine the

forward scattered field from a generally shaped inductive FSS with arbitrary

illumination.

An experimental FSS study describing test methods and results is pre-

sented to verify both the infinite FSS theory and determine the accuracy of the

LPT. The infinite planar FSS transmission coefficient measured as a function

of frequency is compared with theory. The inductive FSS's forward scattered

field is experimentally measured and compared to the LPT. A series of experi-

ments with the spherical feed source at varying distances from the planar FSS

is used to determine the limitations of the LPT in terms of the incident phase

error over a unit cell. The limitations of the LPT due to surface curvature

is investigated by an experimental study of the scattered fields from a set of
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hyperbolic cylinders of different curvatures. From the experiments, guidelines

for applying the LPT are developed.
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CHAPTER 1

INTRODUCTION

The frequency selective surface (FSS) is a useful filter for electromagnetic

radiation ranging from microwave to optical frequencies [1]. Two types of

FSSs exist. The capacitive type, illustrated in Fig. 1.1, is composed of metal-

lic patches on a dielectric substrate. The inductive type, shown in Fig. 1.2,

consists of apertures in a metallic sheet. The dots in both figures signify that

the patches and apertures are a part of an infinite FSS. The response of the

infinite planar inductive FSS is determined from a spectral moment method

solution derived in Chapter 2. A typical capacitive and inductive FSS response

about the resonant frequency, f0, is shown on the right side of Figs. 1.1 and

1.2. Note the magnitude of the reflection coefficient in the capacitive case is

equivalent to the magnitude of the transmission coe_cient for the inductive

case. This is valid if the patches and apertures can be interchanged to trans-

form the one type of FSS to the other. The duality of the frequency responses

can be explained by Babinet's principle [2].

In many FSS applications, such as radomes and subreflectors, the FSS

is curved and has non-planar illumination. Figure 1.3 is an example of a

reflector antenna utilizing a hyperbolic FSS to separate the S-band Cassegrain

feed and K-band prime feed [3]. The FSS shape is a hyperboloid of revolution

and the incident wave is spherical. The general analysis of curved FSSs is

an extremely di_cult problem. An approximate method, called the locally

planar technique, (LPT) can be used to predict the response from a planar or

curved FSS with arbitrary illumination. This technique has been applied to

the case of a parabolic cylinder FSS by Ko and Mittra [4]. This technique,

presented in Chapter 3, breaks the FSS into a number of subarrays each of

which is assumed to be a segment of an infinite planar surface. The infinite
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Figu}e 1.1. Capacitive FSS metallic patch geometry and the magnitude of the

reflection coemcient as a function of frequency.
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Figure 1.2. Inductive FSS apertures in a metallic sheet and the magnitude of

the transmission coefficient as a function of frequency.
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Figure 1.3. Dual reflector antenna system with an inductive FSS subreflector

separating the prime and Cassegrain feeds.



FSStheory is applied to eachsubarray and the total responseis found from a

superposition of individual responses.

However, there are limitations for the FSSgeometrieswhich canbe solved

by the LPT. At somevalue of incidencephasefront curvature and or surface

curvature, the LPT is no longer valid. In the literature, the limitations of the

LPT for predicting the scatteredfields from the general FSSproblem has not

been addressed. Thus, a major goal of the FSS study was to determine the

regions of validity for the LPT theory. To study the LPT as well as verify

the infinite planar FSS analysis, an inductive FSS was designedand fabri-

cated. An extensive experimental FSSstudy wasundertaken at the NASA /

Goddard Space Flight Center. Chapter 4 describes the infinite planar experi-

mental techniques and results from the transmission coefficient measurements

as a function of frequency. In Chapter 5 two types of LPT experiments and

scattered field pattern results are presented. The first LPT experiment is for

a planar FSS with varying incident field curvature. The second LPT experi-

ment is for a set of hyperbolic cylinders of varying curvature with near planar

illumination. By comparing theory and experiment, guidelines for applying

the LPT are developed. From the guidelines, a given FSS problem can be

evaluated for its suitability for LPT analysis.
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CHAPTER 2

INFINITE INDUCTIVE FSS ANALYSIS

2.1 Introduction

The infinite inductive and capacitive FSS has been analyzed by a number

of authors over the years [4]-[8]. The spectral domain moment method tech-

nique applied to the inductive FSS in this chapter is based primarily on the

work of Tsao and Mittra [8]. A good summary of the technique is given in

the text titled The Spectral Domain in Electromagnetic8 [9]. The FSS theory

presented here is for an infinitesimally thin FSS illuminated by a plane wave.

The analysis begins from basic electromagnetic theory. From a spectral domain

method of moments solution, the unknown aperture fields are calculated.

2.2 Spectral Domain Formulation

The analysis begins by considering the inductive FSS illustrated in

Fig. 2.1. The FSS is composed of rectangular apertures placed in a rectangu-

lar grid arrangement. A unit cell of the FSS is defined as the region enclosed

by the dashed line in Fig. 2.1. The dimensions of the unit cell are equal to

the aperture-to-aperture spacing in each direction. Figure 2.2 illustrates the

incident plane wave geometry. The incident electric and magnetic fields are

given by E i"c and H inc. The plane wave's propagation vector, k inc, is oriented

at an angle 8 from the z-axis and at an angle ¢ from the x-axis. The analysis

assumes the FSS to have zero thickness. The experimental FSS had a thickness

much less than the smallest wavelength of interest, so the assumption of zero

thickness is valid in the theory. The scattered magnetic field from an aperture,

H s, is derived from the electric vector potential F

H" = -jweF + .1 V(V. F).
3wp

(2.1)
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Figure 2.!. Inductive FSSaperturegeometry. The FSSshownis asmall portion

of the larger "infinite" FSS.
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Figure 2.2. Plane wave incidence geometry on the inductive FSS.
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The electric vector potential, F, is found from the magnetic current K. K

in turn is derived from the equivalenceprinciple for electric fields [10]. The

equivalent magnetic current is placedabovea perfect electric conductor (PEC)

and has the value

K = E x n. (2.2)

The orientation of the unit vector n is normal to the FSS in the direction of

the half space in which the fields are desired. The electric vector potential F

in the (x, y) plane, based on the definition E = -V x F, is derived from K

and the Green's function G by

F(x,y)= F, = *K, "

The symbol * is the convolution operator. K_ and K U are the components of

I< in the a_ and a v directions respectively. The Green's function G is defined

by

,-jk0r (2.4)
G(x, y) = - 47rr

In the (x, y) plane,

r = + v (2.5)

The free space propagation constant is

k0 = 2_____ 2_rf (2.6)
A c

The frequency of operation is f, and c is the speed of light. Using the identity

dyadic I, O is defined as

8



G=G =G 0 "

Equation (2.3), for the electric vector potential, can be written as

(2.7)

F(x,y) = G.X. (2.8)

Returning to (2.1) for the scattered magnetic field and expanding in the

Cartesian coordinate frame yields

H_'(z,y) =-jwe(F_a, + Fray) +

1 [o (OF, OFy'_ O (OF, OFy_ 1
jwl_ [-_x_,"_-x +-_-yjlax+"ffffy_,"-_-x +-"_Y,] a''j

(2.9)

Equation (2.9) can be written into matrix format and simplified by pulling out

the 1/jwp term and noting k02 = w_pe. The scattered magnetic field in the

(z, y) plane is

)
1 o,-_+ k02 0____0

0, oy F(z, V)- (2.10)

H s is transformed into the spectral domain by the Fourier transform defined

by

OO OO

mOO 400

dz dy, (2.11)

where I=I° denotes the transform of H*. The spectral variables a and/_ take

on discrete values, the phase constant values for the Flouquct modcs, which

for the rectangular cell are [11]



27rm kinca,n = -- + --x m = O, 4-1, _2,--- (2.12a)
a

fl,, 2_rn kin,:= _ +__ n = 0,+1,+2,--. (2.12b)
C

kinc and k inc are the projections of the incident propagation vector into the
z --y

(x, y) plane. The constants a and c are the unit cell dimensions in the z and

y directions respectively. From Fig. 2.2,

k0 sinecos¢ (2.13a)

kine = ko sin0sin¢. (2.13b)
Y

The equations derived in the spatial domain are transformed into the spectral

domain by means of the following equivalent operators:

A(x,y) • B(x,y) ==_ A(a,f) 13(a,f) (2.14a)

0
A(x, y) ==_ ja.A(a,f)

Oz
(2.14b)

O A(x,y) ==:c,jf A(a,f).
Oy

(2.14c)

The transform of the scattered magnetic field, H', is found by applying (2.14b)

and (2.14c) to (2.10). The result is
!

1 /" ko2 - a 2 --aft )(--I,(a,f) - jwt_ k, -aft ko2_f2 :F(a,/3). (2.15)

10



Applying relation (2.14a) to the electric vector potential equation (2.8) results

in

t(_,_) = _K (2.16)

The Fourier transform of the Green's function, is [12]

0(,_,a) = -J k0_ > (_2+ _) (2.17a)
2x/_g- "2 - _

for the propagating modes, and

(_(a,/_) = 1 ko2 < (a2+ 82) (2.17b)
2J_ + Z' - ko_

for the evanescent modes. Substituting (2.16) into (2.15) yields

The scattered magnetic field in the spatial domain, H s, is found by taking the

inverse Fourier transform, giving

oo Oo

Ha - 1
--4zc--'--ff / / f-I*(a'fl) ej('_*+_y) dad_. (2.19)

The integral becomes a summation since the magnetic current, K, is non-zero

at discrete points only. H" in the spatial domain is

no

To uniquely determine the magnetic currents in the aperture, the bound-

ary conditions at the z = 0 plane will be evaluated. Figure 2.3(a) illustrates

11
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the original problem with the aperture field E and the incident magnetic
ine

field in the plane of the FSS, Hxv. Figure 2.3(b). illustrates the equivalent

magnetic current backed by a PEC for both incident and transmission regions.

In the incident region, the equivalent magnetic current K and magnetic field

Hi'_ e are located an infinitesimal distance _ above the PEG. From the method

of images, when the PEC is removed, equivalent fields and currents can be

determined for the free space region illustrated in Fig. 2.3(c). The resulting

magnetic field and magnetic current have doubled.

The magnetic field in the (z, y) plane due to the magnetic current K is

given by H s. The total magnetic field, H +, in the incident region at z = +_,

is

H + = _H inc + 2H'. (2.21)

In the transmission region, for the continuity of the tangential electric field,

the magnetic current K- = -K +. The magnetic field in the transmission

region, at z = -c, shown in Fig. 2.2c, is due entirely to 2K and given by

H- = -2H'. (2.22)

The aperture field is continuous, so as e --* 0

H- = H +. (2.23)

Equating (2.21) and (2.23) and simplifying yields the relation between the

incident and scattered field on the (z, y) plane

rli-c(y) (2.24)H" - .__y,z,
2

Substituting the above into (2.20), replacing I_ + with I_ x az, and simplifying

yields

13



the inductive FSS equation. In the next section, a solution technique will be

presented to solve for the aperture electric fields.

2.3 Spectral Moment Method

In this section, the basis function weights will be found by the moment

method implemented in the spectral domain. The inductive FSS equation

(2.25), relating the unknown aperture field to the known incident field has the

form

L(?)= g. (2.26)

L is given by

L- J E _ k 2 -afto-'#27r2 fl_ ej(_'_+_). (2.27)
m_-----o0 n_--oo

The unknown f is defined as

where

EZ tl

E,) (2.28)f= E_ '

1%

.Ez --_ _-_ cz,_ Ez. ,

n=l

(2.29a)

and Ev. are the basis functions described in Section 2.4.

14
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In (2.26) g is given by

(H i"c ]g = /Hi, c . (2.30)
\--y

The unknown complex constants, cn, are determined by constructing a

set of N = Nz + Ny linearly independent equations. The equation set is formed

by an inner product defined by

(A,B)= f/ (A × B*)-az ds, (2.31)
aper

where the symbol • denotes the complex conjugate. The inner product is

taken on both sides of equation (2.26) with respect to the testing functions bn

N

(L(f),bn) = (g, bn). (2.32)
n-_l

In the GMerkin's method, the testing functions are chosen to equal the basis

functions [13], so

b, E {Ez.a_,Eu.a_} (2.33)

Equation (2.32) is composed of an x-component and y-component given by:

J
w,u2rr 2

where /_z and J_y are the Fourier transforms of the aperture electric field in

the a_ and ay directions, respectively. To form a compact set of equations,

the following substitutions will be made:

15



j_

j_
q2 -- w_-r 2 (k_ - a 2) (2.35b)

jG

q_ _ _;%2 (Z_- kg). (2.35c)

The N simultaneous equations are formed by computing the inner products

between (2.34) and the testing functions. Inner products axe taken between

the Ez testing functions and (2.34b) and between the Ey testing functions and

(2.34a). This is a direct consequence of the cross product in the inner product

definition. The form of the inner product on the left-hand side, (LHS)_, using

(2.34b) for the x-directed testing function is

m --..._- oo n------oo

(2.36a)

OO oo

// ql
aper m------_ _--'--00

The integral can be written as a Fourier transform, of E_.

in (2.36) becomes

e1(''+/_) dx dy.

(2.36b)

The inner product

OO OO

<LHS>x = -- _ E (q3"_z -- ql'E'Y)"E:""

'lrn_ o_N oo

(2.37a)

A similar result for the Eu testing functions is

OO OO

<LHS>y = E E (ql'_z + q2FJy)E;,*"

oon oo

(2.37b)

16



The V-component of the incident magnetic field on the (x, y) plane is given by

Hi.C = H_"*e i(_(°)= + _(0)v) av
Y (2.3s)

The inner product on the right side for the x-directed testing function can be

written as the zeroth spectral component of a Fourier transform

(RHS)= = (H Ui''c,E*,,) = --_vH'"'_E',*_.. (a(0),fl(0)). (2.39)

The similar result for the y-directed testing functions is

(nHS), = --,m"°_"--y.@0),,a(0)).

The final set of equations for the inductive FSS is

(2.40)

OO CO

_ (q,/_= + q2Ey) ,t = H_ nc[7* (a(0),fl(0))#t

OO OO

__ H i-c -.- Ew, (a(0), fl(0))

= Hinc ._*, :,@o),_(o))

m oo1,i oo

__ Hinc _-:*_ _, _:,,.(,_(o1._(o1)

(2.41)

Substituting in the basis function expansion for the electric field (2.29) and

writing in matrix form yields an equation of the form

[A][C]=[B]. (2.42)

17



The matrix IA] is given in Fig. 2.4. For computer implementation, the inner

product summations are taken over a finite m and n set. The number of

basis functions and spectral terms for a satisfactory convergent solution will

be discussed in Chapter 4. The vector [B] is

[B] = : (2.43)

Vector [C] is the unknown weighting constants for the aperture field

Cz I

[C] = CzN. (2.44)
Cyl

CyN_ )

The unknown [C] in (2.42) is solved for by a numerical technique which is

equivalent to

[C] = [A]-I[B]. (2.45)

i

The aperture fields are found by a superposit!on of the weighted" basis func-

tions defined in equation (2.29). The aperture field will be used in Section

2.5 to determine the amplitude and phase of the transmission coefficient. In

Chapter 31 the forward scattered field from a finite FSS will be found from the

transforms of the aperture fields.

18
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2.4 Basis Functions

Two types of basis functions, the full domain and subsectional, are stud-

ied. The desired basis function set is one which can model the aperture fields

with the least number of unknown weights, c,,. The basis functions ideally

suited for the problem of basic geometrical aperture shapes are the full do-

main basis functions where aprlori knowledge of the edge condition can be

included. The experimental FSS described in Chapter 4 has rectangular aper-

tures ideally suited for this type of basis function. The full domain basis

functions have the property that each basis function spans the entire aperture.

The subsectional basis functions, on the other hand, define each basis function

over a different area of the FSS. The subsectional basis functions are useful for

modeling the aperture fields for general aperture shapes. However, the sub-

sectional method requires a large number of basis functions to model the fields

accurately. Hence, the CPU time is much greater than for the full domain

approach. In this section, both basis sets will be defined over a rectangular

aperture and the Fourier transforms will be calculated. The basis functions

axe derived for the x-directed electric field only since the y-directed basis set

is similar.

Full Domain Basis Functions

The basis functions used to model the x-component of the aperture electric

fields in a rectangular aperture of dimension b x d axe [14]

where

1( )
TP (_)2)sin ?(y+ d) (2.47a)

p=0,1,2,--, and q--l,2,.-. (2.47b)

Tp(x) is the Chebyshev function of order p. The first few Chebyshev functions

2O



are _ven by [15]

To(::)= I

T1 (::) --z (2.48)

T2(::) = 2:r 2 - 1.

Figure 2.5 shows the shape of the major full domain basis functions. The

result of the Meixner edge condition is seen at x = + _.

The Fourier transform, (2.11), of the basis function is found by separating

the functions into x and y components and transforming each into the spectral

domain. In the space domain let

Ez. = A(x)h(y) az. (2.49)

The function fz is defined by

/z(_)= e_(_) (2._o)

(1 '
Pb(z) is the unit pulse of width b centered at the origin. The transform of f_

is

1

f.= / Pb(:r)Tv(_) 1-(2___)

--00

e -j_'_ dx. (2.51)

Making the change of variables ::1 = "_ and noting the integral is limited by

the pulse yields

1

b/.L = -_ Tp(xl)(1-(xl)2)-½e -j(_'_'_'12) dxl.
--1

(2.52)

21



Y

Ex
x

Figure 2.5.

field.

n p q

1 0 1

202

311

412

fx

2 1 2

L j
1

. i

fy

2 o

0

Full domain basis functions for modeling the IE,_ aperture electric

22



The integral is solved by associating terms with the known integral [16]

/ Tn(t)(1 - t2) -½e -j_t dt = (-1)n(j)"TrJn(w),
-1

(2.53)

where Jn(w) is the Bessel function of the first kind of order n. The transform

J_z becomes

(2.54)

The y-dependent term is

The transform is taken by separately transforming the sine and pulse func-

tions and convolving the two functions in the spectral domain. The Fourier

transforms needed are

OO

The 8 function is defined by

co, if x = O; (2.57)6(x) = O, otherwise.

The convolution integral is simplified by the g function. The resulting expres-

sion for ]_ is

23



(2.58)

To simplify (2.60), note that the exponentials can be represented by

eJq'_/2 = (j )q

e-Jq./2 = (-j)q.

The expression for fu becomes

(2.59)

fv = -_-_ [(j)q sine (_ d q2_')- (-j)q sine (-_ + ?)]. (2.60)

The two transform equations (2.54) and (2.60) axe combined to yield/_z,,:

_n _-bdTr(j)n+l(-1)vJp(_)

[(j)qsinc(_ d 2r) - (-J)q sinc (-_ +2)]
(2.61a)

Similarly the result for/_v, is

[(j)q sinc (_ q;)--(--j)qsinc(-_ +v)]
(2.61b)

Subsectional Basis Functions

The subsectional basis functions used axe called rooftop functions since

they axe composed of triangles in one direction and pulses in the orthogonal

direction [1711118]. As was the case with the full domain basis functions, only

24



the E, basis function will be discussed. Figure 2.6(a) shows a single rooftop

basis function located at a position (z,,,y,,) in the aperture. As was dis-

cussed in the full sectional case, the electric field in the x-direction goes to 0

at y = 4-_ and peaks at x b. Thus the rooftop functions for Ez are placed

with the roof line parallel to the z axis to best model the field. Figure 2.6(b)

shows the layout of the pulses spaced Dx apart. Nz is the total number of

pulse functions in the x-direction. Figure 2.6(c) illustrates the Ny overlapping

triangles each having a base width of D r. The pulse and triangle functions

PD,x0(z) and AD,yo(y) with centers z0 and y0 are defined as

p_,,.o(Z)= { 0, for l_- zol> -_;o1, for lx- Xo{ < T"
(2.62)

0, for {y-Y01 > D; (2.63)Ao,,0(u) = 1-_ for IY- y0 {<
D It __ •

A single rooftop electric field basis function is defined by

E..(z,y) = PD.,..(z)/\z_,,_.(y). (2.64)

The pulse and triangle base widths axe

b 2d

D_ - Nx and Dr -- N_ + 1" (2.65)

The basis number, n, is related to the rooftop basis function center (x,,,y,,)

by a basis function layout scheme.

The Fourier transform of the basis function (2.64) is obtained from the

transforms of the centered pulse and triangle combined with the shift property

in the space domain. The transform relations of interest are
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Figure 2.6. Subsectional basis flmctions for the E, aperture field.

(a) Single rooftop function with center (xn, y,_).

(b) Pulse function layout.

(c) Overlapping triangle functions.
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From the relations given in (2.66), the Fourier transform of E_. is

(2.66)

D2D'sinc sinc2-- ( ) +''') (2.67)

The above equation can be used to find the E U basis functions if the following

substitutions are made: x _ y, a _ fl, b _ d, and nz _ ny.

2.5 Transmission Coefficient

The planar FSS's transmission coefficient as a function of frequency and

incident angle is a principal means of characterizing the behavior of the FSS.

In typical operating modes, a single plane wave is transmitted. However,

at some frequency above resonance, and or at large incident angles 0, other

transmitted modes appear. This effect, which can be compared to grating

lobes in a phased array, 'is called the Wood's Anomaly. Thus, in general a

number of transmission coefficients, corresponding to each propagating mode,

must be calculated. The magnitude of the transmission coefficien_ will be

found by first defining the total transmission coefficient in the spatial domain.

Then, by invoking Parseval's theorem the power transmission coefficient of

each propagating wave will be determined.

Referring to Fig. 2.2, the magnitude of the total transmission coefficient,

[T[, is defined as the power transmitted normally through the FSS, Pt,-_ns,

divided by the power incident normally on the surface, Pine. The expression

for [T] is
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Re f f_p,r(Ea x H.)" (-a,)da

[ T [= Re f f'_"_: ( Ei''* x H/"_) • (-a,)da"
(2.68)

Ea and H. are the total fields in the aperture related by

-jwttH, = V x E.. (2.69)

From the above equation, the magnitudes of the aperture fields are related by

the impedance of free space, Z0

IE.I=ZolH. I. (2.70)

The numerator of (2.68) can be simplified by (2.70) to yield

/;/_f, 1 12Pt,-,., = Zoo I E. cos 8 dx dy.
(2.71)

The total aperture electric field, E., is composed of the electric field in the

plane of the aperture, E, and an unknown Ez component. Given that the

propagation vector for the radiated plane wave is k p, the elcctric field must

satisfy

E. • k p = 0 (2.72)

Ez can be found as

-(E_:k_ + Evk_) (2.73)
E, = kp*

The integral (2.71) can be simplified by the Parseval's relation for periodic

signals [19]
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where -t(0 and Y0 correspond to the period of the function in the z and y-

dlreetions,respectively. The integral in (2.71) can be simplified by Parseval's

theorem with X0 = a and ]I0 = c. The result is

Ptr'n" =-_01 accosO __a [Ea(a(mP)'fl(nP))] 2' (2.75)
(,_p ,.p)

where 0 is the angle between the propagation vector of a given plane wave and

the -z-axis) mad the summation is taken for pairs of (rap, np) corresponding to

propagating modes. The propagating modes are found from the field variation

along the z-axis, e-Jk, z. The propagation constant kz must be positive for

power to be transmitted, where kz is defined as

kz = _/k 2 - e3(m) - fl2(n). (2.76)

Each propagating mode must have the pair (my, nv) satisfying the inequality

k >   (rap) + Z2(np). (2.77)

Returning to (2.68), the denominator, Pi,,_, represents the power incident on

a unit cell. From the incident geometry, shown in Fig. 2.2,

Pine = ac I E i"c I1Hi"e [ cos0 = Zoac [ II in_ 12 cos& (2.78)

The power transmission coefficient for each transmitted mode found by

dividing (2.75) by (2.78) is
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IT(rap,rip) I-- Z3 IH i'_ j2 (2.79)

The phase of the transmission coefficient is the phase change of the inci-

dent wave upon transmission through the FSS in a direction given by a(mp)

and/_(np). If • is the phase of the incident plane wave and • is the phase of

the Fourier transform of the aperture electric field in the direction of interest,

then the phase of the transmission coefficient is • + _.
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CHAPTER 3

LOCALLY PLANAR TECHNIQUE

3.1 Introduction

The LPT, introduced in Chapter 1, is an approximate technique which

applies the infinite FSS theory to general FSS shapes with arbitrary incidence

subject to some constraints. Before beginning the LPT study, it is worth

mentioning the types of FSS problems which have been numerically solved to

date. The finite FSS problem can be solved by calculating each aperture's

field distribution by matrix inversion for a small number of apertures or by

iterative techniques for a large number of apertures [20]. The analysis of the

general curved FSS is quite difficult. The curved FSS analysis presented in

the literature has been for the case of patches located on a cylindrical surface

[21],[22]. The numerical analysis for problems like the hyperbolic subreflector

is extremely complex and it appears the LPT may provide the only feasible

solution for this type of FSS problem.

In this chapter, the LPT will be developed by applying the theory to the

problem of determining the forward scattered field pattern from a generally

shaped inductive FSS with arbitrary illumination. Figure 3.1 illustrates the

overall geometry and defines the coordinates. In Region I, the incident fields

on the FSS are determined from a feed source model. In Region II, the FSS is

broken up into N subarrays, each of which is considered to be locally planar.

The coordinate system (X'(n), Y'(n), Z'(n)) is the local coordinate frame for

each subarray specified by n. Invoking the infinite FSS theory at each subarray

yields the approximate aperture electric field. The forward scattered far fields

are determined in Region III from the Fourier transforms of the aperture fields.

The scattered field at the point (x,,y,, z,) is found by summing up the fields

radiated from each subarray. In Chapter 5, the LPT will be compared with
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Figure 3.1. Locally planar technique geometry overview for the rl th subarray.
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experimental results to determine the limitations of the theory.

3.2. Region I. - Feed Source

The feed source radiates a linearly polarized field with the electric

field oriented parallel to the x-axis. The feed phase center is located at

(xl, Y!, zl)" For the experiment, the feed chosen was a pyramidal horn with

equal beamwidths in the x-z and y-z planes. The experimental feed pattern

was closely modeled in amplitude by a cos"* 61 cos m 02 approximation. Fig-

ure 3.2 illustrates the feed geometry. The calculated and measured feed pat-

tern for a value of m - 2.355 is shown in Fig. 3.3. The solid line is the cosine

numerical approximation. The dashed line and dotted line are the H-plane and

E-plane measured patterns, respectively. In all experiments, the FSS is in the

far field of the transmit horn. Thus, the magnitude and phase of the incident

field at each subarray n on the FSS can be modeled by

E0

cosm 01 cosm 02 e-it'°R("). (3.1)= R(n)

R(n) is the distance from the feed phase center to the location of each subarray.

The incident electric field in the global coordinate frame, (X, Y, Z), is E_"C(n)

where

Ez = Ei"c(n) cos01

E_ = Ei"C(n) sin01 sin02

Ez = -Ei"C(n) sin01 cos 02.

The components of the incident propagation vector are

(3.2)

k, = k0sin01

ky -" k 0 cos 01 sin 02

kz - k0 cos 01 cos 02.

(3.3)
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From Fig. 3.2 the incident magnetic field is

Hi"O(.) = ki"c(-) × Ei"c(.)
Z0 k0 ' (3.4)

where Z0 is the impedance of free space.

3.3. Region II. - Inductive FSS

The general shaped FSS is first divided into N subarrays. Each subarray

is made up of one or more apertures. Ideally, the subarray should be a single

aperture in size. This is because the smaller the subarray, the more accurately

the surface geometry and incident field contour is represented. The main

reason to use subarrays composed of many apertures is to reduce the number

of infinite FSS calculations, and hence the CPU time. In the analysis which

follows, the subarray is composed of a single aperture and N represents the

number of apertures in the FSS.

At each aperture location, shown in Fig. 3.1, the aperture electric field

is calculated from the infinite inductive FSS analysis with the plane of the

FSS positioned tangent to the surface at the aperture center. The necessary

incident field parameters are the incident magnetic field and the propagation

vector. The incident quantities are determined by projecting the incident

vectors found in the previous section into the aperture plane. The procedure is

repeated for each aperture on the FSS. From the aperture fields, the scattered

far fields from the general surface can be determined.

3.4. Region III - Forward Scattered Fields

One method to calculate the transmitted scattered field is by integrating

the magnetic currents in the spatial domain. This type of field calculation was

shown by Ko and Mittra in their study of a parabolic cylinder [4]. However,

since the Fourier transforms of the magnetic currents and aperture electric fields

are available, there is no need to perform a spatial integration to obtain the far

fields. The radiated fields can be found conveniently from the transforms of

35



the electric field basisfunctions. The radiation in a given direction is specified

by the transmissionpropagation vector k. Fig. 3.4 illustrates the components

of the propagation vector in the local aperture plane. Also shown are the 0'

and ¢! direction angles. For a given aperture n, the Fourier transform of the

electric field in the plane of the aperture is

= + (3.5)

where (k_,, k¢) are the transform variables in the local coordinate system

for the n th aperture. The forward scattered far field expressed in the local

coordinates is [23]:

e-Jk°re" [ao,(Ez,(k_,,k_,)cosf' + Ey,(k_,,ky,)sin¢' )Es = jko 27fRo

+ a¢, cos O' (Ey,( kz, , k,, ) cos ¢' - Ez,( k_:, , k,, ) sin ¢') ] .

(3.6)

The forward scattered field region is illustrated in Fig. 3.5. The scattered field

pattern is measured by choosing an angle ¢ in the global coordinate system

and scanning 19 through the desired scan range. The receive probe remains

pointed at the origin of the global coordinate system throughout the scan.

The angle between the propagation vector from an aperture n and centerline

of the horn is 0p(n). At each scan point, (z,, y,, zo), the received electric field

is separated into the 19 and ¢ global coordinates. The receive probe in the

experiment was an open ended cylindrical waveguide with an antenna pattern

modeled by

E(Be) = E0cos"0p (3.7)

E0 is the magnitude of the electric field in the direction of the polarization of

the probe. Depending on which polarization is desired, the horn is rotated for
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Figure 3.5. Forward scattered field receive probe and global coordinate system.
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E0 or E_ orientation. The received electric field, E0 or E_, is the summation of

the contributions from each aperture modified by the receive probe's antenna

pattern. As a note, if the scan angles are large and the surface is sufficiently

curved, there will be a point where some of the apertures will no longer be

visible. The radiation contribution from these apertures is set equal to zero.

3.5. - Locally Planar Theory Summary

The combination of the LPT and the spectral domain FSS analysis is an

efficient technique for finding the approximate radiation pattern for complex

FSS geometries. In Chapter 5, the LPT theory will be compared to results

from an experimental study. The accuracy and applicability of the approach

will be addressed in terms of incident wavefront and FSS curvature.
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CHAPTER4

FREQUENCY RESPONSE OF THE INDUCTIVE FSS:

NUMERICAL AND EXPERIMENTAL RESULTS

4.1 Inductive FSS Design

The FSS was experimentally studied at the NASA Goddard Space Flight

Center (GSFC) from 1987 - 1989 as a part of the thesis study effort. The

results from the studies have proved valuable for comparison with the theories

developed in Chapters 2 and 3. The experiments included frequency response

as well as scattered field pattern measurements. In this chapter, the transmis-

sion coefficient experiments and results for the infinite inductive FSS composed

of rectangular apertures will be presented.

In the past, inductive FSSs have been constructed at GSFC by punching

apertures in an aluminum sheet. In previous years, it was necessary to control

the punching machine by hand to place each aperture in the proper position.

Fortunately, a new computer-controlled punching machine was available at the

shop and this was ideal for fabricating the FSS. The experimental FSS's overall

size was chosen to be .6m square. For the infinite FSS theory to accurately

model the experimental FSS, a large number of apertures is necessary. Initially,

S-band (2-4 GHz) was considered. However, at this frequency only about 12

apertures could fit on the sheet. Moving up in frequency, the range of 9-13

GHz was chosen because a large number (_ 600) of apertures would fit on the

FSS sheet and test equipment was readily available in this band. A frequency

of 11 GHz, the center of the range, was selected as the resonant frequency for

the experimental FSS.

The FSS aperture dimensions and spacings were designed by the infinite

FSS theory presented in Chapter 2 for an incident electric field Ex. The FSS

aperture dimension d, shown in Fig 2.1, was initially chosen to be half a wave-
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length in size at the resonant frequency. The desired frequency response was

one which was narrow enough for easy identification of the resonant frequency.

The aperture size b is the principal means for changing the transmission band-

width. From the theory, tl_e larger the aperture dimension b,-the larger the

transmission bandwidth. The FSS was also designed to place the Wood's

Anomaly well above the resonant frequency. In this way, a single transmitted

plane wave could be measured to characterize the frequency response of the

surface. The Wood's Anomaly frequency depends primarily on the aperture

to aperture spacing a. The Smaller the value of a, the higher the frequency of

the Wood's Anomaly. The choice of a depended primarily on leaving enough

metal between the apertures for structural integrity. A standard punch size

1 _inch) was finally chosen for the FSS aperture toof 12.7 x 4.23mm (_ ×

meet the desired response characteristics. If a non-standard hole size was re-

quired, each aperture would be nibbled out with a small punch leaving an

undesirable rough scalloped edge. The resonant frequency was fine tuned by

varying the dimension c. The dimensions of the apertures and spacings for the

experimental inductive FSSare shown in Fig. 4.1.

The FSS thickness needed to be as small as possible to approximate the

zero thickness theoretical surface. The thinnest aluminum sheet which could be

punched sucessfully on the punching machine was .5 mm thick. This thickness

where _ is the resonant frequency. Thus the experimentalcorresponds to K_,

FSS is a good approximation to the theoretical surface. In later experiments,

thc thin FSS proved its versatility since it could be shaped into a hyperbolic

cylinder and later be released to spring back to a flat surface.

For completeness, the initial test setup for measuring both the transmis-

sion coefficient and scattered fields should be mentioned. The original plan

was to use the GSFC outdoor antenna range for the FSS tests. Gordon Zee-

man and Vic Rinker of the University of Maryland designed and constructed a
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Figure 4.1. Experimental inductive FSS design with ll-GHz resonant fre-

quency. The dimensions are in millimeters and the FSS thickness is .5 mm.
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FSS test stand for use with the outdoor range. A number of difficulties such as

wind, weather, unknown moisture in the wooden stand, and scattering around

the stand caused the outdoor experiment to be abandoned and the experiment

was moved inside.

4.2 Transmission Coefttcient Magnitude: Numerical and Experimen-

tal Results

Figure 4.2 shows a schematic of the FSS experimental configuration used

to measure the magnitude of the transmission coefficient. The FSS is posi-

tioned at an angle _ to the incident plane wave direction and surrounded by

an absorber wall. The orientation of the FSS apertures is given by the co-

ordinate axes shown. The incident electric field from the transmit horn was

directed across the narrow dimension of the aperture. The transmit horn was

placed a distance D = 2.1 m away from the FSS and the receive probe was

placed a distance d = .7 m from the FSS. The receive probe was a waveguide

to coax adapter surrounded by absorber. The test equipment was configured

to sweep over the frequency range of interest and the resulting transmission

coefficient magnitude versus frequency was outputted via a plotter. An initial

test was to determine the dynamic range of the measurement setup. By block-

ing the FSS area and comparing the signal level to the case of no blockage, a

dynamic range of about 20 dB was achieved.

The FSS frequency rcsponse was mcasurcd l=y first calibrating the system

with the FSS removed. The FSS was placed back in the absorber wall and

positioned at an angle _ = 0 for normal plane wave incidence. When the

frequency sweep was taken, strong reflections occurred between the FSS and

the receive probe. The resulting standing wave is seen as an apparent change

of the transmission coefficient as the receive probe is moved through a distance

range of half a wavelength. Figure 4.3 illustrates the variation of the response

due to the standing wave. The receive probe distance was moved in 6-ram
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Figure 4.2. Experimental configuration for measuring the magnitude of the

transmission coefficient. The incident electric field is in the (x, z) plane. The

FSS orientation is given by the x-axis. The FSS dimensions are found in

Fig. 4.1.
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Figure 4.3. Transmission Coemcient variation due to the standing wave. The
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the various curves. The incident electric field is polarized in the z-direction

with 6 = 0 incidence. The FSS dimensions are found in Fig. 4.1.
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steps to produce the different curves shown. The standing wave could be

reduced in magnitude by increasing d because with a fixed receiving antenna

aperture, the power density at the FSS due to scattering from the receive

probe is reduced. Shuley has shown the standing wave pertubation can be

removed from the data by averaging the transmission coefficient as the spacing

is varied over half a wavelength [24]. This is reasonable if one considers the

effect of varying d on the response. The standing wave alternates between

a positive and negative contribution to the receive signal as the distance d is

varied. Hence the receive power is modulated with respect to distance and can

be averaged out.

The solid line in Fig. 4.4 illustrates the averaged experimental transmis-

sion coefficient obtained from Fig. 4.3. The dotted curve is the calculated

frequency response for the FSS using 4 full domain basis functions in each

direction and a large number (101) spectral terms in the inner product sum-

mations. Convergence of the solution was established with this number of

spectral terms. The concept of relative convergence has been investigated as

it applies to the FSS problem. A criterion for the selection of the number of

spectral terms has been suggested [25]. If the number of basis functions in the

z and y directions are given by n_ and ny respectively, relative convergence

states M and N should be chosen to satisfy

n__k = b (4.1a)
M a

n_ d
_ (4.1b)

N c'

where M and N are defined by

M = 2m+l (4.2a)

N = 2 n + 1. (4.2b).

45



0

-1-

< -2

-3

_o -4
fl.

d -5
rr -6

10 12

i Z I"./ i.j ',\\
l . I ;/ ,' ..; ',-,_

10.5 11 11.5

FREQUENCY GHz

Subsectional - Rooftop basis functions

Full domain basis - Relative convergence criterion

Experiment data average

........... Full domain basis - Large number of spectral terms.

Figure 4.4. Experimental and numerical power transmission coefficient as a

function of frequency. The incidcnt electric field was polarized in the x-

direction with incident angle _ = 0. The FSS dimensions are found in Fig. 4.1.
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The constants a and c are the unit cell dimensions and b and d are the aper-

ture dimensions given in Fig. 2.1. The number of basis functions and spectral

terms are integer quantities so the equalities in (4.1) and (4.2) can only be ap-

proximately met. With the experimental FSS geometry and 4 basis functions

in each direction, the relative convergence criteria states M - 48 and N = 8.

The numerical result using (4.1) is shown by the dashed line in Fig. 4.4.

Finally, the subsectional rooftop basis functions were used to solve the

FSS problem. The basis function set consisted of 3 basis functions in x and

3 basis functions in y, for a total of 9 basis functions in each direction. The

resulting matrix equation had dimensions 18 × 18 as compared to 8 × 8 for

the full-domain case. A large number of spectral terms, rn = n = 50, was

chosen for the inner product summations. The numerical results are shown by

the dot-dashed llne in Fig. 4.4. A full discussion of the experimental results

and numerical calculations has been presented by Webb, Grounds, and the

author [26]. The experimental resonant frequency was found to be 11.05 GHz.

The full domain relative convergence solution resonance occurred at about 11.0

GHz and the large number of spectral terms solution resonance occurred at 11.1

GHz. The subsectional basis function solution also resonated at 11.1 GHz. All of

the solutions are extremely close to predicting the experimental resonance and

the accuracy of the experiment could be on the order of the difference between

theory and experiment.

Increasing the angle 6 to a non-zero value results in a shifting down of

the resonant frequency. Figure 4.5 shows the results of the experiment and the

full-domain,large number of spectral termsj numerical solution. Note how the

resonance has shifted down to the 10-GHz region. The frequency of the reso-

nance is quite sensitive to the incident angle 6. In the experiment, the error in

determining 6 was on the order of 2 °. Changing 6 from 30 ° to 32 ° produced

a calculated resonance shift of .175 GHz. Thus, the experimental error could
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be a major part of the difference between experiment and theory.

The experimental FSS discussed represents a very basic filter dement. A

large variety of aperture geometries have been designed to enhance the filter

characteristics of a FSS. Some of the geometries which have been studied in

detail are the crossed dipole, Jerusalem cross, and circular aperture [27],[28].

In addition, a number of FSSs can be cascaded to produce the RF equivalent

of a multi-pole filter [29]. For accurate results, the evanescent modes must be

included in the analysis of the multipleqayered FSSs [30].

4.3 Transmission Coefficient Phase: Numerical and Experimental

Results

While the magnitude of the transmission coefficient is extremely useful for

characterizing the overall response of the FSS, the phase response is equally

as important. For example, if the FSS is used in an antenna system, the FSS

amplitude and phase characteristics must be included for accurate antenna

pattern results to be obtained. Just as was the case for the magnitude of the

transmission coefficient, the phase of the transmitted wave is dependent upon

both frequency and angle of incidence.

Figure 4.6 shows the experimental setup for measuring the phase response

of the inductive FSS. The testing frequency of interest is fed from the signal

generator to the transmit horn. A sample of the signal is attenuated and mixed

with a local oscillator signal from the receiver to provide a 45-MHz IP reference

signal for the receiver. The received signal is picked up by a horn antenna,

mixed with the local oscillator, and sent to the receiver. At the receiver, the

phase difference between the received signal and the reference is measured.

The mixers are located external to the receiver to reduce the large attenuation

of microwave signals in the coaxial cable. Once the signal is downconverted to -{5

MHz, the coaxial cable loss is small and the receiving antenna can be placed

at a distant point from the receiver.
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Figure 4.6. Transmission coefficient phase measurement experimental setup.
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The phase experiment began by establishing a phase reference between

the transmit and receive horn with the FSS removed. The FSS was inserted

between the transmit and receive probes and the phase shift, also called the

insertion phase, was obtained from a meter on the receiver. The procedure

was repeated for a number of frequencies to establish the phase response as a

function of frequency. Figure 4.7 is the measured and calculated phase response

for the F'SS with normal plane wave incidence, 6 = 0. Note at resonance the

phase shift is equal to zero.

A large number of FSS problems can be solved with the experimental and

theoretical results discussed in this chapter given the incident wave is nearly

planar and the FSS is large and flat. In the next chapter, the experimental

and numerical results for the LPT will be presented as a way to extend the

infinite planar theory to general inductive FSS forward scattering problems.
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CHAPTER 5

INDUCTIVE FSS FORWARD SCATTERED FIELD

EXPERIMENTS AND MODELING

5.1. Introduction

Knowledge of the scattered field from a FSS is important for the design

of FSS subreflectors and radomes. Both the reverse (reflected) and forward

(transmitted) scattered fields may be necessary for a given FSS problem. In

this chapter, the forward scattered field is measured and compared with theory

for a number of FSS and feed/receive probe geometries. The forward scattered

field was chosen for study because the FSS could be placed in an absorber

window for good isolation between the feed and receive probes. If the reverse

scattered field had been chosen, at near normal incidence angles, the receive

probe would block the illuminating field making it di_cult to measure the true

backscatter response.

The equipment schematic for measuring the forward scattered field pat-

tern is shown in Fig. 5.1. The basic testing equipment is identical to the

equipment used in the Chapter 4 phase measurement study. An antenna po-

sitioner and chart recorder have been added to complete the test setup. The

testing frequency, if not mentioned otherwise, is 11 GHz. A photograph of

the test equipment is shown in Fig. 5.2. In the middle of the left rack is the

receiver with cables running to the associated equipment. Directly below, on

the bottom of the left rack is the chart recorder. In the center of the console is

the antenna positioner and feed horn polarization controls. A number of the

experiments were performed in a 15 m anechoic chamber when it was available.

The remainder of experiments were conducted in a large laboratory room with

microwave absorber blocks situated in appropriate positions to obtain a near

anechoic environment.
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Figure 5.1. Schematic of the test equipment used to obtain the scattered field

measurements.
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Figure 5.2. Photograph of the Scientific Atlanta antenna pattern measurement

equipment.
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5.2. Scattered Field Experiments with Plane Wave Incidence on a

Planar FSS

The first scattered field experiment, illustrated in Fig. 5.3, was performed

in the anechoic chamber. The transmit horn was placed a distance D = 15 m

from the FSS with polarization shown. The FSS was supported in a large

absorber wall positioned at an angle 5 from the transmit horn axis. The

FSS's orientation is given by the coordinate axes shown. The receive probe,

embedded in absorber, was placed on the anechoic chamber's azimuth rotator

a distance d = .8 m away from the FSS. The receive probe scanned through an

angle 8 to measure the forward scattered pattern. Figure 5.4 is a photograph

of the absorber wall in the anechoic chamber positioned at 6 = -30*. The FSS

has been removed and the receive probe-absorber is visible thru the window

in the absorber wall. Figure 5.5 is a photograph of the receive probe in the

forward scattered field area of the experiment. The receive probe is surrounded

by absorber and the FSS is located in the absorber wall.

In this experiment, the incident wavefront is nearly planar. Thus each

aperture's transmission coefficient is approximately the same. As a first ap-

proximation, the forward scattered field from the FSS can be calculated by the

array factor. The array factor pattern is given by a superposition of the fields

from point sources located at the center of each aperture. The point sources

are excited with an amplitude and phase corresponding to the incident field at

the location of the point source. Since the element pattern is broad compared

to the array factor, the latter dominates the scattered field response.

The FSS was masked with conducting foil to cover all the apertures except

for a strip,3 apertures wide,centered along the y-axis. By choosing a limited

number of apertures, the sidelobe structure of the array became distinct and

comparison of theory and experiment was made much easier. Figure 5.6 shows

the scattered field experimental and numerical results for the case of 3 aper-
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Figure 5.3. Schematic of the anechoic chamber experiment for plane wave in-

cidence - planar FSS forward scattered field measurements. The FSS apcrturc

orientation is given by Fig. 2.1.
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Figure ,5.4. Absorber wall positioned at _ = -30 ° in the anechoic chamber.

The FSS has been removed and the receive probe area is visible.
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Figure 5.5. Photograph from the transmitted scattered field region area of tile

experiment showing the FSS and the receive probe on the rotating positioner.
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Figure 5.6. Forward scattered field pattern for 5 = 0 plane wave illumination on

a FSS with 3 apertures in the x-direction and 22 apertures in the g-direction.

The test frequency was 11 GHz, O is in the (x,y) plane, and the incident

electric field is Ex.
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tures in the z-direction and 22 apertures in the v-direction. The FSS was

positioned at an angle 6 = 0. The experimental scattered field measurement is

shown by the solid line. The dotted line is the array factor approximation. The

dashed line is the result using the LPT approach from Chapter 4. The LPT

takes into account the aperture's element pattern resulting in a close agreement

between the LPT results and the experimental data. In all of the scattered

field experiments, the maximum received power from the experiments and nu-

merical calculations is normalized to 0 dB. A number of other experiments

with different aperture masking and orientation angle 6 were explored with

the array factor approximation method. In general, the array factor predicted

the scattered field peaks and nulls quite well. The results are presented in

the paper Finite and Infinite Frequenc_l Selective Surfaces: Bzperiment and

Models by Caroglanian et al. [31].

In the forward scattering experiment discussed, only a single plane wave

was incident upon the FSS surface. To explore the forward scattered field

response of the FSS for plane waves incident at different angles, the experiment

illustrated in Fig. 5.7 was configured. In this setup, the feed remained the same,

however, now both the FSS and receive probe rotate as a unit on the azimuth

positioner with the probe axis perpendicular to the FSS. The forward scattered

field is measured by rotating the azimuth positioner through an angle 0. The

phased array model is no longer valid because at each incident angle 0, the

amplitude and phase response of the FSS is different. Also, since the receive

probe has been moved up to d = .114 m away from the F'SS, the receive probe

and FSS aperture patterns need to be included in the calculations. The LPT

method takes into account the receive probe and aperture patterns and is the

technique studied for the remainder of the chapter. The FSS was reduced in

size by masking the surface with conducting tape so it was 17 apertures wide

in the z-direction and 8 apertures wide in the v-direction. The scattered field
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Figure 5.7. Experimental configuration for measuring the scattered field from

the FSS with the incident plane wave sweeping through an angle 0. Note the FSS

and receive probe both rotate on the azimuth positioner. The FSS oricntation

is given in Fig. 2.1.
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Figure 5.8. Forward scattered field as a function of incident angle O for a FSS

with 17 apertures in the x-direction and 8 apertures in the y-direction. The

operating frequency is 11 GHz. The test setup is shown in Fig. 5.7 with

D = 15m and d = .l14m. The FSS dimensions are found in Fig. 4.1 and the

incident electric ficld is E..
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Figure 5.9. Forward scattered field as a function of incident angle 0 for a FSS

with 17 apertures in the z-direction and 8 apertures in the y-direction. The

operating frequency has been changed to 10 GHz. The test setup is shown in

Fig. 5.7 with D = 15m and d = ,l14m. The FSS dimensions are found in

Fig. 4.1 and the incident electric field is E_.
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pattern measuredat 11 GHz is shown by the shaded area in Fig. 5.8. The two

lines bounding the shaded region are data from the positive and negative 8

scans. By shading in the difference between the two curves, the non-symmetry

of the experimental data is revealed. The LPT calculation is shown by the

dashed line. To check the behavior of the theory with respect to frequency,

the experiment was repeated at 10 GHz. Figure 5.9 shows the experimental

and LPT results. Note how the main lobes have flattened and there is a

transmission peak at O = 30*. This peak corresponds to the transmission

maximum found in the infinite FSS study illustrated in Fig. 4.5 for an incidence

angle of 30 ° .

The experiments in this section have explored the scattered field from the

planar FSS illuminated by a plane wave. The results in this section were quite

good because the incident wavefront was nearly planar and the surface was

flat. However, the LPT can address non-planar incidence as well as curved

FSSs. In the next two sections, the capabilities and limitations of the LPT

will be studied in terms of incident wavefront and FSS curvature.

5.3. Study of the LPT Accuracy as a Function of Incident Field

Curvature

The LPT assumes the incident field can be approximated by a number of

plane waves incident on different regions of the FSS. An important question is

how does the accuracy of the forward scattered field depcnd on tile incidcnt field

wavefront? As the incident plane wave bccomes non-planar, tile infinite FSS

theory invoked at each subarray becomes a progressively poorer approximation

to the actual surface response. In this section the limitations of the LPT

accuracy due to non-planar illumination will be studied by an experimental

and numerical investigation of the forward scattered ficlds from a planar FSS

with spherical wave illumination. The experimental and LPT results will be

compared as the distance between the feed source and FSS is reduced until a
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degradation in the numerical analysis is observed.

Figure 5.10 illustrates the experimental setup for the study. The FSS

was masked off to be 11 x 8 apertures wide in the x and y-directions, respec-

tively. The receive probe was positioned at d -- .8 m from the FSS. The choice

of receive probe distance was arbitrary. However, there are two reasons for

choosing a large value of d. The first reason is to reduce the standing wave

effect discussed in Chapter 4 for the angles around 0 -- 0 °. The second rea-

son is the nulls in the experimental scattered field pattern fill as the receive

probe is moved closer to the FSS. Thus, the larger d value provides a better

resolution of the scattered field pattern nulls. This makes it easier to compare

theory and experiment. The experiment was performed in a large laboratory

room with absorber blocks placcd around the experiment. Figure 5.11 is a

photograph of the feed source. The feed was a pyramidal horn placed in an

absorber enclosure. Figure 5.12 shows a view taken from behind the feed horn

looking at the FSS placed in the absorber wall. The feed was mounted on

a tripod and was moved to various locations to investigate the effect of dif-

ferent spherical wavefront curvatures on the experimental and LPT response.

The masking of the apertures shown in the photo is different from the actual

masking used in the experiment. Figure 5.13 is a view of the scattered field

area of the experiment. The receive probe consisted of an open ended circular

waveguide with a ground plane choke ring surounded by absorber. While not
:

obvious from the photo, the rotating positioner's center of rotation is directly

below the FSS. Also visible on the absorber wall is a pair of wooden forms

used to bend the FSS into a hyperbolic cylinder for non-planar testing.

The experiment began by placing the feed at a distance D = .76 m. Figure

5.14 shows the experimental and LPT results for D = .76m. The sidelobe

peaks and nulls are well predicted for this feed to FSS distance. The feed was

moved in to D = .46 m and the experiment was repeated. The results, given in
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Figure 5.10. Experimental configuration for measuring the scattered field from

the FSS to determine the limitations of the LPT in terms of incident field

curvature. The distance D will be varied in the experiment. The receive

probe distance remains t]×ed at d = .8m.
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Figure 5.11. Phc_tograph of tlle pyramidal horn tr_mslnit ant_'nna. This setup

was also t.he rec(,ive prol)e and FSS support for the exp('rinlent illustrated in

Fig. 5.7.
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Figure 5.12. Photograph of experiment looking from the rear of the transmit

horn to the FSS positioned in the absorber wall. \Vhen the photo was taken

the FSS was masked for the hyperbolic cylinder tests presented in the next

section.
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Figure 5.13. Photogral_h of the forward scattered field region sh_,wing the re-

ceive probe on the rotating arm. Tile positioner's center of rotation is located

directly below the center of tile FSS. Also visible is a wooden template used

to form the hyperbolic cylinder FSS geometry discussed in the next section.
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Figure 5.14. Scattered field experimental result for the configuration given in

Fig. 5.10. The transmit horn is located at D = .76m. The incident electric

field is polarized along the x-axis and the frequency is 11 GHz. The FSS

dimensions are found in Fig. 4.1.
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Figure 5.15. Forward scattered field for D = .46 In. At this distance, the LPT

provides satisfactory prediction of the experimental sidelobe peaks and nulls.

The incident electric field is polarized along the x-axis and the frequency is 11

GHz. The FSS dimensions are found in Fig. 4.1.
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Fig. 5.15, show the main lobe and sidelobe structure are still well predicted.

However, the LPT null at the 30* scan angle is filling. Note at this illumination

distance the transmission response from 0 - 25* is predicted remarkably well.

This distance represents the closest the feed could come to the FSS and still

retain good agreement between the LPT and experiment. Figures 5.16 and 5.17

show the scattered field results for D = .3m and D = .13rn, respectively. At

D = .3 m the experimental null at 30* is no longer predicted and at D = .13 m,

the LPT calculation degrades even further. The failure of the LPT is a gradual

process and the determination of the distance D is dependent on the degree

of accuracy desired.

The loss of accuracy in the LPT is due to the difference in the spherical

wavefront's phase distribution over the FSS as compared to the phase of a

plane wave. To visualize the phase error between the plane and spherical

wavefronts, consider Fig. 5.18. The transmit horn is positioned at a distance

D from the FSS represented as the horizontal line. A unit cell of the FSS is

given by the dimension W. The dotted line P represents the wavefront from

a plane wave incident on the FSS center. Due to the proximity of the feed,

there is phase error _ in degrees between the center of the unit cell and the

edge given by the expression

= 360 (L- D) (5.1)
A

where A is the resonant wavelength for the FSS. Also shown in the figure is

the case of non-normal incidence upon the FSS, illustrated by the subscripted

variables. By considering the geometry, one can find the phase difference

between the center and edge of the off-axis unit cell is always less than the

phase difference for the on-axis case. Figure 5.19 is a graph of the phase error

between a spherical and plane wave illumination for the experimental unit cell.

The thin vertical lines represent the distances at which each experiment was
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Figure 5.16. Forward scattered field for D = .3 m. The 30 ° experimental null is

no longer predicted by the LPT. The incident electric field is polarized along

the x-axis and the frequency is 11 GHz. The FSS dimensions are found in

Fig. 4.1.
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Figure 5.17. Forward scattered field for D = .13m. Only the first 20 ° of the

pattern is predicted. The incident electric field is polarized along the z-axis

and the frequency is 11 GHz. The FSS dimensions are found in Fig. 4.1.

75



FSS Hw-'-I
I I "_,J I

%%

L

7' TRANSMITHORN

el

Figure 5.18. Diagranl for calculating the phase error over a unit cell due to a

spherical source located a distance D from the FSS.
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performed. Also shownfor eachdistance is the equivalent distance measured

in resonant wavelengthsA. From the experimental and numerical results, the

region where the LPT theory is no longer valid occursat around D = .46 m.

At closer distances, the phase error rises rapidly resulting in the LPT and

experimental scattered field differences. So, for the experimental planar FSS,

the LPT and experimental results are in good agreement until a phase error

over a unit ce!l of about 2* or 3* occurs.

5.4. Study of the LPT Accuracy as a Function of Surface Curvature

The LPT accuracy is expected to deteriorate with increasing curvature

since the infinite planar solution for each subarray becomes less accurate. The

limitation of the LPT due to surface curvature was studied by considering the

forward scattered field from a set of hyperbolic cylinders of varying curvature.

The hyperbolic cylinders, illustrated in Fig. 5.20, are independent of V- The

equation for the hyperbola in the z, z plane, for z as a function of z, is

(5.2)

J

Several hyperbolic cylinders identified by the notation H0-H3 were studied.

The hyperbolic parameters ha and hb for each curve are given in Table 5.1.

The hyperbolas were formed by taping the FSS to a wooden form as was

seen in Fig. 5.12. The FSS was masked off to be 29 x 8 apertures in the

z and y-directions, respectively. Figure 5.20 also illustrates the hyperbolic

cylinde r experimental configuration. The transmit feed horn was positioned

at a distance D = 1.75 m to avoid any non-planar wave illumination problems.

The receive probe distance of d = .8 m remained the same as in the previous

experiment.

The first hyperbolic cylinder forward scattered field experiment was for

the case of zero curvature. The experimental and computed scattered field

results are shown in Fig. 5.21. As expected, the theory and experiment are in
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Figure 5.20. Hyperbolic cylinder FSS geometry. H0-H3 represent the different

FSS curvatures studied. The hyperbolic cylinder is extended parallel to the y-

axis. The hyperbolic parameters are given in Table 5.1. The FSS orientation

is given by the z-axis.
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Curve

HO

H1

H2

H3

h a

0

.217

.217

.217

h b

.5O8

.281

.178

Table 5.1. Table of hyperbola parameters for the different hyperbolic cylinders

studied. The parameter dimensions are in meters.
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Figure 5.21. Forward scattered field from the hyperbolic cylinder H0. The FSS

is flat in this case. The incident electric field is polarized along thc x-axis and

the frequency is 11 GHz. The FSS dimensions arc found in Fig. 4.1.
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good agreement. Figure 5.22 is the result for hyperbolic cylinder H1. The main

lobe was well predictedg however, the sidelobes beyond 30 ° are not predicted

by the LPT. The large shaded region is due to the rapid oscillation of the

sidelobe structure. Figure 5.23 is the case for hyperbolic cylinder H2. The

main beam is well predicted and the first sidelobe is predicted in position but

the LPT exhibits a large error in magnitude. Once again after about 30 °

the measured sidel0bes are greater than the LPT calculated values. Finally,

Fig. 5.24 shows the results from hyperbolic cylinder H3. The curvature in this

case is becoming large and thus there should be no surprise that indeed the

theory and experiment differ. Note that even at this curvature, the main beam

and first null are predicted quite well.

The hyperbolic cylinder results do not show the gradual decrease in ac-

curacy as was seen in the non-planar illumination study. Rather, the response
?

out to 30 °, or the mainbeam in the case of H3, remained good for all curvatures

studied_ At Scans greater than about 30 °, the LPT was poor in predicting the

experimental response.
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Figure 5.22. Forward scattered field from the hyperbolic cylinder HI. The LPT

and experiment are in good agreement out to 30 ° after which the LPT result

falls below the oscillating experimental results. The incident electric field is

polarized along the z-axis and the frequency is 11 GHz. The FSS dimensions

are found in Fig. 4.1.
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Figure 5.23. Forward scattered field from the hyperbolic cylinder H2. The main

lobe is predicted well however tile experimental sidelobe level is higher than

the LPT cMculation. The incident electric field is polarized along the x-axis

and the frequency is 11 GHz. The FSS dimensions are found in Fig. 4.1.
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Figure 5.24. Forward scattered field from the hyperbolic cylinder H3. The

main lobe and first sidelobe are predicted well. However the large curvature in

this case is causing problems with the accuracy of both theory and experiment.

The incident electric field is polarized along the z-axis and the frequency is 11

GHz. The FSS dimensions are found in Fig. 4.1.
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CHAPTER6

CONCLUSIONS

As a result of the experimental FSS study, the infinite FSS numerical

solution has been verified for both the amplitude and phase of the transmis-

sion coefficient. The results show both full domain and subsectional rooftop

basis functions can accurately predict the frequency response of the FSS. No

evidence was found to support the use of a relative convergence criterion:

The forward scattered field experiments revealed for a single plane wave

incidence on the planar FSS that the transmitted field can be approximated

by the array factor. If the angle of incidence changes during the scan of

the planar FSS, the forward scattered field is well predicted by the LPT.

The limitation of the LPT in terms of incident wavefront and FSS surface

curvature was determined by comparisons of theory with experimental results.

For the planar FSS, with spherical wave illumination, the maximum difference
: : _ ±: 5 :

in phase between the center and edge of the unit cell for good agreement

between the LPT model and experimental results was found to be about 2 or

3 degrees. The experiments to determine the effect of surface curvature on the

LPT accuracy did not show a simple degradation in accuracy as the surface

was changed to different hyperbolic curvatures. Rather, for all the hyperbolic

cylinders studied, the LPT predicted the response accurately near the main

beam followed by large errors in the sidelobes beyond 30 °.

The results from the FSS study can be applied to determine if the LPT can

be used in the design of a specific FSS systems. If the FSS aperture geometry

is much different than the experimental FSS used in the experiments, the LPT

experiments discussed would need to be repeated to determine the appropriate

guidelines for the particular surface.
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