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FOREWORD

This report is a revision of the document “MASTERFIT — 1987", dated December 15, 1987,
which it supersedes. A number of model revisions and improvements were made during 1988-91.
They are briefly enumerated in the abstract. The computer code was also considerably revised during
1088-91 to facilitate solution of large-scale problems. The new software still adheres to the basic
MASTERFIT structure but, to prevent confusion concerning practical details, is named MODEST
(for MODel and ESTimate). The present document corresponds to MODEST version 137, which has
been in use since June, 1991. The author hopes to publish revisions of this document in the future,
as modeling improvements warrant.
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ABSTRACT

This report is a revision of the document “MASTERFIT — 19877, dated December 15, 1987,
which it supersedes. Changes during 1988-91 included introduction of the octupole component of
solid Earth tides, the NUVEL tectonic motion model, partial derivatives for the precession constant
and source position rates, the option to correct for source structure, a refined model for antenna
offsets, modeling the unique antenna at Richmond, Florida, improved nutation series due to Zhy,
Groten, and Reigber, and reintroduction of the old (Woolard) nutation series for simulation purposes,
Text describing the relativistic transformations and gravitational contributions to the delay model has
also been revised in order to reflect the computer code more faithfully.
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SECTION 1

INTRODUCTION

In applications of radio interferometry to geodynamics and astrometry, observed values of delay
and delay rate obtained from observations of many different radio sources must be passed simulta-
neously through a multiparameter estimation routine to extract the gignificant model parameters. As
the accuracy of radio interferometry has improved, increasingly complete models for the delay and
delay rate observables have been developed. This report describes the current status of the delay
model used in the Jet Propulsion Laboratory multiparameter estimation program “MODEST”, which
is the successor to the “MASTERFIT” code developed at JPL in the 1970s. It is assumed that the
reader has at least a cursory knowledge of the principles of VLBI. Some references which provide an
introduction are the book by Thompson, Moran, and Swenson (1986), and two reports by Thomas
(1981, 1987).

The delay model is the sum of four major model components: geometry, clock, troposphere,
and ionosphere. Sections 2 through 5 present our current models for these components, as well as
their partial derivatives with respect to parameters that are to be adjusted by multiparameter fits
to the data. The longest section (2) deals with the purely geometric portion of the delay and covers
the topics of time definitions, tidal and source structure effects, coordinate frames, Earth orientation
(universal time and polar motion), nutation, precession, Earth orbital motion, wave front curvature,
gravitational bending, and antenna offsets. Section 8 describes the technique used to obtain the delay
rate model from the delay model. Section 7 gives the values of physical constants used in MODEST,
while section 8 outlines model improvements that may be required by more accurate data in the
future.



SECTION 2

GEOMETRIC DELAY

The geometric delay is that interferometer delay which would be measured by perfect instrumen-
tation, perfectly synchronized, if there were a perfect vacuum between the observed extragalactic or
Solar-System sources and the Earth-based instrumentation. For Earth-fixed baselines, this delay can
be as large as 20 milliseconds, changing rapidly (by up to 1.5 usec per second) as the Earth rotates,
In general the geometric component is by far the largest component of the observed delay. The main
complexity of this portion of the model arises from the numerous coordinate transformations necessary
to relate the reference frame used for locating the radio sources to the Earth-fixed reference frame in
which station locations are represented.

In the following we will assume, unless otherwise stated, that “celestial reference frame” means
a reference frame in which there is no net proper motion of the extragalactic radio objects which
are observed by the interferometer. This is only an approximation to some truly “inertial” frame.
Currently, this celestial frame implies a geocentric, equatorial frame with the equator and equinox of
J2000 as defined by the 1976 IAU conventions, including the 1980 nutation series (Seidelmann, 1982,
and Kaplan, 1981).

In this equatorial frame, some definition of the origin of right ascension must be made. We will
not discuss that in this report, since one definition is at most a rotation from some other definition,
and can be applied at any time. The important point is that consistent definitions must be used
throughout the model development. The need for this consistency will, in all probability, eventually
lead to our defining the origin of right ascension by means of the JPL planetary ephemerides, followed
by our using interferometric observations of both natural radio sources and spacecraft at planetary
encounters as a means of connecting the planetary and the radio reference frames (Dewey, 1991,
Newhall et al., 1986).

Also, unless otherwise stated, we will mean by “terrestrial reference frame” some reference frame
tied to the mean surface features of the Earth. Currently, we are using a right-handed version of the
CIO reference system with the pole defined by the 1903.0 pole. In practice, this is accomplished by
defining the position of one of the interferometric observing stations (generally DSS 14 at the Goldstone
Deep Space tracking complex), and then by measuring the positions of the other stations under a
constraint. This constraint is that the determinations of Earth orientation agree on the average with
the International Earth Rotation Service (IERS) (1991) [and its predecessor, Bureau International
de ’Heure (BIH) (1983)] measurements of the Earth’s orientation over some substantial time interval
(= years). This procedure, or its functional equivalent, is necessary since the interferometer is sensitive
only to the baseline vector as measured in the celestial frame. The VLBI technique does not have
any preferred origin relative to the structure of the Earth. The rotation of the Earth does, however,
provide a preferred direction in space which can be associated indirectly with the surface features of
the Earth.

In contrast, geodetic techniques which involve the use of artificial satellites, or the Moon, are
sensitive to the center of mass of the Earth as well as the spin axis. Thus, those techniques require
only a definition of the origin of longitude. We anticipate that laser ranging to the retroreflectors on
the Moon (LLR) will allow a realizable practical definition of a terrestrial frame, accurately positioned
relative to a celestial frame which is tied to the planetary ephemerides. The required collocation of
the laser and VLBI stations is being provided by Global Positioning Satellite {(GPS) measurements
of baselines between VLBI and laser sites starting in the late 1980s (e.g., Ray et al., 1991). Careful
definitions and experiments of this sort will be required to realize a coordinate system of centimeter
accuracy. In the meantime, we must establish interim coordinate systems carefully enough so that we
do not degrade the intrinsic accuracy of the interferometer data by introducing “model noise”.

The relativistic delay formulation presented in this report is the same as that in an earlier report
(Sovers and Fanselow, 1987) except for a small change in the gravitational correction. Among the
estimated parameters, only baseline length is affected by this change, in that all distances are increased
by the same factor of & 2 parts in 10®. Special relativistic terms in the model delay have not been
changed from the earlier report.



Except for subcentimeter relativistic complications caused by the locally varying Earth potential
(as discussed below), calculation of the VLBI model for the observed delay can be summarized as
follows:

1. Specify the proper locations of the two stations as measured in an Earth-fixed frame at the time
that the wave front intersects station #1. Let this time be the proper time t] as measured by a
clock in the Earth-fixed frame.

2. Modify the station locations for Earth-fixed effects such as solid Earth tides, tectonic motion,
and other local station motion.

3. Transform these proper station locations to a celestial coordinate system with the origin at the
center of the Earth, but moving with the Earth. This is a composite of 10 separate rotations,
represented by a rotation matrix Q(t).

4. Perform a Lorentz transformation of these proper station locations from the geocentric celestial
frame to a frame at rest relative to the center of mass of the Solar System, and rotationally
aligned with the celestial geocentric frame.

5. In this Solar-System-barycentric frame, compute the proper time delay for the passage of the
specified wave front from station #1 to station #2. Correct for source structure. Also, add in the
effective change in proper delay caused by the differential gravitational retardation of the signal.

6. Perform a Lorentz transformation of this SSB geometric delay back to the celestial geocentric
frame moving with the Earth. This produces the adopted model for the geometric portion of the
observed delay.

7. To this geometric delay, add the contributions due to clock offsets, to tropospheric delays, and
to the effects of the ionosphere on the signal (see sections 3 through 5).

As indicated in step 5, the initial calculation of delay is carried out in a frame at rest relative
to the center of mass of the Solar System (SSB frame.) First, however, steps 1 through 4 are carried
out in order to relate proper locations in the Earth-fixed frame to corresponding proper locations
in the SSB frame. Step 4 in this process Lorentz transforms station locations from the geocentric
celestial frame to the SSB frame. This step incorporates special-relativistic effects to all orders of v/c.
In the presence of gravity, this transformation can be viewed as a special relativistic transformation
between proper coordinates of two local frames (geocentric and SSB) in relative motion. For both
frames, the underlying gravitational potential can be viewed approximately as the sum of locally
constant potentials caused by all masses in the Solar System. The complications caused by small local
variations in the Earth’s potential are discussed below. Initial proper delay is then computed (step 5)
in the SSB frame on the basis of these SSB station locations and an a priort SSB source location. A
small proper-delay correction is then applied to account for the differential gravitational retardation
introduced along the two ray paths through the Solar System, including retardation by the Earth’s
gravity. A final Lorentz transformation including all orders of v/c then transforms the corrected SSB
proper delay to a model for the observed delay.

Since the Earth’s potential varies slightly across the Earth (AUg /c? = 4 x 1071° from center
to surface), the specification of proper distance is not as straightforward with respect to the Earth’s
potential as it is with respect to the essentially constant potentials of distant masses. To overcome this
difficulty, output station locations are specified in terms of the “TDT spatial coordinates” (Shahid-
Saless et al., 1991) used in Earth-orbiter models. Baselines modeled on the basis of this convention
deviate slightly in length (< 2 cm) from the proper values. A proper length that corresponds to a
modeled baseline can be obtained through appropriate integration of the local metric (Shahid-Saless
et al., 1991). In practice, such a conversion is not necessary since comparison of baseline measurements
obtained by different groups would be carried out in terms of TDT spatial coordinates.

The current model has been compared (Thomas, 1991, Treuhaft, 1991) with the “1-picosecond”
relativistic model for VLBI delays developed by Shahid-Saless et al. (1991). When reduced to the same
form, the model presented here is identical to that model at the picosecond level, term by term, with
one exception. Treuhaft and Thomas (1991) show that a correction is needed to the Shahid-Saless
et al. SSB system modeling of the atmospheric delay. This correction changes the Shahid-Saless et al.
result by as much as 10 picoseconds. The remainder of this section provides the details for the first
six steps of the general outline above.



2.1 TIME INTERVAL FOR THE PASSAGE OF A WAVE FRONT
BETWEEN TWO STATIONS

The fundamental part of the geometric model is the calculation (step #5 above) of the time
interval for the passage of a wave front from station #1 to station #2. We actually do that calculation
in a coordinate frame at rest relative to the center of mass of the Solar System. This part of the model
is presented first to provide a context for the subsequent sections, all of which are heavily involved
with the details of time definitions and coordinate transformations. We will use the same subscript
and superscript notation which is used in section 2.7 to refer to the station locations as seen by an
observer at rest relative to the center of mass of the Solar System.

First, we calculate the proper time delay that would be observed if the wave front were planar.
Next, we generalize this calculation to a curved wave front, and finally, we take into account the
incremental effect which results from the fact that we must consider wave fronts that propagate
through the various gravitational potential wells in the Solar System.

2.1.1 Plane Wave Front

POSITION OF STATION #2
WHEN WAVE FRONT CROSSES
IT AT TIME t;

el 7% »

['z(tz )'t2 ] [a(t,),t.,]

B,[t;-t,]  POSITION OF
STATION #2
AT TIME t,

POSITION OF STATION #1
WHEN WAVE FRONT CROSSES
IT AT TIME t,

Figure 1. Geometry for calculating the transit time of a plane wave front

Consider the case of a plane wave moving in the direction, ]?, with station 2 having a mean
velocity, 85, as shown in figure 1. As mentioned above, distance and time are to be represented as
proper coordinates in the SSB frame. The speed of light, which is ¢ in this representation, is set equal
to 1 in the following formulation. The proper time delay is the time it takes the wave front to move
the distance ! at speed c. This distance is the sum of the two solid lines perpendicular to the wave
front in figure 1:

t5—tr=k-[ra(t) —ri(t)] + K- B[t — ta] (2.1)
This leads to the following expression for the geometric delay:
_ K- [ra(t)) —a(ty)]
1-k-8,

t—t; (2.2)
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The baseline vector, rz(t;) — ry(t1), is computed on the basis of proper station locations calculated
according to Eq. (2.155) below.

2.1.2 Curved Wave Front

In the case of a signal generated by a radio source within the Solar System it is necessary to
include the effect of the curvature of the wave front. As depicted in figure 2, let a source irradiate two
Earth-fixed stations whose positions are given by r;(t) relative to the Earth’s center. The position of
the Earth’s center, R.(¢1), as a function of signal reception time, ¢, at station #1 is measured relative
to the position of the emitter at the time, t., of emission of the signal received at time t;. While this
calculation is actually done in the Solar System barycentric coordinate system, the development that
follows is by no means restricted in applicability to that frame.

[-'}2(t’2 )-f‘z 1 STATION #2

EARTH
CENTER

SOURCE

STATION #1

Figure 2. Geometry for calculating the transit time of a curved wave front

Suppose that a wave front emitted by the source at time f. reaches station #1 at time ¢; and
arrives at station #2 at time t5. The geometric delay in this frame will be given by:
7=ty —t1 = [Ra(t3)] — [Ra(t1)] (2.3)
where all distances are again measured in units of light travel time. If we approximate the velocity of
station #2 by
Ra(t3) — Rz(t1)
p= B2 (2.4
and use the relation

Ri(t1) = R.(t1) +1i(t1) (2.5)



we obtain:

7= |Re(t1) +r2(t1) + Aar| — [Re(t1) +r1(t1)|

= R.(t:) [ |R. +82] - [Rc + 8] ] (2.6)
where (td) + £
s = r—"’—}fc(—tl)i (2.7)
and
o - 20 (2.8

For ¢, and 3 < 1074, we need to keep only terms of order € in a sixteen-place machine in order to
expand the expression for 7 in equation (2.6). This gives us:

R () nn)] | RA()
[1 —Re By 2[1-Rcb)

(2.9)

where to order &3
~ 2 ~ 2 A 3 A~ ~ 3 ~
AC(T) = [Eg - Ef] - [(Rc'lz) -+ (Rc"l) + (RC'CQ) -— (Rc‘tz)ég - (Rc"l) -+ (R,_n‘l)e’f] (210)

The first term in (2.9) is just the plane wave approximation, i.e., as R, — oo, ﬁ.c — ];, with the
second term in brackets in (2.10) approaching zero as r?/R.. Given that the ratio of the first term
to the second term is ~ r/R., wave front curvature is not calculable in a sixteen-place machine for
R > 10'% x r. For Earth-fixed baselines that are as long as an Earth diameter, requiring that the
effects of curvature be less than 0.01 cm implies that the above formulation (2.10) must be used for
R < 1.4 x 105 km, or approximately 150 light years.

The procedure for the solution of (2.9) is iterative for £ < 1074, using the following:

RcAc(Tn—l)

T = 10 + —— 2l (2.11)
211 — RAy)
where
To = T7plane wave (2‘12)
For € > 10™4, directly iterate on the equation (2.6) itself, using the procedure:
Tn = Ro|Re + 62(ra—1)| — Ro|R. + &1 (2.13)

where again 7o is the plane wave approximation.
2.1.8 Gravitational Delay

Because a light signal propagating in a gravitational potential is retarded relative to its motion
in field-free space, the computed value for the differential time of arrival of the signals at r;(t;) and
r2(t3) must be corrected for gravitational effects. For the geometry illustrated in figure 3, the required
correction to coordinate time delay is given by Moyer (1971} as:

(L+Yrpw)tp [ In [r. +ra(t3) + r.z] In [M} ] (2.14)

c® r, + rZ(t;) — Ts2 rs + "l(tl) — Ta1

Acp =

where r,; is defined as:
roi = |ri(ts) — o (te)] (2.15)

6



Here ¥, p, is the v factor in the parametrized post-Newtonian gravitational theory (e.g. Misner et al.,

1973):
1+w

Teprn = '2_+'u—) (2'16)

where w is the coupling constant of the scalar field. For general relativity, Yepy = 1, t.6., w — 00.
However, we allow 7., to be an estimated parameter so that by setting v,,, = —1, we also have
the option of “turning off” the effects of general relativity on the estimate of the delay. This proves
useful for software development. The gravitational constant, u,, is

pp = Gmy, (2.17)

where G is the universal gravitational constant, and my is the mass of the pth gravitating body.

ACTUAL RAY PATH

4,
X
RECEIVER 49)}_

SOURCE

Figure 3. A schematic representation of the geodesic connecting two points in the
presence of a gravitational mass

Dropping the time arguments in (2.14), we have:

Acy = (14 7Vprw)Hp 'ln“r, +r2+ r,g] [r, +r - r,IH (2.18)

3 re tr1+7s Ty T2 T2

This formulation is fine for r, &~ r; & r,;, but can be put in a computationally better form for the
case of distant sources with closely spaced VLBI receivers, i.e., [rz —r1|/r1 — 0,r;/r, — 0. For these
sources, expand Ag, in terms of r;/r,, r,i/rs, and make use of the relationship

roi = [r2 —2r, -T; + r?]ll2 rr,fl -1 T, (2.19)
This leads to
(1+Yepn)n ri4r-T
A — PNIFP .1 4
Gp 3 o e (2.20)



for ry/r, — 0.
If we further require that [r2 — r;|/r; — 0, and make use of

ro=r; + Ar (221)

then:

1/2
ry+% T, =1 [1+ 2T - Ar/ri + (Ar/rl)z] +r T, + Ar T,

sri(1481Ar/ry) +11 -8, + Ar -5, (2.22)
In the limit of Ar/r; — O:
re(1+%;-%F,) =2 ri(1+7% -F,)+Ar- (F1+7,) (2.23)

Substituting into (2.20) and expanding the logarithm, we obtain:

_ (1 + '7??1}1)“? . (r2 - rl) ’ (?1 +fa)

A = -~ ~
Gr C3 T1(1+l‘1 '1',)

(2.24)

Using whichever of these three formulations (2.18, 2.20 or 2.24) is computationally appropriate,
the model calculates a correction Ay for each of the major bodies in the Solar System (Sun, planets,
Earth, and Moon).

Before the correction Agp can be applied to a proper delay computed according to Eq. (2.2}, it
must be converted from a coordinate-delay correction to a proper-delay correction appropriate to a
near-Earth frame. For such proper delays, the gravitational correction is given to good approximation
by

Agp=Acp = (1+7ppu)UT (2.25)

where 7 is the proper delay given by Eq. (2.2), and where U is the negative of the gravitational
potential of the given mass divided by ¢?, as observed in the vicinity of the Earth (U is a positive
quantity). The Ur term is a consequence of the relationship of coordinate time to proper time, and
the y,.,Ur term is a consequence of the relationship of coordinate distance to proper distance.

The total gravitational correction used is:

N
&= 4% (2.26)
p=1

where the summation to N is over the major bodies in the Solar System. For the Earth, the
(1 + ~4ppn)Ur term in Eq. (2.25) is omitted if one wishes to conform with the “TDT spatial coordi-
nates” used to reduce Earth-orbiter data. The scale factor (1+~,,,)U is approximately 1.97 x 1078
for the Sun. A number of other conventions are possible. One of these, which does not omit the
(14 v¥ppn)Ur term for the Earth, but evaluates it at the Earth’s surface, yields an additional scale
factor of 0.14 x 10™8. In either case, the model delay is decreased. Consequently, all inferred “mea-
sured” lengths increase by the same fraction relative to previous lengths (e.g. by 19.7 parts per billion
or 21.1 ppb).

Some care must be taken in defining the positions given by r,, r2(¢3), and r;(¢;). We have chosen
as the origin the position of the gravitational mass at the time of closest approach of the received
signal to that object. The position, r,, of the source relative to this origin is the position of that
source at the time, t., of the emission of the received signal. Likewise, the position, r;(¢;), of the ith
receiver is its position in this coordinate system at the time of reception of the signal. Even with
this care in the definition of the relative positions, we are making an approximation, and implicitly
assuming that such an approximation is no worse than the approximations used by Moyer (1971) to
obtain (2.14).



Some considerations follow, regarding the use of appropriate times to obtain the positions of the
emitter, the gravitational object, and the receivers. For a grazing ray emitted by a source at infinity,
using the position of the gravitating body G at the time of reception of the signal at station #1 rather
than at the time of closest approach of the signal to G can cause a 15-cm error on baselines with
a length of one Earth radius as shown by the following calculation. From figure 4, the calculated
distance of closest approach, R, changes during the light transit time, tight transit, of a signal from a
gravitational object at a distance Rg¢ by:

AR~ REGC;) “tight transit = é : R?EG/C (227)
EMITTER
R
VELOCITY = 8 Reg
)
Res
RECEIVER

Figure 4. A schematic representation of the motion of a gravitating object during the
transit time of a signal from the point of closest approach to reception by
an antenna

Since the deflection is:

A® x 2%‘2 (5] (2.28)
§(A6) = —Ae[%] - A@[%} - A@[Ii’g’ % (2.29)

9



We consider the two bodies of largest mass in the Solar System: the Sun and Jupiter. For grazing
rays, their respective deflections A© are 8480 and 73 nanoradians. The barycentric angular velocities

39 ,re estimated to be 0.06 and 17 nrad/sec for the Sun and Jupiter. Note that Eq. (2.27) does not
apply to the Sun. The Sun’s motion in the barycentric frame has a period of 11 years with a radius
of the order of the Sun’s radius. Using approximate radii and distances from Earth to estimate Rgg
and ©, Eq. (2.29) gives 25 nrad for Jupiter; the corresponding value for the Sun is 0.07 nrad. For
a baseline whose length equals the radius of the Earth, §{A®)Rg is thus approximately 0.05 and 15
cm for the Sun and Jupiter, respectively. The effect is much smaller for the Sun in spite of its much
larger mass, due to its extremely slow motion in the barycentric frame.

In view of the rapid decrease of gravitational deflection with increasing distance of closest ap-
proach, it is extremely unlikely that a routine VLBI observation would involve rays passing close
enough to a gravitating body for this correction to be of importance. Exceptions are experiments
specifically designed to measure planetary gravitational bending (Treuhaft and Lowe, 1991). In order
to guard against such an unlikely situation in routine work, and to provide analysis capability for spe-
cial experiments, the MODEST code always performs the transit-time correction for all planets. To
obtain the positions of the gravitational objects, we employ an iterative procedure, using the positions
and velocities of the objects at signal reception time. If R(t,) is the position of the gravitational object
at signal reception time, t,, then that object’s position, R(ts), at the time, ¢4, of closest approach of
the ray path to the object was:

R(t.) = R(t,) — V[t, — ta] (2.30)
ty —tg = I%LI (2.31)

We do this correction iteratively, using the velocity, V(t,), as an approximation of the mean velocity,
V. Because v/c & 1074, an iterative solution:

Vi)

R, (tz) = R(t,) - [ ] Rn-1(ta)l (2.32)

rapidly converges to the required accuracy.

Gravitational potential effects and curved wave front effects are calculated independently of each
other since the gravitational effects are a small perturbation (s~ 8.5 microradians or < 1."75) for
Sun-grazing rays.
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2.2 TIME INFORMATION

Before continuing the description of the geometric model, a few words must be said about time-
tag information and the time units which will appear as arguments below. A general reference for
time definitions is the Explanatory Supplement, 1961. The epoch timing information in the data is
taken from the UTC (Universal Coordinated Time) time tags in the data stream at station #1. This
time is converted to Terrestrial Dynamic Time (TDT) and is also used as an argument to obtain an
a priori estimate of Earth orientation. The conversion consists of the following components:

TDT = (TDT — TAI) + (TAI — UTC'[ERs) + (UTC'[ERS - UTCO)
+ (UTC() — UTCl) +UTCy (2.33)

where in seconds:

TDT — TAI = 32.184 (2.34)

and where TAI (Temps Atomique International) is atomic time. The International Earth Rotation
Service (IERS), its predecessor, Bureau International de PHeure (BIH), and Bureau International
des Poids et Mesures (BIPM) are the coordinating bodies responsible for upkeep and publication of
standard time and Earth rotation quantities. TAI — UTCgRrs = published integer second offset after
0", January 1, 1972 (leap seconds), and

TAI — UTC;grs = 9.8922417 + 3.0 x 1078 x (UTCrers — UTCo 1ERS) (2.35)

between 0", January 1, 1968, and 0", January 1, 1972. UTCgRrs — UTCs 1Ers = number of UTC
seconds relative to January 1, 1972. This is a negative number prior to that date. The software will
not allow this quantity to be obtained prior to 1968. UTCigrs — UTCp = the offset in UTC seconds
between IERS UTC and the UTC clock at some secondary standard (usually NBS in Boulder for DSN
observations). This can be obtained from BIPM Circular T (typical reference is Bureau International
des Poids et Mesures, 1990). In practice as of January, 1972, all that we do is use a linear interpolation
between (UTCrERrs — UTCnps) data points as published in IERS Bulletin A. The approximation
usually is made that the clock at station #1 is very close to the NBS clock, e.g., UTCy — UTC, <
5-10 us. Since this time is used as epoch time in the observations, the major consequence resulting
from an error in this assumption is to make an error in the estimation of UT1-UTC of one second per
second of error in (UTC; — UTC;). An error in epoch time causes an error of  Bug At = 7.3x 1078
cm per km baseline per us of clock error, where wg is the rotation rate of the Earth (section 7). Even
for the extreme case of a 10,000 km baseline and At = 10 ps, this amounts to only 0.007 cm.

A priori UT1-UTC and pole positions are normally obtained by interpolation of the IERS
Bulletin A smoothed values. However, any other source of UT1-UTC and pole position could be
used provided it is a function of UTC, and 1s expressed in a left-handed coordinate system (see section
2.6.1). Part of the documentation for any particular set of results should clearly state what were the
values of UT1—UTC and pole position used in the data reduction process.

For the Earth model based on the new IAU conventions, the following definitions are employed
throughout (Kaplan, 1981):

1. Julian date at epoch J2000 = 2451545.0.
2. All time arguments denoted by T below are measured in Julian centuries of 36525 days of the

appropriate time relative to the epoch J2000, i.e., T = (JD — 2451545.0)/36525.

3. For the time arguments used to obtain precession, nutation, or to reference the ephemeris,

Barycentric Dynamic Time (T'DB, Temps Dynamique Barycentrique) is used. This is related

to Terrestrial Dynamic Time (T DT, Temps Dynamique Terrestre) by the following:

TDB = TDT + 0.°001658 sin{g + 0.0167 sin(g)) (2.36)

where i
_ (357.°528 + 35999.°050 TDT) x 2w

360°

g (2.37)
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2.3 STATION LOCATIONS

Coordinates of the observing stations are expressed in the Conventional International Origin
(CIO) 1903.0 reference system, with the reference point for each antenna defined as in Sec. 2.8. The
pre-1984 model considered the three coordinates of station i: r,p,, A, z; (radius off spin axis, longitude,
and height above the equator, respectively) to be time-invariant. In investigations of tectonic motion,
however, a new set of coordinates is usually solved for in the least-squares estimation process for each
VLBI session. Post-processing software then makes linear fits to these results to infer the time rate of
change of the station location. Care must be taken that the correlations of coordinates estimated at
different epochs are accounted for properly. The advantage of this approach is that the contribution of
each session to the overall slope may be independently evaluated, since it is clearly isolated. Since this
procedure is somewhat inconvenient in practice, an alternative is to introduce the time rates of change
of the station coordinates as new parameters in MODEST. The model is linear, with the cylindrical
coordinates at time ¢ expressed as

Tapi = Top; + Fap, (t — to) (2.38)
A= A? + i,' (t - to) (2.39)
z= 20 + 5(t — to) (2.40)

0

Here to is a reference epoch, at which the station coordinates are (r9,., A?, z0). If modeling is done

in Cartesian coordinates, the analogous expressions are

I = :L'? + :i:,'(t - to) (2.41)
% =y + 4t — to) (2.42)
z =20 + %[t — to) (2.43)

with (2,49, zf’) being the station coordinates at the reference epoch.
2.3.1 Models of Tectonic Plate Motion

As an alternative to estimating linear time dependence of the station coordinates, two standard
models of tectonic plate rotation are optionally available in MODEST. The first is described in an
addition to the MERIT standards document (Melbourne et al., 1985), and was denoted AMO-2 in the
original paper (Minster and Jordan, 1978). Time dependence of the Cartesian station coordinates is
expressed as

z; =10 + (w;;z? —wlyd)(t - to) (2.44)
i = 9 + (wiz] —wizl)(t - to) (2.45)
zi =20 + (wly) —wizl)(t - to) (2.46)

where w} , , are velocities of the plate 7 on which station 1 resides. Table I gives a list of the rotation
rates for the 11 plates in the AM0-2 model.
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Table I

Plate Rotation Velocities: Minster-Jordan AMO-2 Model1L

Plate

Wy Wy wy

AFRC 0.988 -3.360 4.192
ANTA -0.923 -1.657 3.765
ARAB 4.867 -2.922 6.520
CARB -0.486 -0.988 1.881
coco -11.122 -23.238 12.663
EURA -0.536 -2.769 3.422
INDI 8.443 4.365 7.528
NAZC -1.586 -9.299 11.006
NOAM 0.576 -3.984 -0.249
PCFC -2.143 5.439 -11.438
SOAM -0.978 -1.863 -1.508

} units are nrad/year

Note that the velocities are expressed in nanoradians per year rather than the microdegrees per year
used in the original paper.

More recent models, denoted NUVEL-1 and NNR-NUVELL1, are due to DeMets et al. (1990)
and Argus and Gordon (1991), respectively. In NUVEL-1, the Pacific plate is stationary, while
NNR-NUVELL1 is based on the imposition of a no-net-rotation (NNR) condition. With some notable
exceptions, the NUVEL models give rates that are very close to those of the AMO-2 model. The
AMO-2 INDI plate has been split into AUST and INDI, and there are two additional plates: JDEF (Juan
de Fuca) and PHIL (Philippine). The NUVEL-1 rotation rates are given in Tables II and IIL

Table I1

Plate Rotation Velocities: NUVEL-1 ModelT

Plate We Wy Wy
AFRC 2.511 -8.303 14.529
ANTA 0.721 -6.841 14.302
ARAB 8.570 -5.607 17.496
AUST 9.777 0.297 16.997
CARB 1.393 -8.602 12.080
coco -9.323 -27.657 21.853
EURA 0.553 -7.567 13.724
INDI 8.555 -5.020 17.528
JDEF 6.81 3.32 5.31
NAZC -0.023 -14.032 20.476
NOAM 1.849 -8.826 10.267
PCFC 0.000 0.000 0.000
PHIL 11.9 12.8 0.000
SOAM 0.494 -6.646 9.517

{ units are nrad/year
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Table III

Plate Rotation Velocities: NNR-NUVEL1 Model!

Plate Wy wy Wy

AFRC 0.929 -3.239 4.098
ANTA -0.862 -1.777 3.871
ARAB 6.987 -0.543 7.067
AUST 8.194 5.362 6.566
CARB -0.190 -3.538 1.649
coco -10.907 -22.592 11.420
EURA -1.030 -2.503 3.293
INDI 6.973 0.045 7.097
JDEF 5.227 8.386 -5.124
NAZC -1.607 -8.968 10.046
NOAM 0.265 -3.761 -0.164
PCFC -1.583 5.065 -10.430
PHIL 10.320 ~7.700 -10.430
SOAM -1.089 -1.581 -0.913

t units are nrad/year
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plate velocities, or to solve for these quantities.




2.4 TIDAL EFFECTS

As an initial step in calculating the geometric delay, we need to consider the effects of crustal
motions on station locations. Among these deformations are solid Earth tides, tectonic motions, and
alterations of the Earth’s surface due to local geological, hydrological, and atmospheric processes. One
possibility is to not model crustal movement other than that due to solid Earth tides, and allow the
other effects to manifest themselves as temporal changes of the Earth-fixed baseline. Such a strategy
corrupts the estimation of global orientation parameters from a finite set of baselines, and is a known
weakness (~1—10 cm/year) of the simplified form of the current model.

In the standard terrestrial coordinate system, tidal effects modify the station location ro by an
amount

A=A+ Apol + Aoen + Aatm (247)

where the four terms are due to solid Earth tides, pole tide, ocean loading, and atmosphere loading,
respectively. Other Earth-fixed effects would be incorporated by augmenting the definition of A.
All four tidal effects are most easily calculated in some variant of the VEN (vertical, East, North)
local geocentric coordinate system. To transform them to the Earth-fixed coordinate frame, the
transformation VW, given in the next section, is applied.

2.4.1 Solid Earth Tides

Calculating the alteration of the positions of the stations caused by solid Earth tides is rather
complicated due to the solid tides’ coupling with the ocean tides, and the effects of local geology.
We have chosen to gloss over these complications initially, and to incorporate the simple multipole
response model described by Williams (1970), who used Melchior (1966) as a reference. Let Ry, be the
position of a perturbing source in the terrestrial reference system, and rqo the station position in the
same coordinate system. To allow for a phase shift (¥} of the tidal effects, the phase-shifted station
vector T, is calculated from r¢ by applying a right-handed rotation, L, through an angle 1 about the
Z axis of date, r, = Lrg. This lag matrix, L, is:

cosy sing O
L= | —siny cosy O (2.48)
0 0 1

By a positive value of ¥ we mean that the peak response on an Earth meridian occurs at a time
6t = Y/wg after that meridian containing ro crosses the tide-producing object, where wg is the
angular rotation rate of the Earth. In the vertical component, the peak response occurs when the
meridian containing r, also includes R,.

The tidal potential at r, due to the perturbing source at R,, is expressed as

Utidat = % [(;—;)ng(cos 8) + (%)sPa(cos 0)]

=U; + Us (2.49)

where only the quadrupole and octupole terms have been retained. Here, G is the gravitational
constant, m,, is the mass of the perturbing source, P; are the Legendre polynomials, and § is the angle
between r, and R,.

In a local geocentric VEN coordinate system (axes vertical, eastward, and northward) on a
spherical Earth, the tidal displacement vector 8 is.

i i inT
§=3 [d", &, o] (2.50)

[
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where the gJ(-i) (¢ = 2,3) are the quadrupole and octupole displacements. The components of § are
obtained from the tidal potential as

(") = h;U;/g (2.51)
( ) = l; cos ¢,(gf\]:)/g (2.52)
i ou;
o = l‘(a¢ )/ (2.53)

where hi(i = 2,3) are the vertical (quadrupole and octupole) Love numbers, (i = 2,3) the corre-
sponding horizontal Love numbers, and A, and ¢, are the station longitude and latitude, and g the
acceleration due to gravity,

g=Gmg/r? (2.54)

Using the relation between terrestrial and celestial coordinates,
cos f = sin ¢, sin §, + cos @, cos &, cos(A, + ag — ap) (2.55)

with ap, 6p the right ascension and declination of the perturbing body, and ag the RA of Greenwich,
some algebra produces the following expressions for the quadrupole and octupole components of § in
terms of the coordinates of the station (z,,y,, 2,) and the tide-producing bodies (X}, Yy, Z,):

2 3upri [(rs - Rp)®  riRD
i =3 }gg [( 2,,) - 6p] (2.56)
14

g£2’=23"""(. R,)(5.Y — 1. X,)[NE T (2.57)

P

(2) _ 3#». - _ z
=S e Rp)[\/ T 5 (X, ,,)] (2.58)

o = X G o)t R - 3028 (2:59)

g£3’=2§%[5(ra-m)’ 232](x. — 0 X))V + 7 (2.60)

2
(3) _ 3upr, [ 2_.2p2 CR) z,
g —E —=2|5(r, - R —r,R][\/::,+y,Z————:c,X + .Y, 261
3 - 2R} ( p) P p 2+ 42 (z. X ») (2.61)
where y, is the ratio of the mass of the disturbing object, p, to the mass of the Earth, and
R, = [Xm Y., ZPIT (2'62)

is the vector from the center of the Earth to that body. The summations are over tide-producing
bodies, of which we include only the Sun and the Moon. If the tidal effect at time ¢, is desired, and
the light travel time is 6¢, then the position of the tide-producing mass at time

ty — 6t =1t — |R,(t1 — 6¢)]/c (2.63)

should be used (a nuance we have not yet incorporated). While the quadrupole displacements are
of the order of 50 cm, the mass and distance ratios of the Earth, Moon, and Sun limit the octupole
terms to a few mm. The octupole terms are optionally included in the MODEST code, but partials
with respect to the Love numbers are available only for the quadrupole terms.
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To convert the locally referenced strain, §, which is expressed in the VEN system, to the Earth-
fixed frame, two rotations must be performed. The first, W, rotates by an angle, ¢, (station geodetic
latitude), about the y axis to an equatorial system. The second, V, rotates about the resultant z axis
by angle, —}, (station longitude), to bring the displacements into the standard geocentric coordinate
system. The result is

A, =VWE (2.64)
where
cosp, 0 —sing,
wW=| 0 1 0 (2.65)
sing, 0 cosd,
and
cosA, —sinA, O
V=|snk cosi, O (2.66)
0 0 1

Actually, the product of these two matrices is coded:

cosd,cosd, —sind, —coslA,sing,
VW = | sinA,cos ¢, cos A, —sinA,sing, (2.67)
sin ¢, 0 cos ¢,
MODEST code uses geodetic latitudes
-1 2y
= - 2.68
¢, = tan [r.p_(l - 1/f)2] (2.68)

where f is the geoid flattening factor. The difference between geodetic and geocentric latitude can
affect this model on the order of (tidal effect)/(fattening factor) ~ 0.1 cm.

2.4.2 Pole Tide

One of the secondary tidal effects is the displacement of a station by the elastic response of the
Earth’s crust to shifts in the spin axis orientation. The spin axis is known to describe a circle of
& 20-m diameter at the north pole. Depending on where the spin axis pierces the crust at the instant
of a VLBI measurement, the “pole tide” displacement will vary from time to time. This effect must
be included if centimeter accuracy is desired.

Yoder (1984) derived an expression for the displacement of a point at geocentric latitude ¢,
longitude X due to the pole tide:

wiR . . a
§=— . [singcosp(zcos X + ysinA) A F

+ cos 2¢(zcos/\ +ysin M) [ ;
+sin¢(—zsin A + ycosA) I i] (2.69)

Here wg is the rotation rate of the Earth, R the radius of the (spherical) Earth, g the acceleration
due to gravity at the Earth’s surface, and h and ! the customary Love numbers. Displacements of the
spin axis from the 1903.0 CIO pole position along the x and y axes are given by z and y. Eq. (2.69)
shows how these map into station displacements along the unit vectors in the radial (), latitude (a),
and longitude () directions. With the standard values wg = 7.292 x 10~5 rad/sec, R = 6378 km,
and g = 980.665 cm/sec?, the factor w4 R/g = 3.459 x 1073, Since the maximum values of z and y
are of the order of 10 meters, and h a5 0.6, [ = 0.08, the maximum displacement due to the pole tide
is 1 to 2 cm, depending on the location of the station (¢, A).

The locally referenced displacement § is transformed via the suitably modified transformation
(2.67) to give the displacement A, in the standard geocentric coordinate system. The pole tide
effect has been coded as an optional part of the MODEST model. It is only applied if specifically
requested, ¢.e., the default model contains no pole tide contributions to the station locations.

17



2.4.3 Ocean Loading

This section is concerned with another of the secondary tidal effects, i.e., the elastic response
of the Earth’s crust to ocean tides, which move the observing stations to the extent of a few cm.
Such effects are commonly labeled “ocean loading.” A model of ocean loading is incorporated in
the MODEST code. It is general enough to accommodate a variety of externally derived constants
describing the tide phases and amplitudes. Because the station motions caused by response to ocean
tides appear to be limited to approximately 3 cm for sites further than ~100 km from the coast, no
estimation capability was deemed necessary at present. This decision is supported by the fact that for
locations near the coast, where the effects may be more sizeable, and which would thus be expected
to produce data useful in parameter estimation, the elastic response modeling is as yet inadequate
(Agnew, 1982). As suggested in section 8 of the initial version of this report (Fanselow, 1983), local
Earth motion can be partially accounted for by varying the Love numbers for each station. The
present model entails deriving an expression for the locally referenced displacement § due to ocean
loading. In the vertical, N-S, E-W local coordinate system (the computer code accepts inputs related
to unit vectors in the vertical, North, and West directions) at time ¢,

N
5 = Z &l cos(wit +V; — 6]) (2.70)

i=1
The quantities w; (frequency of tidal constituent i) and V; (astronomical argument of constituent 1)
depend only on the ephemeris information (positions of the Sun and Moon). The algorithm of Goad
(IERS, 1989) is used to calculate these two quantities. On the other hand the amplitude {-‘f and
Greenwich phase lag §] of each tidal component j are determined by the particular model assumed
for the deformation of the Earth. The local displacement vector is transformed via Eqs. (2.67) and

(2.64) to the displacement A, in the standard geocentric frame.

Input to MODEST provides for specification of up to 11 frequencies and astronomical arguments
w; and V;, followed by tables of the local distortions and their phases, ¢! and §], calculated from the
ocean tidal loading model of choice. The eleven components are denoted, in standard notation: Mg,
82, Nz, and K (all with approximately 12-hour periods), K1, O3, P1, Q; (24 hr), M, (14 day), M,,
(monthly), and S,q (semiannual).

Presently four choices of ocean loading models are available for use with MODEST. They differ in
the displacements calculated and components considered, as well as in the numerical values that they
yield for the £]s and §]s. Scherneck’s results (1983, 1990, 1991) are the most complete in the sense
of considering both vertical and horizontal displacements and all eleven tidal components. Goad’s
model (1983) has been adopted in the MERIT and IERS standards (1989), but only considers vertical
displacements. Pagiatakis’ (1982, 1990) model, based on Pagiatakis, Langley, and Vanicek (1982),
considers only six tidal components. Agnew (1982) only considers five components, but pays special
attention to points near coastlines. Table IV summarizes the features of the four models, with V and
H indicating vertical and horizontal components, respectively.

Due to their bulk, none of the tables of tidal amplitudes is reproduced here, but are available
on request in computer-readable form. The default tidal model in MODEST remains the Williams
quadrupole solid Earth tide model with no ocean loading.

Table IV. Ocean Loading Models

Model Displacements Tidal components
Scherneck V, H MzSgNszKlolplQlM!MmS,a
Goad (MERIT, IERS) V MgSgN2K2K101P1Q1M1MmSm
Pagiatakis V, H MzSgNQ K101P1
Agnew V, H M252N2 K101
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2.4.4 Atmosphere Loading

By analogy with the consequences of ocean tides that were considered in the previous section, a
time-varying atmospheric pressure distribution can induce crustal deformation. A paper by Rabbel
and Schuh (1986) estimates the effects of atmospheric loading on VLBI baseline determinations, and
concludes that they may amount to many millimeters of seasonal variation. In contrast to ocean
tidal effects, analysis of the situation in the atmospheric case does not benefit from the presence of
a well-understood periodic driving force. Otherwise, estimation of atmospheric loading via Green’s
function techniques is analogous to methods used to calculate ocean loading effects. Rabbel and
Schuh recommend a simplified form of the dependence of the vertical crust displacement on pressure
distribution. It involves only the instantaneous pressure at the site in question, and an average pressure
over a circular region C of radius R = 2000 km surrounding the site. The expression for the vertical
displacement (mm) is:

Ar = —0.35py — 0.555 (2.711)

where po is the local pressure anomaly (relative to the standard pressure of 1013 mbar), and p
the pressure anomaly within the 2000-km circular region mentioned above (both quantities are in
mbar). Note that the reference point for this displacement is the site location at standard (sea level)
pressure. The locally referenced Ar is transformed to the standard geocentric coordinate system via
the transformation (2.67).

It was decided to incorporate this rudimentary model into MODEST as an optional part of the
model, with an additional mechanism for characterizing p. The two-dimensional surface pressure
distribution (relative to 1013 mbar) surrounding a site is described by

p(z,y) = Ao + A1z + Azy + Asz? + Agzy + Asy? (2.72)

where z and y are the local East and North distances of the point in question from the VLBI site.
The pressure anomaly p may then be evaluated by the simple integration

[ =f./; dzdy p(z,y) ///c dz dy (2.73)

p= Ao+ (As + As)R?/4 (2.74)

giving

It remains the task of the data analyst to perform a quadratic fit to the available weather data
to determine the coefficients Ag_5. Future advances in understanding the atmosphere-crust elastic
interaction can probably be accommodated by adjusting the coefficients in Eq. (2.71).

After each of the locally referenced tidal displacements has been transformed to standard terres-
trial coordinates, the station location is

ry=ro+ Alol + Apol + Aocn + Aatm (275)
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2.5 SOURCE STRUCTURE EFFECTS

Numerous astrophysical studies during the past decade have shown that compact extragalactic
radio sources have structures on a milliarcsecond scale (e.g., Kellermann and Pauliny-Toth, 1981).
Such studies are important for developing models of the origin of radio emission of these objects.
Many radio source structures are found to be quite variable with frequency and time (Zensus and
Pearson, 1987). If extragalactic sources are to serve as reference points in a stable reference frame, it
is important to correct for the effects of their structures in astrometric VLBI observations.

Recently, MODEST modeling was extended to allow optional corrections for the effects of source
internal structures, based on work by Thomas (1980), Ulvestad (1988), and Charlot (1989). A non-
point like distribution of the intensity of a source yields time dependent corrections to the group delay
and delay rate observables, A7, and A7,, that may be written in terms of the intensity distribution
I(8,w,t) as

Ar, = 04, /8w, Af, = 3¢,/0t (2.76)

with
¢, = MCtan(—Za /Zc) (2.77)

and

Zey = f / dQ I(s,w,t){:i;;}(ZwB -8/2) (2.78)

Here ¢, is the correction to the phase of the incoming signal, 8 is a vector from the adopted reference
point to a point within the source intensity distribution in the plane of the sky, w and X are the
observing frequency and wavelength, B the baseline vector, and the integration is over solid angles (1.
Source intensity distribution maps are most conveniently parametrized in terms of one of two models:
superpositions of delta functions or Gaussians. At a given frequency, the corresponding intensity

distributions are written as
I(S) = E Sk6(z—xk,y—yk) (2.79)
k

or

_ Sk : 2 2
I(s) = ; Fmarbe exp[ [(z — zk) cos bk + (y — yi) sin 6x]*/2a,

— [—(z — zx) sin 8k + (y — yx) cos Gk]z/Zbkz] (2.80)

where Sy is the flux of component k, and sy (with components zi,yx in the plane of the sky) is its
position relative to the reference point. For Gaussian distributions, fi is the angle between the major
axis of component k and the u axis (to be defined below), and (ax,bx) are the full widths at half
maximum of the (major, minor) axes of component k normalized by 2/2log 2. The quantities Z(y
entering the structure phase ¢, [Eq. (2.77)] are

Zpy = Zsk{::;}(zm -81/A) (2.81)
k

for delta functions, and

sin
Z(ry = Spexp|-2n2(a2UZ + bzv,f)]{cos }(2rB - 8n/2) (2.82)
k
for Gaussians. Here
Ux = ucosfy + vsinfyg (2.83)
Vi = —usinfy + vcos d (2.84)

with u,v being the projections of the baseline vector B on the plane of the sky in the E-W, N-§
directions, respectively.
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MODEST accepts maps specified in terms of an arbitrary number of Gaussian or delta function
components. At most, six parameters must be specified for each component: its polar coordinates
and flux, and, for a Gaussian, its major and minor axes and the position angle of the major axis. The
structural correction for phase is computed via Eqs. (2.77), (2.81), and (2.82). For the BWS delay
observable, the structure correction is the slope of a straight line fitted to the individual structure
phases calculated for each frequency channel used during the observation. For example, for Mark III
data there are typically 8 channels spanning 8.2 to 8.6 GHz at X band, and 6 channels spanning
22.2 to 2.3 GHz at S band. Delay rate structure corrections are calculated by differencing the
structure phases at +2 seconds (see Section 6). In the case of dual-band (S-X) experiments, a linear
combination of the structure corrections calculated independently for each band is applied to the
dual-band observables.

The practical question to be resolved in the future is whether such structural corrections yield
significant and detectable corrections to the observables at the present levels of experimental and
modeling uncertainty. Maps are available for only a few of the hundreds of sources currently observed
by VLBI Some of the extended sources show time variability on a scale of months; since the corrections
A1, and A7, are quite sensitive to fine details of the structure, in such cases new maps may be
required on short time scales. Depending on the relative orientation of the source and baseline, the
delay correction can be as large as ~1 ns, which is equivalent to tens of cm. An optimistic note is the
recent observation of Charlot (1990) that data from a multiple baseline geodynamics experiment are
adequate to map source structures with high angular resolution.

Empirical evaluation of the effects of unknown source structure on VLBI measurements could be
made via the time rates of change of the source right ascension o and declination 6. A linear model
of the motion of source coordinates ' ]

a = ag + &{t — to) (2.85)

§ = 6o+ 6(t — to) (2.86)

is implemented in MODEST. Non-zero estimates of the rate parameters & and 6 could arise either
from genuine proper motion or from motion of the effective source centroid sampled by VLBI mea-
surements. Proper interpretation of such results is problematic, but non-zero rates can be used as a
crude diagnostic for the presence of structure effects.
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2.6 TRANSFORMATION FROM TERRESTRIAL TO CELESTIAL
COORDINATE SYSTEMS

The Earth is approximately an oblate spheroid, spinning in the presence of two massive moving
objects (the Sun and the Moon) which are positioned such that their time-varying gravitational effects
not only produce tides on the Earth, but also subject it to torques. In addition, the Earth is covered
by a complicated fluid layer, and also is not perfectly rigid internally. As a result, the orientation
of the Earth is a very complicated function of time, which to first order can be represented as the
composite of a time-varying rotation rate, a wobble, a nutation, and a precession. The exchange of
angular momentum between the solid Earth and the fluids on its surface is not readily predictable,
and thus must be continually determined experimentally. Nutation and precession are well modeled
theoretically. However, at the accuracy with which VLBI can determine baseline vectors, even these
models are not completely adequate.

Currently, the rotational transformation, @, of coordinate frames from the terrestrial frame to
the celestial geocentric frame is composed of 6 separate rotations (actually 12, since the nutation,
precession, and “perturbation” transformations, N, P, and 1, consist of 3 transformations each)
applied to a vector in the terrestrial system:

Q = QPNUXY (2.87)

In order of appearance in (2.87), the transformations are: the perturbation rotation, precession,
nutation, UT1, and the x and y components of polar motion. All are discussed in detail in the
following four sections. With this definition of @, if r; is a station location expressed in the terrestrial
system, e.g., the result of (2.75), that location, r., expressed in the celestial system is

r. = Qr, (2.88)

This particular formulation follows the historical path of astrometry, and is couched in that
language. While esthetically unsatisfactory with modern measurement techniques, such a formulation
is currently practical for intercomparison of techniques and for effecting a smooth inclusion of the
interferometer data into the long historical record of astrometric data. Much more pleasing esthetically
would be the separation of @ into two rotation matrices:

Q=@Q:1Q: (2.89)

where Q2 are those rotations to which the Earth would be subjected if all external torques were
removed (approximately UXY above), and where Q, are those rotations arising from external torques
(approximately 1PN above). Even then, the tidal response of the Earth prevents such a separation
from being perfectly realized. Eventually, the entire problem of obtaining the matrix Q, and the tidal
effects on station locations should be done numerically. Note that the six rotations operating on a
vector yield its components in a new coordinate system, and, since we rotate the Earth rather than the
celestial sphere, the matrices {1, P, and N will be the transposes of those used to rotate the celestial
system of J2000 to a celestial system of date.

2.6.1 UT1 AND POLAR MOTION

The first transformation, Y, is a right-handed rotation about the x axis of the terrestrial frame
by an angle ©,. Currently, the terrestrial frame is the 1903.0 CIO frame, except that the positive y
axis is at 90 degrees east {Moscow). The x axis is coincident with the 1903.0 meridian of Greenwich,
and the z axis is the 1903.0 standard pole.

1 0 0
Y=10 cos6; sin©, (2.90)
0 -—s8nBO; cosHO,
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where O, is the y pole position published by IERS.
The next rotation in sequence is the right-handed rotation through an angle ©; about the y axis
obtained after the previous rotation has been applied:

cos®, 0 —3sinB,
x=| o 1 0 (2.91)
sin®; 0 cos 8,

In this rotation, ©; is the IERS z pole position. Note that we have incorporated in the matrix
definitions the transformation from the left-handed system used by IERS to the right-handed system
we use. Note also that instead of IERS data used as a pole definition, we could instead use any other
source of polar motion data provided it was represented in a left-handed system. The only effect
would be a change in the definition of the terrestrial reference system.

The application of “XY” to a vector in the terrestrial system of coordinates expresses that vector
as it would be observed in a coordinate frame whose z axis was along the Earth’s ephemeris pole.
The third rotation, U, is about the resultant = axis obtained by applying “XY”. It is a rotation
through the angle, —H, where H is the hour angle of the true equinox of date (i.e., the dihedral angle
measured westward between the xz plane defined above and the meridian plane containing the true
equinox of date). The equinox of date is the point defined on the celestial equator by the intersection
of the mean ecliptic with that equator. It is that intersection where the mean ecliptic rises from below
the equator to above it (ascending node).

cosH —sinH 0
U=|sinH cosH 0 (2.92)
0 0 1

This angle H is composed of two parts:
H=hy+oag (2.93)

where h, is the hour angle of the mean equinox of date, and ag (equation of equinoxes) is the difference
in hour angle of the true equinox of date and the mean equinox of date, a difference which is due
to the nutation of the Earth. This set of definitions is cumbersome and couples the nutation and
precession effects into Earth rotation measurements. However, in order to provide a direct estimate
of conventional UT'1 it is convenient to endure this historical approach, at least for the near future.

UT1 (universal time) is defined to be such that the hour angle of the mean equinox of date is
given by the following expression (Aoki et al., 1982, and Kaplan, 1981):

h, =UT1 + 6" 41™ 50°.54841 + 8640184°.812866 T,
+ 0°.093104 T? — 6°.2x 107° T (2.94)

where the dimensionless quantity

(Julian UT'1 date) — 2451545.0

T, = .
* 36525 (2.95)
The actual equivalent expression which is coded is:
h, =2x(UT1 Julian day fraction) + 67310°.54841
+ 8640184°.812866 T, + 0°.093104 TZ —6°.2x 107° T3 (2.96)

This expression produces a time, UT1, which tracks the Greenwich hour angle of the real Sun to
within 16™. However, it really is sidereal time, modified to fit our intuitive desire to have the Sun
directly overhead at noon on the Greenwich meridian. Historically, differences of UT1 from a uniform
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measure of time, such as atomic time, have been used in specifying the orientation of the Earth. Note
that this definition has buried in it the precession constant since it refers to the mean equinox of date.

By the very definition of “mean of date” and “true of date”, nutation causes a difference in the
hour angles of the mean equinox of date and the true equinox of date. This difference, called the
“equation of equinoxes”, is denoted by ag and is obtained accordingly:

-1
—tan-1 ] ¥} - Ny = tan~! Niz 2.97
ag = tan (x.,:) tan ( 1_11) an (Nu) (2.97)

1
-1
v, | = N; g (2.98)

where the vector

is the unit vector, in true equatorial coordinates of date, toward the mean equinox of date. In mean
equatorial coordinates of date, this same unit vector is just (1,0,0)T. The matrix N! is just the
inverse (or equally, the transpose) of the transformation matrix N which will be defined below [Eq.
(2.105)] to effect the transformation from true equatorial coordinates of date to mean equatorial
coordinates of date.

2.6.1.1 Short Period UT1 Variations

Depending on the smoothing used to produce the a priori UT1 ~ UTC series, the short-period
(t < 35 days) fluctuations in UT'1 due to changes in the latitude and size of the mean tidal bulge may
or may not be smoothed out. Since we want as accurate an a priori as possible, it may be necessary
to add this effect to the UT1 a prior: obtained from the series UT 1,mo0thea- If this option is selected,
then the desired a priori UT1 is given by

UT1, priori = UT1,moothed + AUT1 (2.99)

UT1,4moothed Tepresents an appropriately smoothed a priori measurement of the orientation of the
Earth (.e., typically IERS Bulletin A smoothed or, even better, UT'1R), for which the short period
(t < 35 days) tidal effects have either been averaged to zero, or, as in the case of UT1R, removed
before smoothing. This AUT1 can be represented as

N

5
AUT1=) [A; sin [g k,-ja,-]] (2.100)

i=1

where N is chosen to include all terms with a period less than 35 days. There are no other con-
tributions until a period of 90 days is reached. However, these long-period terms are included by
the measurements of the current Earth-orientation measurement services. The values for ki; and A;,
along with the period involved, are given in Table V. The «; for ¢ = 1, 5 are just the angles defined
below (Section 2.6.2) in the nutation series as [, I', F, D, and Q, respectively. In Table V, the sign
of the 14.73 day term has been changed [Yoder (1982)] to correct a sign error in Yoder et al. (1981).
The BIH Annual Report for 1982 [BIH (1983)] is the first reference to give the correct table.

It might be appropriate at this point to describe the interpolation method used in MODEST to
obtain a prior: polar motion and UT'1 values. These are normally available as tables at 5-day intervals,
from either IERS (IERS, 1991) or the IRIS project (IAG, 1986). Linear interpolation is performed
for all three quantities. If the short-period tidal terms AUT1 are present in the tabular values, they
are subtracted before interpolation, and added back to the final value. With the present accuracy of
determinations of pole position and UT1 (1 mas and 0.05 ms respectively), linear interpolation over a
5-day interval may be inadequate, possibly giving rise to 0.1 to 0.2 ms errors in UT1. Quadratic spline
interpolation is being considered as an alternative. Even with the present code, however, the highest
possible accuracy may be achieved by performing the interpolation externally to MODEST, and
supplying it with tables of values more closely spaced in time for the final internal linear interpolation.
The Kalman-filtered UTPM values of Eubanks et al. (1984) are ideally suited for this purpose.

24



Table V
Periodic Tidally Induced Variations in UT1
with Periods Less than 35 Days

Index Period Argument coefficient A;
i (days) k,‘l IC,'Q k,‘3 k; IC,'5 (0’ .0001)
1 5.64 1 0 2 2 2 -0.02
2 6.85 2 0 2 0 1 -0.04
3 6.86 2 0 2 0 2 -0.10
4 7.09 0 0 2 2 1 -0.05
5 7.10 0 0 2 2 2 -0.12
6 9.11 1 0 2 0 0 -0.04
7 9.12 1 0 2 0 1 -0.41
8 9.13 1 0 2 0 2 -0.99
9 9.18 3 0 0 0 0 -0.02
10 9.54 -1 0 2 2 1 -0.08
11 9.56 -1 0 2 2 2 -0.20
12 9.61 1 0 0 2 0 -0.08
13 12.81 2 0 2 -2 2 0.02
14 13.17 0 1 2 0 2 0.03
15 13.61 0 0 2 0 0 -0.30
16 13.63 0 0 2 0 1 -3.21
17 13.66 0 0 2 0 2 -7.76
18 13.75 2 0 0 0 -1 0.02
19 13.78 2 0 0 0 0 -0.34
20 13.81 2 0 0 0 1 0.02
21 14.19 0 -1 2 0 2 -0.02
22 14.73 0 0 0 2 -1 0.05
23 14.77 0 0 0 2 0 -0.73
24 14.80 0 0 0 2 1 -0.05
25 15.39 0 -1 0 2 0 -0.05
26 23.86 1 0 2 -2 1 0.05
27 23.94 1 0 2 -2 2 0.10
28 25.62 1 1 0 0 0 0.04
29 26.88 -1 0 2 0 0 0.05
30 26.98 -1 0 2 0 1 0.18
31 27.09 -1 0 2 0 2 0.44
32 27.44 1 0 0 o -1 0.53
33 27.56 1 0 0 0 0 -8.26
34 27.67 1 0 0 0 1 0.54
35 29.53 0 0 0 1 0 0.05
36 29.80 1 -1 0 0 0 -0.08
37 31.66 -1 0 0 2 -1 0.12
38 31.81 -1 0 0 2 0 -1.82
39 31.96 -1 0 0 2 1 0.13
40 32.61 1 0o -2 2 -1 0.02
41 34.85 -1 -1 0 2 0 -0.09
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It is convenient to apply “UXY” as a group. To parts in 10'?, XY = Y X. However, with the
same accuracy UXY # XYU. Neglecting terms of 0(62) (which produce station location errors of
approximately 6 x 10™% cm):

cosH —sinH —sin©;cosH —sinOgsin H
UXY =] sinH cos H —sin©;sinH +sinO3cos H (2.101)
sin®; —sinBp 1

2.6.2 NUTATION

With the completion of the UT1 and polar motion transformations, we are left with a station
location vector, Tgas.. This is the station location relative to true equatorial celestial coordinates of
date. The last set of transformations are nutation, N, precession, P, and the perturbation rotation,
f1, applied in that order. These transformations give the station location, r., in celestial equatorial

coordinates:
re = QP Nrate (2.102)

The transformation matrix N is a composite of three separate rotations (Melbourne et al., 1968):

1. A(e): true equatorial coordinates of date to ecliptic coordinates of date.

1 0 0
A(e)= |0 cose sine (2.103)
0 —sine cose
2. CT(64): nutation in longitude from ecliptic coordinates of date to mean ecliptic coordinates of
date.
cosby sinfy O
CT(6¢) = | —sinbyp cosby O (2.104)
0 0 1

where 6§ is the nutation in ecliptic longitude.
3. AT (€): ecliptic coordinates of date to mean equatorial coordinates.

In ecliptic coordinates of date, the mean equinox is at an angle §y = tan~!(yy/z7). fe =€ —¢
is the nutation in obliquity, and Z is the mean obliquity (the dihedral angle between the plane of the
ecliptic and the mean plane of the equator). “Mean” as used in this section implies that the short-
period (T < 18.6 years) effects of nutation have been removed. Actually, the separation between
nutation and precession is rather arbitrary, but historical. The composite rotation is:

N = AT(2)CT (6y) A(e) (2.105)
cos by cosesin 8y sin es8in §¢
= | —cosEsinfy cosFcosscosdy + sinFsine cosE€sinecosby — sinEcose
—sinsinfy sinZcosecosfy — cosZsine sinEsinecosdy + cos€cose

The 1980 IAU nutation model (Seidelmann, 1982, and Kaplan, 1981) is used to obtain the values
for 6% and € — €. The mean obliquity is obtained from Lieske et al. (1977) or from Kaplan (1981):

T =23°26' 21."448 — 46."8150 T — 5."9 x 1074T? + 1.”813 x 107°T° (2.1086)

T (Julian TDB date) — 2451545.0
- 36525

(2.107)
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This nutation in longitude (§4) and in obliquity ( é¢ = €—% ) can be represented by a series expansion
of the sines and cosines of linear combinations of five fundamental arguments. These are (Kaplan,
1981, Cannon, 1981):

1. the mean anomaly of the Moon:

a; =1 = 485866".733 + (13257 + 715922".633) T
+ 31".310 T? + 0".064 T° (2.108)

2. the mean anomaly of the Sun:

oy = I' = 1287099".804 + (99" + 1292581".224) T
- 0".577 T? - 0."012 T® (2.109)

3. the mean argument of latitude of the Moon:

a3 = F = 335778".877 + (13427 + 295263".137) T
— 13".257 T2 + 0".011 T° (2.110)

4. the mean elongation of the Moon from the Sun:

oy = D = 1072261".307 + (1236" + 1105601".328) T
—~ 6".891 T? + 0".019 T° (2.111)

5. the mean longitude of the ascending lunar node:
as = 1 = 450160".280 — (5" + 482890".539) T
+ 7".455 T2 + 0".008 T° (2.112)

where 17 = 360° = 1296000".
With these fundamental arguments, the nutation quantities can then be represented by

NT - 5 _
§9 = | (Aoj + A1;T)sin Lz kjioi(T) (2.113)
=11 =1 < ]
and
N T - 5 1]
be = Z (Bo,' + BlJ‘T) cos z k,'.'a;(T) (2_114)
j=1i Li=1 .

where the various values of o, kji, Aj, and B; are tabulated in Table A.L
2.6.2.1 Corrections to the 1980 IAU Model

Additional terms can be optionally added to the nutations §¢ and 6¢ in Eqs. (2.113) and (2.114).
These include the out-of-phase nutations, the free-core nutations (Yoder, 1983) with period wy (nom-
inally 430 days), and the “nutation tweaks” Ay and Ae, which are arbitrary constant increments
of the nutation angles §¢ and §e. Unlike the usual nutation expressions, the tweaks have no time
dependence. The out-of-phase nutations, which are not included in the JAU 1980 nutation series, are
identical to Eqs. (2.113) and (2.114), with the replacements sin « cos:

(2.115)

[ 5
§¢° =) [(Az; + As;T) cos [Z k,-,-a.-(T)]

j=1L t=1

and

N T 5
§e° = Z (Bz_,' + B3J.T) sin I:E k,-,-a,-(T)H (2.116)

j=1l i=1
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Expressions similar to these are adopted for the free-core nutations:
6¢] = (Aoo + AloT) sin(w,T) + (Azo + AsoT) cos(wa) (2.117)

and
§e! = (Boo + B1oT) cos(wsT) + (Bzo + BaoT) sin(w;T) (2.118)

If the free-core nutation is to be retrograde, as expected on theoretical grounds, w; should be negative.
The nutation model thus contains a total of 856 parameters: A;; (i=0,3; 7=1,106) and B;; (i=0,3;
7=1,106) plus the free-nutation amplitudes Ao (:=0,3), Bio (:=0,3). The only nonzero a prior:
amplitudes are the Aoj, A1;, Boj, B1; (7=1,106) given in Table A.IL

The nutation tweaks are just constant additive factors to the angles §¢ and ée:

5 — S+ Ay (2.119)

and
be — e + Ac (2.120)

Several alternatives are available as MODEST options to correct deficiencies in the IAU nutation
model. The first possibility is to use empirically determined values of A, Ac as part of the polar
motion and UT1 input which was described in the next-to-last paragraph of section 2.6. If this option
is selected, the user is relying on nutation angles that are determined from other VLBI experiments
near the date of interest, and performing linear interpolation.

A second option employs the annual and semiannual amplitudes of Herring et al. {1986). These
revised amplitudes are given in Table VI in terms of the present notation, and in the units of Table
AL

Table VI
Corrected Nutation Amplitudes (Herring et al., 1986)

Index, 3 9 10
(0”.0001) (0"”.0001)

Period, days 182.6 365.3

In phase Ag o -13172.2 1471.0
Bo,10 5732.8 72.1

Out of phase A3 -8.3 15.8
B3 10 -2.9 -2.2

Recent work by Zhu et al. (1989, 1990) has refined the 1980 IAU theory of nutation both by
reexamining the underlying Earth model and by incorporating recent experimental results. The
nutation series derived in that work are also available as MODEST modeling options. The Zhu et al.
results are tabulated here in three parts: a) the original 106 terms of the 1980 TAU series with revised
amplitudes in Table A.II, b) four sets of out of phase terms in Table A.IIl, and c) an additional 156
terms due to planetary perturbations in Table A.IV.

For simulation purposes, the older Woolard nutation model is also available in MODEST. With
the exception of the number, amplitudes, and arguments of the terms, the older series is exactly
analogous to the 1980 IAU theory, i.e., of the form of Eqs. (2.113) and (2.114). For completeness of
documentation, the coefficients are listed in Table A.V.

No partial derivatives with respect to Woolard or Zhu et al. amplitudes are currently calculated.
It is emphasized that, for the present, the default nutation model in MODEST is just the 1980 IAU
nutation model given in Table A.L
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2.6.3 PRECESSION

The next transformation in going from the terrestrial frame to the celestial frame is the rotation
P. This is the precession transformation from mean equatorial coordinates of date to the equatorial
coordinates of the reference epoch (e.g., J2000). It is a composite of three rotations discussed in detail
by Melbourne et al. (1968) and Lieske et al. (1977):

cosZ sinZ 0
R(-Z)=| —sinZ cosZ O (2.121)
0 0 0
cos® 0 sin®
Q(e) = 0 1 0 (2.122)
—sin® 0 cos®©
cos¢ sin¢ O
R(—¢)=| —sin¢ cos¢ O (2.123)
0 0o 1
P = R(~)Q(8)R(-2) (2.124)
cos¢cos©cosZ —sin¢sinZ cos¢cosOsinZ +sin¢cos Z cos ¢sin ©
= | —sin¢cos@®cosZ —cos¢sinZ —sin¢cosBsinZ +cos¢cosZ —singsin®
—8in®cos Z —s8inBsin Z cos ©

The auxiliary angles ¢, ©, Z depend on precession constants, obliquity, and time as

¢ = 0".5mT + 0".30188 T2 + 0".017998 T° (2.125)
Z = 0".5mT + 1".09468 T? + 0".018203 T° (2.126)
6 = nT — 0".42665 T2 — 0".041833 T° (2.127)

where the speeds of precession in right ascension and declination are, respectively,

m = prscos& — ppL (2.128)
n = prssiné (2.129)

and prs = the luni-solar precession constant, ppz = planetary precession constant, & = the obliquity
at J2000, and T [Eq. (2.107)] is the time in centuries past J2000. Nominal values at J2000 are p.s
= 5038".7784/cy, ppr = 10".5526/cy; these yield the expressions given by Lieske et al. (1977) and
Kaplan (1981):

2306".2181 T + 0".30188 T2 + 0".017998 T3 (2.130)

S‘ =
6 = 2004".3109 T — 0".42665 T2 — 07.041833 T°> (2.131)
Z = 2306".2181 T + 1".09468 T2 + 0".018203 T° (2.132)

Partial derivatives of the VLBI observables with respect to luni-solar and planetary precession are
derived from the expressions (2.124-2.129) and given in section 2.9. The precession matrix completes
the standard model for the orientation of the Earth. Numerical checks of direct estimates of preces-
sion corrections against similar estimates based on the perturbation rotation (next section) ensure
consistency.

2.6.4 PERTURBATION ROTATION

This standard model for the rotation of the Earth as a whole may need a small incremental
rotation about any one of the resulting axes. Define this perturbation rotation matrix as

0 = AAA, (2.133)
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where

1 0 0
A, =0 1 se, (2.134)
0 -6, 1

with §6, being a small angle rotation about the x axis, in the sense of carrying y into z;
1 0 -69,
A, =10 1 o0 (2.135)
66, 0 1

with §6, being a small angle rotation about the y axis, in the sense of carrying z into x; and

1 66, 0
A, =|-66, 1 0 (2.136)
0 0o 1

with 66, being a small angle rotation about the z axis, in the sense of carrying x into y. For angles
of the order of 1 arc second we can neglect terms of order §662Rg as they give effects on the order of
0.015 cm. Thus, in that approximation

1 56, —60,
0=|-66, 1 56, (2.137)
58, -66, 1

In general, .
§6; = 59.‘(t) = 80 +66,T + f,(T) (2.138)

which is the sum of an offset, a time-linear rate, and some higher order or oscillatory terms. Currently,
only the offset and linear rate are implemented. In particular, a non-zero value of §8, is equivalent
to a change in the precession constant. Setting

§0, =60, = 66, =0 (2.139)

gives the effect of applying only the standard rotation matrices.
Starting with the Earth-fixed vector, ro, we have in sections 2.3 through 2.6 above shown how
we obtain the same vector, r., expressed in the celestial frame:

r. = QPNUXY(ro + A) (2.140)

2.7 EARTH ORBITAL MOTION

We now wish to transform these station locations from a geocentric celestial reference frame
moving with the Earth to a celestial reference frame which is at rest relative to the center of mass
of the Solar System. In this Solar System barycentric frame we will use these station locations to
calculate the geometric delay (see Section 2.1). We will transform the time interval so obtained back
to the frame in which the time delay is actually measured by the interferometer — the frame moving
with the Earth.

Let £’ be a geocentric frame moving with vector velocity = fc¢ relative to a frame, I, at rest
relative to the Solar System center of mass. Further, let r(t) be the position of a point (e.g., station
location) in space as a function of time, ¢, as measured in the ¥ (Solar System barycentric) frame.
In the ' (geocentric) frame, there is a corresponding position r'(t') as a function of time, t'. We
normally observe and model r'(t') as shown in sections 2.3 through 2.6. However, in order to calculate
the geometric delay in the Solar System barycentric frame (Z), we will need the transformations of
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r(t) and r'(t'), as well as of ¢ and t', as we shift frames of reference. Measuring positions in units of
light travel time, we have from Jackson (1975):

BB

r(t)=r(t)+ (v - Dr(t) - i Bt (2.141)
t' =qlt —r(t) - B] (2.142)
and for the inverse transformation:
r(t) = ©'(¢') + (v - Dr'(t) - ‘;—f + 2Bt (2.143)
t=~t' +r'(t') - B] (2.144)
where
y=(1-p)" (2.145)

Let t; represent the time measured in the Solar System barycentric frame (X), at which a wave
front crosses antenna 1 at position ry(¢1). Let r2(t1) be the position of antenna 2 at this same time
as measured in the Solar System barycentric frame. Also, let t; be the time measured in this frame
at which that same wave front intersects station 2. This occurs at the position ra(t3). Following
section 2.1, we can calculate the geometric delay t; — t;. Transforming this time interval back to the
T’ (geocentric) frame, we obtain

t;’ — t,l. = '7(t; — tl) - "f[l’z(t;) - l‘l(tl)] . ﬁ (2146)

Assume further that the motion of station #2 is rectilinear over this time interval. That assumption
is not strictly true but, as discussed below, the error made as a result of that assumption is much less
than 1 cm in calculated delay. Thus,

rz(t3) = ra(t1) + Bo(tz — t1) (2.147)

which gives: i
I‘z(t;) — l'l(tl) = rg(tl) - l'l(tl) + ﬁz(t; - tl) (2148)

and

t3' — t) = (s — t1) — qlr2(t1) —r1(t1)] - B — vB2 - Blts — t1]
= (1 — B, - B)(t5 — t1) — v[r2(t1) —r1(t1)] - B (2.149)

This is the expression for the geometric delay that would be observed in the geocentric (£') frame in
terms of the geometric delay and station positions measured in the Solar System barycentric system
(£).

Since our calculation starts with station locations given in the geocentric frame, it is convenient
to obtain an expression for [rz(t;) — ri(t1)] in terms of quantities expressed in the geocentric frame.
To obtain such an expression consider two events [r’(t}), r5(¢})] that are geometrically separate, but
simultaneous, in the geocentric frame, and occurring at time t}. These two events appear in the Solar
System barycentric frame as:

ra(ty) = 4 (85) + (v — Dr(£) - %’3 B, (2.150)

and as:

ra(t2) = Th(8h) + (7 - Dr5(8)) - ’;—" + 482, (2.151)
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where
ta — t1 = 1[r3(t1) —ri(th)] - B (2.152)

With these three equations and the expression

ra(t2) = ra(t1) + Btz — ] (2.153)
we may obtain the vector ra(t;):
ra(t:) = r5(th) + (v — Yra(t1) - %‘; + 1Bty — 1Bsra(t) — 71 (t1)] - B (2.154)

This is the position of station #2 at the time ¢; as observed in X. From this we obtain:

ra{t1) —ri(t1) = rp(t)) — ri(th) + (v — D)[rh(e}) — vy ()] %g

—7Balra(ty) —ri(81)] - A (2.155)

As shown in section 2.1, the vectors [rz(t;) —r;i(t1)] and B, are all that is needed to obtain t; — ¢, for
the case of plane waves. For curved wave fronts we will need to know the individual station locations
in the barycentric frame as well. These we obtain from (2.150) and (2.154) with t] set equal to zero.
Setting t] = O is justified since the origin of time is arbitrary when we are trying to obtain time
differences.

In the actual coding of these transformations, the relationship for the transformation of velocities
is also needed. Taking differentials of (2.143) and (2.144) we have:

dr =dr' + (y—1)dr’ - %g +qBdt’ (2.156)

dt = y(dt' + dr' - B) (2.157)
Dividing to obtain dr/dt we obtain for station #2 in the I frame:

ﬁ'z+('1—1)ﬂ'z'%g+7ﬁ

B, = (2.158)
: 11+ 85 )
For station #2 relative to the geocentric origin, we have from (2.87) and (2.88):
) a ..,
B = QPNEH—XYrZ,wE (2.159)
where
weg = 7.2921151467 x 10~° rad/sec (2.160)

is the inertial rotation rate of the Earth as specified in Kaplan (1981), p.12. This is not a critical
number since it is used only for station velocities, or to extrapolate Earth rotation forward for very
small fractions of a day (i.e., typically less than 1000 seconds). Actually, this expression is a better
approximation than it might seem from the form since the errors in the approximation, o = YE

are very nearly offset by the effect of ignoring the time dependence of PN.

The assumption of rectilinear motion can be shown to result in negligible errors. Using the plane
wave front approximation (2.2), we can estimate the error §7 in the calculated delay due to an error
AB, in the above value of 8,:

1
l_i‘(ﬂz'*'Aﬁz)_ 1-k-8,
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br=%-[ra(ts) — r1(t1)] ~TAB, (2.161)



Further, from (2.158) above,
AB, s AB, (2.162)

since
Y 1+1078 (2.163)

For the vector f5 in a frame rotating with angular velocity w, the error APB, that accumulates in the
time interval 7 due to neglecting the rotation of that frame is

Af, = Powr (2.164)

Thus for typical Earth-fixed baselines, where 7 < 0.02 sec, neglect of the curvilinear motion of station
#2 due to the rotation of the Earth causes an error of < 4x 10~ 14 gec, or 0.0012 cm, in the calculation
of 7. Similarly, neglect of the orbital character of the Earth’s motion causes an error of the order of
0.00024 cm maximum.

The position, Rg, and velocity, B, of the Earth’s center about the center of mass of the Solar

System are: S miRs
= L THT

R = Z:m, (2.165)

By = —&miPs (2.166)

xm
where the index ¢ indicates the Sun, Moon, and all nine Solar System planets. m; is the mass of the
body indexed by 7, while R; and B; are that body’s center-of-mass position and velocity relative to the
center of the Earth in the celestial frame. In a strict sense, the summation should be over all objects
in the Solar System. Except for the Earth-Moon system, each planet mass represents not only that
planet’s mass, but also that of all its satellites. The R; and f; are obtained from the JPL planetary
ephemeris (DE200 as of May, 1982) for the J2000 frame.

Working in a frame at rest with respect to the center of mass of the Solar System causes relativistic
effects due to the motion of the Solar System in a “fixed frame” to be included in the mean position
of the sources and in their proper motion. The effect of galactic rotation can be easily estimated. In
the vicinity of the Sun, the period for galactic rotation is approximately 2.2 x10® years. Our distance
from the center is approximately 10 kpc = 3.086 x10%2 cm. Thus, our velocity is

2% R
g = % ~ -,}'—c 9.3 x 104 (2.167)

For a source at zero galactic latitude, the maximum change in apparent position (over one half galactic
rotation) is

2
AO ”ﬂ 75 5.5 x 10~ ®arcsec /year (2.168)
period

Since a 1-arcsecond angle subtends a distance of approximately 30 meters at one Earth radius, ne-
glecting this effect is roughly equivalent to introducing an error of 0.015 cm/year on intercontinental

baselines. For the present 12-year history of VLBI data, this implies a systematic error of the order
of 0.2 cm.
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2.8 ANTENNA GEOMETRY

The above work indicates how the time delay model would be calculated for two points fixed
with respect to the Earth’s crust. In practice, however, an antenna system does not behave as an
Earth-fixed point. Not only are there instrumental delays in the system, but portions of the antenna
move relative to the Earth. To the extent that instrumental delays are independent of the antenna
orientation, they are indistinguishable to the interferometer from clock offsets and secular changes
in these offsets. If necessary, these instrumental delays can be separated from clock properties by
a careful calibration of each antenna system. That is a separate problem, treated as a calibration
correction (e.g., Thomas, 1981), and will not be addressed here.

However, the motions of the antennas relative to the Earth’s surface must be considered since
they are part of the geometric model. A fairly general antenna pointing system is shown schematically
in figure 5. The unit vector, 8, to the apparent source position is shown. Usually, a symmetry axis
AD will point parallel to 8. The point A on the figure also represents the end view of an axis which
allows rotation in the plane perpendicular to that axis. This axis is offset by some distance H from a
second rotation axis BE. All points on this second rotation axis are fixed relative to the Earth.
Consequently, any point along that axis is a candidate for the fiducial point which terminates this
end of the baseline. The point we actually use is the point P. A plane containing axis A and perpen-
dicular to BE intersects BE at the point P. This is somewhat an arbitrary choice, one of conceptual
convenience.

EARTH'S SURFACE

Figure 5. A generalized schematic representation of the geometry of a steerable antenna

Consider the plane Q which is perpendicular to the antenna symmetry axis, AD, and contains
the antenna rotation axis A. For plane wave fronts this is an isophase plane (it coincides with the
wave front). For curved wave fronts this deviates from an isophase surface by ~ H?/(2R), where R
is the distance to the source, and H is taken as a typical antenna offset AP. For H =~ 10 meters,
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R = Rmoon = 60RE = 3.6 x 10% meters, and the curvature correction H?/(2R) =~ 1.4 X 1077 meters
and is totally negligible. R has to be 5 km, or 10~ 3R, before this deviation approaches 1 cm
contribution. Consequently, for all anticipated applications of radio interferometry using high-gain
radio antennas, the curvature of the wave front may be neglected in obtaining the effect on the time
delay of the antenna orientation.

Provided the instrumental delay of the antenna system is independent of the antenna orientation,
the recorded signal is at a constant phase delay, independent of antenna orientation, at any point on
the Q plane. Since this delay is indistinguishable from a clock offset, it will be totally absorbed by

that portion of our model.
L=+ HY1 - B

AZ—-EL
INTERSECTING | OFFSET HOUR ANGLE — DEC X=Y
~ S §
S
T / ~ 7 /
T
H < H
A ,\ LET
H=20 | TOWARD I TOWARD NORTH POLE IN 7 BE UNIT VECTOR TOWARD
5 =0 GEODETIC NORTHERN HEMISPHERE FARTH'S NORTH POLE
VERTICAL AND TOWARD SOUTH ® BE UNIT VECTOR TOWARD
POLE IN SOUTHERN LOCAL GEODETIC VERTICAL
! =+ HCOS| HEMISPHERE . B (3xB
(ELEVATION THEN 1 =—(——)—A XALX R
ANGLE) I =+ HCOS R x (Z x R)|
&2 = + (SRARZ)]
1 - (R2)?
L= H 1 - B2

Figure 8. Schematic representations of the four major antenna geometries used in VLBI

2.8.1 Axis Offset

The advantage of choosing the Q plane rather than some other plane parallel to it is that the axis
A is contained in this plane, and the axis A is fixed relative to the BE axis by the antenna structure. If
[ is the length of a line from P perpendicular to the Q plane, the wave front will reach the Earth-fixed
point P at a time At = I/c after the wave front passes through the axis A. If 7o is the model delay
for a wave front to pass from P on antenna #1 to a similarly defined point on antenna #2, then the
model for the observed delay should be amended as:

T=1T — (At2 - Atl) =71+ (ll - 12)/6 (2'169)
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where the subscripts refer to antennas #1 and #2.
For the inclusion of this effect in the model, we follow a treatment given by Wade (1970). Define
a unit vector I along BE, in the sense of positive away from the Earth. Further, define a vector, L,
from P to A. Without much loss of generality in this antenna system, we assume that §, L, and I are
coplanar. Then:
Ix[8xI]
| Ix[Ex 1) |
where the plus or minus sign is chosen to give L the direction from P to A. The plus sign is used if,
when 8 and L are parallel or antiparallel, the antenna comes closer to the source as H increases. Since

(2.170)

IxExT=8-1[1 9 (2.171)

1=8-L=xHV1-[ 1 (2.172)

where the sign choice above is carried through.

Curvature is always a negligible effect in the determination of & L. Likewise, gravitational
effects are sufficiently constant over a dimension |L| so as to enable one to obtain to a very good
approximation a single Cartesian frame over these dimensions. Consequently, it is somewhat easier
to calculate a proper time At = !/c in the antenna frame and to include it in the model by adding it
to 7, taking into account, in principle at least, the time dilation in going from the antenna frame to
the frame In which 7y is obtained.

2.8.2 Refraction

Thus, if 8p is the unit vector to the source from the antenna in a frame at rest with respect to the
Solar System center of mass, perform a Lorentsz transformation to obtain 8, the apparent source unit
vector in the Earth-fixed celestial frame. Actually, the antenna does not “look” at the apparent source
position 8, but rather at the position of the source after the ray path has been refracted by an angle ¢
in the Earth’s atmosphere. This effect is already included in the tropospheric delay correction (Section
4); however since the antenna model uses the antemna elevation angle Ey, the correction must be made
here as well. For the worst case (elevation angle of 6°) at average DSN station altitudes, the deflection
can be as large as 2 x 1072 radians. Thus, 6§l ~ He s~ 2 cm for H = 10 meters. A model option
permits modification of 8y to take atmospheric refraction into account. The large-elevation-angle
approximation is the inverse tangent law:

AE=3.13x 10"*/tan E, (2.173)

where E is the elevation angle, and A E' the change in apparent elevation Ej induced by refraction. This
model was implemented only for software comparison purposes, since it gives incorrect results at low
elevation angles. In the notation of Section 4.2, a single homogeneous spherical layer approximation
yields the bending correction in terms of the zenith troposphere delays pz, refractivity moment My,
scale height A, and Earth radius R:

AE = cos™!cos(Ep + ao)/(1 + xo)] — @0 (2.174)
where
X0 = (PZ4y + P2y /Moo1)/A (2.175)
ag =cos” (14 ') /(1+0)] (2.176)
o=A/R (2.177)
o' = [(1+ (o +2)/sin® Bo) Ve 1] sin® B (2.178)
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This formula agrees with ray-tracing results to within 1% at 6° and =15% at 1° elevation, while the
corresponding comparisons for Eq. (2.173) give ~25% at 6° and a factor of 3 at 1°.
Since we are given § in terrestrial coordinates, we first perform the coordinate transformation
given by @ above: . .
I= Qlterrcntria.l (2179)

With this done, obtain At = l/c , as shown in figure 6 for each of the major antenna types. Note
that for “nearby” sources we also must include parallax (e.g., geographically separate antennas are
not pointing in the same direction). If Ro is the position of the source as seen from the center of the
Earth, and r is the position of a station in the same frame, then the position of the source relative to
that station is

R=Ryo-r (2.180)

and in (2.172) we make the substitution

e Ro — 1] 1]
61" = [_—lRo—rl ] (2.181)

2.8.8 Unique Antennas

One of the VLBI antennas employed by the IRIS project of the National Geodetic Survey does not
fall into any standard category. It is unique because it is an equatorial mount designed for the latitude
of Washington, D.C., but deployed at Richmond, Florida. The considerable latitude difference, and
the axis offset of several meters, make it imperative that the antenna geometry be properly modeled.
In the local VEN coordinate frame, the vector I is

sin ¢w
— cos ¢w sine (2.182)
coS pw co8 €

Upon transformation to the Earth-fixed frame via the matrix VW [Eq. (2.67)], it becomes

cos A(sin ¢w cos ¢ — cos ¢w sin ¢ cos €) + sin A cos ¢ sine
sin A(sin ¢w cos ¢ — cos dw sin ¢ cos €) — cos A cos dpw sine (2.183)
sin ¢w sin ¢ + cos dw cos P cos €

Here (), ¢) are the Richmond longitude and latitude, ¢w is the latitude of Washington (39.06°), and
€ =0.12° W of N is the azimuth misalignment.

Two other one-of-a-kind antennas, Arecibo and Nancay, are seldom used in astrometric and
geodetic VLBI work. The Arecibo antenna has hardware features which make it equivalent to an
azimuth-elevation mount. The Nancay array has been treated by Ortega-Molina (1985), but the
model is not presently incorporated in MODEST code.

2.8.4 Site Vectors

In the modeling software is the facility to provide a time-invariant offset vector in local geodetic
coordinates (east, north, and local geodetic vertical) from this point (antenna location) to a point else-
where, such as a benchmark on the ground. This is particularly useful in work involving transportable
antennas which may be placed in slightly different places relative to an Earth-fixed benchmark each
time a site is reoccupied. In modeling that offset vector, we make the assumption of a plane tangent
to the geoid at the reference benchmark and assume that the local geodetic vertical for the antenna
is parallel to that for the benchmark. With these assumptions there is an identity in the adjustments
of antenna location with changes derived for the benchmark location. The error introduced by these
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assumptions in a baseline adjustment is approximately AB X (d/Rg), where AB is the baseline ad-
justment from its a prior: value, d is the separation of the antenna from the benchmark, and Rg is
the radius of the Earth. To keep this error smaller than 0.01 cm for baseline adjustments of the order
of 1 meter, d < 600 meters is required.

More troublesome is that an error in obtaining the local vertical by an angle 6@, when using
an antenna whose intersection of axes is a distance, H, above the ground, can cause an error of
Hsind® ~ H§O in measuring the baseline to the benchmark (Allen, 1982). Unless this error is
already absorbed into the actual measurement of the offset vector, care must be taken in setting up
the antenna so as to make §© minimal. For a baseline error < 0.1 cm, and an antenna height of 10
meters, 6@ < 20 arcseconds is required. Often plumb bobs are used to locate the antenna position
relative to a mark on the ground. This mark is, in turn, surveyed to the benchmark. Even the
difference in geodetic vertical from the vertical defined by the plumb bob may be as large as 1 arc
minute, thus potentially causing an error of 0.3 cm for antennas of height 10 meters. Consequently,
great care must be taken in these measurements, particularly if the site is to be repeatedly occupied
by antennas of different sizes.

2.8.5 Feed Rotation

Another physical effect related to antenna structures is the differential feed rotation for circularly
polarized receivers. Liewer (1985) has calculated the phase shift # for various antenna types. It is
zero for equatorially mounted antennas. For altazimuth mounts,

tanf = cos $sinh/(sin ¢ cos § — cos ¢ sin § cos h) (2.184)

with ¢ = station latitude, A = hour angle, and § = declination of the source. For X-Y mounts, two
cases are distinguished: orientation N — S or E — W. The respective rotation angles are

tan(—6) = singsinh/(cosdcos§ +singsinbcosh) (N —5) (2.185)

tan(—f8) = —cosh/(sinésinh) (E —W) (2.186)

The effect cancels for group delay data, but can be significant for phase delay data. The effect on
phase delay is

r=(02—6,)/f (2.187)

where f is the observing frequency and 6, the phase rotation at station i. The feed rotation correction
is now an optional part of the MODEST model.

Finally, another small correction which accounts for the effect of orientation of HA-Dec and X-Y
antennas on the tropospheric path delay was recently considered by Jacobs (1988). Details are given
in the troposphere section, 4.4.
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2.9 PARTIAL DERIVATIVES OF DELAY WITH RESPECT TO

GEOMETRIC MODEL PARAMETERS

With respect to any given parameter, the calculation of the time-delay model must be at least

as accurate as the data is sensitive to that parameter. Consequently, such effects as the curvature of
the wave fronts were considered. However, such detail is not necessary for determining the derivatives
with respect to the relevant model parameters. Here, the plane wave approximation is sufficient.
Iteration on the estimated parameters and the rapid convergence of an expansion of the time delay in
the relevant parameters about some a priori point permit this simplification.

R

In this plane wave approximation we wish to obtain the parameter derivatives with respect to:
the nominal baseline components {actually, station locations),

. the parameters of the whole Earth orientation matrix @ described in section 2.6,

the solid-Earth tidal parameters,

the parameters of source location (right ascension and declination),

the antenna axis offsets,

the constant, 7,p, in the retardation of the light ray due to gravitational effects.

The expressions for these derivatives are comsiderably simplified if tensor notation, with the

Einstein summation convention, is employed. Before proceeding any further, we make the following
definitions for this section:

r = time delay modeled in the geocentric frame,

7, = this same time delay, but modeled in the Solar System center of mass frame,

§ = source unit vector (in the celestial system at rest with respect to the Solar System
center of mass),

B = velocity of the geocentric frame as measured in the Solar System center of mass frame

(remember, all distances are measured in time; thus, this quantity is dimensionless),
, = velocity of station #2 in Solar System center of mass frame,
p =1+8-f, Thisis afactor & 1.0001, which arises from the motion of station #2 during
the passage of the wave front from station #1 to #2,

-1/2

= (1 - ﬂg) 1/25

T2 = (1 - ﬁg) ’

Q = matrix which transforms from the terrestrial system to the celestial system,

Lo = the baseline vector in the terrestrial system,
L, = this same baseline vector in the celestial system center of mass frame,
L = this same baseline vector in the celestial system.

With these definitions (2.149) may be written

r=~(1-8-B3)rs—1B L, (2.188)
For plane waves from (2.2):
T k1~[_r:{;:] Tl i‘iluﬂz - _3'::- (3.159)
Thus,
r= =t - a8 B — 2 L, (2.190)
For parameters (represented symbolically by 1) associated with L,, only:
Z—; == ['1(1 - ﬂz.ﬂi)% + 'yﬂk] aaL,;" (2.191)
Define the vector:
W= = [(1- 280 % + 18] (2.192)
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Then

ar aL,,
an = oy

2.9.1 Source Parameters

For parameters associated with the source position only:

Since

Define the vector:

Then,

For example:

Then,

and

and

L,, [6& _ Sk ap]

or
—_— = —~[1 — B _—
an V(1= Fai) p |9 pdn

p=1+ 35
ar L, |9sx  sxfa2, 9s
oy = L= Prf) [an p 9n
L

= —(1 - B2, 8:)

[6 skﬂ2l} ds
R — —— | —
p

Sk
P n

L,, 8if2;
My = ~(1 = fafi) = [s.-,—— p’]
ar ds;
9T _ 950
an 7 an

8=cosbcosa, cosfsine, siné ]

g:-=[—c035sina, cosbcosa, 0]=[ A}, Az, As |
Z_§= [ —sinécosa, —sinésina, cos§ | = Fy, Fy, Fs |
g_;=MAi
o = MiF,

Or, if we define the matrices:

and

then:

A, F
G = Ag Fz
Az Fs

(2.193)

(2.194)

(2.195)

(2.196)

(2.197)

(2.198)

(2.199)

(2.200)

(2.201)

(2.202)

(2.203)

(2.204)

(2.205)

(2.206)



For a linear model of source “proper motion” [Eqs. (2.85)-(2.86)], the partials of r with respect to
the time rates of change of right ascension and declination (&, 6) are

dr or
[ﬁ’ ;‘.] = (t—to)MG (2.207)

where tg is a reference time.
2.9.2 Station Parameters

For station location parameters the algebra is somewhat more complex. Since

L, = (1) - r1(t2) (2.208)
=r3(tz) —T1(t1) — Baltz — t]
=ra(t2) —T1(t1) — 1Ba[ra(t]) —ri(t1)] - B
= [F(81) — ¥ ()] + (7 — 1)rh(eh) — FL(t))] - BB — 1828 - [rh(t)) — ri(th)]

we have: .
L,=L+(y-1)L-Bf-B,8-L (2.209)
or in tensor notation
-1)5
S (SN P
Define the tensor:
- 1)8;
E;j = 65 + [(1 7 )8 - ’7ﬂ2']ﬁj (2.211)
Then
L,, = E;;L; (2.212)
Since
L; = QjkLo, (2.213)
L,, = E;;Qjx Lo, (2.214)
Thus,
r =V, E;;Q;x Lo, (2.215)

For parameters which are involved with station locations expressed in the terrestrial coordinate system:

31 aLo aLo
= [V Ei;Q; L — B k 2.216
ar' [ JQJk] 617 k ar’ ( )
where the vector element
B = Vi Ei;Qjk (2.217)

Such parameters are: r0,. (radius off spin axis), A9 (longitude), 20 (height above the equator), fyp.,

)'\,-, % (the station coordinates’ respective time rates), hg; (vertical quadrupole Love number), I
(horizontal quadrupole Love number), ; (phase lag of maximum tidal amplitude). The subscript
refers to station number, i.e.,1 = 1, 2. Define the matrix:

W= [_Rh RZ: _Alx A2’ —'Zl) ZZ) —Rla RZ’ _AI, 'A2; _Zl, Zz, “V],, Vg, _Hl, Hz, —Ql, q)z] (2218)
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where each column contains the partials of the Ly component vectors x, y, z with respect to the
parameters. For example, for the constant terms in the cylindrical station coordinates [see Egs.

2.38) through (2.40)}:
(2.38) (2.40)] 3L,

Orop:
aLo cos A?
R; = 370 Y = | sin)y

*p; 0
aLo,
91y,

dLo,
3x0

0 i 30

oL —Typ, BIRA;

A= % | = (ro cos AY
0

axo *pi
3Lo,
23

aLo,

829

]
dLy
Z = az?y - (

Lo,
3z?

For the station coordinate rates,
Ri=(t—to)R Ai=(t—to)hi Zi=(t—1t0)%
From Eqs. (2.50) through (2.61), and relying on Williams (1970):

06 \
3ha; (2).
3s; g
V; = Y| = SEV(EIW() ( 0 )
Ohai 0
aé‘i:
Gha;
a51'z
Olg; 0
A L SEVEWE) | 92 ()
aly; ).
9 (1)
86y
10 j
36;s 391 3)
A, atp;
38 | cinviamwn | 862 6)
d; = 3, = SEV(EHW() T
36"; ag:(,z)(z)
O oy

where 1 = 1 implies station #1, ¢ = 2 implies #2, and S(1)
9(®) with respect to ¢ are

ag(z) 3,12

6_:; = -—R;,)—phr,, ‘R, [ypX, — z,Y]
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(2.219)

(2.220)

(2.221)

(2.222)

(2.223)

(2.224)

(2.225)

—1, while §(2) = 1. These partials of

(2.226)



(2) 34,2
392, — I‘as"p |rp| [rp - R,][z, X, + M ARSES A pr‘lz (2.227)
Y
842 3p,r? 2Zp
—a:b_ = pr Uyp X, — zpYa] [\/ 22 + 9325 — \/Tg—_r—yglzrp ‘R, - 2,2, (2.228)

Also, define a vector:

ar or dr 98r 8r Or or or 8r dr Jdr 9ar

ap1 ap3

o or o o o o 0 Or
3by' 8by’ Bhgy’ Bhyy’ dlay’ Oly’ 81’ Y

Then
D=BW (2.230)

2.9.8 Earth Orientation Parameters

Certain parameters such as UT1, polar motion, precession, and nutation affect Q only. For these
parameters

31’ aQ,'k
3 =V, E; (_—ar] )Lo.‘ (2.231)
Define a vector:
K; = ¥, Ey; (2.232)
Then
ar _ aQ"k
i K.( 3y )Lo. (2.233)

for parameters which affect only the orientation of the Earth as a whole,
2.9.3.1 UT1 and Polar Motion

A number of parameter partials are available for the orientation of the Earth. These are for
UT1, X pole, Y pole, and nutation, as well as the angular offset and angular rate terms in the Earth
orientation perturbation matrix Q. From (2.87):

Q=0PNUXY (2.234)
Define the matrix:
oY 0 0 0
Y = T 0 —ginB; cos 5 (2.235)
2 0 —cos©®; -—358inH,;
Then, the partial required for the Y polar motion parameter is:
9Q
=(PNUXY' 2.236
o (2.236)

. . . . . . ax .
An analogous technique is used for the X pole angle, working with the matrix partials T Partials
. i
with respect to UT'1 involve a slight complication due to the last three terms in Eq. (2.94). On the

assumption that only the term linear in T, contributes significantly,
auy  avu

ST - g (1 +1/365.25) (2.237)
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2.9.3.2 Nutation

Partial derivatives of the VLBI observables with respect to the nutation angles and amplitudes
appear formidable at first sight, but are relatively easy to evaluate if the calculation is performed in
an organized fashion. Symbolizing the parameters by 5, we need to evaluate the partials of the matrix

Q with respect to n:

3Q _ aN av \ a5y

%—QP(aéwU-t-Nalw) SEXY (2.238)
80 aN aU \ ase

bk A ot ) xy 2.23
an QP(655U+ Nase) an (2.239)

aN
Since §& = ¢ — &, the first partial on the rhs of Eq. (2.239) is equal to 50 The derivatives of N
€
with respect to the angles 6t and ¢ are easily obtained from the expression for N in Eq. (2.105):

N —sindy cos gcos by sin € cos §y
E —~cos&cosbtp —cos&cosesindy — cosZsinesindy (2.240)
¥ —gin€cosfyy ~—sinZfcosesinfy —sinésinesinby
and
ON 0 —sinesin ¢ cosesin 6y
35e = 0 —cos&sinecosby +sin&cose cosfcosecosbty + sinésine (2.241)
¢ 0 —sin&sinecosfyh —cos&cose sin&cosecosby —cosfsine
From Eq. (2.92), the partials of U with respect to 4 and e are
U —sinH —cosH 0 oH
= cosH —sinH 0) ——— 2.242
36y, be ( 0 0 0 86y, be ( )
and, from Eq. (2.97),
oH
T =cose [ (cos? 6 + cos® £sin? §v) (2.243)
oH : 2 2
35. = —Sinetanéy / (1 + cos®ectan®éy) (2.244)

the U-dependent terms in Eqs. (2.238) and (2.239) are evaluated.
Partials of 64 and ée¢ with respect to the parameters A;; and B;; are obtained immediately from
Egs. (2.117) and (2.118). For the “free nutations”,

gi‘ﬁ‘; = sinwsT, gg:: = coswyT (2.245)
% = Tsinw;T, aai;l: =TcoswsT (2.246)
Z‘:ﬁ: = coswsT, gg:; = sginw;T (2.247)
gi‘ﬁ(f) = T cosw;T, %2% = Tsinw;T (2.248)

and for the 1980 IAU series terms (7 = 1 to 106):
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66¢ = sin[i Jsa-(T)] 355. = cos[ Ic,-;a;(T)]

dAo; ~ 8Bo; =1
& 5 5

:ji = Tsin[3 kjiai(T)] aan,. = Teos[3 kyiaulT)]
=1 =1

35 5 a5 e

aAlbj = cos [‘_=1 kjic (T)] y aB:,' = Ssin [‘:El kjio; (T)]

a6y

5 dbe . °
B As; = T cos [Z:: kjioi (T)] 3B, = T'sin [E kjio (T)] .

-

t

2.9.3.3 Precession

(2.249)

(2.250)

(2.251)

(2.252)

Partial derivatives of the observables with respect to precession parameters are evaluated in a
manner similar to those with respect to nutations. Symbolizing either the luni-solar precession prs
or the planetary precession ppy by =, the partial of the rotation matrix Q is

aaf‘“[‘a‘”””’”?a—(]]

(2.253)

., OP . . . . . .
The partials . e very complicated, and will be written in terms of the partials of each matrix
™

element P;;:

18Py,
T dpLs

= — cos &y sin ¢ cos O cos Z/2 — sin &y cos¢sin O cos Z

— cos &y cos ¢ cos O sin Z/2 — cos & cos ¢ sin Z/2
— cos &p 8in ¢ 8in Z/2

138pP,
T dppL

=sin ¢ cos © cos Z/2 + cos ¢ cos O sin Z/2
+ cos¢sin Z/2 + sin¢ cos Z/2

18P

—Z712 = cosg sin¢ cos O sin Z/2 — 8in &, cos ¢ sin O sin Z

T dpLs
+ cos &y cos ¢ cos © cos Z/2 + cos &y cos ¢ cos Z/2

— cos &g sin ¢ sin Z/2

1 3P,
T dppL

=sin ¢ cos © sin Z/2 — cos ¢ cos O cos Z/2
— cos¢cos Z/2 +sin¢sin Z/2

138Ps
T dprs

= — cos £ 8in ¢ sin B8/2 + sin &y cos ¢ cos O

dP;s
OppL

= T'sin¢sin ©/2
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(2.254)

(2.255)

(2.256)

(2.257)

(2.258)



= = — cos &y cos ¢ cos O cos Z/2 + sin & sin ¢ sin © cos Z

T 8prs
+ cos & sin ¢ cos O sin Z/2 + cos & sin ¢ sin Z/2
— cos&gcos¢cos Z/2 (2.259)
1 it = cos ¢ cos O cos Z/2 — sin ¢ cos O sin Z/2
T dprL
— sin¢sin Z/2 + cos ¢ cos Z/2 (2.260)
1 9P = — co8&pcos ¢ cos O sin Z/2 + sin & sin¢ 8in O sin Z
TapLs
— cos &y 8in ¢ cos O cos Z/2 — cos &y sin ¢ cos Z/2
— cos &y cos¢sin Z/2 (2.261)
10Pn _ cos ¢ cos O sin Z/2 + sin ¢ cos O cos Z/2
T dppL
+sin¢cos Z/2 + cos¢ sin Z/2 (2.262)
1 9Pz = — cos &g co8 ¢ 8in 8 /2 — sin &; sin ¢ cos O (2.263)
T 3pLs
OP2 _ 1os ¢8in©/2 (2.264)
dppL
1 P51 = —gin & cos O cos Z + cos &, sin O sin Z/2 (2.265)
T opLs
9P _ _Tein@sinz/2 (2.266)
dppL
%Z:’: = — sin & cos O sin Z — cos & sin O cos Z/2 (2.267)
P2 _ pin@cos 22 (2.268)
dppL
9P _ _Tsingosin® (2.269)
dpLs
dPs;
= 2.270
dpprL ( )

A check on the algebra may be performed by noting that

aP apP apP

5oer = Tlac * 32)/2 (2.271)

and P 3P
Bpis = —cos &g prL + Tsin éo-a—e (2.272)

The corresponding partials of the U matrix are much simpler:

U sin H cosH O
3 =—cos&y | —cosH sinH O (2.273)

PLS 0 0 0
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U aUu
_— 08 & 2.274
OppL (3PL5) [ cos€o ( )

2.9.8.4 Rotational Tweaks

Finally, the partials of the nutation matrix with respect to the “tweaks” A4 and Ae are obtained

by making the replacements (2.119) and (2.120) in N. E_ANE and a—g; are then seen to be identical

to Eqs. (2.240) and (2.241), with the same replacements for §¢ and Se. Expressions analogous to
Eqs. (2.242) and (2.243) account for the shift of the equinox by nutation changes 6% and ée. If the
a priori tweaks are zero, the partials are exactly equal to the expressions (2.240) and (2.241).

For the parameters in the perturbation matrix, 0, from (2.138):

0 00
M _ o o 1 (2.275)
360 \o -1 0

0o 00
N _lo o ¢ (2.276)
366, \o —t o

where t is the number of years from the reference epoch (e.g., J2000). Then, by substituting these
matrices for  in (2.138), we obtain the appropriate partials of @ for perturbations about the x axis.
By analogy, the perturbation parameters about the y and 3 axes may also readily be obtained.

2.9.4 Additive Parameters

If we seek the partials of parameters that affect only the %add-on” terms in r = 75 + A7, then
from (2.149) we have:
ar a(Ar)

for terms which were “added on” in the Solar System barycenter. An example is gravitational bending:

(2.277)

or Ag
=18 By 2.278
Bt A TET— (2.276)
For terms “added on” in the geocentric frame, then:
ar OAr
37 = an (2.279)

An example is the antenna offset vector. In this case:

or |

3(offset station #2) - [:t 1-[8 .'ﬂz] (2.280)
ar I

d(offset station #1) =ty1-[8 .'ﬂz (2.281)

where the choice of sign for each station is determined by the choice of sign for that station in the
model portion.

and
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SECTION 3

CLOCK MODEL

The frequency standards (“clocks”) at each of the two antennas are normally independent of each
other. Attempts are made to synchronize them before an experiment by conventional synchronization
techniques, but these techniques are accurate to only a few usec in epoch and = 10~!2 in rate.
More importantly, clocks often exhibit “jumps” and instabilities at a level that would greatly degrade
interferometer accuracy. To account for these clock effects, an additional “delay” 7, is included in the
model delay, a delay that models the behavior of a station clock as a piecewise quadratic function of
time throughout an observing session. Usually, however, we use only the linear portion of this model.
For each station this clock model is given by:

Te = Te1 + Tea(t — treg) + 7ea(t — tres)?/2 (3.1)

The term, ¢,.r, may be set by the user as a specific time (Julian date), or by default taken as the
midpoint of the interval over which the a priori clock parameters, 7., 7.o, 7ea, apply.

In addition to the effects of the lack of synchronization of clocks between stations, there are
other differential instrumental effects which may contribute to the observed delay. In general, it is
adequate to model these effects as if they were “clocklike”. However, the instrumental effects on delays
measured using the multifrequency bandwidth synthesis technique (Thomas, 1981) may be different
from the instrumental effects on delays obtained from phase measurements at a single frequency.

The bandwidth synthesis process obtains group delay from the slope of phase versus frequency

a . . . .
(1' = —-‘—ﬁ-) across multiple frequency segments spanning the receiver passband. Thus, any instrumental

contribution to the measured interferometer phase which is independent of frequency hag no effect on
the delay determined by the bandwidth synthesis technique. However, if delay is obtained directly

from the phase measurement, ¢, at a given frequency, v, then this derived phase delay (rpd = f)
v

does have that instrumental contribution.
Because of this difference, it is necessary to augment the “clock” model for phase delay measure-
ments:
Teps = Te + Tea(t — treg) + 705 (t — tres)?/2 (3.2)

where 7. is the clock model for bandwidth synthesis observations and is defined in (3.1). Since
the present system measures both bandwidth synthesis delay and phase delay rate, all of the clock
parameters described above must be used. However, in a “perfectly” calibrated interferometer, 7.4
= 1.5 = 0. This particular model implementation allows simultaneous use of delay rate data derived
from phase delay with delay data derived by means of the bandwidth synthesis technique. However,
our particular software implementation currently is inconsistent with the simultaneous use of delay
derived from bandwidth synthesis and delay obtained from phase delay measurements.

To model the interferometer delay on a given baseline, a difference of station clock terms is
formed:

Te = Tcatnﬁon | Tcﬂah‘on 1 (3'3)
Specification of a reference clock is unnecessary until the parameter adjustment step, and need not
concern us in the description of the model.

The partial derivatives of model delay with respect to the set of five parameters (Tc1 1Te21Te3:Ted Te5)
for each station are so trivial as to need no further explanation.
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SECTION 4

TROPOSPHERE MODEL

In order to reach each antenna, the radio wave front must pass through the Earth’s atmosphere.
This atmosphere is made up of two components: the neutral atmosphere and the ionosphere. In
turn, the neutral atmosphere is composed of two major constituents: the dry and the wet. The dry
portion, primarily oxygen and nitrogen, is very nearly in hydrostatic equilibrium, and its effects can be
accurately estimated simply by measuring the barometric pressure. Typically, at sea level in the local
zenith direction, the additional delay that the incoming signal experiences due to the troposphere is
approximately 2 meters. Except for winds aloft, unusually strong lee waves behind mountains (e.g.,
Owens Valley, California), or very high pressure gradients, an azimuthally symmetric model based on
measurements of surface barometric pressure is considered adequate. We have not yet investigated
where this assumption breaks down, though “back-of-the-envelope” calculations indicate that, except
in the unusual cases above, the error in such an assumption causes less than 1-cm error in the baseline.

Unfortunately, the wet component of the atmospheré (both water vapor and condensed water in
the form of clouds) is not so easily modeled. The experimental evidence (Resch, 1983) is that it is
“clumpy”, and not azimuthally symmetric about the local vertical at a level which can cause many
centimeters of error in a baseline measurement. Furthermore, because of incomplete mixing, surface
measurements are inadequate in estimating this contribution which even at zenith can reach 20 to
30 cm. Ideally, this tropospheric induced delay should be determined experimentally at each site.
This is particularly true for short and intermediate (B < 1000 km) baselines, where the elevation
angles of the two antennas are highly correlated in the observations. For long baselines, both the
independence of the elevation angles at the two antennas, and the fact that often the mutual visibility
requirements of VLBI constrain the antennas to look only in certain azimuthal sectors, allow the use
of the interferometer data itself to estimate the effect of the water vapor as part of the parameter
estimation process. For this reason, and because state-of-the-art water-vapor measurements are not
always available, we also have the capability to model the neutral atmosphere at each station as a
two-component effect, with each component being an azimuthally symmetric function of local geodetic
elevation angle.

At each station the delay experienced by the incoming signal due to the troposphere can be
modeled using a spherical-shell troposphere consisting of a wet component and a dry component:

Ttrop station i = Twet trop T Tdry trop (4-1)

The total troposphere model for a given baseline is then:

Tt = Ttrop station 2 — Tirop station 1 (42)

If E; is the apparent geodetic elevation angle of the observed source at station i, we have (dropping
the subscript ):

Ttrop = pzdrde'y(E) + PZyer Rwet(E) (4'3)

where pz is the additional delay at local zenith due to the presence of the troposphere, and R is an
elevation angle mapping function.

For some geodetic experiments, the observed delay has been corrected for the total tropospheric
delays at the two stations, which are in turn calculated on the basis of surface pressure measurements
for the dry component, and water-vapor radiometer measurements for the wet component. This
correction is recorded in the input data stream in such a way that it can be replaced by a new model.
In the absence of such external calibrations, it was found that modeling the zenith delay as a linear
function of time improves troposphere modeling considerably. The dry and wet zenith parameters are
written as

PZar = P2y + P24 (t = to) (4.4)

where tg is a reference time.
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Since the model is linear in the parameters p° and p, the partial derivatives with respect to zenith
delays and rates are trivial. They are:

a_oai—— = f(t)R‘d or w (4'5)
Zid or w
and 3
a_'—_r_——_ = (t - to)f(i)R‘d ar w (4‘6)
pz‘d or w

where f(z) = 1 for station #2, and —1 for station #1.
4.1 CHAO MAPPING FUNCTION

The simplest mapping function implemented in MODEST code is that obtained by C. C. Chao
(1974) through analytic fits to ray tracing, a function which he claims is accurate to the level of 1%
at 6° elevation angle and becomes much more accurate at higher elevation angles.

1

R= 4.7
nE+ —a o

sin tan E+ B

where

Agry = 0.00143 (4.8)
Bg,y = 0.0445 (4.9)
Ay = 0.00035 (4.10)
Byt = 0.017 (4.11)

The user must specify values for the genith delays.

The partial derivatives of delay with respect to the parameters Agry and By, are:

ar .
= —f(")pzdry Rgry/(tan E + Bdry) (4'12)
9Adry
and 3
T .
= f(’)pzdry RgryAdT!l/(tan E+ Bd"!l)2 (4'13)
aBdry

where Rj,y is the Chao mapping function, and FE is the elevation angle.
4.2 LANYI MAPPING FUNCTION

Analyses of intercontinental data indicate that the Chao mapping function [Eq. (4.7)] is inade-
quate. To rectify this situation, two modifications have been made to the MODEST code. First, the
dry-troposphere mapping parameters A4,y and Bgy,y of the Chao mapping function R4, have been
promoted to the status of estimable parameters. Second, the code now permits the use of two more
accurate mapping functions. The first of these is the analytic function developed by Lanyi (1984). In
its simplest form, this mapping function employs average values of atmospheric constants. Provision is
made for specifying surface meteorological data acquired at the time of the VLBI experiments, which
may override the average values. Using numerical fits to ray-tracing results, Davis et al. (1985) have
arrived at another function, designated the CfA-2.2 mapping function. Comparisons indicate that the
Lanyi and CfA functions are in agreement to better than 1 cm over an extreme range of atmospheric
conditions down to 6° elevation angles. Finally, an approximate partial derivative is obtained with
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respect to one parameter in the Lanyi mapping function; this permits adjustment even in the absence
of surface data. The Lanyi function was made the default MODEST troposphere model in early 1986.
Motivation for and full details of the development of a new tropospheric mapping function are
given by Lanyi (1984). Here we attempt to give a minimal summary of the final formulas. The

tropospheric delay is written as:
Tirop = F(E)/sin E (4.14)

where

F(E) = pZdrde'y(E) + PZyet Fwet (E)
+ (0%, For (B) + 2024, P70 Foa (E) + £, Foo(E)I/A + P70, Foa(E)/ A% (4.15)

The quantities pz,,, and pz,., have the usual meaning: zenith dry and wet tropospheric delays. A
is the atmospheric scale height, A = kTo/mgc, with k = Boltzmann’s constant, Tp = average surface
temperature, m = mean molecular mass of dry air, and g, = gravitational acceleration at the center of
gravity of the air column. With the standard values k = 1.38066 x 107 !¢ erg/K, m = 4.8097 X 10-23
g, 9o = 978.37 cm/sec?, and the average temperature for DSN stations Tp = 292 K, the scale height
A = 8567 m.

The dry, wet, and bending contributions to the delay, Fary(E), Fuet(E), and Fy1,62,63,04(E), are
expressed in terms of moments of the refractivity as

Fy4y(E) = A10(E)G(AM110, u) + 30uMz10G?(Mi10, 4)/2 (4.186)
Fuyet(E) = Ao1(E)G(AMi01/Moo1, u)/Moos (4.17)
Fy (E) = [aGa(Muo, u)/sin2 E — My20G®(M120/ Moz, u)] /2 tan? E (4.18)
Fi2(E) = —Mo11G*(M111/Mo1,4)/2Moo1 tan’ E (4.19)
Fus(E) = — Moo2G®(M102/ Mooz, u) /[2M{g, tan® E (4.20)
Foa(E) = Mo30G®(Miso/Moso, u)/ tan* E (4.21)

A misprinted sign in the last of Egs. (5) of Appendix B of Lanyi (1984) has been corrected in Eq.
(4.21). Here G{q,u) is a geometric factor given by

Glg,u) = (1 +qu)™"/? (4.22)
with
u=20/tan’ E (4.23)
where o = A/R is a measure of the curvature of the Earth’s surface with standard value 0.001345.
The quantities A, (E) and My, are related to moments of the atmospheric refractivity, and are

defined below. A;g(E) involves the dry refractivity, while Ap1(E) is the corresponding wet quantity.
The A;m(E) are given by

10 n n k
(=1)"*(2n — Y Mok tm u AMiim
Aim (E) = Moim b :
im () = Motm + ,.; ,CZ::O 2nki(n — k)! 1+ AuMym/Moim | | Moim (4:24)

with the scale factor A = 3 for E < 10° and A = 1 for E > 10°. Only the two combinations ({, m) =
(0,1) and (1,0) are needed for the A (E). The moments of the dry and wet refractivities are defined

as
-]

Myij = / dq ¢" iy (9) Fret (9) (4.25)
0

where firy, wet(g) are the surface-normalized refractivities. Here, n ranges from 0 to 1, ¢ from O to 3,
and 7 from 0 to 2; not all combinations are needed. Carrying out the integration in Eq. (4.25) for a
three-section temperature profile gives an expression for the general moment My;;:

n
a
My /nt = (1—- e~1) fa™t] 4 700 [1 — Tt (gy, 92)] H —_—
oo b+1+1
femonTitntl (g o)) /ot (4.26)
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Here,
T2(q1,92) = 1- (92 — q1)/ (4.27)

The quantities g; and gz are the scale-height normalized inversion and tropopause altitudes, respec-
tively. For the standard atmospheric model, g = 0.1459 and gq; = 1.424. The constants a and b are
functions of the dry (o = 5.0) and wet (8 = 3.5) model parameters, as well as of the powers of the
refractivities (¢ and 7) in the moment definitions. Table VII gives the necessary a’s and b’s.

Table VII

Dependence of the Constants a and b
on Tropospheric Model Parameters

1 7 a b

1 0 1 a—1

0 1 B af —2
2 0 2 2(a—-1)
1 1 B+1 Bla+1)-3
0 2 28 2(af - 2)
3 0 3 3(a—1)

Note that the normalization is such that Mp1o = 1; this moment has therefore not been explicitly
written in Eqs. (4.16) through (4.21).

At present, provision is made for input of four meteorological parameters to override the default
(average) values of the Lanyi model. These are: 1) the surface temperature Ty, which determines the
atmosphere scale height (default value 292 K); 2) the temperature lapse rate W, which determines
the dry model parameter a (default values W = 6.8165 K/km, o = 5.0); 3) the inversion altitude
hi, which determines q; = h;/A (default value h; = 1.25 km); and 4) the tropopause altitude ko,
which determines g; = hy/A (default value h; = 12.2 km). A fifth parameter, the surface pressure
Po, is not used at present. Approximate sensitivity of the tropospheric delay (at 6° elevation) to the
meteorological parameters is —0.7 cm/K for surface temperature, 2 cm/(K/km) for lapse rate, and
—2 cm/km for inversion and 0.5 cm/km for tropopause altitude, respectively.

Partials of the delay with respect to the dry and wet zenith delays are obtained from Eqs. (4.14)
and (4.15):

5o = 1) [Fury(B) + 202,,, Fuu (E)/A) /sin E
+ [202,. Foz(E)/ A + 3p%,, Foa(E)/A%]/sin E (4.28)
apa; = f()[Fuet(E) + 2p2,,, Fo2(E) /A + 203, Fos (E)/A] / sin E (4.29)

In analysis of data for which meteorological parameters are not available, it is convenient to introduce
an approximation to the mapping function [Eqs. (4.14) and (4.15)] which involves a one-parameter
estimate. This parameter p accounts for deviations from standard meteorological conditions. The
tropospheric delay is expressed as

. Oty
Ttrop = (pzd,, +pz,.)/sinE+ p% (4.30)
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where the partial derivative is

3merop _ (P2ary T PZuer) 8 M110
dp G(Mllo,u)[1+G(M110,u)] sin E
PZue {M110 — Mio1/Moo1)

+ N
G(Mi10,u)G(M101/Moo1, u) (G (M0, u) + G(Mi01/Moo1, u)|sin E

(4.31)

4.3 CfA MAPPING FUNCTION

Another approach to improved modeling of tropospheric delay was published by Davis et al.
(1985). Analytic fits to ray-tracing results yield the CfA-2.2 mapping function

R= ! (4.32)

sinE + 2

tanE + ————
an +sinE+c

where E is the elevation angle. The three parameters a, b, ¢ are expressed in terms of meteorological
data as

a = 0.0002723 [ 1+ 2.642 x 10™*py — 6.400 x 10™*¢o + 1.337 x 107 2Tp

— 8.550 X 10”2 — 2.456 x 107 2h; | (4.33)
b = 0.0004703 | 1+ 2.832 x 10~ 5po + 6.799 X 107 %o + 7.563 x 107°Ty

—7.390 x 10 2a — 2.961 x 107 2h; | (4.34)
¢ = — 0.0090 (4.35)

Here, po is the surface pressure and eo the surface partial water vapor pressure, both measured in
millibars. The quantities Ty, @, and hg have the same meaning and units as in Section 4.2. This
function is one of three optional mapping functions in the MODEST model. In connection with
testing parameter estimation for the Lanyi function, the partial derivative of delay with respect to
surface temperature Ty in the CfA-2.2 function was also evaluated. It is

ar PZary B3,y [3.641 x 1078 (sin E + c)[tan E + b/(sin E + )] — 3.557 x 10~%q]
Ty (sin E + c)[tan E + b/(sin E + o)

(4.36)

4.4 ANTENNA AXIS OFFSET ALTITUDE CORRECTION

Antennas with non-zero axis offsets, whose second rotation axis (A in figure 5) moves vertically
with changing orientation, have zenith troposphere delays that may vary by 1 to 2 mm. Equatorial and
X-Y mounts fall in this class (see figure 6). At low elevation angles this zenith variation is magnified by
the mapping function to 1-2 cm. These variations must be modeled in experiments whose accuracies
are at the millimeter level (e.g. short-baseline phase delay measurements). Memoranda by Jacobs
(1988, 1991) derive the corrections based on considering only the dry troposphere component, and
including all terms necessary to achieve an accuracy of a few millimeters. The correction to be added
to the zenith dry tropospheric delay is

6t = —pz,,,(H/A) ¢ (4.37)

where H is the antenna axis offset, A the dry troposphere scale height (~ 8.6 km), and # is an angular
factor that varies with the type of mount. For equatorial mounts,

% = cosgdcosh (4.38)
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where ¢ is the geodetic latitude and h the local hour angle east of the meridian. The Richmond
antenna correction has this form with ¢ replaced by ¢w and h by a pseudo-hour angle hp (see Section
2.8.3), where

hr = arctan [cos Esin(6 — €)/[cos ¢w sin E — sin ¢w cos E cos(d + e)]] (4.39)

For north-south oriented X-Y mounts,
¥ = sin E/(1 — cos? § cos? E)!/2 (4.40)
where E is the elevation angle and 8 the azimuth (E of N). Finally, for east-west oriented X-Y mounts,

¥ = sin E/(1 — sin® § cos? E)*/? (4.41)
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SECTION 5

IONOSPHERE MODEL

The second component of the Earth’s atmosphere, the ionosphere, is a layer of plasma at about
350 km altitude, created primarily by the ultraviolet portion of the sunlight. In the quasi-longitudinal
approximation (Spitzer, 1962) the refractive index of this medium is

n= [1— (%)z(liyfcose)-l]llz (5.1)

where the plasma frequenéy, Vp, i3

1/2
vy = (pczro/ﬂ) 2 8.97 x 1031/ (5.2)
the electron gyrofrequency, vy, is
_¢B (5.3)
Y9 = 2rme )

and © is the angle between the magnetic field B and the direction of propagation of the wave front.
Here p is the number density of the electrons, and rg is the classical electron radius.

For the Earth’s ionosphere, with p ~ 10!2 electrons/m?, v, = 8.9 MHz, while for the interplane-
tary medium with p s 107 —10® electrons/m3, v, s 28 — 89 kHz. In the interstellar medium, p s 10°
electrons/m3, which gives v, ~ 3 kHz. At typical microwave frequencies used for geodetic VLBI (8.4
GHz), vy, /v = 1072 for the ionosphere, 10~5 for the interplanetary medium, and 3 x 10~7 for the
interstellar medium.

The gyrofrequency, vy, for an electron in the = 0.2 gauss field of the Earth is = 0.6 MHz, Thus,
for the ionosphere, vy/v &5 2 x 1074 at S band (2.3 GHz), and vy /v ~ 7 X 10~% at X band (8.4 GHz).
For the interstellar medium B = 10~ gauss, while for the interplanetary region B = 10~ gauss.

Relative to vacuum as a reference, the phase delay of a monochromatic signal transiting this
medium of refractive index n is

2 r 3

=t [t [(3) +3(8) +5(2) +Ja 6o

% = (ZVE) [1 + (V—:) cos 6] i (5.5)

For 8.4 GHz, we may approximate this effect to parts in 108 — 107 by:

Apg & ;—g [1 + (?Vl) cos 6] B o —;—g— [1 - (fgg) cos 6] (5.6)

where

where

cro crol,
—_ — dl = .
7 27 /p 2x (5 7)

and where I, is the total number of electrons per unit area along the integrated line of sight. If we
also neglect the term (v, cos ©)/v, then the expression for A,q becomes simple and independent of
the geometry of the traversal of the wave front through the ionosphere:

Apg= —q/u2 (5.8)

This delay is negative. Thus, a phase advance actually occurs for a monochromatic signal. Since phase
delay is obtained at a single frequency, observables derived from phase delay (e.g., phase delay rates)
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experience an increment which is negative (the observable with the medium present is smaller than it
would be without the medium). In contrast, group delays measured by a technique such as bandwidth

synthesis (1' = %) experience an additive delay which can be derived from (5.8) by differentiating

¢ = vApq with respect to frequency:
Agg=gq/v? (5.9)

Notice that the sign is now positive, though the group delay is of the same magnitude as the phase
delay advance. For group delay measurements, the measured delay is larger with the medium present
than without the medium.

For a typical ionosphere, 7 & 1 — 20 x 10719 sec at local zenith for v = 8.4 GHz. This effect has
a maximum at approximately 1400 hours local time and a broad minimum during local night. For
long baselines, the effects at each station are quite different. Thus, the differential effect may be of
the same order as the maximum.

For the interplanetary medium and at an observing frequency of 8.4 GHz, a single ray path
experiences a delay of approximately 6 x 10~7 sec in transiting the Solar System. However, the
differential between the ray paths to the two stations on the Earth is considerably less, since the
gradient between the two ray paths should also be inversely proportional to the dimensions of the
plasma region (e.g., one astronomical unit as opposed to a few thousand kilometers). The ray path
from a source at a distance of 1 megaparsec (3 x 107 km) experiences an integrated plasma delay of
approximately 5000 seconds for a frequency of 8.4 GHz. In this case, however, the typical dimension
is also that much greater, and so the differential effect on two ray paths separated by one Earth radius
is still not as great as the differential delays caused by the Earth’s ionosphere.

5.1 DUAL-FREQUENCY CALIBRATION

These plasma effects can best be removed by the technique of observing the sources at two
frequencies, v, and vz, where v 2 > 1, and where |2 — v1|/(v2 + v1) & 1. Then at the two
frequencies v; and v, we obtain

1 =1+¢q/vi (5.10)

and
T2 =T1+gq/v2 (5.11)

Multiplying each expression by the square of the frequency involved and subtracting, we obtain

T =arg+bn, (5.12)
where 2
__ P2
a= - (5.13)
and ;
—v
b= — 1 5.
R (5.14)

This linear combination of the observables at two frequencies thus removes the charged particle con-
tribution to the delay.

For uncorrelated errors in the frequency windows, the overall error in the derived delay can be
modeled as

0? =a%?2 + b%02 | (5.15)

Modeling of other error types is more difficult and will not be treated in this report. Since the values
of a and b are independent of ¢, these same coefficients apply both to group delay and to phase delay.

If we had not neglected the effect of the electron gyrofrequency in the ionosphere, then instead
of (5.12) above, we would have obtained

g vgcos ©

V2V1(V2 - Vl) (516)

T=arq+br,;+
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where a and b are defined as in (5.13) and (5.14), respectively.
If we express the third term on the right-hand side in units of the contribution of the ionosphere

at frequency vz, we obtain

Apqvz vy cos ©

= b
T=anz+omn:+ vt (V:Z n Vl)

(5.17)
For X band Apg ~ 1 — 20 x107 10 sec at the zenith. When using S band as the other frequency in the
pair, this third term is &~ 2 x 107 %A 4c0s 0 ~ 2 — 40 x10~ 13 sec at zenith. In the worst case of high
jonospheric electron content, and at low elevation angles, this effect could reach 0.1 cm of total error
in determining the total delay using the simple formula (5.12) above. Notice that the effect becomes
much more significant at lower frequencies.

In the software chain used at JPL, the dual-frequency correction is performed prior to the process-
ing step “MODEST” (Lowe, 1991). MODEST does not have the facility to perform this correction.
However, the process is described here because it is important to understanding the data input to
MODEST. For millimeter accuracy, or for lower observing frequencies even at centimeter accuracy
levels, a correction for the gyrofrequency effect is necessary.

5.2 TOTAL ELECTRON CONTENT

In the absence of the dual-frequency observation capability described above, one can improve the
model of the interferometer by modeling the ionosphere, using whatever measurements of the total
electron content are available. The model we have chosen to implement is very simple. Its formalism
is very similar to that of the troposphere model, except that the ionosphere is modeled as a spherical
shell for which the bottom is at the height h;, above the geodetic surface of the Earth, and the top of
the shell is at the height hy, above that same surface (see figure 7). For each station the ionospheric
delay is modeled as

7 = kgl S(E)/v? (5.18)
where 0.1
.1Ccrpo
k= .
- (5.19)

I, is the total electron content at zenith (in electrons per meter squared x10717), and g = 1(-1) for
group (phase) delay. E is the apparent geodetic elevation angle of the source, S(E) is a slant range
factor discussed below, and v is the observing frequency in gigahertsz.

The slant range factor (see figure 7) is

\/R?sin® E + 2Rhy + h — / R?sin” E + 2Rh; + h3

S(E) = P—

(5.20)

This expression is strictly correct for a spherical Earth of radius R, and a source at apparent elevation
angle E. The model employed uses this expression and a geoid surface with a local radius of curvature
at the receiving station of R equal to the distance from the receiving station to the center of the Earth.
The model also assumes this same value of R can be used at the ionospheric penetration points, e.g.:

R;=R+h; (5.21)

This is not strictly true, but is a very close approximation, particularly compared to the crude nature
of the total electron content determinations on which the model also depends. The total ionospheric
contribution on a given baseline is

T= Tiatuﬁan [ Ti.!ation 1 (5-22)

We assume that the ionospheric total electron content, I, is the sum of two parts, one obtained by
some external set of measurements such as Faraday rotation or GPS techniques, and the other by
some specified additive constant:

I, = Ie meas + Ie add (523)
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These external measurements, in general, are not along directions in the ionosphere coincident with
the ray paths to the interferometer. Thus, for each antenna, it is necessary to map a measurement
made along one ray path to the ray paths used by the interferometer. Many different techniques to
do this mapping have been suggested and tried; all of them of dubious accuracy. In the light of these
problems, and in the anticipation that dual-frequency observations will be employed for the most
accurate interferometric work, we have implemented only a simple hour-angle mapping of the time
history of the measurements of I, at a given latitude and longitude to the point of interest. In this
model we allow the user to adjust the “height”, h, of the ionosphere, but require

hy =h — 35 km

o UPPER EDGE OF
IONOSPHERE

LOWER EDGE OF
IONOSPHERE

EARTH'S
SURFACE

OBSERVING /

STATION

EARTH CENTER

Figure 7. The geometry of the spherical ionospheric shell used for ionospheric corrections

Nominally, this “height” is taken to be 350 km. Setting this height to zero causes the program to
ignore the ionosphere model, as is required if dual-frequency observations have already been used to
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remove the plasma effects. As in the troposphere model, these corrections can also be incorporated
into the input data stream. Then the user is free to accept the passed correction, and use this model
as a small alteration of the previously invoked model, or to remove the passed corrections.

The deficiencies of these ionosphere models for single-frequency observations are compounded
by the lens effect of the solar plasma. In effect, the Solar System is a spherical plasma lens which
will cause the apparent positions of the radio sources to be shifted from their actual positions by an
amount which depends on the solar weather and on the Sun-Earth-source angle. Since both the solar
weather and the Sun-Earth-source angle change throughout the year, very accurate observations over
the time scale of a year will be virtually impossible.

Only one parameter is present in the ionosphere portion of the model. Again, the model is linear
in the parameter I, 444. Thus, the partial derivative with respect to this parameter is

87 k f(station #) g(data type) S(E)
I, aad v?

(5.25)

with f(2) = 1 and f(1) = -1
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SECTION 6

MODELING THE PHASE DELAY RATE (FRINGE FREQUENCY)

The interferometer is capable of producing several data types: group delay, phase delay, and the
time rate of change of phase delay. Actually, the time rate of change of group delay is also available.
However, it is not accurate enough to be of significance for geodetic uses. The models discussed above
are directly applicable either to group delay or to phase delay. However, the model for the time rate
of change of phase delay (fringe frequency) must be either constructed separately, or its equivalent
information content obtained by forming the time difference of two phase delay values constructed
from the delay-rate measurements as shown below. We chose the latter route since then only models of
delay are needed. The two phase delay values, 7,4(t+ A), used to represent the delay-rate measurement
information content are obtained from the expression

Tpd(t £ A) =1 (t £ A) + 7. (t) £ 7 A (6.1)

where 7,,(t) is the model used in the delay extraction processing step, 7, (t) is the residual of the
observations from that model, and 7, is the residual delay rate of the data relative to that model.
This modeling for the delay extraction step is covered in Thomas (1981), and is done in analysis
steps prior to and completely separate from the modeling described in this report. The output of
those previous steps is such that the details of all processing prior to the modeling described here
are transparent to this step. Only total interferometer delays and differenced total interferometer
phase delays (these phase delays are divided by the time interval of the difference) are reported to
this step. One of the requirements of these previous processing steps is that the model delay used
be accurate enough to provide a residual phase that is a linear function of time over the observation
interval required to obtain the delay information. A linear fit to this residual phase yields the value
of 7, the residual delay rate. Using these two values of Tpd, obtained by (6.1) above, the quantity, R,
is constructed by the following algorithm:

_ [mpalt + A) = rpaft — A)]
R= 2A :

(6.2)

This value and the group delay measurement, Tgd, are the two data types that normally serve as
the interferometer data input to be explained by the model described in this report. The software,
however, also has the option to model phase delay, Tpd, directly. In the limit A — 0, this expression
for differenced phase delay approaches the instantaneous time rate of change of phase delay (fringe
frequency) at time t. In practice, A must be large enough to avoid roundoff errors that arise from
taking small differences of large numbers, but should also be small enough to allow R to be areasonably
close approximation to the instantaneous delay rate. A suitable compromise appears to be A =~ 2
seconds. Fortunately, A has a wide range of allowed values, and the capability to model interferometer
performance accurately is relatively insensitive to this choice.
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SECTION 7T

PHYSICAL CONSTANTS USED

In the software that has been implemented we have tried to use the constants recommended by
the IAU project MERIT (Melbourne et al., 1983). Those that have not been defined in the text above,
but which have an effect on the results that are obtained using the JPL software, are given below:

Symbol Value Quantity

c 209792.458 Velocity of light (km/sec)

ro 2.817938 x 1071° Classical radius of the electron (meters)
Rg 6378.140 Equatorial radius of the Earth (km)
wg 7.2921151467 x 10~° Rotation rate of the Earth (rad/sec)
f 298.257 Flattening factor of the geoid

ho 0.609 Vertical quadrupole Love number

Iz 0.0852 Horizontal quadrupole Love number
hs 0.292 Vertical octupole Love number

la 0.0151 Horizontal octupole Love number

g 080.665 Surface acceleration due to gravity (cm/sec?)
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SECTION 8

POSSIBLE IMPROVEMENTS TO THE CURRENT MODEL

This section lists areas in which the current model can be improved.

General Relativity:

Variations of the Earth’s gravitational potential must be taken into account in defining
proper lengths. This correction is estimated by Thomas (1991) to amount to 0.2 cm for a
10,000 km baseline.

Second-order effects have not been carefully investigated, and could possibly contribute at
the picosecond level.

Earth Orientation Models:

There are short-period deficiencies in the present IAU models for the orientation of the
Earth in space that may be as large as 1 to 2 milliarcseconds, and longer-term deficiencies
of the order of 1 milliarcsecond per year (3 cm at one Earth radius). VLBI measurements
made during the past few years indicate the need for revisions of this order of the annual
nutation terms and the precession constant [Eubanks et al. (1985), Herring et al. (1986)].
The 18.6-year term in the IAU nutation series may also be in error, and present data spans
are just approaching durations long enough to separate it from precession. To provide an
improved nutation model, we have implemented a MODEST option to use the amplitudes
of Zhu et al. (discussed in Section 2.6.2.1). This will constitute a temporarily better model
of the annual and semiannual nutations until the IAU series is officially revised.

Tidal Effects:
Ocean tides affect UT1, necessitating revisions and additional terms in the Yoder short-
period UT1 correction series (Brosche et al., 1989).

Antenna Deformation:

Gravity loading and temperature variations may cause variations in the position of the
reference point of a large antenna that are as large as 1 cm. Liewer (1986) presents evidence
that these effects cause systematic errors and that their dependence on antenna orientation
and ambient temperature may be modeled.

Antenna Alignment:
Hour angle misalignment of the order of 1 arc minute can cause 1 mm delay effects for DSN
HA-Dec antennas with 7-m axis offsets.

Subreflector Focusing:

For DSN 70-m Cassegrain antennas, allowing the subreflector to slew in order to maintain
focus changes the path delay by m~8 cm over the 6° — 90° elevation range. Simulations
(Jacobs, 1987) show that this effect is almost entirely absorbed by the clock epoch and local
station vertical coordinate parameters. For baselines between two 70-m antennas, this causes
a potential error of up to 12 cm in length. Presently, this effect can be modeled as a site
vector relating fixed and slewed antenna positions; it may be more convenient to introduce
a “slew flag” in the data to model it automatically.

Phase Delay Rate:

Rather than modeling the delay rates as finite differences of model delays, direct analytic
expressions for derivatives of delays could be implemented. This would eliminate questions
concerning the choice of the time difference A discussed in section 6. Care must be exercised,
however, to ensure consistency between definitions of modeled and observed delay rates.
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APPENDIX A

NUTATION MODELS

The three nutation series available in MODEST are tabulated here: Table A.I gives the standard 1980
IAU series; Tables A.II, A.III, and A.IV contain the results of Zhu et al. (1990); for completeness, the
old (Woolard) nutation series is given in Table A.V.

Table A.I

1980 TAU Theory of Nutation

Index Period Argument coefficient Ag; Ay Bo;  Byj
j (days) kjl ’CJ' kj kj kjs (0".000 1) (0".0001)
1 6798.4 0 0 0 0 1 -171996 -174.2 92025 8.9
2 3399.2 0 0 0 0o 2 2062 0.2 -895 0.5
3 1305.5 -2 0 2 0 1 46 0.0 -24 0.0
4 1095.2 2 0o -2 0 o 11 0.0 0 0.0
5 1615.7 -2 0 2 0 2 -3 0.0 1 00
6 3232.9 1 -1 o -1 0 -3 0.0 0 0.0
7 6786.3 0o -2 2 -2 1 -2 0.0 1 00
8 943.2 2 0o -2 0 1 1 0.0 0 0.0
9 182.6 0 0 2 -2 2 -13187  -1.6 5736 -3.1

10 365.3 0 1 0 0 o0 1426  -3.4 54 -0.1
11 121.7 0 1 2 -2 2 -517 1.2 224 -0.6
12 365.2 0o -1 2 -2 2 217 -05 -95 0.3
13 177.8 0 0 2 -2 1 129 0.1 -70 0.0
14 205.9 2 0 o -2 0 48 0.0 1 00
15 173.3 0 0 2 -2 0 -22 0.0 0 00
16 182.6 0 2 0 0 0 17 -0.1 0 0.0
17 386.0 0 1 0 0o 1 -15 0.0 9 0.0
18 91.3 0 2 2 2 2 -16 0.1 7 00
19 346.6 0 -1 0 0 1 -12 0.0 6 0.0
20 199.8 -2 0 0 2 1 -6 0.0 3 00
21 346.6 0o -1 2 -2 1 -5 0.0 3 00
22 212.3 2 0 0o -2 1 4 0.0 -2 00
23 119.6 0 1 2 -2 1 4 0.0 -2 00
24 411.8 1 0 o -1 0 -4 0.0 0 00
25 131.7 2 1 o -2 0 1 0.0 0 0.0
26 169.0 0 0o -2 2 1 1 0.0 0 00
27 329.8 0 1 -2 2 0 -1 0.0 0 0.0
28 409.2 0 1 0 0 2 1 0.0 0 0.0
29 388.3 -1 0 0 1 1 1 0.0 0 00
30 117.5 0 1 2 -2 0 -1 0.0 0 00
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Table A.I cont.

1980 JAU Theory of Nutation

Index Period Argument coefficient Aoy Ay Bo;  Byj
i (days) kivn k2 ks ke kys (0".0001) (0".0001)
31 13.7 0 0 2 0 2 -2274 -0.2 977 -0.5
32 27.6 1 0 0 0 0 712 0.1 -7 0.0
33 13.6 0 0 2 0 1 -386 -0.4 200 0.0
34 9.1 1 0 2 ] 2 -301 0.0 129 -0.1
35 31.8 1 0 0 -2 0 -158 0.0 -1 0.0
36 27.1 -1 0 2 0 2 123 0.0 -53 0.0
37 14.8 0 0 0 2 0 63 0.0 -2 0.0
38 27.7 1 0 0 0 1 63 0.1 -33 0.0
39 27.4 -1 0 0 0 1 -58 -0.1 32 0.0
40 9.6 -1 0 2 2 2 -59 0.0 26 0.0
41 9.1 1 ] 2 0 1 -51 0.0 27 0.0
42 7.1 0 0 2 2 2 -38 0.0 16 0.0
43 13.8 2 0 0 0 0 29 0.0 -1 0.0
44 23.9 1 0 2 -2 2 29 0.0 -12 0.0
45 6.9 2 0 2 0 2 -31 0.0 13 0.0
46 13.6 0 0 2 0 0 26 0.0 -1 0.0
47 27.0 -1 0 2 0 1 21 0.0 -10 0.0
48 32.0 -1 0 0 2 1 16 0.0 -8 0.0
49 31.7 1 0 0 -2 1 -13 0.0 7 0.0
50 9.5 -1 0 2 2 1 -10 0.0 5 00
51 34.8 1 1 0 -2 0 -7 0.0 0 0.0
52 13.2 0 1 2 0 2 7 0.0 -3 0.0
53 14.2 0 -1 2 0 2 =7 0.0 3 0.0
54 5.6 1 0 2 2 2 -8 0.0 3 0.0
55 9.6 1 0 0 2 0 6 0.0 0 0.0
56 12.8 2 0 2 -2 2 6 0.0 -3 0.0
57 14.8 0 0 0 2 1 -6 0.0 3 0.0
58 7.1 0 0 2 2 1 -7 0.0 3 0.0
59 23.9 1 0 2 -2 1 6 0.0 -3 0.0
60 14.7 0 0 0 -2 1 -5 0.0 3 0.0
61 29.8 1 -1 0 0 0 5 0.0 0 0.0
62 6.9 2 0 2 0 1 -5 0.0 3 0.0
63 15.4 0 1 0 -2 0 -4 0.0 0 00
64 26.9 1 0 -2 0 0 4 0.0 0 0.0
65 29.5 0 0 0 1 0 -4 0.0 0 0.0
66 25.6 1 1 0 0 0 -3 0.0 (] 0.0
67 9.1 1 0 2 0 0 3 0.0 0 0.0
68 9.4 1 -1 2 0 2 -3 0.0 1 0.0
69 9.8 -1 -1 2 2 2 -3 0.0 1 0.0
70 13.7 -2 0 0 0 1 -2 0.0 1 0.0
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Table A.I cont.

1980 IAU Theory of Nutation

Index Period Argument coefficient Aoy Ay By;  Bij
i (days) kin k2 kis ks kss (0”.0001) (0".0001)
71 5.5 3 0 2 0 2 -3 0.0 1 0.0
72 7.2 0 -1 2 2 2 -3 0.0 1 0.0
73 8.9 1 1 2 0 2 2 0.0 -1 0.0
74 32.6 -1 0 2 -2 1 -2 0.0 1 0.0
75 13.8 2 0 0 0 1 2 0.0 -1 0.0
76 27.8 1 0 0 0 2 -2 0.0 1 0.0
77 9.2 3 0 0 0 0 2 0.0 0 0.0
78 9.3 0 0 2 1 2 2 0.0 -1 0.0
79 27.3 -1 0 0 0 2 1 0.0 -1 0.0
80 10.1 1 0 0 -4 0 -1 0.0 0 0.0
81 14.6 -2 0 2 2 2 1 0.0 -1 0.0
82 5.8 -1 0 2 4 2 -2 0.0 1 0.0
83 15.9 2 0 0 -4 0 -1 0.0 0 0.0
84 22.5 1 1 2 -2 2 1 0.0 -1 0.0
85 5.6 1 0 2 2 1 -1 0.0 1 0.0
86 7.3 -2 0 2 4 2 -1 0.0 1 0.0
87 9.1 -1 0 4 0 2 1 0.0 0 0.0
88 29.3 1 -1 0 -2 0 1 0.0 0 0.0
89 12.8 2 0 2 -2 1 1 0.0 -1 0.0
20 4.7 2 0 2 2 2 -1 0.0 0 0.0
91 9.6 1 0 0 2 1 -1 0.0 0 0.0
92 12.7 0 0 4 -2 2 1 0.0 0 0.0
83 8.7 3 0 2 -2 2 1 0.0 0 0.0
94 23.8 1 0 2 -2 0 -1 0.0 0 0.0
95 13.1 0 1 2 0 1 1 0.0 0 0.0
96 35.0 -1 -1 0 2 1 1 0.0 0 0.0
97 13.6 0 0 -2 0 1 -1 0.0 0 0.0
98 25.4 0 0 2 -1 2 -1 0.0 0 0.0
99 14.2 0 1 0 2 0 -1 0.0 0 0.0
100 9.5 1 0 -2 -2 0 -1 0.0 0 0.0
101 14.2 0 -1 2 0 1 -1 0.0 0 0.0
102 34.7 1 1 0 -2 1 -1 0.0 0 0.0
103 32.8 1 0 -2 2 0 -1 0.0 0 0.0
104 7.1 2 0 0 2 0 1 0.0 0 0.0
105 4.8 0 0 2 4 2 -1 0.0 0 0.0
106 27.3 0 1 0 1 0 1 0.0 0 0.0
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Table A.II

Zhu et al. Theory of Nutation: 1980 IAU Terms

Index Period Argument coefficient Ao Ayj By; By
j (days) | ki kj2 ks kja ks (0".00001) (0".00001)
1 6798.38 0 0 0 0 1 -1720618 -1743 920530 90
2 3399.19 0 0 0 0 2 20743 2 -8975 5
3 1305.48 -2 0 2 0 1 460 1 -243 0
4 1095.18 2 0 -2 0 0 110 0 1 0
5 1615.75 -2 0 2 0 2 -31 0 14 0
6 3232.86 1 -1 0 -1 0 -33 0 0 0
7 6786.32 0 -2 2 -2 1 -15 0 8 0
8 943.23 2 0 -2 0 1 7 0 -4 0
9 182.62 0 0 2 -2 2 -131720 -16 57320 -31

10 365.26 0 1 0 0 0 14735 -35 719 -2
11 121.75 0 1 2 -2 2 -5176 12 2247 -7
12 365.22 0 -1 2 -2 2 2161 -5 -961 3
13 177.84 0 0 2 -2 1 1293 1 -699 0
14 205.89 2 0 0 -2 0 479 0 5 0
15 173.31 0 0 2 -2 0 -218 0 -1 0
16 182.63 0 2 0 0 0 168 -1 2 0
17 386.00 0 1 0 0 1 -140 0 86 0
18 91.31 0 2 2 -2 2 -158 1 69 0
19 346.64 0 -1 0 ] 1 -127 0 64 0
20 199.84 -2 0 0 2 1 -58 0 30 0
21 346.60 0 -1 2 -2 1 -48 0 27 0
22 212.32 2 0 0 -2 1 41 0 -22 0
23 119.61 0 1 2 -2 1 36 0 -20 0
24 411.78 1 0 0 -1 0 -43 0 -6 0
25 131.67 2 1 0 -2 0 11 0 0 0
26 169.00 0 0 -2 2 1 9 0 -4 0
27 329.79 0 1 -2 2 0 -9 0 0 0
28 409.23 0 1 0 0 2 7 0 -3 0
29 388.27 -1 0 0 1 1 9 0 -4 0
30 117.54 0 1 2 -2 0 -6 0 0 0
31 13.66 0 0 2 0 2 -22824 -2 9806 -5
32 27.55 1 0 0 0 0 7122 1 -70 0
33 13.63 0 0 2 0 1 -3885 -4 2011 0
34 9.13 1 0 2 0 2 -3023 0 1293 -1
35 31.81 1 0 0 -2 0 -1572 0 -13 0
36 27.09 -1 0 2 0 2 1238 0 -535 0
37 14.77 0 0 0 2 0 635 0 -13 0
38 27.67 1 0 0 0 1 633 1 -332 0
39 27.44 -1 0 0 0 1 -580 -1 315 0
40 9.56 -1 0 2 2 2 -598 0 256 0
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Table A.IT cont.

Zhu et al. Theory of Nutation: 1980 IAU Terms

Index Period Argument coefficient Apj Ay Bg; B;
j (days) kii Ky kis  kjs  kys (0".00001) (0".00001)
41 9.12 1 0 2 0 1 -517 0 265 0
42 7.10 0 0 2 2 2 -386 0 165 0
43 13.78 2 0 0 0 0 203 0 -6 0
44 23.94 1 0 2 -2 2 286 0 -124 0
45 6.86 2 0 2 0 2 =311 0 132 0
46 13.61 0 0 2 0 0 259 0 -5 0
47 26.98 -1 0 2 0 1 205 0 -107 0
48 31.96 -1 o] 0 2 1 152 0 -80 0
49 31.66 1 0 0 -2 1 -129 0 70 0
50 9.54 -1 0 2 2 1 -103 0 53 0
51 34.85 1 1 0 -2 0 -74 0 -1 0
52 13.17 0 1 2 0 2 76 0 -33 0
53 14.19 0 -1 2 0 2 -71 0 31 0
54 5.64 1 0 2 2 2 77 0 32 0
55 9.61 1 0] 0 2 0 66 0 -3 0
56 12.81 2 0 2 -2 2 65 0 -28 0
57 14.80 0 0 0 2 1 -64 0 33 0
58 7.09 0 0 2 2 1 -66 0 34 0
59 23.86 1 0 2 -2 1 58 0 -30 0]
60 14.73 0 0 0 -2 1 -50 0 28 0
61 29.80 1 -1 0 0 0 47 0 -1 0
62 6.85 2 0 2 0 1 -53 0 27 0
63 15.39 0 1 0] -2 0 -44 0 -1 0
64 26.88 1 0 -2 0 0 41 0 1 0
65 29.53 0 0 0 1 0 -40 0 1 0
66 25.62 1 1 0 0 0 -34 0 1 0
67 9.11 1 0 2 0 0 34 0 -1 0
68 9.37 1 -1 2 0 2 -29 0 12 0
69 0.81 -1 -1 2 2 2 -29 0 12 0
70 13.75 -2 0 0 0 1 -23 0 13 0
71 5.49 3 0 2 0 2 -29 0 12 0
72 7.24 0 -1 2 2 2 -26 0 11 0
73 8.91 1 1 2 0 2 25 0 -10 0
74 32.61 -1 0 2 -2 1 -20 0 11 0]
75 13.81 2 0 0 0 1 22 0 -11 0
76 27.78 1 0 (0] 0 2 -20 0 8 0
77 9.18 3 0 0] 0 0 16 0 -1 0
78 9.34 0 0 2 1 2 16 0 -7 0
79 27.33 -1 0 0 0 2 14 0 -6 0
80 10.08 1 0 0 -4 0 -14 0 -1 0
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Table A.Il cont.

Zhu et al. Theory of Nutation: 1980 IAU Terms

Index Period Argument coefficient Apj Ay By; By;
i (days) kiv k2 kis  kja kjs (0".00001) (0".00001)
81 14.63 -2 0 2 2 2 13 0 -6 0
82 5.80 -1 0 2 4 2 -15 0 6 0
83 15.91 2 0 0 -4 0 -13 0 0 0
84 22.47 1 1 2 -2 2 13 0 -5 0
85 5.64 1 0 2 2 1 -13 0 7 0
86 7.35 -2 0 2 4 2 -12 0 5 0
87 9.06 -1 0 4 0 2 11 0 -5 0
88 29.26 1 -1 0 -2 0 9 0 0 0
89 12.79 2 0 2 -2 1 10 0 -5 0
90 4.68 2 0 2 2 2 -11 0 5 0
91 9.63 1 0 0 2 1 -10 o 5 0
92 12.66 0 0 4 -2 2 9 0 -4 0
93 8.75 3 0 2 -2 2 9 0 -4 0
94 23.77 1 0 2 -2 0 -7 0 0 0
95 13.41 0 1 2 0 1 8 0 -4 0
96 35.03 -1 -1 0 2 1 7 0 -4 0
97 13.58 0 0 -2 0 1 -6 0 3 0
98 25.42 0 0 2 -1 2 -7 0] 3 0
99 14.19 0 1 0 2 0 -6 0 0 o
100 9.53 1 0 -2 -2 0] -6 0 0 0
101 14.16 0 -1 2 0 1 -7 0 3 0
102 34.67 1 1 0 -2 1 -6 0 3 4]
103 32.76 1 0 -2 2 0 -6 0 0 0
104 7.13 2 0 0 2 0 6 0 0 0
105 4.79 0 0 2 4 2 -7 0 3 0
106 27.32 0 1 0 1 0 5 0 0 0
Table A.III
Zhu et al. Theory of Nutation: Out-of-Phase Terms
Index  Period Argument coefficient Azj By
j (days) kjl kJ' kj kj ICJ'5 (0".00001)

1 6798.38 0 0 0 0 1 221 112
2 182.62 0 0 2 -2 2 -153 -61
3 365.26 0 1 0 0] 0] -55 22
4 13.66 0 0 2 0 2 -5 -2
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Table A.IV

Zhu et al. Theory of Nutation: Planetary Terms

Index  Period Argument coefficient Apj By;
j (days) kjl kjg kjs ’CJ'4 ks (0".00001)
1 5.49 3 0 2 0 1 -5 2
2 5.73 1 -1 2 2 2 -6 2
3 6.96 0 1 2 2 2 5 -2
4 6.99 2 -1 2 0 2 -5 2
5 7.38 0 0 0 4 0 5 0
6 9.31 -1 1 2 2 2 6 -2
7 9.80 -1 -1 2 2 1 -5 2
8 9.87 1 -1 0 2 0 5 0
9 14.83 0 0 0 2 2 -5 2
10 29.93 1 -1 0 0 1 5 -3
11 73.05 0 3 2 -2 2 -5 2
12 177.84 0 0 2 -2 1 -9 7
13 187.66 0 0 2 -2 3 13 -2
14  3230.13 -1 -1 2 -1 2 13 -5
15 3231.50 -1 0 1 0 1 15 3
16  6164.10 -1 1 0 1 1 7 -4
17 4.00 3 0 2 2 2 -1 1
18 4.08 1 0 2 4 2 -2 1
19 4.58 4 0 2 0 2 -3 1
20 4.68 2 0 2 2 1 -2 1
21 4.79 ] 0 2 4 1 -1 1
22 5.56 1 1 2 2 2 1 -1
23 5.80 -1 0 2 4 1 -3 1
24 5.90 -1 -1 2 4 2 -2 1
25 6.73 2 1 2 0 2 4 -2
26 6.82 0 0 4 0 2 2 -1
27 6.85 2 0 2 0 0 3 0
28 6.98 1 0 2 1 2 3 -1
29 7.08 0 0 2 2 0 4 0
30 7.13 2 0 0 2 1 -1 1
31 7.23 ] -1 2 2 1 -4 2
32 7.34 -2 0 2 4 1 -2 1
33 7.38 0 -2 2 2 2 -1 1
34 7.39 0 0 0 4 1 -2 1
35 8.68 1 0 4 -2 2 2 -1
36 8.73 3 0 2 -2 1 2 -1
37 8.90 1 1 2 0 1 4 -2
38 9.05 -1 0 4 0 1 2 -1
39 9.11 0 1 2 1 2 -2 1
40 9.17 -3 0 0 0 1 -1 1
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Table A.IV cont.

Zhu et al. Theory of Nutation: Planetary Terms

Index Period Argument coefficient Apj By;
j (days) ICJ'I kj kjs k_,' kj5 (0".00001)
41 9.33 0 0 2 1 1 3 -1
42 9.35 1 -1 2 0 1 -4 2
43 9.60 -1 0 0 -2 1 -4 3
44 10.07 1 0 0 -4 1 -1 1
45 10.10 -1 0 0 4 1 -2 1
46 10.37 -1 -1 0 4 0 1 0
47 12.38 2 1 2 -2 2 3 -1
48 12.64 0 0 4 -2 1 2 -1
49 13.22 1 0 2 -1 2 -3 1
50 13.28 2 1 0 0 0 -3 0
51 13.63 0 0 2 0 1 -1 0
52 13.69 0 0 2 0 3 2 0
53 14.22 0 1 0 2 1 2 -1
54 14.25 1 0 0 1 0 -3 0
55 14.32 2 -1 0 0 0 4 0
56 14.60 -2 0 2 2 1 2 -1
57 14.70 0 0 0 -2 2 1 -1
58 15.35 0 1 0 -2 1 -3 2
59 15.42 0 -1 0 2 1 -2 1
60 15.87 2 0 0 -4 1 -1 1
61 15.94 -2 0 0 4 1 1 -1
62 16.06 0 -2 0. 2 0 2 0
63 16.10 0 0 2 -4 1 -1 1
64 22.40 1 1 2 -2 1 3 -1
65 25.22 -1 1 2 0] 2 4 -2
66 25.53 -1 -1 0 0 1 2 -1
67 25.72 1 1 0 0 1 -3 2
68 26.77 1 0 -2 0 1 3 -1
69 27.32 0 0 1 0 1 -2 0
70 29.26 -1 -1 2 0 2 -2 1
71 29.39 -1 1 0 2 1 -1 1
72 29.40 0 0 0 -1 1 3 -2
73 29.66 0] 0 0 1 1 -4 2
74 290.67 -1 1 0 0 1 -2 2
75 31.52 1 0 0 -2 2 3 -1
76 32.11 -1 0 0 2 2 -4 2
77 32.45 -1 0 2 -2 2 3 -1
78 35.80 -1 1 2 -2 1 -1 1
79 38.52 -1 -2 0 2 0 3 0
80 38.74 1 0 2 -4 1 -4 2
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Table A.IV cont.

Zhu et al. Theory of Nutation: Planetary Terms

Index  Period Argument coefficient Aoj Bg;
j (days) kivn  kjz  kiz Kk ks (0"".00001)
81 121.75 0 3 0 0 0 3 0
82 129.17 -2 -1 0 2 1 -2 1
83 177.85 0 -2 0 0 1 -1 1
84 219.17 2 0 0 -2 2 -3 1
85 285.41 -2 1 2 0 1 -1 0
86 297.91 -2 1 2 0 2 -1 0
87 313.04 -1 0 2 -1 1 -4 1
88 329.82 0 -1 0 0 2 4 -1
89 438.33 1 0 0 -1 1 3 -1
90 471.95 -2 -1 2 0 2 1 -1
91 507.16 -2 -1 2 0 1 3 0
92 552.62 -3 0 2 1 2 2 -1
93 2266.13 0 0 0 0 3 -2 0
94 6159.14 -1 0 1 0 2 3 -1
95 4,74 2 -1 2 2 2 -1 0
96 4.86 0 -1 2 4 2 -1 0
97 5.58 3 -1 2 0 2 -1 0
98 5.73 1 -1 2 2 1 -1 0
99 5.82 1 0 0 4 0 1 0
100 6.64 4 0 2 -2 2 1 0
101 6.73 2 1 2 0 1 1 0
102 6.89 4 0 0 0 0 1 0
103 6.95 0 1 2 2 1 1 0
104 6.97 1 0 2 1 1 1 0
105 6.98 2 -1 2 0 1 -1 0
106 7.22 -1 0 2 3 2 1 0
107 7.50 -2 -1 2 4 2 -1 0
108 7.54 0 -1 0 4 0 1 0
109 8.94 2 0 2 -1 2 -1 0
110 9.10 1 0 2 0 -1 1 0
111 9.20 3 0 0 0 1 1 0
112 9.30 -1 1 2 2 1 1 0
113 9.37 1 1 0 2 0 -1 0
114 9.89 1 -1 0 2 1 -1 0
115 10.08 -1 -2 2 2 2 -1 0
116 12.35 2 1 2 -2 1 1 0
117 12.71 0 2 2 0 2 1 0
118 12.76 2 0 2 -2 0 -1 0
119 13.49 -2 0 4 0 2 -1 0
120 13.72 1 1 0 1 0 1 0
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Table A.IV cont.

Zhu et al. Theory of Nutation: Planetary Terms

Index Period Argument coefficient Agy Bo;
j (days) kjv k2 kjs ks kjs (0".00001)
121 13.83 2 0 0 0 2 -1 0
122 14.13 -1 0 2 1 2 1 0
123 14.16 0 1 0 2 -1 -1 0
124 14.76 0 -2 2 0 2 -1 0
125 14.93 2 0 -2 2 -1 1 0
126 15.24 -2 -1 2 2 2 1 0
127 15.31 -1 0 0 3 0 -1 0
128 16.63 -2 -1 0 4 0 1 0
129 23.43 -1 0 4 -2 2 -1 0
130 23.94 1 2 0 0 0 -1 0
131 25.13 -1 1 2 0 -1 1 0
132 25.32 0 0 2 -1 1 -1 0
133 25.52 1 -1 2 -2 1 -1 0
134 25.62 1 -1 2 -2 2 -1 0
135 25.83 2 0 0 -1 0 1 0
136 27.09 -1 2 0 2 0 -1 0
137 27.32 0 -1 2 -1 2 1 0
138 28.15 3 0 -2 o -1 1 0
139 29.14 -1 -1 2 0 1 -1 0
140 29.14 -1 1 0 2 -1 -1 0
141 31.08 -3 0 2 2 1 1 0
142 32.45 1 -2 0 0 0 1 0
143 34.48 -2 0 0 3 0 -1 0
144 37.62 -3 0 0 4 0 1 0
145 38.52 -1 0 -2 4 -2 -1 0
146 38.96 -1 0 -2 4 0 -1 0
147 43.06 -1 -1 -2 4 2 1 0
148 43.34 1 1 2 -4 1 -1 0
149 90.10 0 2 2 -2 1 1 0
150 96.78 2 0 2 -4 2 -1 0
151  134.27 2 1 0 -2 1 1 0
152  156.52 -2 0 4 -2 2 -1 0
153  164.08 -2 2 2 0 2 -1 0
154  187.67 0 2 0 0 1 -1 0
155  193.56 1 -1 2 -3 2 1 (0]
156  235.96 -4 0 2 2 2 -1 0
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Table A.V

Woolard Theory of Nutation

Index Period Argument coefficient Aoy Ay By; Byj
i (days) | ki k2 kjs ks kjs (0".0001) (0".0001)
1 6798.4 0 0 0 0 1 -172327 -173.7 92100 9.1
2 3399.2 0 0 0 0 2 2088 0.2 904 0.4
3 1305.5 -2 0 2 0 1 45 0.0 -24 0.0
4 1095.2 2 0 -2 0 0 10 0.0 0 0.0
5 1615.7 -2 0 2 0 2 -3 0.0 2 0.0
6 3232.9 1 -1 0 -1 0 -2 0.0 0 0.0
7 6786.3 0 -2 2 -2 1 -4 0.0 2 0.0
8 182.6 0 0 2 -2 2 -12729 -1.3 5522 -2.9
9 365.3 0 1 0 0 0 1261 -3.1 0 0.0

10 121.7 0 1 2 -2 2 -497 1.2 216 -0.6
11 365.2 0 -1 2 -2 2 214 -0.5 -93 0.3
12 177.8 0 0 2 -2 1 124 0.1 -66 0.0
13 205.9 2 0 0 -2 0 45 0.0 0 0.0
14 173.3 0 0 2 -2 0 -21 0.0 0 0.0
15 182.6 0 2 0 0 0 16 -0.1 0 0.0
16 386.0 0 1 0 0 1 -15 0.0 8 0.0
17 91.3 0 2 2 -2 2 -15 0.1 7 0.0
18 346.6 0 -1 0 0 1 -10 0.0 5 0.0
19 199.8 -2 0 0 2 1 -5 0.0 3 0.0
20 346.6 0 -1 2 -2 1 -5 0.0 3 0.0
21 212.3 2 0 0 -2 1 4 0.0 -2 0.0
22 119.6 0 1 2 -2 1 3 0.0 -2 0.0
23 411.8 1 0 0 -1 0 -3 0.0 0 0.0
24 13.7 0 0 2 0 2 -2037 -0.2 884 -0.5
25 27.6 1 0 0 0 0 675 0.1 0 0.0
26 13.6 0 0 2 0 1 -342 -0.4 183 0.0
27 9.1 1 0 2 0 2 -261 0.0 113 -0.1
28 31.8 1 0 0 -2 0 -149 0.0 0 0.0
29 27.1 -1 0 2 0 2 114 0.0 -50 0.0
30 14.8 0 0 0 2 0 60 0.0 0 0.0
31 27.7 1 0 0 0 1 58 0.0 -31 0.0
32 27.4 -1 0 0 0 1 -57 0.0 30 0.0
33 9.6 -1 0 2 2 2 -52 0.0 22 0.0
34 9.1 1 0 2 0 1 -44 0.0 23 0.0
35 7.1 0 0 2 2 2 -32 0.0 14 0.0
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Woolard Theory of Nutation

Table A.V cont.

Index Period Argument coeflicient Apj Ay, Bo; By,
J (days) kjx  kj k; k; kjs (0".0001) (0".0001)
36 13.8 2 0 0 0 0 28 0.0 0 0.0
37 23.9 1 0 2 -2 2 26 0.0 -11 0.0
38 6.9 2 0 2 0 2 -26 0.0 11 0.0
39 13.6 0 0 2 0 0 25 0.0 0 0.0
40 27.0 -1 0 2 0 1 19 0.0 -10 0.0
41 32.0 -1 0 0 2 1 14 0.0 -7 0.0
42 31.7 1 0 0 -2 1 -13 0.0 7 0.0
43 9.5 -1 0 2 2 1 -9 0.0 5 0.0
44 34.8 1 1 0 -2 0 -7 0.0 0 0.0
45 13.2 0 1 2 0 2 7 0.0 -3 0.0
46 14.2 0 -1 2 0 2 -6 0.0 3 0.0
47 5.6 1 0 2 2 2 -6 0.0 3 0.0
48 9.6 1 0 0 2 0 6 0.0 0 0.0
49 12.8 2 0 2 -2 2 6 0.0 -2 0.0
50 14.8 0 0 0 2 1 -6 0.0 3 00
51 7.1 0 0 2 2 1 -5 0.0 3 0.0
52 23.9 1 0 2 -2 1 5 0.0 -3 0.0
53 14.7 0 0 0 -2 1 -5 0.0 3 0.0
54 29.8 1 -1 0 0 0 4 0.0 0 0.0
55 6.9 2 0 2 0 1 -4 0.0 2 0.0
56 154 0 1 0 -2 0 -4 0.0 0 0.0
57 26.9 1 0 -2 0 0 4 0.0 0 0.0
58 29.5 0 0 0 1 0 -4 0.0 0 0.0
59 25.6 1 1 0 0 0 -3 0.0 0 0.0
60 9.1 1 0 2 0 0 3 0.0 0 0.0
61 9.4 1 -1 2 0 2 -3 0.0 0 0.0
62 9.8 -1 -1 2 2 2 -2 0.0 0 0.0
63 13.7 -2 0 0 0 1 -2 0.0 0 0.0
64 5.5 3 0 2 0 2 -2 0.0 0 0.0
65 7.2 0 -1 2 2 2 -2 0.0 0 0.0
66 8.9 1 1 2 0 2 2 0.0 0 0.0
67 32.6 -1 0 2 -2 1 -2 0.0 0 0.0
68 13.8 2 0 0 0 1 2 0.0 0 0.0
69 27.8 1 0 0 0 2 -2 0.0 0 0.0
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APPENDIX B

GLOSSARY OF “MODEST” PARAMETERS

For the convenience of users of MODEST, Table B.I identifies the names of adjustable parameters in
the code with the notation of this documnent. Brief definitions and either references to equations (in
parentheses) or sections (no parentheses) are also given.

Table B.I
Glossary of MODEST Parameters

Parameter MODEST name Definition Reference
Tep , RSPINAX aaaaaaaa Cylindrical (2.38)
A LONGTUD aaaaaaaa station (2.39)
z POLPROJ aaaaaaaa coordinates (2.40)
Tap DRSP/DT aaaaaaaa Time rates of (2.38)
A DLON/DT aaaaaaaa change of (2.39)
z DPOL/DT aaaaaaaa stn. coords. (2.40)
z X aanaaaaa Cartesian (2.41)
y Y aaaaaaaa station (2.42)
z Z aaaaaaaa coordinates (2.43)
z DX/DT  aaaaaaaa Time rates of (2.41)
¥ DY/DT  aaaaaaaa change of (2.42)
z DZ/DT  aaaaaaaa stn. coords. (2.43)
l AXISOFF aaaaaaaa Antenna offset (2.172)
h, 1 *LOVE # aaaaaaaa Love numbers (2.51) to (2.53)
) TIDEPHZ aaaaaaaa Tide lag (2.48)
Yrrn GEN REL GAMMA FACTOR PPN gamma (2.18)
o RIGHT ASCEN.ssssssssssss Source RA (2.199)
s DECLINATION ssssssssssss Source dec. (2.199)
é DRASCEN/DT ssss888883888 Time rates of (2.85)
) DDECLIN/DT ssssssssssss change of RA, dec. (2.86)
©:2 t POLE MOTION Pole position (2.90), (2.91)
UT1-UTC UT1 MINUS UTC UT1-UTC 2.6.1
aaaaaaaa station name
S5388S588888 SOUrCe name
* VorH
t XorY
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Table B.I cont.

Glossary of MODEST Parameters

Parameter MODEST name Definition Reference
802,45 } AXIS TWEAK OFFSET Perturbation (2.138)
604y { AXIS TWEAK RATE coefficients (2.138)
pLS LUNI-SOLAR PRECESSION Precession (2.128)
PPL PLANETARY PRECESSION constants (2.128)
Ao NUTATION AMPLTD PSI cjjj Nutation (2.113) to
Ay NUTATION AMPLTD PSITcjjj amplitudes (2.118)
Azja; NUTATION AMPLTD PSIA
By NUTATION AMPLTD EPS cjjj
By, NUTATION AMPLTD EPSTcjjj
Bgj 3y NUTATION AMPLTD EPSA
Te1 C EPOCH aaaaaaaa Coefficients (3.1)
Te2 C RATE =zaaaaaaa in clock (3.1)
Te3 DCRAT/DTaaaaaaaa model for (3.1)
Ted F OFFSETaaaaaaaa delay and (3.2)
Tes F DRIFT azaaaaaa delay rate (3.2)
PZury DRYZTROPaaaaaaaa Dry zenith delay (4.3)
PZuer WETZTROPaaaaaaaa Wet zenith delay (4.3)
PZary DDTRP/DTaaaaaaaa Zenith delay (4.4)
PZuy.e DUWTRP/DTaaaaaaaa time rates (4.4)
Adry DRYZMAPAaaaaaaaa Chao map (4.7) to
Bary DRYZMAPBaaaaaaaa parameters (4.11)
p DRYMAPSGaaaaaaaa Lanyi map (4.30)
parameter
To SURFTEMPaaaaaaaa CfA map surface (4.36)
temperature
I, add Z TECADDaaaaaaaa Zenith electron (5.23)
content
I X,Y,orzZ
c component: S, C for sine, cosine
jij 1980 IAU series term number
aaaaaaaa station name
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