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Abstract

Unusual requirements for the PD/ADS transducer thermal vacuum
testing led to the development of a conductively heated and
cooled, fully automated, bell-jar test system. The system
has proven to be easily adaptable for other tests, and offers
the advantages of quick turn-around and low operational cost.
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Introduction

The Aeroassist Flight Experiment (AFE) is an experimental
blunt-body reentry vehicle designed to demonstrate the
concept of aerobraking in orbital transfer maneuvers. The
Pressure Distribution/Air Data System (PD/ADS) consists of an
array of pressure ports and associated transducers in the AFE
aerobrake for pressure data acquisition during the aeropass.
The pressure data information will be used for Computational
Fluid Dynamics (CFD) code validation.

Acceptance testing for space flight hardware at the NASA
Langley Research Center is governed by the Langley General
Environmental Verification Specification (GEVS) for National
Space Transportation Payloads, Subsystems, and Components.
As a part of the acceptance testing program for the pressure
transducer (PT) flight units, each unit must undergo a
thermal-vacuum test. As developed from the GEVS document,
these thermal-vacuum tests subject the pressure transducers
to six temperature cycles between the transducer operating
extremes of 0 to 200 degrees F (See Figure 1). Each cycle
includes a two hour dwell at each temperature extreme and
activation of the transducer at the beginning of the dwell
period. The dwell ensures that the temperatures of the
internal components of the pressure transducers are allowed
to equalize. The activation of the transducers at the
beginning of each hot or cold dwell serves as a screen for
weak transducers. In addition to the GEVS requirements, the
PD/ADS test requirements also specify that the temperature
ramp rates for the transducers be held to one degree F

per minute in both heating and cooling modes.

Each cycle lasts approximately 11 hours from beginning to
end. Although continuous (around-the-clock) operation could
have been used to perform this test, it was decided that a
staggered day shift could provide one cycle per day without
compromising the test. Since the acceptance test program
lasted about a year and involved approximately one test per
month, day shift operation eliminated the personnel
shortages that around-the-clock operation entails.



System Background

The logistics of the flight unit deliveries, acceptance
schedule, and the long-term availability of test equipment
within Langley's Systems Engineering Division necessitated
the use of a Centorr bell- ]ar vacuum system for this test
program. The Centorr be%l jar is capable of achieving vacuum
levels as low as 5 x 10 torr. 1In routgne operation the
system achieves vacuum levels of 5 x 10 within two hours of
activation. This vacuum system offered the advantages of
quick turnaround, low operational cost, and ready
availability. The major drawbacks to the system were its
relatively small test chamber, and its lack of provisions for
heating and cooling capability.

In general, heating and cooling ca ab111ty in previous bell
jar tests had been provided by radiative heat transfer using
heat lamps and some type of 11qu1d nitrogen cold shroud. A
f1rst-generat10n thermal-~vacuum fixture of this type is shown
in Figure 2. While appropriate for certain types of tests,
radiative heat transfer has several inherent problems.

First, the ability to heat radiatively far outstrips the
ability to cool by radiation. Secondly, because of the
relatively weak coupling between the heat source or sink and
the test sub)ect tlght control of the test subject's
temperature is difficult to achieve. This is true of both
the absolute temperature of the test subject and the
temperature ramp rate applled Figure 3 displays data taken
from an early PD/ADS test in which the system relied on
radiative heating and coollng. Finally, as seen in Figure

2, heating lamps and liquid nitrogen shrouds tend to be bulky
and take up much of the usable space in a bell-jar.

Once installed in the AFE vehicle, the pressure transducers
and their mounting brackets will be wrapped in Multi-Layer
Insulation (MLI). This effectively isolates the transducers
from the radiation environment of the aerobrake, so that
essentially all of the external heating applied to the
transducers comes from conduction through the vehicle
structure. Since the transducers will be heated/cooled
conductively in the aerobrake, the test system was designed
for conductive heat transfer.

Earlier in the PD/ADS program, candidate pressure transducers
had been run through an evaluatlon test program that included
thermal-vacuum testing in a bell-jar. These earlier tests
had initially employed radiative heating and coollng,
although by their conclusion the system had been modified

to provide conductive heat transfer (See Figure 4). The
second- generatlon fixture shown in Figure 4, has a llquld
nitrogen coollng coil clamped to the top surface which
prov1des efficient conductlve coollng. The heating
capability of this fixture is still derived from radiant heat
lamps. Although, since the test article is mounted on the



underside of the plate away from the lamps, the heating
provided to the test article is conductive in nature. This
second-generation fixture proved to be extremely useful, and
quite adequate for small test articles. 1In spite of these
improvements, a new fixture with greater surface area had to
be devised to handle the larger numbers of transducers to be
tested under the acceptance test program. The new, third-
generatlon, fixture had to be capable of accommodatlng up to
elght pressure transducers at one time (a typlcal shlpment),
while providing for uniform conductive heating and cooling of
the units.

Fixture Design

The third-generation fixture is comprised of a pair of
parallel, rectangular aluminum plates placed upright (on
edge) in the bell jar. Aluminum was chosen as the plate
material because of its relatively high thermal conductivity
which serves to minimize temperature gradients across the
surface of the plates. The plates are each 13 inches wide,
12 inches tall, and 0.38 inches in thickness. The outer
surfaces of both plates are drilled and tapped with a
distribution of 10-32 UNF screws to prov1de easy mounting for
up to elght pressure transducers at a time. This
conflguratlon provides a total of 312 square inches of
fixture surface area, as compared with 113 square inches for
the second- generatlon fixture mentioned prev1ously Front,
side and top views of the fixture situated in the bell-jar
are shown in Figures 5 through 7, respectlvely The heating
capablllty for the new fixture is provided by five contact
strip heaters which are sandwiched between the two aluminum
plates. The heater strips are OMEGA Model 0T-1505/240. The
strips are metal-sheathed with a solid phenollc core, and are
0.355 inches in total thickness. The strips are rated for
500 watts each, prov1d1ng a total available heatin power of
2500 watts. Coollng capablllty is prov1ded by a liquid
nitrogen cooling coill which is also sandwiched between the
aluminum plates. The cooling coil is constructed of 3/8 inch
OD copper tublng Figure 8 shows a cut-away view of the
third- generatlon fixture and details the heater strips and
cooling coil routing.

One of the aluminum plates is drilled and tapped with a
pattern of 22, 1/4-28 UNF Helicoil inserts. The other plate
is drilled w1th a matchlng pattern of clearance holes and
countersinks. During assembly, the aluminum plates are
pulled together by the 22, 1/4-28 countersunk bolts. The
bolts are tightened until firm contact is achieved between
the aluminum plates and the heater strips. This requires
that the cooling coil be crushed slightly out-of-round, which
ensures good thermal contact between the cooling coil and the
aluminum plates. Copies of the shop drawings for the plates,
complete with bolt patterns, are shown in Flgures 9 and 10.



Control System

Due to the high efficiency of conductive heat transfer,
temperature changes can occur too rapidly for manual control.
This required that the entire heating and cooling process be
controlled by an automated feedback control system. This
innovative combination of conductive heat transfer and
automated control had never been previously utilized by
Systems Engineering Division.

The control system hardware consists of a KEITHLEY series 500
Data Acquisition and Control system (DAC) coupled to an IBM
compatible personal computer (PC). The DAC can accommodate

a variety of different temperature sensors, such as
thermocouples, Resistance Temperature Devices (RTDs),
thermistors and solid state temperature sensors. In addition
to reading sensors, the DAC can output analog or digital
control signals to operate the liquid nitrogen solenoid
valves or heater strip AC power controllers. The DAC can
also control functions related to the items under test. For
instance, the DAC was configured to activate the PD/ADS
pressure transducers at the beginning of each dwell period.
This system provided exceptional control of the test unit
temperature, ramp rates, dwell period, and cyclical
repeatibility.

Although the heat input of the heater strips may be easily
varied by adjusting the electrical current, the cooling
capacity is not so easily adjusted. An earlier configuration
of the test system using a simple, single solenoid control of
the liquid nitrogen flow showed a tendency to overshoot the
desired setpoint. When it became evident that more precise
control of the liquid nitrogen flow was necessary, a variable
flow, digital LN, valving system was implemented. An
advantage to thisS type of variable flow rate valve is it's
ease of interfacing with the data acquisition and control
system. The theory behind this valving concept consists of N
number of on/off valves connected in parallel with each
other. The flow rate of each valve is calibrated by means of
different size orifices to obtain a binary relationship to
one another. Each valve has a flow rate twice as large as
the next smallest valve. This binary relationship allows
easy calculation of the total flow rate for any given
combination of open or closed valves. The number of discreet
flow rates achievable is a function of N, the number of
valves implemented. For the PD/ADS bell jar, a two valve
combination was implemented, resulting in four discreet flow
rates including off. This valving system greatly enhanced
the control system's ability to accurately control the LN
flow through the cooling coil. Figures 11-13 dramatically
illustrate the improvement in the control system LN, flow
control resulting from the use of the two valve arrangement.
Figure 11 shows the desired time-temperature response for the
SUNLITE Reference Cavity Test. Figure 12 is a plot of the



actual control thermocouple response with the original one-
valve arrangement. Finally, Figure 13 is a plot of the
control thermocouple response after the implementation of the
two valve arrangement.

Control System Software

Software for the system is written in a format specific to
the Keithley controller. Prior to the development of the
current bell jar test facility, control software was written
from scratch or old programs modified to accommodate various
temperature profiles or parameters as needed. This approach
proved to be difficult and time consuming as each piece of
new or modified software had to be tested and verified prior
to use for actual testing. With these and other shortcomings
in mind, software was written which will accommodate a
variety of differing tests without additional programming
effort. This menu driven software is readily used by test
technicians with little computer experience.

In function, the operator is prompted to enter the
temperature profile that is desired. This is done by entering
groups of three key parameters. They are the target
temperature, the ramp rate, and the dwell. Target temperature
is the temperature that you want to achieve. Ramp rate is the
rate at which the temperature is to change and dwell is the
period of time to stay at the target temperature.
Concatenated groups of these three parameters can define the
most complex or basic temperature profile. After data entry
by the operator, this profile is automatically written to a
floppy disk. When the control section of the program is run,
these parameter groups are read from the disk and executed in
sequence. To allow for flexibility, the previously defined
profile can be interrupted during the test and new parameters
entered manually in real time.

The section of the software that actually controls the
temperature is rather basic and does not incorporate
sophisticated proportional, integral and derivative
functions. Yet, despite it's simplicity, the software
provides excellent system control. Proportionality in the
heating and cooling functions is included as follows. The
percentage of available heat called for is a function of the
error signal squared. The error signal is the difference
between the desired temperature and the actual temperature.
The proportional band is two degrees F. Therefore, when the
error reaches two degrees the system is calling for 100%
heat. When the system calls for cooling, the valving system
provides three LN, flow rates to choose from. The lowest
flow rate is called for at an error of .5 to 1 degree F. The
second level of flow is called for between 1 degree and 2
degrees F. At an error of over two degrees F. the highest
flow rate is called for.



The software saves data from up to 18 sensors on disk at
user-defined intervals. This data is time-tagged and saved in
ASCII format for direct importation to most plotting and
analysis programs.

System Safety

Automated testing can be subject to failures which can cause
loss of control of the process underway. Potentially
damaging levels of heat/cold can be harmful to personnel, the
items under test or the facility itself. Steps must be taken
before hand to ensure that there are no catastrophic results
in the event of failure. Associated with this bell jar test
system are three safety devices. The first of these is
simply a backup battery power supply which protects the
system from voltage surges and spikes, and provides up to

20 minutes of power in the event of a line power failure.

The second device is an independent safety setp01nt unit
adjusted to detect temperature out-of-bound conditions. If
these conditions are detected the test is aborted and a
system safing procedure occurs. The third device is a DAC
monitor unit. This unit monitors normal system operation and
has the ability to interrupt the heat or cold sources. The
computer must send a 51gnal to this unit perlodlcally and
also read back a return 51gnal If this protocol is not
repeated within a set perlod of time, the DAC monitor assumes
a failure has occurred and interrupts the test. The computer
program is written to interrupt the protocol upon detection
of abnormal conditions such as too rapid temperature change
or the actual temperature of the process not agreeing with
the desired temperature. This protocol will, of course, also
be interrupted by any hardware failures or stoppage of the
computer. An aborted test must be manually reinitiated. A
flowchart schematic of the system and all its components is
shown in Figure 14.

conclusions

The test system has proven to be extremely flexible for
providing temperature cycling of small payloads. The system
prov1des a fully automated, conductive heating and cooling
capablllty, which is adaptable to v1rtually any test scenario
using an easy-to-use software program. This system provides
exceptional control of the test article temperature, ramp
rates, dwell period, and cyclical repeatibility.

The versatility of the test system is enhanced by the large
surface area of the aluminum plates and the distribution of
10-32 UNF threaded holes over the surface. It is a simple
matter to machine adaptor plates to allow other tests to be
performed with the PD/ADS fixture.



In its earlier, evaluation version, the system was used to
test the PD/ADS evaluation transducers, and the Stanford
University-Nasa Laser In-space Technology Experiment
(SUNLITE) reference cavity mount. 1In addition to the PD/ADS
acceptance test program, the final system has also been used
to test the triaxial accelerometer mounting for the Rarefied-
flow Aerodynamic Measurement Experiment (RAME), another AFE
experiment; the Lidar In-space Technology Experiment (LITE)
boresight prism assembly; and the SUNLITE mass storage disc
drive. Photographs of several of these tests are included
in Figures 15 thru 17.

For the PD/ADS tests, the maximum and minimum temperatures
achieved were 0 degrees and 200 degrees F, respectively. The
heating and cooling ramp rates were one degree F per minute.
On the RAME test, the fixture was only taken to a maximum of
150 degrees F. However, the ramp rates applied were the
maximum rates achievable by the system. The maximum heating
ramp rate was about 5.5 degrees F per minute, while the
maximum cooling ramp rate was about 6.5 degrees F per minute.
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