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Abstract

Unusual requirements for the PD/ADS transducer thermal vacuum

testing led to the development of a conductively heated and

cooled, fully automated, bell-jar test system. The system

has proven to be easily adaptable for other tests, and offers

the advantages of quick turn-around and low operational cost.
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Introduction

The Aeroassist Flight Experiment (AFE) is an experimental

blunt-body reentry vehicle designed to demonstrate the

concept of aerobraking in orbital transfer maneuvers. The

Pressure Distribution/Air Data System (PD/ADS) consists of an

array of pressure ports and associated transducers in the AFE

aerobrake for pressure data acquisition during the aeropass.

The pressure data information will be used for Computational
Fluid Dynamics (CFD) code validation.

Acceptance testing for space flight hardware at the NASA

Langley Research Center is governed by the Langley General
Environmental Verification Specification (GEVS) for°_al

Space Transportation Payloads, Subsystems, and Components.

As a part of the acceptance testing program for the pressure

transducer (PT) flight units, each unit must undergo a

thermal-vacuum test. As developed from the GEVS document,
these thermal-vacuum tests subject the pressure transducers

to six temperature cycles between the transducer operating

extremes of 0 to 200 degrees F (See Figure i). Each cycle
includes a two hour dwell at each temperature extreme and

activation of the transducer at the beginning of the dwell
period. The dwell ensures that the temperatures of the

internal components of the pressure transducers are allowed

to equalize. The activation of the transducers at the

beginning of each hot or cold dwell serves as a screen for

weak transducers. In addition to the GEVS requirements, the

PD/ADS test requirements also specify that the temperature

ramp rates for the transducers be held to one degree F
per minute in both heating and cooling modes.

Each cycle lasts approximately ii hours from beginning to
end. Although continuous (around-the-clock) operation could

have been used to perform this test, it was decided that a

staggered day shift could provide one cycle per day without

compromising the test. Since the acceptance test program

lasted about a year and involved approximately one test per

month, day shift operation eliminated the personnel

shortages that around-the-clock operation entails.



System Background

The logistics of the flight unit deliveries, acceptance

schedule, and the long-term availability of test equipment

within Langley's Systems Engineering Division necessitated

the use of a Centorr bell-jar vacuum system for this test

program. The Centorr be_l-jar is capable of achieving vacuum
levels as low as 5 x i0- torr. In routine operation the
system achieves vacuum levels of 5 x i0 -_ within two hours of

activation. This vacuum system offered the advantages of

quick turnaround, low operational cost, and ready

availability. The major drawbacks to the system were its

relatively small test chamber, and its lack of provisions for

heating and cooling capability.

In general, heating and cooling capability in previous bell

jar tests had been provided by radiative heat transfer using

heat lamps and some type of liquid nitrogen cold shroud. A
first-generation thermal-vacuum fixture of this type is shown

in Figure 2. While appropriate for certain types of tests,

radiative heat transfer has several inherent problems.

First, the ability to heat radiatively far outstrips the

ability to cool by radiation. Secondly, because of the

relatively weak coupling between the heat source or sink and

the test subject, tight control of the test subject's
temperature is difficult to achieve. This is true of both

the absolute temperature of the test subject and the

temperature ramp rate applied. Figure 3 displays data taken
from an early PD/ADS test in which the system relied on

radiative heating and cooling. Finally, as seen in Figure

2, heating lamps and liquid nitrogen shrouds tend to be bulky

and take up much of the usable space in a bell-jar.

Once installed in the AFE vehicle, the pressure transducers

and their mounting brackets will be wrapped in Multi-Layer
Insulation (MLI). This effectively isolates the transducers

from the radiation environment of the aerobrake, so that

essentially all of the external heating applied to the

transducers comes from conduction through the vehicle

structure. Since the transducers will be heated/cooled

conductively in the aerobrake, the test system was designed
for conductive heat transfer.

Earlier in the PD/ADS program, candidate pressure transducers

had been run through an evaluation test program that included

thermal-vacuum testing in a bell-jar. These earlier tests

had initially employed radiative heating and cooling,

although by their conclusion the system had been modified

to provide conductive heat transfer (See Figure 4). The
second-generation fixture shown in Figure 4, has a liquid

nitrogen cooling coil clamped to the top surface which

provides efficient conductive cooling. The heating

capability of this fixture is still derived from radiant heat

lamps. Although, since the test article is mounted on the



underside of the plate away from the lamps, the heating
provided to the test article is conductive in nature. This
second-generation fixture proved to be extremely useful, and
guite adequate for small test articles. In spite of these
improvements, a new fixture with greater surface area had to
be devised to handle the larger numbers of transducers to be
tested under the acceptance test program. The new, third-
generation, fixture had to be capable of accommodating up to
eight pressure transducers at one time (a typical shipment),
whlle providing for uniform conductive heating and cooling of
the units.

Fixture Design

The third-generation fixture is comprised of a pair of

parallel, rectangular aluminum plates placed upright (on

edge) in the bell jar. Aluminum was chosen as the plate

material because of its relatively high thermal conductivity

which serves to minimize temperature gradients across the

surface of the plates. The plates are each 13 inches wide,
12 inches tall, and 0.38 inches in thickness. The outer

surfaces of both plates are drilled and tapped with a
distribution of 10-32 UNF screws to provide easy mounting for

up to eight pressure transducers at a time. This

configuration provides a total of 312 square inches of

fixture surface area, as compared with 113 square inches for

the second-generation fixture mentioned previously. Front,

side and top views of the fixture situated in the bell-jar

are shown in Figures 5 through 7, respectively. The heating

capability for the new fixture is provided by five contact
strip heaters which are sandwiched between the two aluminum

plates. The heater strips are OMEGA Model OT-1505/240. The

strips are metal-sheathed with a solid phenolic core, and are

0.355 inches in total thickness. The strips are rated for

500 watts each, providing a total available heatin_ power of
2500 watts. Cooling capability is provided by a llquid

nitrogen cooling coil which is also sandwiched between the

aluminum plates. The cooling coil is constructed of 3/8 inch

OD copper tubing. Figure 8 shows a cut-away view of the

third-generation fixture and details the heater strips and

cooling coil routing.

One of the aluminum plates is drilled and tapped with a

pattern of 22, 1/4-28 UNF Helicoil inserts. The other plate

is drilled with a matching pattern of clearance holes and

countersinks. During assembly, the aluminum plates are

pulled together by the 22, 1/4-28 countersunk bolts. The

bolts are tightened until firm contact is achieved between

the aluminum plates and the heater strips. This requires

that the cooling coil be crushed slightly out-of-round, which

ensures good thermal contact between the cooling coil and the

aluminum plates. Copies of the shop drawings for the plates,
complete with bolt patterns, are shown In" Flgures 9 and i0.
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Control System

Due to the high efficiency of conductive heat transfer,

temperature changes can occur too rapidly for manual control.

This required that the entire heating and cooling process be

controlled by an automated feedback control system. This
innovative combination of conductive heat transfer and

automated control had never been previously utilized by

Systems Engineering Division.

The control system hardware consists of a KEITHLEY series 500
Data Acquisitlon and Control system (DAC) coupled to an IBM

compatible personal computer (PC). The DAC can accommodate

a variety of different temperature sensors, such as

thermocouples, Resistance Temperature Devices (RTDs),
thermistors and solid state temperature sensors. In addition

to reading sensors, the DAC can output analog or digital

control signals to operate the liquid nitrogen solenoid
valves or heater strlp AC power controllers. The DAC can
also control functions related to the items under test. For

instance, the DAC was configured to activate the PD/ADS

pressure transducers at the beginning of each dwell period.

This system provided exceptional control of the test unit

temperature, ramp rates, dwell period, and cyclical

repeatibility.

Although the heat input of the heater strips may be easily

varied by adjusting the electrical current, the cooling

capacity is not so easily adjusted. An earlier configuration
of the test system using a simple, single solenoid control of

the liquid nitrogen flow showed a tendency to overshoot the

desired setpoint. When it became evident that more precise

control of the liquid nitrogen flow was necessary, a variable

flow, digital LN_ valving system was implemented. An

advantage to this type of variable flow rate valve is it's
ease of interfacing with the data acquisition and control

system. The theory behind this valving concept consists of N

number of on/off valves connected in parallel with each
other. The flow rate of each valve is calibrated by means of

different size orifices to obtain a binary relationship to
one another. Each valve has a flow rate twice as large as

the next smallest valve. This binary relationshi_ allows

easy calculation of the total flow rate for any glven
combination of open or closed valves. The number of discreet
flow rates achievable is a function of N, the number of

valves implemented. For the PD/ADS bell jar, a two valve

combination was implemented, resulting in four discreet flow

rates including off. This valving system greatly enhanced

the control system's ability to accurately control the LN 2

flow through the cooling coil. Figures 11-13 dramaticall_

illustrate the improvement in the control system LN 2 flow

control resulting from the use of the two valve arrangement.

Figure II shows the desired time-temperature response for the
SUNLITE Reference Cavity Test. Figure 12 is a plot of the
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actual control thermocouple response with the original one-
valve arrangement. Finally, Figure 13 is a plot of the
control thermocouple response after the implementation of the
two valve arrangement.

Control System Software

Software for the system is written in a format specific to

the Keithley controller. Prior to the development of the

current bell jar test facility, control software was written

from scratch or old programs modified to accommodate various

temperature profiles or parameters as needed. This approach

proved to be difficult and time consuming as each piece of

new or modified software had to be tested and verified prior

to use for actual testing. With these and other shortcomings
in mind, software was written which will accommodate a

variety of differing tests without additional programming
effort. This menu driven software is readily used by test
technicians with little computer experience.

In function, the operator is prompted to enter the

temperature profile that is desired. This is done by entering

groups of three key parameters. They are the target

temperature, the ramp rate, and the dwell. Target temperature

is the temperature that you want to achieve. Ramp rate is the
rate at which the temperature is to change and dwell is the

period of time to stay at the target temperature.

Concatenated groups of these three parameters can define the

most complex or basic temperature profile. After data entry
by the operator, this profile is automatically written to a

floppy disk. When the control section of the program is run,

these parameter groups are read from the disk and executed in

sequence. To allow for flexibility, the previously defined

profile can be interrupted during the test and new parameters
entered manually in real time.

The section of the software that actually controls the

temperature is rather basic and does not incorporate
sophisticated proportional, integral and derivative

functions. Yet, despite it's simplicity, the software

provides excellent system control. Proportionality in the
heating and cooling functions is included as follows. The

percentage of available heat called for is a function of the

error signal squared. The error signal is the difference

between the desired temperature and the actual temperature.
The proportional band is two degrees F. Therefore, when the

error reaches two degrees the system is calling for 100%

heat. When the system calls for cooling, the valving system

provides three LN 2 flow rates to choose from. The lowest

flow rate is call_d for at an error of .5 to 1 degree F. The

second level of flow is called for between 1 degree and 2

degrees F. At an error of over two degrees F. the highest
flow rate is called for.
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The software saves data from up to 18 sensors on disk at
user-defined intervals. This data is time-tagged and saved in
ASCII format for direct importation to most plotting and
analysis programs.

System Safety

Automated testing can be subject to failures which can cause
loss of control of the process underway. Potentially
damaging levels of heat/cold can be harmful to personnel, the
items under test or the facility itself. Steps must be taken
before hand to ensure that there are no catastrophic results
in the event of failure. Associated with this bell jar test
system are three safety devices. The first of these is
simply a backup battery power supply which protects the
system from voltage surges and spikes, and provides up to
20 minutes of power in the event of a line power failure.
The second device is an independent safety setpoint unit
adjusted to detect temperature out-of-bound conditions. If
these conditions are detected the test is aborted and a
system safing procedure occurs. The third device is a DAC
monitor unit. This unit monitors normal system operation and
has the ability to interrupt the heat or cold sources. The
computer must send a signal to this unit periodically and
also read back a return signal. If this protocol is not
repeated within a set period of time, the DAC monitor assumes
a failure has occurred and interrupts the test. The computer
program is written to interrupt the protocol upon detection
of abnormal conditions such as too rapid temperature change
or the actual temperature of the process not agreeing with
the desired temperature. This protocol will, of course, also
be interrupted by any hardware failures or stoppage of the
computer. An aborted test must be manually reinltlated. A
flowchart schematic of the system and all its components is
shown in Figure 14.

Conclusions

The test system has proven to be extremely flexible for

providing temperature cycling of small payloads. The system

provides a fully automated, conductive heating and cooling

capability, which is adaptable to virtually any test scenario
uslng an easy-to-use software program. This system provides

exceptional control of the test article temperature, ramp

rates, dwell period, and cyclical repeatibility.

The versatility of the test system is enhanced by the large
surface area of the aluminum plates and the distribution of

10-32 UNF threaded holes over the surface. It is a simple

matter to machine adaptor plates to allow other tests to be

performed with the PD/ADS fixture.

6



In its earlier, evaluation version, the system was used to
test the PD/ADS evaluation transducers, and the Stanford
University-Nasa Laser In-space Technology Experiment
(SUNLITE) reference cavity mount. In addition to the PD/ADS
acceptance test program, the final system has also been used
to test the triaxial accelerometer mounting for the Rarefied-
flow Aerodynamic Measurement Experiment (RAME), another AFE
experiment; the Lidar In-space Technology Experiment (LITE)
boresight prism assembly; and the SUNLITE mass storage disc
drive. Photographs of several of these tests are included
in Figures 15 thru 17.

For the PD/ADS tests, the maximum and minimum temperatures
achieved were 0 degrees and 200 degrees F, respectively. The
heating and cooling ramp rates were one degree F per minute.
On the RAMEtest, the fixture was only taken to a maximum of
150 degrees F. However, the ramp rates applied were the
maximum rates achievable by the system. The maximum heating
ramp rate was about 5.5 degrees F per minute, while the
maximum cooling ramp rate was about 6.5 degrees F per minute.
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Thermal Vacuum Test System Configured to Test
PD/ADS Model PIA Pressure Transducers
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Figure 15
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Thermal Vacuum Test System Configured to Test
RAME Tri-axial Accelerometer Mounting Plate Figure 17
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