
NASA Contractor Report 189047

-

_ _..9_--.

Prediction of Noise Field of a

Propfan at Angle of Attack

(NASA-CR-189047) PREDICTION OF NOISE FIELD

OF A PROPFAN AT ANGLE OF ATTACK Final Report

(Sverdrup Technolo:_y) 22 p CSCL 20A

Edmane Envia

Sverdrup Technology, Inc.

Lewis Research Center Group

Brook Park, Ohio

G3/7t

Ng2-13759

Unclas

0053399

October 1991

Prepared for
Lewis Research Center

Under Contract NAS3-25266

lY/ A
National Aeronautics and

Space Administration



,r



Prediction of Noise Field of a
Propfan at Angle of Attack

Edmane Envia

Sverdrup Technology, Inc.
Lewis Research Center Group

Brook Park, Ohio 44142

ABSTRACT A method for predicting the noise field of a propfan operating
at angle of attack to the oncoming flow is presented. The method takes
advantage of the high-blade-count of the advanced propeller designs to
provide an accurate and efficient formula for predicting their noise field. The
formula, which is written in terms of the Airy function and its derivative,
provides a very attractive alternative to the use of numerical integration.
A preliminary comparison shows rather favorable agreement between the

predictions from the present method and the experimental data.

1.1 Introduction

The need to limit both in-flight cabin noise and community noise has

prompted the development of methods for accurate prediction of acous-

tic performance of propfans. A particular aim of these methods has been

the prediction of the noise field of a propfan operating at angle of attack to

the oncoming flow. Experimental evidence [1] suggest that the noise radia-

tion characteristics of a propfan at angle of attack are significantly different

from those of a propfan at zero angle of attack. These differences stem from

the changes which occur both in the aerodynamics and aeroacoustics of a

propeller whose axis is inclined with respect to the direction of oncoming
flow.

One of the most important of these changes is the azimuthal variation

of aerodynamic loading experienced by a propeller at angle of attack. Mea-

surements [2], as well as numerical simulations [3], have shown that the

loading variation or "unsteadiness" can be quite substantial over one period
of revolution. Physically, the modulation occurs because propeller blades

experience periodic variations in the local flow incidence. Acoustically, the

loading unsteadiness creates a noise field which is axially non-symmetric.

Methods which predict this effect have been in use for some time (see Han-

son [4], for example).
Another feature of a propeller operating at angle of attack, which is ab-



sent at zero angle of attack case, is the cross-flow convective phase effect.

This effect, first pointed out by Mani [5], may be explained as follows. For

an inclined propeller, the oncoming flow has a nonzero velocity component

in the plane of rotation. As a result, an acoustic source point fixed to the

surface of the propeller "sees" a medium whose convective velocity varies
periodically. This means that the convective phase of the sound radiated

from this point is also periodically modulated. Krejsa [6], recently devel-

oped a prediction scheme which accounts for this effect by assuming that
propeller sources are acoustically compact in the chordwise direction.

In this paper, a method which incorporates both the loading unsteadi-
ness and cross-flow phase effects in a straightforward manner, without the

simplifying assumptions such as chordwise compactness, is presented. This

method, which is based on a moving-medium variant of the Ffowcs Williams

and ttawkings [7] equation, relies on a frequency-domain formulation simi-

lar to that employed by Hawkings and Lawson [8] or Hanson [9], however,
it differs from them in that the resulting Fourier integrals are evaluated

asymptotically in the 'qarge-blade-count limit" rather than in the far- or

near-field limits. The advantage of this approach lies in the fact that it
provides a uniform representation for the sound field in both the near- and

far-fields while, at the same time, it affords the flexibility of using realis-
tic blade geometries and aerodynamic loading distributions without their

associated computational penalties.

1.2 Analysis

The starting poini for the analysis is the moving-medium solution of the

Ffowcs Williams and Hawkings equation for the acoustic pressure, p(x, t),
as givenby Goidstein [1(}];

p(x, t) = - pov,_ _ ds(y) dr + .fn, _yi ds(y) droo (T) _ (_)

02G

+/., ff _(.)71.f _ dy &r. (la)

D0 0 0
D-"_ = c9-"_+ Uoi _gyi , (lb)

where p0 is the ambient density, v, the normal component of the surface

relative veldci{y, f t_e amp_l[tude of the aerodynamlc:ioading, and T/j the

Lighthill stress tensor. S(r) and V(r) represent the propeller blade surfaces
and the volume surrounding the blades: respectively: ni's:are components
of the outward unit normal to S. It should be noted that the convention for

the direction of the unit normal is opposite that of Goldstein's. The medium
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convectionvelocityis denotedby[To.y andx are the source and observer

coordinates, respectively, r denotes the source time and t the observer (i.e.,

retarded) time. The three terms in Eq. (la) represent contributions from

the thickness (monopole), loading (dipole) and stress (quadrupole) sources

of noise. In this paper, however, the contribution from the last term will be

ignored. The extension of the analysis to include quadrupole sources will
be discussed elsewhere.

G = G(x,t/y,r) in Eq. (la) denotes the free-space moving-medium

Green's function which may be written in the following form;

1

G -- 4_r_R 6 (t - r - g_RICo), (2a)

1 (_; __MoR)
g (T) =

Mort(r) = Moi ei, ei(r) = --

= (M2. + zg) '12,

(xi -- Yi)
R

_ = 1-- M_i,

= -Y(r)l. (2b)
Moi -- -_o '

Here M0_ is the component of the medium convection Mach number in the
radiation direction, ei's the components of the unit vector in the radiation

direction, R the length of the radiation vector, and Co the medium speed

of sound. Parameters g_ and t¢ represent the effects of medium convection
on the retarded time and the spherical spreading rate, respectively. The

explicit dependence of various parameters on the source time, r, is indicated

where necessary.

In order to simplify the description of the source motion, the 1-axis is

chosen to coincide with the propeller shaft (see Fig. (1)). As a result the

motion of the sources is confined to the transverse planes described by the

2- and 3-axes. In this coordinate system, the medium convection Mach
number can be written as:

M01 : M0 cos or, M02 = 0, M03 : M0 sin or, (3)

where a is the propeller angle of attack with respect to the oncoming flow

as shown in Fig. (1).
Given the blade geometry and aerodynamic loading, the acoustic pres-

sure, p(x, t), may be computed from Eq. (la) for any observer location.
This, of course, is the so called time-domain approach (see Farassat [11],

for example) which entails solving transcendental equations for the source
time, r. Alternatively, one could use a frequency-domain approach which

involves expanding the pressure field, p(x, t), in terms of its complex Fourier

harmonic components, pk(x), i.e.,



-1-oo

p(x,t)= E Pk(x) e-°'"t'
k=-oo

with the individual harmonic components given by:

(4a)

f_ r_In [ t+oo t 1
p_(x)= -- I _""' II I DoG

2_ Jo tJ-_ Js(.)po,,. --_ a,(y) dTJat -

f_ r_,/a [ r+ ,,o r egg ]

-- I e_"' II I fni ds(y) drj dr, (402_ Jo LJ-_ Js(,)

where f_ is the propeller angular speed. In writing Eq. (4b), the derivatives

of G with respect to the source coordinates from Eq. (la) have been re-

placed by its derivatives with respect to the observer coordinates through

the use of the simple relations:

OO OO DoG DoG
- (5)

Oyi Ozi ' Dr Dt
=:: = : :

Using the usual phase relationship arguments it can be shown that for

B identical blades only pk's for which k = roB(where m is aninteger)

cohtrlbute to the infinite su_i;n=E q. :(4a). This contribution iS Simply B
times the contribution of a single blade. Therefore, from here on B will

explicitly appear in the expressions for Pmn and, correspondingly, S will

denote the surface of a single blade.

To further simplify Eq. (4b), the spatial derivatives, cg/cgzi, of G may be

rewritten in terms of the temporal derivative, cg/Ot, through the use of the

chain rule;

OG [ 10(g,R) 0 1 OR 10t¢]= - 60 ox, ot + R 0_, + - -g-_,G. (6)

The temporal derivatives can now be removed using integration by parts

and the integral over t, which involves a delta function, can then be easily

evaluated to yield,

PmB(X) : Qmonopole(X,Y, r) e i'nBa(r+9°RIc°) ds(y) dr +
Jo (_)

: =

]Qdipole(X, y, T) eimBa(T+_RIc") ds(y) dr , (7)
Jo (T)

where Qmo_opol_and Qdipoie representthe expressionsforthe "amplitudes"

of the two acousticsource.Note that the limitson the integrationover T
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have been changed to reflect the fact that an interval of size 2r/f_ in t is

mapped exactly into an interval of size 2_r/fl in r. The expressions for the

monopole and dipole s6uree amplitudes are given by:

Bflpovn(r) [imBf_ Mo,
Qmonopole - - 8r 2 [ xR x2 R (ei - geMo,) +

M0, (M0. M0,+ n0 e,)]_3R2

se/(,-) [ imB n,Qdipole -'_ 8__ - x2 R (el - gcMoi) +

(Mon Mo, + fl_ei)] (8b)K3 R2

Note that, for a propeller operating at an angle of attack, vn and f depend

on r. ni and ei also depend on v even if the propeller is operating at zero

angle of attack. Note also that, the definition of the source amplitude here
differs from the standard one in that it includes the fall-off with distance

R.

Once source amplitude distributions Qmonopole and Qdipole are estimated,
it remains to carry out the integrations in Eq. (7). Ordinarily, in the con-

text of a frequency-domain analysis, the integral over _- is computed first.

Since, for general geometries and source amplitudes, this integral is not

tractable analytically, it is usually computed asymptotically for, say, near-

or far-field observer locations for which the integrand may be simplified sig-

nificantly. The result is given in terms of the appropriate Bessel functions.

The remaining surface integral is then carried out analytically or numeri-

cally depending on how faithfully the blade geometry is to be represented.

There is, however, a less restrictive, and at the same time, more accurate

way of computing p,_B(X). This is accomplished by evaluating the 7"integral

asymptotically for large-blade-count, B (or more precisely roB), using a
modification to the standard steepest descent and saddle point methods.

The advantage of this approach lies in the fact that it does not require
a near- or far-field approximation and, therefore, is applicable to general

geometries and source amplitudes. The details of the derivation will be

presented for the zero angle of attack case first. The results will then be used

to derive an extension to the angle of attack cases most often encountered

in practice. For the sake of brevity, the formula will be given in terms of a

generic source amplitude Q. The resulting expression is therefore applicable
to both the monopole and dipoie sources.



1.2.1 ZERO ANGLE OF ATTACK CASE (a = 0)

Since, it is desirable to represent the blade geometry as accurately as pos-

sible, the surface integrals cannot be carried out analytically and must,

instead, be performed using a suitable quadrature scheme. For practical

considerations, it is more convenient to evaluate the surface integral first.

To do so, we begin by dividing the blade surface into Np small panels. If

the typical panel size is sufficiently small the integrand may be assumed to

be constant over the panel and, thus, the surface integral may be approxi-

mated by some appropriate "mean value" of the integrand times the panel
surface area AS. If the mean value is chosen to be the value of the Ante-

grand at the geometric center of the panel, designated ys, the error in this

approximation is O(L 2) for a given Nv, where L = [y - yslmax. Of course,

the error could be made arbitrarily small by choosing a large enough Np.

Therefore, PmB(x) may be written as:

Np

p_B(x) -_ _ _s., _-_"° I.., (9.)
he----1

_r,_,= Q(o) e''B®(e_,t0, (gb)

• (o)= i(o ÷ bcosO), (9_)

Mtip 2rra. = b = (gd)
2' X2 +r2+r_ '_ot k/x2 + r2 T r,

_1c = MtieM°_x q_ 5, L if,
#o,

1

X2 = _02 (z 1 _ y,,)2, /302,= 1- M02, (ge)

where for brevity (xl, x2, x3) and (Y,1, Y,2, Y,a) have been replaced by their

cylindrical polar counterparts (xl, r, _b) and (y,,, r,,¢,), respectively. Fur-

thermore, the integration variable v is replaced by a new variable 0 =

fir + _, - _. Mtip is the tip rotational Mach number (i.e., R_ipf_/C0),

AS,, the surface area of the npth panel and @c is a convective phase fac-
tor representing the collection of phase terms which do not depend on r.

Q(O) is the source amplitude function written in terms of the variable 0. In
order to simplify the notation, the explicit dependence of various variables

on Ys, the centroid of the npth panel, is suppressed. ¢(0) is the canonical

phase function for a propeller operating at zero angle of attack, with a

and b representing a combination of geometric, convective and kinematic

factors, in deriving the above expressions, both the observer and source
spatial coordinates are non-dimensionalized with respect to the propeller

tip radius R4ip. (Note that, Mol = M0 for zero angle of attack case.)



Fora typical propfan B = 8, thus, even at the blade-passing-frequency

(BPF), i.e., m = 1, the integrand in Eq. (9b) is highly oscillatory. Of course,

one way to tackle the problem is to integrate the 0-integral using a suit-

able quadrature scheme. That was indeed the approach taken in Nallasamy

et al. [12]. Unfortunately, accurate computation of higher harmonics (i.e.,

m _> 2) requires an ever increasing quadrature resolution to capture the os-

cillatory nature of the integrand, and that may prove to be computationally

expensive. It turns out, however, that it is possible to evaluate the integral

I,, rather accurately using the steepest descent and saddle point methods.
Naturally, in that case, the variable 0 must be allowed to be complex and

the integration path (i.e., [0, 2_']) be deformed into an appropriate contour.

Since in most practical applications of interest, propfans operate at a

supersonic relative tip Mach number (i.e., M(rer)tip = (M_p + M2ol)1/2), in

the subsequent analysis it is assumed that M(r_t),p > 1. Replacing 0 with
the variable, v = 0 + itr, leads to a phase function, _(v), which is now

also complex. It is fairly straightforward to find the saddle points of _(v)

(i.e., _'(v) - 0, where (') denotes differentiation with respect to _,) and the

appropriate steepest descent contours. The easiest way to find the saddle

points is to define an auxiliary variable _ = cosy, and rewrite _'(_) = 0 in

terms of _;

(.b/2)2 _ + 1 - (ab/2)2 = 0, (10)

where a and b were defined in Eq. (gd). Eq. (10) is clearly quadratic in

and may readily be solved. Thus, for given observer and source locations,

q_(r,) has, in general, two simple saddle points in the interval [0, 2_'] which

depending on whether the component of the source relative Mach number

in the direction of the observer, i.e., M(r_o,e_, is subsonic or supersonic,

have different forms. The two are a complex conjugate pair if M(_o, ei < 1,

and are real if M(_o,ei > 1. When M(_,0,ei = 1 (i.e., the "sonic condi-
tion"), these two saddle points merge to give rise to a single second order

saddle point. For a subsonic source, it turns out, that only one of the two

saddle points lies on the appropriate steepest descent path and, hence, only

that saddle point contributes to the integral. It should be noted that, the

integrand also has an infinite number of branch points, coinciding with

those of q_(t,), of which only four lie in the region of interest. A judicious

choice of the branch cuts guarantees that the contributions to the contour
integral along the cuts in the t-plane is exponentially small compared with

the contributions from the neighborhood of the saddle points. The location

of the appropriate saddle points, branch cuts and steepest descent contours

for typical source locations are shown in Fig. (2). Note that, the choice of

the steepest descent path depends on the type of the source under con-

sideration. Also shown in this Figure, are the auxiliary (descent) contours

needed for deforming the original contour, [0, 2_'], into the steepest descent

contour(s). Due to the periodicity of the integrand in 0, the contributions



fromthesecontourscanceleachotheroutexactly.
Naturally,theasymptoticstructureof Inp for a sonic source point is

different from that for a non-sonic one. In fact, it is fairly easy to show

that the asymptotic expansion is given in terms of the inverse fractional

1/3-powers of parameter mB for sonic sources, and in terms of the inverse

fractional 1/2-powers of mB for non-sonic sources. Since, there is no simple

way of constructing a composite expansion from these two expansions, to

allow for a smooth transition through the sonic condition, they are not

very convenient to use. Fortunately, employing a theorem due to Chester,

Friedman and Ursell [13], it is possible to develop a uniform expansion.

The details of the method may be found in Bleistein and ttandelsman [14]

among others. The basic idea is, however, rather simple. The phase function

¢(v) is mapped conformally (v ---* () into a much simpler function (i.e., a

cubic polynomial in this case) which displays the relevant features of the

original phase function. The region of interest in the complex v-plane (i.e.,
the region containing the saddle points and steepest descent contours) is

correspondingly mapped into a region in the complex _-plane. With the

introduction of a few necessary parameters, the standard steepest descent

and saddle point methods could then be applied to develop the required

uniform expansion. The key definitions and parameters along with the final
result are summarized below.

The cubic is given by:

_(v) = - (_ - 72,) + p, (lla)

P='21 [&(v+) + _(t,-)] , 73 =43 [&(v+) _ _(t,-)] , (llb)

where v+ and t,- denote the locations of the saddle points of _I' in the

complex v-plane and p and 7 are parameters defining the conformal map.

Note that, 7, as given above, can take on three possible values or branches.

The aforementioned theorem guarantees that one of the branches defines
the desired conformal map (see Ref. [14] for details). That branch turns

out to be the one for which 7 2 is purely real for the problem at hand.
With these parameters determined, the map may be constructed and the

uniform asymptotic expansion carried out. In principle, the expansion of the

integral I% could be carried out to an arbitrary order in the parameter roB,
however, it turns out that, for most applications, the first term provides a

very reasonable approximation for even the BPF component (i.e., m = 1).
Therefore, in the subsequent analysis only the first term is considered.

After a fair amount of algebra, the final result can be written as the

following formula: : : :

I,, _' 2tie mB_ doAi 2] + di (mB)2/3 j, (12a)
L [mn_



= ro( ) + d, = ro( ) -
2 ' 27 , (12b)

dv dv _,2 _ _2

F0(() = Q(u(¢)) _-_, _ = o'(u(¢))' (12e)

where Ai and A_ are the Airy function and its derivative, respectively,

and do and dl are coefficients in the asymptotic expansion. It is worth

mentioning that, +7 turn out to be the locations of the saddle points

u + in the _-plane. The Airy function and its derivative provide a smooth

transition from the subsonic portion of the blade to the supersonic portion.
t

For 7 = 0 (i.e., sonic sources) Ai and A i are O(1) and, consequently, In,
is proportional to the inverse fractional 1/3-powers of roB. For 3' ¢ 0 (i.e.,

subsonic/supersonic sources), and large roB, Ai is O((mB) -1Is) and Ai'

is O((mB) 1/6) and, consequently, In, is proportional to the inverse 1/2-

power of mB as expected. Upon inserting for I,, in Eq. (9a) from Eq.

(12a) and adding the contributions from all the Np panels, the complex

Fourier harmonic component, p,_s(x), can be calculated.
At this point it should be pointed out that the analysis just described dif-

fers from that presented by Parry and Crighton [15] in that they use asymp-

totic forms of the Bessel functions in conjunction with the two-variable

stationary phase method to asymptotically evaluate the surface integrals

in Eq. (7). The key difference between the two analyses lies in their dif-

fering points of view. While, the approach described in Ref. [15] seeks to

take advantage of the interference between the acoustic pressure distur-

bances' arriving at the observer location emitted from the various sources

distributed over the blade surface, the present method is built upon the

idea that there is "self-interference" between the acoustic pressure signals

emitted by the same source over one period of its revolution. From a prac-

tical stand point, the goal in Ref. [15] is to circumvent the time-consuming

computations required in a full scale analysis by developing simple approx-

imations to the noise field of a many-bladed propeller in order to gain

insight into the importance of various physical parameters which influence

the noise radiation characteristics of a propeller. The aim of the current
approach is to provide an efficient way of carrying out a full scale analysis

which, at the same time, is also amenable to systematic parametric studies

of the sort envisioned in Ref. [15].
In order to assess the accuracy of the formula given by Eq. (12a), its

predictions for a test problem were compared with those obtained through

direct numerical integration of the 8 integral in Eq. (9b). The test case

chosen was an SR7 propfan operating in cruise conditions. An estimate

for the aerodynamic loading distribution on the propfan blades, found by

Nallasamy and Groeneweg [16] using an Euler CFD code developed by

Whitfield et al. [17], was used along with the detailed geometric description

9



of the blade planform as input to the acoustic calculations. The results are

summarized in Figs. (3) and (4).

In Fig.(3), sideline directivity of the BPF sound pressure level (SPL)
is shown for two representative sets of observer locations; a near-field set

and a far-field set. These correspond to two different sideline distances; one

at z2 = 1.5Rtip and the other at z2 = 5Rtip. In each case, the observer
axial location was varied between Xl = -Rtip (i.e., forward of the plane

of rotation) and xl = +2Rtip (i.e., aft of the plane of rotation). The solid
lines represent the asymptotic estimates of the SPLs, and the dotted lines

their numerically computed values. As it can be seen, both in the near- and

far-fields, the agreement between the numerical results and the asymptotic

estimates is quite good, with the maximum error of about 1.5riB occurring

at 0.5Rtip aft of the plane of rotation for the near-field observer.
Due to the nature of the asymptotic expansion, the maximum error in

approximation occurs for the lowest value of the mB parameter, which

is m = 1 corresponding to the BPF. As m increases, the error in the

asymptoti c approximations diminishes rapidly. Therefore, it is no surprise
that the agreement between the estimates obtained from the asymptotic

formula and the numerically computed results improves with increasing

harmonic order. This result is highlighted in Fig. (4), where the waveforms

of the radiated sound at the 0.5P_i_ aft location for the two sideline dis-
tances mentioned earlier are presented. Note that, at the axial location

chosen, the asymptotic estimate of the BPF sound pressure level deviated

the most from their numerically computed values (see Fig. (3)). Once again,
the agreement is exceptionally good, particularly at the far-field location

where tqae=asymptotic and numerical resuqts are virtually indistinguishable

from each other. In constructing the waveforms the first ten harmonics were

used, which meant that, in carrying out the numerical integration, a pro-
gressively finer integration step size had to be utilized. This of course was

reflected in an increase in the required computation time. The asymptotic

estimates on the other hand, required virtually no additional time as com-
pared with that required to compute the BPF results. This is simply due to

the fact that the location of the saddle points and steepest descent paths,

and the structure of the conformal map are independent of the parameter

roB. It is worth mentioningthat the amount of tlrne required to construct

the waveforins using the asymptotic method was more than an order of

magnitude smaller than that required in the full numerical integration!

Having demonstrated the utility of present approach, we next outline the

extension to include the angleofattack effect: Once again, for brevity, only

important steps in the analysis are presented.

1.2.2 NON-ZERO ANGLE OF ATTACK CASE (a # 0)

In general, the development of the analysis in this case follows closely that

presented in the previous section. However, the details of the analysis itself

]0



aresomewhatmorecomplicated.For example, the phase function _(0, o0,

(which is now more complicated than that for _(0, 0) given by Eq. (9c)), has

four saddle points (i.e., _'(v, _) = 0 is a quartic equation). While, in princi-

ple, it is possible to find the roots of a quartic analytically, the expressions

involved are rather lengthy. Fortunately, since in most practical applica-

tions of interest, the propeller angle of attack is small (typically no more

than 5'), it is possible to find analytic approximations to the saddle points.

This is done by treating the angle of attack case as a small perturbation

to the zero angle of attack case (henceforth called the unperturbed case).

The details of this development are given below where for convenience the

analysis is carried out in terms of the parameter M03 = M0 sin a, instead
of a itself.

We begin by noting that for a small angle of attack, M03 is a small

parameter, i.e., IM031<< 1). Using perturbation analysis (see, for example,

Bender and Orszag [18]) it can be shown that two of the four roots of
• '(v, M03) = 0, denoted by P+, lie near those of the unperturbed problem

• '(g, 0) = 0 (i.e., v±), while the other two scale with the inverse powers of

M03 and, thus, lie much farther away. Therefore, since the perturbations in

the integration contours are also Small, the asymptotic behavior of I,p is
controlled by the pair of saddle points f,+. Of course, they could also merge

to give rise to a second order saddle point as in the unperturbed case.

To find P+, first the phase function if(v, M03) is expanded in a Taylor

series about M03 = 0 as follows;

where

1 2

q>(v, Mo3) = q_o(t') + Moz_l(V) + _Mdaq)2(v) + O(MoZa), (13a)

1
(I)0(/2) : {I)(P'0)' _>I(V) = t _ JMo,=0'

Mo3)1
= L lm =o" (1361

q>0(v) is given by Eq. (9c) (with 0 replaced by t,), and ¢1(v) and ¢2(v) can

be easily found by carrying out the differentiations with respect to M03.

Since, the salient features of the analysis which follows could be demon-

strated without the need for the explicit expressions for ¢10') and q'2(t,),

they are not given here in order to conserve space. The reason for retaining

second order terms in Eq. (13a) will become clear shortly.

Next, Eql (13a) is differentiated with respect to v and set equal to zero;

, , 1 2 '

q_ (r,, Mo3) -- ¢'o(t') + Mo3q>l(v) + _Md3¢2(t') = O, (14)

I!



where the higher order terms in M'03 are neglected to maintain consistency.

Rewriting the resulting equation in terms of the auxiliary variable _ = cos v

and employing the notation used in Eq. (10), we find that,

(abl2)Z_ 2- _ + 1-(abl2) _ + 2M0a [(1- b_)@' 1 (cos -1 _)] +

i 1

M_3(1 - b_) [07 (cos-l_) + O_(cos - _)] = 0, (15)

where, as before, only the second order terms are retained. Note that,

when M03 = 0, Eq. (15) reduces to the unperturbed case given by Eq.

(10). Therefore, as pointed out earlier, it is reasonable to expect that two

of its roots lie near those of the unperturbed case. In order to solve Eq. (15)

for the desired roots, _+ = cos_ +, the functions inside the curly brackets

are expanded in a Taylor series about the unperturbed roots _+ = cos v i.

After collecting terms we find that Eq. (15) can be approximated by:

m (2.o -2  zt =o, 08°)
where

._. t

H t = (1 - b_ )Ol(cos-l_+), (16b)

/-z?= [ l:b_ ,;(cos_l_) b¢i(cos_1¢_)] (16c)

Hi = { 1 - b_+ ,,, 11 -_'_ ¢1 (cos- C) -

[_(__l: b_) 2b -. -1_,)},(1- _+_)3/2 (1 - _'¥')1/2] qh( cos (16,0

K_ = (1 - b_±) [(I,?(cos- 1 _:l:) + O',(cos-l_+)] . (1re)

H_ H_ H_ denote the coefficients of successive terms in the Taylor series

expansion of the function inside the first curly bracket in Eq. (15), and
K_: denotes the leading term in the Taylor series expansion of the function
inside the second curly bracket. Note that, cos -1 _4- = v_: in Eqs. (Ira-Ire).

The roots of this "new" quadratic can now be easily found. Since, Eq.

(16a) has two roots for each of_ + and _-, we choose the root that reduces

12



m

to _+ or _- in the limit of M03 _ 0. As expected, _+ turn out to be only

slightly different from the unperturbed roots _4-. It is worth mentioning that

alternative perturbation methods could be used to find _+. However, the

particular approach described above provides a uniform representation of
the roots even when the unperturbed part of Eq. (16a) has a single double

root (i.e., the sonic condition for the unperturbed problem). Near that
5/2

condition the accuracy of the approximation drops to O(Mo3 ). This is why
in the original expansion (Eq. (13a)) the second order terms were retained.

If only the first order terms were kept, near the sonic condition, the accuracy

would be no more than O(Mo3 ). With the two perturbed saddle points _4-

now known, the asymptotic expansion of In_ can be carried out following
the same procedure as was outlined in the previous section; the difference

being that _(v, o0 is now replaced by the three terms on the right hand
side of the Eq. (13a), and u+ are replaced by i +.

Preliminary applications of the angle of attack formula to a few test cases

have been rather encouraging. As in the case of zero angle of attack, it pro-

vides accurate estimates for the integral I,_. The utility of the method in
solving realistic problems is demonstrated with the following example which

involves the prediction of the spectrum of noise of SR7 propfan operating

in cruise and at an angle of attack of a = 1.6'. The unsteady aerodynamic
loading distribution for this case was computed numerically by Nallasamy

and Groeneweg [19] and was shown (see Heidelberg and Nallasamy [20])
to be in quite reasonable qualitative , as well as quantitative, agreement

with the experimentally measured airloads. Using this aerodynamic load-

ing distribution along with a detailed geometric description of the blade

geometry as input, calculations for the spectrum of the noise of the prop-

fan were carried out utilizing the asymptotic formula. The results were

then corrected for non-free-field effects (such as scattering) which are not
accounted for in the theoretical model. The corrections used, which were

found in Spence [21], were 1.0, 3.6 and 5.3dB for the first three harmonics,
respectively. For higher harmonics a uniform correction of 5.0dB was as-

sumed. The experimentally measured spectrum corresponding to this case

was presented in Ref. [22], as part of the Propfan Test Assessment (PTA)

program (see Poland et al. [23]). The comparison between the measured

and asymptotically computed spectra is presented in Fig. (5). In general,

the agreement is quite good with appreciable deviations occurring only at

higher harmonics where the neglected quadrupole sources probably play an

important role.

1.3 .Concluding Remarks

An asymptotic approach was presented which allows for accurate and ef-

ficient calculation of the noise field of a propfan at angle of attack with-

13



out theneedfor simplifyingassumptionsusuallyemployedin propeller
noisetheories.A closedformexpression,involvingtheAiry functionand
its derivative,givesa uniformrepresentationof thepropellernoisefield
characteristicsin both thenear-andfar-fields.Thepreliminaryresults
shownhereindicatethat themethodprovidesausefultheoreticaltool in
propellernoiseresearch.
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