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ABSTRACT

Experiment a l-computat ional

unsteaay heat transfer processes

methods for e£timating characteristics of

are analysed. The methods are based on

principles of distributed parameter system identification. Theoretical basis

of such methods is numerical solutions of nonlinear ill-posed inverse heat

transfer problems and optimal experiment design problems. Numerical techniqes

for solving problems pointed out are breafly reviewed. The results uf

practical application of identification methods are demonstrated when

estimating effective thermo-physical characteristics of composite materials

and thermal contact resistance in two-layer systems.

i NTRODUCTI ON

In creating different thermally stressed structures and systems, of wide

immornance are mathematical modelling ano simulation of heat transfer

processes occurrin_ inside them. The use of mathematical simulation aiiows to

prosiot e ttlerma! state of the dynamical system tinder consideration ilq wide

r,.an__e,of its operational conditions and to estimate the effect of different

tac.r.ors ,-,nthe system behaviour. Accurate enough thermal state simulation for

c_e system is one of the main procedure, when optimizing thermal conditions

and design, pars_meters.

Ltt. tnermal matnematic:al model of a system or a process _-_alysed is

[ormed basing on the heat and mass exhange theory ,.see, e._. [i]> 8/-,o it

<:,:,nr.r_.insa ser_ of characteristics. Characteristics 8re usually determined Oy

experimental way. 8y this, most of them can be determined oniy by means of
indirect measurements, in this case a mathematical model is used which is of

the Biven structure end usually contains unPa-_own constant parameters.
it should be emmhasized that in determining characteristics, methods of

carrin_g out experiments as well as methc_Js of data processing should consider

peculiarities of mathematical models used to simulate thermal conditions But

tnis factor is not taken into account in overwhelming m_Jority of traditional

methods for determining characteristics. Simple mathematical models and

severely ¢ontro]i_d heating conditions for specimen are used in these methoas.

I'raditional methods for determining of thermophysical characteristics can

serve as an ex_unple [2]. As the result, a desired accuracy of determinir,__

,__haract.eristics is not provided. In this case mathematical simulation of

thermal cor,ditions is also realized with the low accuracy.

3hortcomings of traditional methods for determining characteristics are

olspiayed when analysing a wide enough range of thermal processes, it,

partieuiar, one can refer to such processes heat transfer in composite heat

shield and thermo-insulating materials, contact heat transfer in

high-temperature power plants, heat 8rid mass exchange when materials and I

[strucr_ures interact, with high-enthalpy homogeneous J
and heterogeneous flows and
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any ochers. That is why one must develop and implement new methods of
providing trustworthy information on different characteristics of

processes analysed.

Since characteristics should correspond to the mathematical model used,

their determination should be considered as a part of mathematical model

building by using experimental data. This procedure is called identification

problem [3]. When determining characteristics, the mathematical mc_el

structure is supposed to be known. In this case one can speak about parametric

identification problem [4] or parameter estimation problem [5]. Unsteady

thermal processes are referred, as a rule, to the category of dynamical

distributed parameter systems. This allows to use experimental-computational

methods for determining characteristics based on the main principles and

approaches of distributed pal_Dmeter system identification [8].

study,
thermal

I DENTI FI CATI ON OF HEAT T[<ANS_FER CHARACTERI STI CS

In identifying heat transfer processes, problems of determining

characteristics in mathematical models with given structure are formulated as

coefficient-type inverse heat transfer problems [7]. Methods and algorithms

for solving these problems are the effective means for determining

characteristics of different thermal processes and systems [8,9]. In spite of

_¢hievements available, the inculcation of methods based on solving

coefficient inverse heat transfer problems was not very active, till recently,

because of the following. The fact is that the solution of such problems

strongly depends on the used scheme of temperature measurements [4,10,11]. It

means that quite different results can be obtained for the same heating

conditions of the system analysed but for different number of temperature

sensors 8rid their locations. That is why almost every

experimental-computational study is followed by labour-intensive analysis of

thrustworthyness of the rusults obtained on the basis of numerous parametric

computations ($ee, e.g., [12]>.Preliminary optimal desi_n of temperature

measurements and other experiment conditions allows to reduce considerably the

volume of work. The combination of methods and algorithms for solving inverse

problems and experiment design problems is the methodological foundation of

identification procedure. This combination forms the new approach increasing

essentially an efficiency of thermal studies and determination of heat

transfer characteristics.

The voluminous literature is devoted to methods and algorithms for

solving inverse heat transfer problems. One can point out, in particular,

monographs [4,5,13-20] and bibliography inside them. Most of works available

deal with the solution of boundary inverse heat conduction problems, in which

thermal boundary conditions are determined by using unsteady temperature

measurements inside the body analysed. The considerably lesser nuunber of

publications is devoted to solving coefficient inverse problem (see, e.g.,

bibliography inside [4,14,16,18,19]).

Algorithms suggested at present for solving coefficient inverse problems

are based, in overwhelming m_iority, on minimizing the residual functional.The

minimization procedure is built by using an exhaustive method [14,21],matching

method [18], method of optimal dynamical filtration [19] and gradient

methods. To compute a gradient of the residual functional, the following

techniques are used: finite difference method [223, sensitivity functions [23]

arid a solution of boundary-value problems for conjugate variables, which are

written down for linearized direct problems [24-2S], as well as for finite

difference analogues of direct problems [27]. Efficiency of these techniques

Lpis mainly analysed in application to coefficient inverse heat conduction I
roblems to determine thermo-physical characteristics depending on J
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emperature. The analysis of recent oublications [28] says that the most ]
'_x_ular" techniques for solving coefficient inverse problems are oase_ on

i

iterative regularization principle [4].

In contrast to the number of oublications on inverse heat transfer

problems, works on optimal design of thermal experiments are not very

numerous. One can see the bibliography on this topic in works [4,13].

l_thods for solving experiment design problems are based on a

finite-dimensional approximation of unknown functions. In this case the

inverse problem is reduced to determining the vector of unknown parameters.

Then, properties of Fishers information matrix are analysed, elements of

which are computed Oy using sensitivity functions. The elements depend or,

experiment conditions (see, e.g. [4]).

The determinant of the information matrix or the square root from the

minimum eigenvalue of this matrix are used as the criterion of an experiment

quality. Experiment conditions are chosen by exhaustion of a given set of

possible conditions [29], by the parametric accuracy analysis of the inverse

heat transfer problem solution [25] or by solving optimization problem

[30,31].

At last, only several publications are availaOle on analysing the complex

procedure of heat transfer processes identification and on simultaneous usage

of techniques for solving inverse problems and experiment design problems.

There exist isolated works devoted to design, carting out anO data processing

of real experiments [32,33].

The main goal of this lecture is to demonstrate the efficiency of

parametric identification methods through the examples of

experimental-computational investigations of heat transfer processes.

INVERSE HEAF TRANSFER PROBLEMS

Many different particular inverse heat transfer problem statements are

considered in practice. To descripe general features of methods and algorithms

Tot solving ill-posed inverse problems and to avoid details it is convenient

to use the general inverse problem formulation in the operator form.

uet us consider an unsteady heat transfer process or thermal system,

state model of which has the form of a boundary-value problem

L( x,.,T aT #T a zT )"- --, -- , -- ,u,v = O, x _ Q "r _ [ O,'r ]
dh- ax _x z ' ,n

T(x,O) = T (x),
o

x=_Q=Q+C

. --,u = v(_j, x =_ C ( 3 ;

where Lt- J is a non-linear operator: B (-) is an operator of Ooundaky

conditions: T is the state variable (temperature): _ is time: x is sDace: u is

vector o+ characteristics of the system analysed: vLTJ is an external action.

In the mc_el (1)-(3) the state variable T can be a scalar or vector function

Lof space and time. ]
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Fe The n_el (1)-(3) is a dire_-t proble_n and _der give_ values for 7
xternal action v(r) and vector of characteristics u _ermits to pre_ict the I

system s tmermal state. If vector u is unknown or given with low accuracy, but

trere is some additional information about the solution of the problem

I J- (3 _, then an inverse pro01em appears for determining vector of

characteristics u. The additional information is forme_ on the basis of

measuring the state variable in a subdomain of Q. When the state variable is

temperature, measurements are usually carried out in some number N of separate

points of the domain Q

T (X_,T) = f (m), i = I,N ( 4 )
meas i I

where X , i = I,N are coordinates of temperature sensor locations. Tre

inverse problem is to determine u from conditions (1)-(41. By this, the

form of operator B as wel 1 as the number of sensors N are chosen so that we

can provide uniqueness of the inverse proble_ solution [4].

[he state model (1)-(3) can be treated as the transformation Au of a

space of characteristics into a space of the state variable in measurement

points. As the result of measurE_nemts a vector-fumctic_ f = ( f (_ ),
I

f _ r j..... f L_) ) is forn_=d. The inverse problem is to determine u so that
2 N

computed state variable in measurement points is equal to measured values. In

this case the inverse problem (1)-(4) can be present_ as a non-linear

operator e_uatlon of the first kind

Au = f, u _ U, f _ F, A: U _ F 5 )

wrere operator A is constructed on the basis of the _el (1)-(3): U is the

solution space: F is the space of vector-functions peing measure<J.

The main distinction of inverse problems is ill-posedness. The inverse

operator H can be unlimited and small errors in the right part can lead to

large deviation in the solution. So, to solve inverse problems it is

necessary to use special, reoulating methcxJs [._].

I t shoul0 be noted that the solution space U in the inverse problem

_5i is constructed by taking into account constraints arising from physical

point of view. For example unknown characteristics must be positive in many
cases.

To solve coefficient inverse problems the iterative

regularization met_ has displayed quite a high efficiency. This

mett_od is 0ased on minimizing, bv means of gradient methods of

the first order, residual functional

O(u_ = II _ - f IIz
F

(6)

The re_)_ularization oar_ter is the number of the last iteration, which

_S determined in the process of problem solving from a regularizing condition ,]
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F Jtu) _ 6 (7)

Z
wnere o is the error of input data, calculated in space F.

It sroulO be noted that for linear ill-posed problems the iterative

regularization methoO received severe matmematical substantiation, in a

no,-linear case such substantiation is not available. However, extensive

computational experiments confirm high efficiency of this method for solving

non-linear problems as well (see, e.g. [4,16]).

In constructing algorithms for solving coefficient inverse heat transfer

problems, wren the unknown characteristics depend on the state variable, a

common approach is the parametrization of functions sought for, in

particular by means of cubic B-splines [35]. The solution is sought for as

z(T) = _ Pk_k(T)
k=t

(8)

where z(]) is an unknown characteristic: Pk' k = l,m are constant

parameters: _k(T), k = i,m is the given system of basis functions. The

inverse problem is to determine a vector of parameters u = [P1'Pz ..... Pm]T

the composition of which includes coefficients of approximation of all

functions sought for. An iterative procedure of minimizing the residual

functional (6J by using the method of con]ugate gradient projection is built

via formulas

r+i I r v r 1Ok = p p k + _ kg k , r = O,i,... ,R,

r <r>+ [?rg_-igk = dk

m

,_ = 0 , p : _(J'<r'- j_r-t>)j'(r>/ _(j'(r-t')z
"0 r kL'E k k /k z,= k ,

where P is the operator of projecting on the multitude W of admissible
,J

solutions: R is the number of the last iteration. The calculation of

gradlent components Jk' k = l,m is accomplished through the solution of

a Ooundary-value problem for conjugate variable [9]. An approximate method is

used to realize the projection operation [38].

A descent parameter is determined from the condition

[ r]2- = At0 min J P (U r+ yg )
- V

r y>O

t 10 )

_-- ... ]'r°
here g [ gx 'gz ' "grn If one characteristic is unknown in
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nverse problem, tmen to solve a problem of minimizatic_n (i0) we can make use 7
f known methods, such as a 'golden section" method [36]. For multiparameter

inverse problems, of much greater computational efficiency is the technique

based on representation of a descent parameter y as a vector value [37].

Varlous mo0ifications of this technique are described in [4]. Parameter _ is
r

determined for unconstraint minimization procedure and then projection

operations are successively realized for all unknown functions [38]. It

should be emphasized that in many cases gcx_d results have been obtained by

using unconstraint methods for minimizing the residual functional. The high

capacity for work of such iterative algorithms for solving coefficient inverse

problems is demonstrated, for example, in [4,10,24,39,40].

OPTI MAL EXPERI MENT GESIGN

The input data for solving the inverse problem are formed basing on

information obtained in the result of corresponding experiments and

measurements. Under formation are two groups of values. The first group

includes values displayed in model (i)- (3), determining the conditions of an

experiment: a dimension of a specimen Q in study, duration of an experiment

r , initial distribution of a state variable T (x), external action v(rj.
r_3 O

Combine these conditions to vector

w = (Q._ .T (x),v(r) } ( 11 ;
m 0

The second group of values characterizes the conditions for measuring a

state variable and in the case under consideration includes the sensor number

N and vector of their space positioning in the specimen X = [ X X
s _ • • -,

I Z

X ]T ]hese values make up a scheme or a plan of measurements
N

=(N,X } 12

In total, vectors w and _ determine a plan of the experiment

,'r. = ( w,_T } 13

The inverse problem (5) can be solved, generally speaking, with different

plans of the experiment rl . But the results of studies have shown that quite

an arbitrary selection of elements of the experiment plan (13) can lead to

large errors in the inverse problem solution [4,10,31,41]. Hence, a problem

arises on optimization or optimal design of experiments in identifying thermal

processes with the aim of providing maximum accuracy for the unknown

c_aracteristics determination in the assumed mathematical model [42]. A search

for optimal plans of experiments leads to the necessity of solving extreme

Problems ]
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F r_ = Arg max @(r_), m =_ [l
o

l
(14)

where _(n_ is the quality criterion of the experiment, characterizing the

accuracy of solution of the inverse problem under analysis: [l is a set of

admissible plans.

The accuracy of solution of the inverse problem (5) is determined by

properties of the Freshe derivative A' of operator A, reflecting the nature

of error transformation of the right part f into errors of solution u [43]

It is possible to show [4] that the above properties of A are

characterized by eigenvalues Wk, k = l,m of matrix

M = { O j, k, j,k = i,m ) ( 15 )

where
1

j,k
N

N T
rn

J" _ (T) 8 (X .T) e (X ,T )dTj i. k t
o

iT J, i = I,N are weight functions, giving a possibility to consider the
.

presupposed errors in the measurements of a state variable, 9 (x,s J =k

OTtx,TJxOp_ , k = i,m are sensitivity functions. For the inverse problem (5)

matrix ti0) coincides with the Fisher s normalized information matrix,

wldelv useO in the theory of experiment design [44] The following values

can De used in particular as an optimization criterion: a square root from the

_ and a determinant detM =k=[ll_k. The computationalminimum eioenvalue _ W

experiments carried out smowed high capacity for work of the given criteria

[4,32,33,41] . A set of admissible plans is formed with regards for the

conditions of uniqueness of solution of the inverse problem and with

constraints, characterizing the caoacity of the experiment equipment used and

that of measurements [4]

To Oetermine the elements of matrix (i5) it is necessary to calculate

sensltivitv functions -_ (x,r) , k = l,m These functions are calculateO
k

using a Ooundary-value proPlem obtained as the result of diferentiation of

relations (I )-(3) through parameters Pk ' k = i ,m Here, due to

non-linearlty of ooerators L and B, sensitivity functions depend on the

vector of unknown parameters u. Hence, it is possible to construct only

approximate, local ly optimal plans of experiments involving apriori

information about vector u [44]. The studies carried out show that apriori

information, usually available, gives a possibility to get local-optlmal plans

close enough to exact plans [4,41,46].

Using described methods for solving problems of optimal design of thermal

experiments there have been developed corresponding computational algorithms

Oased on the scanning method [45] and on the optimal control theory [31].

Their high efficiency is shown, for example, in [4,32].

L ]
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_DENTI FI CATI ON OF EFFECTI VE
THERMOPHYSI CAL

HARACTERI S'TI CS OF COMPOSI TE MATERI ALS

The latest two decades witness constant increase of publicatlons devoted

to methods and algorithms for solving coefficient inverse heat conduction

problems and zo their application. In fact, the first results of

investigations in this field were published in 1963 [47,48]. The main part of

subseouen_ arks dealt with suggesting algorithms and analysing tnelr

com_Jtational efficiency. Experimental-computational studies are considere0 in

considerably smaller part of publications.

One of the main goal of investigations is to create a relia01e

non-stationary method for determining effective thermophvsical characteristics

of composite thermal orotective materials at high temperatures [39,49]. It is

clear today that such methods should be built by using identification

approaches icluding the solution of coefficient inverse heat conduction

problems and experiment design.

To illustrate the practical application of identification methods let us

consider determination of the effective thermal conductivity for

glass-reinforced plastic on silicone binder, heated by a high-enthalpv gas

flow [32].

To realize a complex procedure of identification there has been conducted

a number of experiments with a one--side gas-dynamic heating of flat specimens

of the material of 20 mm thickness. Temperature measurements at different

depth from a heated surface were taken by means of thermocouples. The nominal

heating conditions and duration of the experiments were given beforehand.For

control of its reproduction in the experiments and for formation of a boundary

condition of the first kind, measurements have been used by the thermocouple

nearest to a heated surface. The location of these thermocouples in specimens

was further considered as the origin of a solid axis x The indications of

thermocouples located at the biggest distance from a heated surface served as

the sec_n0 boundary condition of the first kind. The location of thermocouples

was determined by means of X-ray radioscomV. AI 1 subsequentexperiments showed

amproximatelv the same results, heating conditions of all specimens being
similar to each other.

the mathematical model of heat transfer process in the material looked

llke a bounOary-value problem for the non-linear heat conduction equation

]

C(FI dT dx :_..(T) --_-_. , O<.x<L, O,..r_<'r ( 16 )
ITI

T(x.0) = T i0), 0 _< × _< L ( 17 )
O

T(0. r) = v (T; ( 18 )
I

T(I,_j = v (rJ ( 19 )
Z

The results of temperature measurements of _4) type in the internal

polnts of interval [0,L] served as input data for solving the inverse I
roblem on determination of function !.(T) The inverse problem analyzed has a J
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unique solutior, at N -> 1 [4].
Optimal planning of an experiment was made first. Since its heating

conditions and time were given, the control over the experiment quality was

carried out only by means of selecting an optimal plan of measurements (12).

For this purpose an extreme problem of measurement planning has been solved

_: - Arg max _ [M(_.X,<T_)],
• 0

( eZ ( 20 )

where E : ((n.X]:N a i, 0 < X : i, i:l,N ]

To solve problem (20) there has been used a procedure of work [45] The

boundary conditions of the first kind (15),(16) are shown in Figure i. The

dependence _-(T> obtained by traditional method served as apriori information

about the unknown function. Function X(T) was approximated by a cubic

B-spline of (8) type with "natural" boundary conditions [353 with the

parameter number m : 4. So. vector

functions _ (x,r), k : l,m
k

boundary-value problems obtained

through parameters Pk' k = 1.4.

p = [ pk,k:l,4 ] was unknown. Sensitivity

were determined from a solution of

by differentiating relations (16)-(19)

The results of solving of a problem on selecting an optimal location of

one/ and two thermocouples are given in Figure. 2, where a change of the

experiment quality criterion is illustrated @ [M({.k(T))] = _ _mt_ depending

on the sensors setting coordinates. Eor two sensors there are shown surface

sections @(X .X ) by planes drawn through tl]e point of maximum value of
t Z

criterion parallel to coordinate planes.
The results obtained show that in the analyzed experiment to provide high

accuracy of solution of an inverse problem one sensor should be set in the

narrow enough domain close to the origin of coordinates. Besides, in this

experiment two sensors will be sufficient since at N _ 2 the location
coincidence of the second and successive sensors seems most optimal. The

conclusions made are fully confirmed by data of computational experiments

[323.
A solution of the inverse problem followed then using the procedure of

work [24]. A thermogram of the corresponding experiment is shown in Figure.

[. Tu verify validity of the measurement plan and to estimate the authenticity

of the inverse problem solution analysis was made of the effect of the initial

_guess about the unknown function on the solution [32]. The results of such an

analysis are given in Figure. 3.
It is seen that the solution of the inverse problem does not depend on

values of initial guess, thus proving high authenticity of identification

results obtained. For comparison on Fig. 3 there is also given a temperature

dependence of thermal conductivity obtained by the method of monotonic

heating. It is seen that in the high-temperature region there is a

considerable difference of this dependence from that obtained from the

solution of the inverse problem. Here. the dependence ),(T_ obtained as a

result of identification provides much better temperature correspondence.

calculated from _16)-(19), with values measured experimentally, this I]onfirming high authenticity of results as well. J
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Ft It should be noted as a conclusion of this section that effective I
hermophysical characteristics of high-temperature composite materials can

atrongly depend on heating conditions. It is caused by thermal destruction of

a binder [49]. this process depending on heating rate [50]. The analogous

dependence takes place for semi-transparent materials [51]. To avoid this

factor, methods based on solution of inverse heat transfer problems have beer,

developed for determining heat transfer characteristics in more complicated

mathematical models taking into account effects of thermal decomposition

[25.39.52,53] and heat transfer by radiation [40,54].

I DENTI FI CATI ON OF CONTACT THERMAL

RESISTANCES IN MULTI LAYER STRUCTURES

Contact heat transfer is important in different technical systems. The

main characteristic of this process is contact thermal resistance. At present

stationary methods are widly used to determine contact thermal resistances in

,different .joints [55,56]. Non-stationary methods based on solving inverse heat

transfer problems are more effective (see, e.g. [7,17]) but in spite of the

fact that the first works devoted to such methods were published about twenty

Fears ago [57-59]. only isolated investigations are known in this field

especially experimental-computational studies. Works devoted to optimization

of experiments for identifying contac.t thermal resistances are also isolated.

The application of identification method is considered in this section to

determine thermal contact resistances between fuel and shel in fuel rods of a

nuclear-power reactor.Transient processes between successive stationary states

are _]alyzed when the reactor is started up for the first time.The results of

experimental-computational studies presented in works [33,60-63] are breafly

d lscusseo.

The mathematical model of a non-stationary heat trar,sfer process in a

fuel rod is given by the following boundary-value problem

aT i a

(T,
CI -_7 x _x

aT I>'-t(T'.' --_-_'x] + qv(X, ), Lo<x<L_, O<"r<rm 21 )

OT z 1 o [ O_z].... <x<L 0<T<WC2"' '_ x Ox /,2 (T'_ , L z 22

T cx,OJ : T (0], L -_ x -< L
% 0,$ 0 I.

(23)

T ,ix.0> : T (0>, L <J x <- L
Z 0,2 % Z

, 24 _

OT ,h ,r
1 0

_X
=0 25

L
x. ,T <L .T

I % %

aT <L .r, aT (L _)
% i I I

) - .< (T (L ,r))
ax z z _ c_x

26 ]

J
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F dT (L .'r)
1 1

-_'_ (T <L _ _) = T (L r) - T (L ,r)
"1 1 1 ' " O)X • t ' 2 1

( 27_

d'I' (L .r_
Z 2

-z 2 2 ' _X o
( 28 "_

In the model (21)-(28] initial temperature distributions T (x] and T (x)
0,t o,Z

are computed by solving the corresponding stationary problem. Energy release

in fuel q (x.r > was computed taking into account radial nonuniformity q(x)

and integral heat release qt(r ] measured by neutron detectors

D

q (x.r) : q(r )q(x] ,,'29 )
,J

where g{ r :,:
ql <T_

L
1

2_3" q '.x):,d×

L

['he contact thermal resistance R is unknown but temperarures are avaible

measured in some points of the structure _nalysed

T fX .r) : f ('r _. i : I,N , j : 1.2 ( 30 )
meo.s ] , L J , I. J

The inverse problem is to determine R from conditions (21)-(30).During

each transient regime contact thermal resistance R was considered as a

constant .The main goal of the investigation was to determine experimentally

depending on integral heat release q[.

[terative numerical algorithms were developed for solving inverse

problems analysed [80.62]. the residial functional being written down in the

form

1'4

2 .I

r. E
]---I t---I

T

• is'--

2 2

""-f + {L .o,-f (o,)]J,t - ,_ j,t j,t
(31)

Algorithms for solving temperature measurements design were also

developed.These algorithms were used in earring out experimental-computational

studies of contact heat transfer processes in fuel rods. Some results are

Lbreafly discussed below. !
tJeneral sequence of stages was similar to that for thermophysical J
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haracteristics identification.At the first stage parametric analysis of the

ccuracv of inverse problem solution as well as optimal temperature

measurement design were made.lnput data for solving this problems one can see
in work [81j.

The results of measurement design for one thermocouple are shown in

Figure 4.One can see that the thermocouple installation into the fuel is much

more effective.The conclusions made are fully confirmed by data of parametric

accuracy analysis of the inverse problem solution (81).Computations show that

it is quite enough to use one thermocouple. Basing on the results

obtained,thermocouples were installed on the internal surfaceof fuel tablets

which had the shape of hollow cylinders.

The results of experimental data processing are illustrated in Figure

5.0ne can see that a decrease takes place when q[ is approximately equal to

210W/cm.It testifys to the fact that the fuel gets in touch with the shell.

For comparison the dependance analysed is shown here,which was obtained by

using the method of work LSQ].The last one does not predict the moment of

touch and so gives much more optimistic results of safety analysis.

l

CONCL USI ON

The results presented demonstrate high efficiency of methods for thermal

studies based on distributed parameter system identification.Such methods

facilitate to obtain trustworthy data for heat transfer characteristics and

increase the accuracy of mathematical simulation of thermal conditions.
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