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Experimental-computational methods for estimating characteristics of
unsteadv heat transfer processes are analysed. The methods are based on
principles of distributed parameter system identification. Theoretical basis
of such methods is numerical solutions of nonlinear ill-posed 1nverse heat
transfer problems and optimal experiment design problems. Numerical techniges
for salving problems pointed out are breafly reviewed. The results of
practical application of identification methods are demoristrated when
estimating effective thermc-physical characteristics of composite materials
and thermsl contact resistance in two-layer systems.

INTRODUCTION

In creating different thermally stressed structures and systems, of wide
imporrtance are mathematical modelling ana simulation of heat transfer
" processes occurring inside them. The use of mathematical simulation allows  to
predict a thermal state of the dynamical system under consideration 1n wide
range of its operational conditions and to estimate the efrect of aifferent
ractors on the svstem npehaviour. Accurate enough thermal state simulation for
rie svscem is one of the main procedure. when optimizing thermal conditions
and design paramerters.

The rnermal mathematical model of a system or a process analysed 1s
tormed basing on the heat and mass exhange theory (see, e.g.ilj: ang it
contains a set of characteristics. Characteristics are usually determined by
experimental wav. By this. most of them can be determined only by means of
indirect measurements. In this case a mathematical model is used which 1s  of
the given structure 2nd usuallv contains unknown constant parameters.

It sheuid be emphasized that in determining chsracteristics. methods of
carring out experiments as well as methods of data processing should consider
peculiarities of mathematical models used to simulate thermal conditions . But
tiis factor is not taken into account in overwhelming maijority of traditional
methods for determining characteristics. 3imple wmathematical models and .
severely controlied heating conditions for specimen are used in these methoas.
Traditional metiiods for determining of thermophysical characteristics can
serve as an example [2]. As the result, a desired accuracy of determining
~haracterisrics is not provided. In this case mathematical simalation of
thermal conditions is also realized with the low accuracy.

Shorteomings of traditional methods for determining characteristics are

Aisplaved when analvsing a wide enough range of thermal processes. In
particular. one can refer to such processes heat transfer 1in composite heat
shield and thermo-insulating materials. contact heat transfer in

high-temperatnre power plants, heat and mass exchande when materials and
L§tructures interact with high-enthalpy homogeneous and heterogeneous flows and J
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[hany others. That is why one must develop and implement new methods of study,
providing trustworthy information on different characteristics of thermal
processes analysed.

S1ince characteristics should correspond to the mathematical model used,
their determination should be considered as a part of mathematical madel
building by using experimental data. This procedure is called identification
problem [3]. When determining characteristics. the mathematical model
structure is supposed to be known. In this case one can speak about parametric
identification problem [4] or parameter estimation problem [5]. Unsteady
thermal processes are referred, as a rule, to the category of dynamical
distributed parameter systems. This allows to use experimental-computational
methods for determining characteristics based on the main principles and
approaches of distributed parameter system identification [B].

IDENTIFICATION OF HEAT TRANSFER CHARACTERISTICS

In identifying heat transfer processes, problems of determining
characteristics in mathematical models with given structure are formulated as
coefficient-type inverse heat transfer problems [7). Methods and algorithms
for solving these problems are the effective means for determining
characteristics of different thermal processes and systems [8,8]. In spite of
achievements available, the inculcation of methods based on solving
coefficient inverse heat transfer problems was not very active, till recently,
because of the following. The fact is that the solution of such problems
strongly depends on the used scheme of temperature measurements [4,10.11]. It
means that quite different results can be obtained for the same heating
conditions of the system analysed but for different number of temperature
sensors and their locations. That is why almost every
experimental-computational study is followed by labour-intensive analysis of
thrustworthyness of the rusults obtained on the basis of numerous parametric
computations (See, e.g., ([12]).Preliminary optimal design of temperature
measurements and other experiment conditions allows to reduce considerably the
volume of work. The combination of methods and algorithms for solving inverse
problems and experiment design problems is the methodological foundation of
identification procedure. This combination forms the new approach 1increasing
essentially an efficiency of thermal studies and determination of heat
transfer characteristics.

The voluminous literature is devoted to methods and algorithms for
solving inverse heat transfer problems. One can point out, in particular,
monographs (4,5,13-20] and bibliography inside them. Most of works available
deal with the solution of boundary inverse heat conduction problems. in which
thermal boundary conditions are determined by using unsteady temperature
measurements inside the body analvsed. The considerably lesser number of
publications is devoted to solving coefficient inverse problem (see, e.g.,
bibliography inside [4.14.16.18,19]).

Algorithms suggested at present for solving coefficient inverse problems
are based. in overwhelming majority. on minimizing the residual functional.The
minimization procedure is built by using an exhaustive method [14.21]7,matching
methiod [18]. method of optimal dvnamical filtration [19] and gradient
methods. To compute a gradient of the residusl functional. the following
technigues are used: finite difference method [22]., sensitivity functions (23]
and a solution of boundary-value problems for conjugate variables. which are
written down for linearized direct problems [24-26]. as well as for finite
difference analogues of direct problems [27]. Efficiency of these techniques
is mainly analysed in application to coefficient inverse heat conduction

Lproblems to determine thermo-physical characteristics depending on

]
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[temperature. The analysis of recent publications (28] says that the most 1
“popular” technigues for solving coefficient inverse problems are based on
i1terative regularization principle [4].

In contrast to the number of publications on 1nverse beat transter
problems, works on optimal design of thermal experiments are not very
numerous. One can see the bibliography on this topic in works [4,137.

Methods for solving experiment design problems are based on a3
finite-dimensional approximation of unknown functions. In this case the
inverse problem is reduced to determining the vector of unknown parameters.
Then, properties of Fisher s information matrix are analysed, elements of
which are computed by using sensitivity functions. The elements depend on
experiment conditions (see, e.g. [4]).

The determinant of the information matrix or the square root from the
minimum eigenvalue of this matrix are used as the criterion of an experiment
quality. Experiment conditions are chosen by exbaustion of a given set of
possible conditions [29], by the parametric accuracy analysis of the inverse
heat transfer problem solution ([25]1 or by solving optimization problem
{30,3113. _

At last, only several publications are available on analysing the complex
procedure of heat transfer processes identification and on simultaneous usage
of techniques for solving inverse problems and experiment design problems.
There exist isolated works devoted to design, carring out and data processing
of real experiments [32,33].

The main goal of this lecture 1is to demonstrate the efficiency of
parametric 1dentification methods through the exampies of
experimental-computational investigations of beat transfer processes.

INVERSE HEAT TRANSFER PROBLEMS

tMany different particular inverse heat transfer problem statements are
considered 1n practice. To describe general features of methods and algorithms
tor solving ill-posed inverse problems and to avoid details it 1s convenient
to use the general inverse problem formulation in the operator form.

Let us consider an unsteady heat transfer process or thermal system,
ctate model of which has the form of a boundary-—value problem

T(x,0) = To(x), xesQ@=0+10 C 20
. aT
E[ XeT ol u ] = v(T1. »w = [ (3>
ax
where L) 1s a non—-linear operator:; B (-) 1s an operator of boundary

conditions: T is the state variable (temperature): v 1s time; x 1s space; U 1S
vector of characteristics of the system analvsed; viT) 1s an external action.
In the model (1)-(3) the state variable T can be a scalar or vector function
Lpf space and time. J
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r The model (1)-(3) is a direct problem and under given values for
external action v{(t) and vector of characteristics u permits to predict the
system s thermal state. [f vector u is unknown or given with low accuracy, but
there 1s some additional information about the solution of the problem
v1)-{3), then an 1inverse problem appears for determining vec tor of
characteristics u. The additional information is formed on the basis of
measuring the state variable in a subdomain of Q. When the state variable is
temperature, measurements are usually carried out in some number N of separate
points of the domain Q@

T (X.y7m) =Ff (Tt)y, 1 =1,N (4)
meas 1 1
where X , 1 = 1,N are coordinates of temperature sensor locations. The
1nverse problem i1s to determine u from conditions (1)-(4). Bv this, the

torm of operator B as well as the number of sensors N are chosen so  that we
can provide unigueness of the inverse problem solution [4].

The state model (1)—(3) can be treated as the transformation AU of a
space of characteristics into a space of the state variable in measurement
points. As the result of measurements a vector-function f = fifT),

fthJ‘....leT)} 1s formed. The inverse problem is to determine u so  that

computed state variable in measurement points i1s equal to measured values.In
this case the inverse problem (1)-(4) can be presented as a non—linear
operator equation of the first kind

where operator A 1s constructed on the basis of the model (1)-(3); U 15 the
soluticn space: F 1s the space of vector-functions being measured.

The main distinction of inverse problems 1s 1ll-posedness. The inverse
operator At can be unlimited and small errors in the right part can lead to
large deviation in the solution. So, to solve inverse problems 1t 1is
necessarvy to use special, regulating methods [34].

It should be noted that the solution space U in  the 1inverse problem
13) 15 constructed by taking into account constraints arising from physical
point of view. For example unknown characteristics must be positive in many
cases.

To solve coefficient inverse problems the iterative
reqularization methad has displayed guite a high efficiency. This
method 1s based on minimizing, bv means of gradient methods of
the first order, residual functional

J(u)=||Au—f||:_ (&)

The reqularization parameter is the number of the last iteration, which
is determined in the process of problem solving from a regularizing condition

]

]
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r ,, 1
Jiw) =4 « 7))

2

where ~° is the error of input data. calculated in space F.

It srtould be noted that for linear 1ll—-posed problems the 1iterative
regularization method received severe mathematical substantiation. In a
non-1lirmear case such substantiation is not available. However, extensive

computational experiments confirm high efficiency of this method for solving
non—-linear problems as well (see, e.g. [4,16]).

In constructing algorithms for solving coefficient inverse heat transfer
problems, when the unknown characteristics depend on the state variable, a
common approach i1s the parametrization of functions sought for, 1in
particular by means of cubic B-splines [33]. The solution is sought for as

m
z(T) = ¢ Dkgok(T) { B)

k=1
where z(7) 15 an unknown characteristics py, k = 1,m are constant
parameters; 2, iT), k = 1.m is the given system of basis functions. The
. T
inverse problem is to determine a vector of parameters u = [px,pz,...,pmjl ’

the composition of which includes coefficients of approximation of all
functions sought for. An  iterative procedure of minimizing the residual
functional (&) by using the method of conjugate gradient projection 1s bullt
via formulas

r+1 r r

= -+ . = " e e gty 7
. Pv(pk ykgk] r 0,1, R ( )
qr =J (r)+ ﬁ g 1

m m
S Lr=aY () Tr-13.2
Rn=0,(,R= -
. p= Y T g T YT
k=1 k=1
where P 15 the operator of projecting on the multitude W of admissible
s

soiutions: R 1s the rumber of the last iteration. The calculation of
gradient components Jk. k = 1,m is accomplished through the solution of

a boundary-value problem for conjugate variable [9]. An approximate method 1s
used to realize the projection operation [38].
& descent parameter is determined from the condition

= Arg min J [F’ (u'+ ,vgr) ] 10 )
A4
¥ 0

I_where g={g ,a veese@ }1'. If one characteristic is unknown in theJ



518

Third International Conference on Inverse Design Concepts and Optimizaton in Engineering Sciences
(ACIDES-IID, Editor G.S. Dulikravich, Washingion R.C.. Ociober 23-25 1991

nverse problem, then to solve a problem of minimization (10) we can make use
sz known methods, such as a 'golden section” method [36]. For mul tiparameter
inverse problems, of much greater computational efficiency is the technique
based on representation of a descent parameter as a vector value [37].
Various modifications of this technique are described in [4]. Parameter vr 15

determined for unconstraint minimization procedure and then projection
operations are successively realized for all unknown functions [38]. It
should be emphasized that in many cases good results have been obtained by
using unconstraint methods for minimizing the residual functional. The high
capacity for work of such iterative algorithms for solving coefficient inverse
problems is demonstrated, for example, in [4,10,24,39,40].

OPTIMAL EXPERIMENT GESIGN

The input data for solving the inverse opraoblem are formed basing on
information obtained in the result of corresponding experiments and
measurements. Under formation are two groups of values. The first group
includes values displaved in model (1)- (3). determining the conditions of an

experiment: a dimension of a specimen O in study, duration of an experiment

r . 1nitial distribution of a state variable Toix). external action viT ).
m

Combine these conditions to vector
w = { Q.7 T (=),v(T) } ( 11
m o]

The second aqroup of values characterizes the conditions for measuring a
state variable and in the case under consideration includes the sensor number
N and vector of their space positioning in the specimen X =0 Xi, Xz,...,

T .
XN 1. These values make up a scheme or a plan of measurements

¥ = { NX 3} ( 12y

In total. vectors w and ¥ determine a plan of the experiment

The inverse problem (5) can be solved. generally speaking, with different
plans of the experiment [1 . But the results of studies have shown that Quite
an arbitrary selection of elements of the experiment plan (13) can lead to
large errors in the inverse problem solution [4,10,31,41]. Hence, a problem
arises on optimization or optimal design of experiments in identifying thermal
processes with the aim of providing maximum accuracy for the unknown
characteristics determination in the assumed mathematical model [42]. A search
for optimal plans of experiments leads to the necessity of solving extreme

Léroblems J
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r no = Arg max ¥(mr), nm < [l ( 14

where Pim) 1s the guality criterion of the experiment, characterizing the
accuracy of solution of the inverse problem under analysiss [ 1s a set of
admissible plans.

The accuracy of solution of the inverse problem (5) 1s determined by
properties of the Freshe derivative A’ of operator A, reflecting the nature
of error transformation of the right part f 1into errors of solution u [43]

. It is possible to show (43 that the above properties of A are
characterized by eigenvalues “k' k = 1,m of matrix
M= { @J L i,k = L,m 3} ( 15 )
N T
l m .
where O = — Z J 2 (T) € (X .T) & (X ,T )dT
ik v " kot
o
t=1
# \T), 1 = 1 ,N are weight functions, giving a possibility to consider the

presupposed errors 1n  the measurements of a state variable, Bylx,TJ =
aTtx.rJ/aob. k = 1,m are sensitivity functions. For the inverse problem (3)

matrix (10) coincides with the Fisher s normalized information matrax,

widely used 1n the theory of experiment desiagn ([4¢] . The following values

can be used in particular as an optimization criterion: a square root from the
m

minimum elgenvalue J B and a determinant detM =kﬂ1pk. The computational
1 =

experiments carried out showed high capacity for work of the given criteria
{4,32.33,411 . A set of admissible plans 1is formed with regards for the
conditions of unigueness of solution of the inverse problem and with
constraints, characterizing the capacity of the experiment equipment used and
that of measurements (4] .

To determine the elements of matrix (15) it is necessary to calculate
sensitivity functions ek(x.T) . k=1,m . These functions are calculated

usi1ng a boundary—-value problem obtained as the result of diferentiation of
relations (1)-(3) through parameters pk. k = 1,m . -ﬁere. due to

non—linearity of operators L and B, sensitivity functions depend on the
vector of unknown parameters u. Hence, - it 1s possible to construct only
approximate, locally optimal plans of experiments involving apriori
information about vector u [44]. The studies carried out show that apriori
information., usually available, gives a possibility to get local-optimal plans
close enough to exact plans ([4,41,46].

Using described methods for solving problems of optimal design of thermal
experiments there have been developed corresponding computational algorithms
pased on the scanning method [45]) and on the optimal control theory [311].
Their high efficiency is shown, for example, in [4,32].
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ITDENTIFICATION OF EFFECTI VE THERMOPHYSICAL
CHARACTERISTICS OF COMPOSITE MATERIALS

The lstest two decades witness constant increase of publications devoted
to methods and algorithms for solving coefficient inverse heat conduction
prablems and to their application. In fact, the first results of
investigations 1n this field were published in 1963 [47.48]. The main part of
subsequent works dealt with suggesting algorithms  and analysing their
computational efficiency. Experimental-computational studies are considered in
considerably smaller part of publications.

One of the main goal of investigations 1is to create a reliable
non—stationary method for determinimg effective thermophysical characteristics
of composite thermal protective materials at high temperatures [39,45]. It is
clear today that such methods should be buillt by using 1identification
approaches icluding the solution of coefficient i1nverse heat conduction
problems and experiment design.

To i1llustrate the practical application of identification methods let us
consider determination of the effective thermal conductivity for
glass-reinforced plastic on silicone binder. heated by a high-enthalpy gas
flow [32].

To realize a complex procedure of identification there has been conducted
a number of experiments with a one—side gas—-dynamic heating of flat specimens
of the material of 20 mm thickness. Temperature measurements at different
depth from a heated surface were taken by means of thermocouples. The pominal
heating conditions and duration of the experiments were given beforehand.For
control of its reproduction in the experiments and for formation of a boundary
condition of the first kind. measurements have been used by the thermocouple
nearest to a heated surface. The location of these thermocouples in  specimens
was further considered as the origin of a solid axis x . The indications of
thermocouples located at the biggest distance from a heated surface served as
the second boundary condition of the first kind. The location of thermocouples
was determined by means of X-ray radioscopy. All subsequentexperiments showed
approximately the same results, heating conditions of all specimens being
simirlar to each cther.

The mathematical model of heat transfer process in  the material looked
like a boundary-value problem for the non—-linear heat conduction equation

ot

C(m 5 = % [.*-.(T) —g;:- « O<x<b, O\rﬁ'rm ( 16

T(x.0) = TO\O). O < » =L ( 17 )
Tio.T) = V1(T) ( 18 )
Tel.7) = VZ(TJ 19 )

The results of temperature measurements of (4) type 1in the internal
points of interval [O,L] served as 1input data for solving the inverse
Lproblem on determination of function X (T) The inverse problem analyzed has a

)

|
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[ﬁnique solution at N = 1 [4]. 1

Optimal planning of an experiment was made first. Since its heating
conditions and time were given, the control over the experiment quality was
carried out only by means of selecting an optimal plan of measurements (12).
For this purpose an extreme problem of measurement planning has been solved

fo = Arg max ¥ [M(Z A(TN]. £ e = ¢ 20

where Z={n.XO:N2 1, 0 < XL< 1. 1=1.N 1}

To solve problem (20) there has been used a procedure of work (45] . The
boundary conditions of the first kind (15),(16) are shown in Figure 1. The
dependence *(T) obtained by traditional method served as apriori information
about the unknown function. Function *(T) was approximated by a cubic
B-spline of (8) type with "natural” boundary conditions [35] with the

parameter number m = 4. So. vector p = [ pk.k=1.4 1 was unknown. Sensitivity

functions 9k (X.T . kK = 1l.m were determined from a solution of
boundary-value problems obtained by differentiating relations (16)-¢ 1

through parameters P, k = ITZ.

The results of solving of a problem on selecting an optimal location of
one/ and two thermocouples are given in Figure. 2. where a change of the
experiment qualitv criterion is illustrated ¥ [McZ A(T))] = { Hoo depending

on the sensors setting coordinates. For two sensors there are shown surface
sections W(Xl.Xz) by planes drawn through the point of maximum value of

eriterion parallel to coordinate planes.

The results obtained show that in the analyzed experiment to provide high
accuracy of solution of an inverse problem one sensor should be set in the
narrow enough domain close to the origin of coordinates. Besides. in this
experiment two sensors will be sufficient since at N > 2 the location
coincidence of the second and successive sensors seems most optimal. The
coniclusions made are fully confirmed by data of computational experiments
[32].

A solution of the inverse problem followed then using the procedure of
work (24]. A thermogram of the corresponding experiment is shown in Figure.
1. Tu verify validity of the measurement plan and to estimate the authenticity
of the inverse problem solution analvsis was made of the effect of the initial
guess about the unknown function on the solution [32]. The results of such an
analysis are given in Figure. 3.

It is seen that the solution of the inverse problem does not depend on
values of initial guess, thus proving high authenticity of identification
results obtained. For comparison on Fig. 3 there is also given a temperature
dependence of thermal conductivity obtained by the method of monotonic
heating. It is seen that in the high-temperature region there is a
considerable difference of this dependence from that obtained from the
soiution of the inverse problem. Here. the dependence X (T) obtained as a
result of identification provides much better temperature correspondence.
calenlated from (18)-¢(19). with values  measured experimentally, this J
Lponfirming high authenticity of results as well.
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r It should be noted as a conclusion of this section that effective
thermophysical characteristics of high-temperature composite materials can
atrongly depend on heating conditions. It is caused by thermal destruction of
a binder [49]. this process depending on heating rate ([50]. The analogous
dependence takes place for semi-transparent materials {51]. To avoid this
factor. methods based on solution of inverse heat transfer problems have been
developed for determining heat transfer characteristics in more complicated
mathematical models taking into account effects of thermal decomposition
[25.39.52,53] and heat transfer by radiation [40,54].

IDENTIFICATION OF CONTACT THERMAL
RESISTANCES IN MULTILAYER STRUCTURES

Contact heat transfer is important in different technical systems. The
main characteristic of this process is contact thermal resistance. At present
stationary methods are widly used to determine contact thermal resistances in
different joints [55.56]. Non-stationary methods based on solving inverse heat
transfer problems are more effective (see, e.g. {7,17]) but in spite of the
fact that the first works devoted to such methods were published about twenty
vears ago [57-38]. only isolated investigations are known 1in this field
especially experimental-computational studies. Works devoted to optimization
of experiments for identifving contact thermal resistances are alsc isclated.

The application of identification method is considered in this section to
determine thermal contact resistances between fuel and shel in fuel rods of a
nuc lear-power reactor.Transient processes between successive stationary states
are analyvzed when the reactor is started up for the first time.The results of
experimental-computational studies presented in works [33.80-683] are breafly
discussed.

The mathematical model of a non-stationary heat transfer process in a
fuel rod is given by the following boundary-value problem

6'1’x 1@ GTI]
‘ —— y Yy —_ ' <~ 21
Cx(T' 3t - X ox [hi(T: O +q (x. Y. Lo<x<L1. O<T_.m « 21 9
o a
C ."T;—T—z :i-—— ['A (T‘:—alz] L <x<L O¢r=t « 22 )
a aT X 9x V2 ax 7" 1 2" T m “o
0) = = =
Tl(X.J) To_ltO). L0< X = L1 « 23 )
Tzcx.Oi = To,z(m' Liﬁ » =< L2 24
aT L .t
2 =0 ¢ 25 )
ax -
éT (L .7, aT (L .m)
AT (L Ty —a = A_(T.(L .ty) —~_1 (26
* ax 2 "2 71 ax

]
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r aTl(L‘,T)
—R-kltTi<L1.T>> —ox - T1(L1,r) - T2<L1.T) « 27
OTZ(LZ.TS
erTz(LZ.T)) % = a(T)[Tz(L .Ti—TO(L.r)] 28 9O

In the model (21)-(28) initial temperature distributions T0 ‘(x) and T:> zfx)
are computed by solving the corresponding stationary probiem. Energy release
in fuel g (x.7) was computed taking into account radial nonuniformity q(x)

and integral heat release q (7) measured by neutron detectors
qv(x.*:) = g(THiqux) ¢ 29 )

ql<T.\

where qQr T =
|
1
2rmd q¢oudy

L

-

The rcontact thermal resistance R is unknown but temperarures are avaible
measured in some points of the structure analvsed

The inverse problem is to determine R from conditions (21)-¢(30).During
each transient regime contact thermal resistance R was considered as a
constant .The main goal of the investigation was to determine experimentally k
depending on integral heat release 9y -

[terative numerical algorithms were developed for solving inverse
problems analysed [B0.627. the residial functional being written down 1in the
form

2 2
(,{ (TJ,L(XJ,:'T v—fj,_Lf.’T)) ar + (TJ'L(XLL.O')—fj't(o‘))] 31

Algorithms for solving temperature measurements design were also
developed .These algorithms were used in carring out experimental-computational
studies of contact heat transfer processes in fuel rods.Some results are
breafly discussed below.

L (eneral sequence of stages was similar to that for thermophysical
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characteristics identification.At the first stage parametric analysis of the 1
accuracv of 1inverse problem solution as well as optimal temperature
measurement design were made.Input data for solving this problems one can see
in work [B1].

The results of measurement design for one thermocouple are shown in
Figure 4.0ne can see that the thermocouple installation into the fuel is much
more effective.The conclusions made are fully confirmed by data of parametric
accuracy analyvsis of the inverse problem solution (61).Computations show that
1t is quite enough to use one thermocouple.Basing on the results
obtained.thermocouples were installed on the internal surfaceof fuel tablets
which had the shape of hollow cylinders.

The results of experimental data processing are illustrated in Figure
5.0ne can see that a decrease takes place when q, is approximately equal to

210W/cm.It testifys to the fact that the fuel gets in touch with the shell.
For comparison the dependance analysed is shown here,which was obtained by
using the method of work [64].The last one does not predict the moment of
touch and so gives much more optimistic results of safety analysis.

CONCLUSTION

The results presented demonstrate high efficiency of methods for thermal
studies based on distributed parameter system identification.Such methods
facilitate to obtain trustworthy data for heat transfer characteristics and
increase the accuracy of mathematical simulation of thermal conditions.
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