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ABSTRACT

This paper presents a preliminary study of the limits to solar flux intensity pre-

diction, and of whether the general lack of predictability in the solar flux arises

from the nonlinear chaotic nature of the Sun's physical activity. Statistical

analysis of a chaotic signal can extract only its most gross features, and de-

tailed physical models fail, since even the simplest equations of motion for a

nonlinear system can exhibit chaotic behavior.

A recent theory by Feigenbaum suggests that nonlinear systems that can be led

into chaotic behavior through a sequence of period-doubling bifurcations will

exhibit a universal behavior. As the control parameter is increased, the bifur-

cation points occur in such a way that a proper ratio of these will approach the

universal Feigenbaum number. Experimental evidence supporting the appli-

cability of the Feigenbaum scenario to solar flux data is sparse. However, given

the hypothesis that the Sun's convection zones are similar to a Rayleigh-

Benard mechanism, we can learn a great deal from the remarkable agreement

observed between the prediction by theory (period doubling- a universal route

to chaos) and the amplitude decrease of the signal's regular subharmonics.

This paper will show that period-doubling-type bifurcation is a possible route

to a chaotic pattern of solar flux that is distinguishable from the logarithm of

its power spectral density. This conclusion is the first positive step toward a

reformulation of solar flux by a nonlinear chaotic approach.

The ultimate goal of this research is to be able to predict an estimate of the

upper and lower bounds for solar flux within its predictable zones. Naturally,

it is an important task to identify the time horizons beyond which predictabil-

ity becomes incompatible with computability.
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1. INTRODUCTION

An accurate forecast of the intensity of solar flux is a prerequisite to accurate orbit and lifetime prediction for
spacecraft. The orbit lifetime is a function of the atmospheric drag force. The drag depends on the atmospheric
density, which is influenced by the solar flux. Solar ultraviolet and X-ray emissions that directly affect the Earth's
atmosphere are highly correlated with solar flux F10.7 observed on the surface of the Earth. Present density
models, such as Jacchia-Roberts (J-R), Harris-Priester (H-P), and mass spectrometer incoherent scatter (MSIS),
use F10.7 solar flux intensity as the indicator of the potential strength of ionizing radiation (References 1, 2, 3, and
4).

Current forecasting methods use statistical models to predict solar flux; for example, the Schatten method used
by Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and National Oceanic and At-
mospheric Administration (NOAA) (Reference 5). These models use traditional stochastic analysis (usually
based on structurally random data) to predict solar flux. However, as shown below, the patterns exhibited by the
solar flux data indicate that the dynamical system creating the solar flux signal is inherently chaotic rather than
completely stochastic. Starting with the postulate that solar flux is a chaotic time series, a chaotic model is devel-

oped to reproduce essential features of the solar flux signal.

The solar flux signal is classified in Section 2 through analysis of a few basic descriptive properties. Section 3
presents a possible model for the solar flux signal based upon recently developed nonlinear dynamics concepts of
period-doubling bifurcations and upon the results shown in References 5, 6, 7, and 8.

2. CLASSIFICATION OF SOLAR FLUX SIGNAL

Signals such as the solar flux have been categorized historically as either deterministic (meaning that a model of
the physical system can be constructed and used to predict the particular signal that will occur at a given time from
a signal(s) at a another time) or random (meaning that no model of the physical system can be constructed, but,
rather, that a method can be found to predict the probability that any particular signal will occur at a given time,
based on the history of the signal). These general categories can be divided further, as shown in Figure I. For
deterministic signals, predictability is achieved by deriving for the model of the system equations of motion for the
signal. For random signals, a statistical analysis of the signal history must be performed and either an existing
statistical theory applied or a new statistical theory constructed.

I
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Figure 1. Categories of Signals in Data Analysis
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Recent research on dynamic systems indicates that the cascade of categorizations shown in Figure 1is incomplete
and that signals can exist for a system that has a detailed physical model (the system is deterministic), but that the
derived equations of motion cannot be used to predict the signal. Such signals and their systems of origin are
categorized as chaotic. While the lack of predictability in a deterministic system may seem inconsistent, mathe-
matical precision must be separated from the precision of physical observation. When a model is mathematically
deterministic, only one solution to its equations of motion exists for the given initial conditions (Reference 9). To
predict a signal to some specified accuracy, the observer must know the initial conditions of the system to some
related accuracy; however, one well-defined class of models has equations of motion for which variations beyond
the precision of the observer's knowledge of the initial conditions prevent predictions to a specified accuracy.
Terrestrial weather (to which solar activity is perfectly analogous) is an example of such a chaotic system.

Several statistical functions can be used to analyze the poss_le extent of the chaotic nature of the solar flux signal.
Sections 2.1 and 2.2 present the application of these functions, and Section 2.3 presents some conclusions.

2.1 AUTOCOVARIANCE AND AUTOCORRELATIQN OF THE SOLAR FLUX

The solar flux data shown in Figure 2 present an example of a statistical time series. By plotting a scatter diagram

using pairs of values (f,, ft.t) of a time series, we can visualize the joint probability distribution P(fi, fj). For the

solar flux data from Figure 2(a), we obtain the scatter diagram in Figure 3 for lags of t = 0 and t = 27. By

plotting ft + 27 versus ft (Reference 10), this plot shows that the correlation between fl + 27 and fl is positive.

Figure 4 shows the plots of autocovariances, autocorrelations, and autocorrelation errors for 600 shifts. These
plots were generated from more than 4,000 points of the solar flux time series shown in Figure 2(b).

Figures 5(a) and 5(b) show the plots of the power spectra for the solar flux data from Figures 2(a) and 2(b), respec-
tively. Figure 6 has the plot of the power spectra of data from Figure 2(a), scaled to have the same horizontal axis
as in Figure 5(b). This plot was scaled to show a global symmetry of the power spectra under time extension.

2.2 FOURIER FILTERING

In the low-pass Fourier filter method, we Fourier-transform the signal and then take the inverse Fourier-
transform, omitting frequencies greater than a specified limit. Using this technique, we can determine what fre-
quencies to disregard for construction of a simple iterative map. Figure 7 contains the solar flux time series for
the period November 1977 to November 1980, and a plot for 27-point rectangular averaging. Figure 8 has plots
from 7- and 27-point triangular averaging. Figure 9 shows a plot of Fourier-filtered solar flux time series with 20
and 50 harmonics retained.

2.3 CONCLUSIONS FROM STATISTICAL ANALYSIS;

Looking at the solar flux time series shown in Figure 2(a), it is difficult to see any pattern or structure in the solar
flux data. However, the scatter diagram of Figure 3('o) shows regions where points are clustered together. This
clustering is an indication of correlation between ft and ft+ 27. Figure 4 has a plot of the autocovariance and
autocorrelation function with its standard error, and shows the small peaks that are separated by exactly 27-day
solar rotations. Additionally, we can see that every 183 days, an anomaly occurs in the autocorrelation function.
This anomaly is probably due to a change of the magnetic latitude of the Earth every 6 months
(_Ayear _ 183 days). To determine if this is a numerical or computational artifact, we also have plotted the
standard error of autocorrelation function. At the particular location of these anomalies, no considerable change
in standard error of autocorrelation function was observed; therefore, these anomalies are dynamical in charac-
ter and are not produced by computational artifacts. The autocorrelation plots show that the autocorrelation of
the solar flux decreases with increasing time shifts, a characteristic common to chaotic time series.

Comparing Figure 8(a) to Figure 9(b), and Figure 8(b) to Figure 9(c), we can see that 27-point triangular averag-
hag is equivalent to retaining 20 harmonics in a Fourier low-pass filtered solar flux signal; 7.point triangular
averaging is equivalent to retaining 50 harmonics. This information is useful for constructing an iterative
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manifold (see Section 3) that can reproduce our time series. Figure 10shows the Fourier spectrum of the auto-
correlation of the time series shown in Figure 8(a), which clearly shows the particular patterns such as the 27-day
periodicity, the 183-day anomaly, and other periodic anomalies.
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Figure 10.
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Fourier-Transform of the Autocorrela-
tion of the Solar Flux Time Series From
Figure 7(a), Showing the Periodicity
Pattern in the Autocorrelatlon Function

Figure 6 shows the plot of a power spectrum for a timespan that was scaled for another time space. This plot was
clone to observe the global symmetry of the power spectra under time extension (a fractal characteristic). Fractal
structures are common to chaotic time series.

Figures 5(a) and 5(b) show the plots of the power spectra for the solar flux data presented in Figures 2(a) and 209),
respectively. Many obvious patterns are evident in the power spectra of Figure 5(a); for example, we can clearly
see the peaks for 27-day solar rotation periodicity. One interesting feature of this figure is that, starting from the
midpoint of the spectra (the "glitch" close to the 480 Fourier component), we can find the first largest glitch to the
left at about the 295 Fourier component. If we divide the distance from 295 to 480 by 2, we see the next-largest
downward glitch near the 390 Fourier component. Furthermore, if we divide the distance from the 295 glitch to
the 390 glitch, we will once again find the next-largest glitch. The regular appearance of these glitches demon-
strates successive frequency halving or period doubling for the solar flux signal. In laboratory experiments, period
doubling was observed in several chaotic systems (Reference 11). As with the solar flux signal, noise limited the
number of observed period doublings to only a few. Based upon laboratory experiments, we conclude that period
doubling is a possible route to chaos in the solar flux signal. (Currently, three established routes to chaos have
been found: the Grossmann-Feigenbaum period-doubling route, the Manneville-Pomeau route, and the Ruelle-
Takens-Newhouse route.)

3. INTRODUCTION TO CHAOS IN DYNAMICAL SYSTEMS

This section presents some examples of the various states of chaos.

3.1 EXAMPLES OF CHAOTIC SYSTEMS

Two examples are introduced here. The first one (Rayleigh-Benard) is very similar to the dynamical behavior of
the Sun. The second one (dripping faucet) is a model system for studying the strange attractor of solar flux; be-
cause it exhibits period doubling, it is a good candidate for studying solar flux.

Most scientists know the dynamical behavior of systems in which systems eventually settle into either periodic
motion (limit cycle) or into a steady state (system ceases its motion). However, another important class is called
the chaotic system. This system cannot be represented using standard analytical functions (Reference 12).
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Our first example considers the dripping faucet model (see Figures 11, 12, 13, and 14). In this model, waterdrops

fall from the faucet at a steady rate, the drops pass a detector, and the pattern is seen to be periodic. When the

rate of flow is small, the time difference between the drops (At = ti+t - ti) is constant. As the rate is increased,

two drops fall together over a longer period. Therefore, two periods are associated with this system: one is short,

Ats, and the other is long, AtL. The sequence of time intervals, then, is ...Ats, AtL, Ats, AtL. This interval is

called period-two sequence. Longer periodic sequences are possible at a specific flow rate. This sequence can
become irregular and therefore chaotic (Reference 13).

Our second example considers the experiment of L_chaber and Maurer (Reference 11). In this experiment, a

liquid contained in a small box is heated from the bottom. The important points are as follows:

• The experiment has a controllable parameter, the Rayleigh number, which is proportional to the
temperature difference between the bottom and the top of the cell. The Rayleigh number describes

the stability of a convective flow.

• The system is dissipative. Whenever the Rayleigh number is increased, the transients begin to die
out. For small temperature gradients, heat flows across the cell, but the liquid is static. At a critical

temperature, a convective flow sets in. The hot liquid rises in the middle, the cool liquid flows clown
at the sides, and the two convective rolls appear (see Figure 15).

As the temperature difference is increased further, the rolls become unstable in a very sped qc way--a wave starts

running along the roll, as shown in Figure 16(a). As the warm liquid rises on one side of the roll and cool liquid
descends down the other side, the position and the sideways velocity of the ridge can be measured with a ther-

mometer, as shown in Figure 16(b). A sinusoid is then observed, as shown in Figure 17(a); two other ways of
displaying the measurement are suggested by the graphs in Figure 17(b).

The temperature difference is now increased. After the stabilization of the phase-space trajectory, a new wave is

observed superimposed on the original sinusoidal instability. The three ways of looking at it (real time, phase-
space, and frequency spectrum) are illustrated in Figure 18.

At first it appears that T Ois the periodicity; however, a closer look reveals that the phase-space trajectory misses

the starting point at To and closes on itself only after 2T o. A new band has appeared at haLf the original frequency
on the frequency spectrum. Its amplitude is small because the phase-space trajectory is still approximately a

circle with periodicity To.

As the temperature increases slightly, a fascinating thing happens. The phase-space trajectory undergoes the

very fine splitting seen in Figure 19(a).

Three scales are involved here: casual observation reveals a circle with period To; closer scrutiny shows _ with

period 2To; and very close examination shows that the trajectory closes on itself only after 4T o. T'ne same infor-

mation can be read off the frequency spectrum; the dominant frequency is fo (the circle), then fo/2, and finally,
much weaker fo/4 and 3fo/4.

The experiment now becomes very difficult. A tiny increase in the temperature gradient causes the phase-space
trajectory to split on an even finer scale, with the periodicity 23To . If the noise were not too loud to continue, it

would be expected that these splittings would continue, yielding a trajectory with finer and finer detail and the

frequency spectrum seen in Figure 19(b) with families of weaker frequency components. For a critical value of

the Rayleigh number, the periodicity of the system is 2®T0, and the convective rolls have become turbulent. The

ripples that are running along them show no periodicity, and the spectrum of idealized noise-free experiment

contains infinitely many subharmonics. If increases are made to the temperature gradient beyond this critical

value, further surprises occur. The following section provides a numerical simulation of a simple nonlinear oscil-
lator to provide an understanding of why the phase-space trajectory splits in this peculiar fashion.

In an externally driven pendulum, one can see that for a wide range of initial points, the phase-space trajectory

converges to a limit cycle (trajectory loops onto itself), which for some k - 1% is as shown in Figure 20(a). If not
for the external driving force, the oscillator would have simply come to a stop; as it is, it is executing a motion
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forcedonit externally,independentoftheinitialdisplacementandvelocity.It iseasytovisualizethisnonlinear
pendulumexecutinglittlebackwardjerksasit swingsbackandforth.Startingatthepointmarked1,thependu-
lumreturnstOit aftertheunitperiodTo.However,asthefrictionisdecreased,thesamephenomenonisob-
servedasintheturbulenceexperimentwherethelimitcycleundergoesaseriesofperioddoublingasillustrated
inFigure20(b).

Thetrajectorycontinuesto nearlymissthestartingpoint,until it hitsafter2nTo. Thephase-spacetrajectoryis
gettingincreasinglyhardtodraw.However,thesequenceofpoints1,2.....2n,whichcorrespondstothestateof
theoscillatorattimesTo,2To....,2nTo,sitsinasmallregionofthephasespace,anditcanbeenlargedforacloser
look,asseeninFigure21(a).Globally,thephase-spacetrajectoriesof theturbulenceexperimentandof the
nonlinearoscillatornumericalexperimentlookverydifferent.However,thesequenceofnearmissesislocaland
looksroughlythesameforbothsystems,asillustratedinFigure21(b).Thismethodofreducingthedimension-
alityofthephase-spaceisoftencalledaPoincar6map.Insteadofstartingattheentirephase-spacetrajectory,we
finditspointsof intersectionwithagivensurface.ThePoincar6mapcontainsniltheneededinformationand
enablesthesc!entisttoreadoffwhereaninstabilityoccursandhowlargeit is.Bycontinuouslyvaryingthenonlin-
earityparameter(suchasfrictionandRayleighnumber)andplottingthelocationoftheintersectionpoints(inthe
presentcase,thePoincar6surfaceisaline),theresultisthebifurcationtreeseeninFigure22(b).A computer-
generatedexampleofa realbifurcationtreefor asimplechaoticsystemisshowninFigure22(a).Thephase-
spacetrajectoriesthat havebeendrawnare localizedsothe tree hasa finite span. Bifurcation occurs

simultaneouslybecause it is cutting a single trajectory; when it splits, it does so everywhere along its length. Finer
and finer scales characterize both the branch separations and the branch lengths.

Feigenbaum's discovery consists of the following quantitative observations:

• The parameter convergence is universal (independent of the particular physical system), as shown in

Figure 22(c).

• The relative scale of successive branch splittings is universal (independent of the particular physical
system), as seen in Figure 22(d).

The beauty of this discovery is that if turbulence (chaos) is arrived at through an infinite sequence of bifurcations,

the following two predictions result:

Ai ci
6 = Lim - 4.6692 a = Lira - 2.5029

i--large mi+ 1 i_largc _'i+ 1

3.2 SENSITIVITY TO INITIAL CONDITIONS (ATTRACTORS'b

Here we intend to show that a time horizon exists above which predictions are impossible. To demonstrate this,

we use the dripping faucet attractor (the Hdnon attractor), which contains multiple periodicities in its dynamics.

One of the most important concepts in dynamics of dissipative systems is the presence of attracting sets, or attrac-

tors, in phase space. These are bounded sets where regions of initial conditions asymptote as time increases; that

is, dynamical systems that are conservative do not have attractors. Two examples of attractors are shown in Fig-
ure 23 (Reference 14).

NOTE: The dimensionality of a point attractor is 0 and the dimensionality of a limit-cycle attractor is 1 (it is a

line rather than a point). In general, the dimension of an attractor can be a noninteger fraction or a
fractal attractor; such attractors are called strange attractors. An example of a strange attractor is

shown in Figure 24 and is generated from the Hdnon map (104 successive iterations).

Xn+l = A-x2. + By.

Y.+I = x.

After a small number of iterates of two trajectories, one computed using single precision, the other computed

using double precision, and both originating from the same initial condition, they are still far apart. This approach

was recently proposed by C. Grebogi.
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(b)

(a) The Phase-Space Trafecton/Conve_JeS lO a Limit Cycle

(b) In a Pendulum, Starting at the Point Marked 1, the Pendulum
Returns to it After the Unit Period To. However as the fttclion

is decreased, the Same Phenomenon =sObserved as in the
Turbulence Experiment Where the Unit Cycle Unoergoes a

Series of Penod-Doub_lngs

Figure 20. Phase-Space Phenomena

Polncar_; sudace

(al

Poincar_ map

Q
eight-cycle

(a) The Tn=_'tory Continues to Nearly Miss the Starting Point Until it Hits After 2 n TO
Hem We Have Two Different DynamlcaJ Systems: a Pendulum and a Rayleigft-

Bema_ System, but They are Both Led to Chaotic Behavior Through the Same
Universal Route (Penod.Doublings). The Poinc,are Sudace Reveals This

Universality.

(b) The Segments at Near Misses is Local and Looks Roughly the Same for Both the
Pendulum System and the Rayleigh*Bemard System.

Figure 21; Comparison of Trajectory Systems
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(c) (_

(a) Can'_uter-Genetated version at a Re= Bifurcation for a Chaotic System.

(b) Locatlott of Intersection Points in the Present Mechanmm=: the PoinCardi Sudace is a
Line and the Resu!t !s a Bifurcation Tree.

(¢) The parameter Convergence is Universal (Independent of the Partcular Physical System].

_d) The Relative Scale of Successive Branch Splitllngs +sUniversal (Inoetoenaent of the
Parttular Phys=cal System].

Figure 22. Examples of Bifurcation Trees
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(a) Point Attractor: A Damped Harmonic Oscillator-model of a Pendulum.
(b} Limit-cycle Attractor: A Van der Pol Oseil!ator-model of a cimult Oscillator.

Figure 23. Examples of Attractors

z1

35 ".2,,

• J:I..I2

_/

Figure 24. Example of a Strange Attractor

Attractors that can show chaotic behavior represent exponential sensitivity to initial conditions. Consider two

initial conditions lfl>o and Ifz>o = fl>o + IE>o. The dynamical evolution gives a final state

Ifl > t and I f2 > t, as shown in Figure 25.

- .,._. ifz>t

_% :" -

Figure 25. Exponential Evolution of Two
Near Orbits in Phase Space

After time t, the distance between the two orbits is le>, = 1t"2>, - If1>t. In the limit le>o _ o and

t ---, large, orbits remain bounded and the difference between the solutions l e >, evolve exponentially for a

I }' >t I - eZ, _. > 0. Therefore, the system is very sensitive to initial condi_

given direction of l,>.. That is, l I
tions and is chaotic. This means that small errors in the prediction can evolve rapidly with time. Thus, there is a

time horizon aI which noise and computer roundoff can totally change the dynamics. To illustrate this computa-

tional limit, a computer experiment is performed on a simple attractor of Figure 24, with A =' 1.4 and B = 0.3.

As shown in Figure 24, we have generated 34 to 40 iterates of an orbit startingfrom an identical initial condition

If, >o -- 0, If2>, = 0. The computations are identical except that one uses single precision and the other

double precision. Single-precision round-off error is 10-14, Single precision is indicated by squares and double

precision by circles. For every iterate connected with a vector, we see that at the 40th iteration, the magnitude of
this vector i.s as large as the variables themselves. Consequently, if using a computer that has 10 -14 round-off

error, prediction after the 40th iteration is nothing but a guess if the dynamics we are working with are indeed

chaotic and lmve a H6non attractor. This was just an example. In practice, the chaotic attractor of a solar flux

time series should be identified before any meaningful prediction procedure is implemented, which is the goal of

such an approach to solar flux prediction.
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Returning to the H6non map example, we see that after the first iterate, [e>, and [e>o are different by an

order of 10 -14 (round off). If in the next iteration, the error doubles (e ln2t = 2t), then the le >_ and [e > o are

different by an order of attractor size in t - 45 (2'10"_4 - 1). That is, if the error doubles, it is impossible to

improve prediction. If we want to predict the evolution past t - 45 to t -- 90, which is twice as long a predic-

tion; then we should have an accuracy of 10-28 , which is 14 orders of magnitude more accurate. Therefore, im-
proving prediction by a factor of two is impossible.

In other words, structural stability (Topological Orbital Equivalence [TOE]) breaks over a time horizon, making
prediction impossible. Therefore, structural stability and computability are inherently incompatible. This is pre-
cisely why weather prediction over a time horizon is impossible. Lorenz' conclusion for weather-generating
mechanisms was that thermally driven convections could make the atmosphere chaotic.

Now, returning to our problem, we have many reasons to believe that multiple interactions in the Sun introduce
nuclear, chemical, electrodynamic, hydrodynamic, and other nonlinearities. It is easy to visualize chaotic behav-
ior in solar flux because the Sun is like a rotating fluid that introduces turbulence, and its sunspots are similar to
convection rolls. These behaviors introduce chaos just as does the Rayleigh-Benard mechanism. Furthermore,
all atmospheres are really chaotic--even those ionized gases in solar atmosphere that chaotically modulate solar
radio emission.

4. CONCLUSIONS

In May of 1990, we postulated that solar flux is a chaotic time series. This postulation was apparent from many
physical features of the Sun. For example, the Sun is a rotating fluid that introduces turbulence, and most of the
interactions, whether chemical, nuclear, or other, are nonlinear. We have also argued that the pattern in the
logarithm of the power spectrum and the autocorrelation function is a concrete example that solar flux is a
pattern-structured, time series. Therefore, an approach to study solar flux should be through nonlinear chaotic
dynamics.

We have further claimed that a time horizon exists above which predictions are computationally impossible. To
demonstrate this claim, we used the dripping faucet attractor, which roughly resembles the multiple periodicities

observed in the dynamics of the solar flux. We also suggested that the H6non-type attractors provide good candi-
dates for study, although in the absence of a detailed demonstration that strange attractors or ensembles of
strange attractors are really H6non types, this theory remains in the realm of speculation.

Convection rolls were also introduced as models of sunspots that are products of nonlinear interaction (like soil-
tons). These convection roils could be produced in the ionized gases of solar atmosphere, further modulating
(chaotically) the solar flux signal.

We also discovered evidence of a period-doubling type of route to chaos in the behavior of solar flux. In this case,
we observed less power at frequencies that follow the well-known period-doubling bifurcations. This was further
recognized as a new form of order that could be a new route to chaos. We also found evidence of fractal (self-simi-
larity invariance, under contraction and dilation) structure in solar flux that deserves a separate investigation (see
Figure 26).
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