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This paper discusses the issue of using long slender booms as

pendulous nutation damping device on spinning spacecraft.

Motivation for this work comes from experience with the

Galileo spacecraft, whose magnetometer boom also serves as

passive nutation damper for the spacecraft. Performance

analysis of a spacecraft system equipped with such a device

indicates that the nutation time constant of such systems are

relatively insensitive to changes in the damping constant of

the device. However, the size and arrangement of such a

damper raises important questions concerning spacecraft

stability in general.

INTRODUCTION

Most spin stabilized spacecraft are equipped with

passive nutation damping devices that limit spacecraft

nutation through on-board energy dissipation. The design of

these devices is based on well established stability criteria

for spinning bodies. I-4 When disturbed slightly from its

position of stable spin, a spacecraft with internal energy

dissipation will recover faster than one without energy

" Assistant Professor
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dissipation. This has led to the design of several passive

devices that are triggered into dissipating energy on board

of a spacecraft anytime that the spacecraft attitude motion

is disturbed. Such devices have included simple mass-spring-

dashpot systems, damped compound pendulum, viscous fluid in

ring-shaped tubes, etc... The Galileo spacecraft features a

passive nutation damper that differs markedly from any that

has been flown to date. As shown in Fig.l, this dual-spin

spacecraft consists essentially of a rotor, carrying a high

gain antenna and three long booms, and a stator section that

houses a probe and carries the scan platform containing most

of the imaging instruments. The rotor is connected to the

stator through a spin bearing assembly that allows one degree

of freedom of relative motion that is controlled by the

"clock" control loop. The ratio of the rotor spin inertia to

the vehicle transverse inertia is greater than one(l.4), so

that the spacecraft spin axis is also its axis of maximum

inertia. The spacecraft's longest boom - its

science/magnetometer boom - is also utilized as a passive

nutation damper by connecting it to the rotor bus through a

one degree of freedom hinge and a torsional spring and damper

system, as shown schematically in Fig.2. Although this

damper is of the pendulous type, its length (8.6m) far

exceeds that of any such damper used in past missions.

Furthermore, the mass center of the boom is outboard of its

pivot point. This, again, is unusual for pendulum dampers.

In the remaining part of this paper, the effectiveness

of this design is explored and compared with that of

traditional dampers. This is done essentially by examining

the shape of the damper time constant versus damping constant

curve as well as by studying the overall attitude dynamics of

the spacecraft in the presence of such a large boom.
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EQ//_TIONS OF ATTITUDE MQ2/gM

To derive the dynamical equations of attitude motion of

the spacecraft, the model shown in Fig.3 is used. The dual-

spin nature of the spacecraft is ignored, and the system is

assumed to be made up of a main rigid body A and a boom B. A*

and B* are mass centers of A and B respectively, and S* is

the mass center of the combined system. The following

simplifications are also made:

• S* lies on the spin axis Z of the spacecraft and

remains fixed in body A at all times;

• A*, B* and S* all lie on a plane containing the Z

axis;

• when _ = 0, the central principal axes of the

system for S* are parallel to al,a2, and a3;

• bl,b 2, b 3 are parallel to central principal axes of

B for B*, and, for body B, I 1 = I3, while 12 = 0,

where I indicates moment of inertia.

The equations of attitude motion of this system, as derived

using AUTOLEV6, 7, are:

([(LBsinfl + zo)2+ (Locosfl + yo)2]mo + (y_ + z_)mA + (I_ + 1B)Jfi 1 +

{[(Ll_sinfl + zo)LDsinfl + (Locosfl + yo)LlTcosfl]ma + ll_}ti,1 -

{[(Ul + ua)Losin[3 + ZOUl]Ul +

(LBtt2sin[J - LBtt3cos[3 + zott2-Yotl3)tt 2 + (u I + u4)Losinflun } (Locosfl + yo)mt_ +

{-[(u, + un)Ltlcosfl + you,Jul + [LB(u2sin[3- u3cosfl) + zou2- YoU3Ju3 -

(Ul + ua)LBcosflua}(Losin_ + zo)mB - {[(zau2 - yAll3)tt3 -- yAlt2JzA +

[(ZAU2- yau3)u2 + zau lyz}mz + (u2cosfl + u3sinfl)(u3cosfl-u2sinfl)l °-

(1)
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[(L_sit,fl + zo)2rna + (1A + IBsin2fl) + mAz2]/'/2-

[(LBcosfl + yo)(LBsinfl + zo)rnB + IBsinflcosfl-l_3 + mAYAZA ],i3 +

(u2cosfl + u3sinfl )Lou4J(Lt_sinfl+ zo)ma + {[(ul + u4)u3-ulu3]sinfl +

[(Ul + ua)u2- UlU2 ]cosfl}lBsinfl + (u2cosfl + tt3sinfl)(Ul + u4)lasinfl -

(IA3112 + ]Alt3)lll + (YaRlli2 + Zalllll3)maZa + lAlllll3 = 0

(2)

[(Lacosfl + yo)(Lasinfl + zo)mn + lllsinflcosfl-I_3 + mAYAZA ] l't2 --

[(Lacosfl + yo)2ma + lncos2fl +I; + may,_ ]ti3 +

+ + +[(,,,+ +
Lacosflu2u4 + Lasinfl, t3ua }(Lacosfl +.Yo)ma + {[(Ul + u4)u3 -ulu3]cosflsinl3 +

[(ttl + tta)tt2 - frill2 ]COSTfl}! n + (U2COSfl + tt3sinfl)(ttl + tla)IBcosfl--

(lA31t3 + IAlt2)til + (yZltltt2 + ZAlllll3)mAYA + ]Altllt2 = 0

(3)

[[(Lz_sinfl + zo)Lasinfl + (Ll_cosfl + yo)Lacosfl ]ma + la}t'tl + (I 1_+ ml_L_)ti4 -

{[((ul + u4)Lnsi,,fl + zou,}u, + (Lnsi,,flu2- LBcosflu3 + zou2- you3)u2 +

(1/1 + 114)LBSinflII4]LBCOSfl-[((1'1 + l'4)LBCosfl + YO/ll)/'I-

(-Lnu3cosfl + L_u2sinfl + zou2- You3)u3+

(ux + ua)LBcos_u41Lt_sinfl},nt, + (u2cosfl + u3sinfl)(u3cosfl- u2sinfl)l a +

kg + era4= 0

(4)

where ui(l = 1,2,3) are the components of the angular

velocity of A along a i, u4= _, m represents mass, I

represents moment of inertia, k is spring stiffness, O

damping constant, and the dimensions y0, z0,YA, ZA, LB are

shown in Fig.3.

is

as
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NUTATION DAMPER TIME CQNHTAN_

A known equilibrium point of the system corresponds

the pure spin condition. That is the solution

u I = u 2 = 0, u 3 = _ (const.), u 4 = O, and _ = 0.

This solution does satisfy Eqs. (I-4) provided that

]A3 = mAZAYA + mnzo(L_ + Yo)

to

a condition that is indeed satisfied by the inertia related

simplifying assumptions given earlier. When the full

nonlinear dynamical equations given as Eqs(l-4) are

linearized about the pure spin solution, the result is a set

of first order differential equations that has the form

B _T=AxT

(5)

(6)

where

X=[ttl tt2 tt4 fl] (7)

and A and B are 4 by 4 matrices with the following elements:

All = AI3 = A22 = A23 = A24 = A31 = A,,I1 = A42 = A44 = 0

A12 = -[mt_(LR + yo) 2 + mA(y2A - z 2) + 1B- I A + IA].Q

AI4 = -[I ° + m_Lo(Ln + Yo) ]1-22

A32 = -[l D + mI1LB(LB + yo)]12

A33 =-O', A43 = 1

(8)

(9)

(IO)

(11)

(12)

(13)
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A34 = -_mBL11(LB + yo).(2 2 + k] (14)

Bll = {11A+ ]B + mA(y2A + zj) + mB[(LB + y0) 2 + 22]} (15)

BI2 = B14 = B2t = B23 = B24 = B32 = B34 = B4t = B42 = B43 = 0 (16)

B13 = [I 11+ m11L11(Ln + 3'0)] (17)

+ +

B31 = [I11 + m11L11(L11 + Yo)] (19)

B33 = I B + mBL 2 (20)

B44 = I (21)

The eigenvalues of the matrices A and B are found to have

negative real parts for inertia property values corresponding

to all mission phases of the spacecraft. Hence, the pure

spin solution is a stable solution. The nutation angle time

constant is the negative reciprocal of the eigenvalue

corresponding to u I or u 2.

Fig. 4 shows Galileo's nutation angle time constant

plotted against the damping constant of the passive nutation

damping device on board. The case shown corresponds to a

damper spring stiffness of 335 N.m/rad, and spacecraft

inertia property values near the beginning of the mission.

Two important facts emerge from this plot. First, there

is an optimum damping constant corresponding to a given

spring stiffness. The most remarkable thing about the curve

shown is the fact that it is so flat; especially near the
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minimum time constant value. This means that there is a wide

range of values of _ for which the time constant changes very

little. This result is in great contrast with what obtains

for traditional passive dampers, where such plots are not

flat at all, and "tuning" of the damper is almost always a

necessity if one desires reasonably small time constants.

This relative insensitivity of the time constant to _ is

particularly appropriate for interplanetary missions. This

is because the viscosity of damper fluids is generally very

sensitive to temperature, and, therefore, the damping

constant can be expected to vary widely during a long

interplanetary flight that takes a spacecraft through varied

environments. It is thus advantageous to have a damper,

whose performance will not be degraded by the inevitable

fluctuations in damper fluid viscosity.

CZlNCLU ZIQ_

As exemplified by the design and performance analysis of the

Galileo passive damper system, the use of long booms as

nutation damper for spin stabilized spacecraft introduces a

new and important advantage over traditional damping devices.

It renders the system nutation angle time constant

practically insensitive to the device damping constant,

thereby drastically reducing the need for "tuning" of such

dampers. The main disadvantage of such a large device is

that it becomes an important factor in spacecraft stability.

Furthermore, because of the small relative damper

displacements that are to be expected from this design,

factors such as stiction become important in the evaluation

of the damper's performance, and may impose thresholds on the

amount of nutation that can be damped out.
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