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Abstract

This work introduces, examines and compares several quaternion

normalization algorithms, which are shown to be an effective stage in the

application of the additive extended Kalman filter (EKF) to spacecraft attitude

determination, which is based on vector measurements. Two new normalization

schemes are introduced. They are compared with one another and with the known

brute force normalization scheme, and their efficiency is examined. Simulated

satellite data are used to demonstrate the performance of all three schemes. A

fourth scheme is suggested for future research.

Although the schemes were tested for spacecraft attitude determination, the

conclusions are general and hold for attitude determination of any three

dimensional body when based on vector measurements, and use an additive EKF for

estimation, and the quaternion for specifying the attitude.
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..... I. INTRODUCTION

Attitude determination of spacecraft usually utilizes vector measurements

such as Sun, center of Earth, star, and magnetic field direction to update the

quaternion which determines the spacecraft orientation with respect to some

reference coordinates in the three dimensional space [1,2,3]. These measurements

are usually processed by an extended Kalman filter (EKF) which yields an

estimate of the attitude quaternion [4-8].

Two EKF versions for quaternion estimation were presented in the

literature; namely, the multiplicative EKF [4-6] and the additive EKF [5,7,8].

In the multiplicative EKF it is assumed that the error between the correct

quaternion and its a-priori estimate is, by itself, a quaternion that represents

the rotation necessary to bring the attitude which corresponds to the a-priorl

estimate of the guaternion into coincidence with the correct attitude. The EKF

basically estimates this quotient quaternion and then the updated quaternion

estimate is obtained by the product of the a-priori quaternion estimate and the

estimate of the difference quaternion. In the additive EKF it is assumed that

the error between the a-priori quaternion estimate and the correct one is an
i

algebraic difference between two four-tuple elements and thus the EKF is set to

estimate this difference. The updated quaternion is then computed by adding the

estimate of the difference to the a-priori quaternion estimate.

If the quaternion estimate converges to the correct guaternion, then,

naturally, the quaternion estimate has unity norm. This fact was utilized in the

past to obtain superior filter performance by applying normalization to the

filter measurement update of the quaternion [7]. It was observed for the

additive EKF that when the attitude changed very slowly between measurements,

normalization merely resulted in a faster convergence [7,8]; however, when the

attitude changed considerably between measurements, without filter tuning or

normalization, the quaternion estimate diverged. However, when the guaternion

4O4



estimate was normalized, the estimate converged faster and to a lower error than

with tuning only.

In the next section we introduce the additive EKF for attitude

determination. The role of quaternion normalization in the additive EKF is

explained in Section III. In Section IV we discuss the brute force (BF)

normalization scheme and examine its performance. In the following sections we

introduce the quaternion pseudo-measurement (QPM), and the magnitude

pseudo-measurement (MPM). Test results of the application of all normalization

:algorithms discussed in this work to simulated Earth Radiation Budget Satellite

(ERBS) data is presented in Section VII. In Section VIII we introduce the

linearized orthogonalized matrix (LOM) normalization scheme as a suggestion for

future investigation. Finally, the conclusions of this work are discussed in

:Section IX.

II. THE ADDITIVE EKF FOR QUATERNION ESTIMATION

Attitude determination from vector observatlons uslng the additive EKF is

explained as follows. Suppose that a sequence [bm, l 1=0,1,2 .... of vector

measurements performed in body, b, coordinates are given. Given are also these

vectors in the reference coordinate system r. Denote the latter vectors by v-r,i

i=0, I,2 ...... The vector [bm, i is a column matrix whose elements are the

components of a vector Q measured at time ti and coordinatized in the body

coordinate system. Similarly, the corresponding [r,l vector is a column matrix

whose elements are the components of the same vector Q coordlnatlzed in the

reference coordinate system. Our aim is to estimate the quaternlon q which

expresses the body attitude with respect to the reference coordinate system. To

meet this end we define an effective measurement y as follows

^

yi = Zbm, I - A(q)Vr, i (2. I}
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where A is the direction cosine matrix (DCM) which transforms vectors from r to

^

b, and where q is the latest estimate of q. The vector [bm, i which is a result

of a measurement, contains all the error associated with the instrumentation,

such as instrument misalignments, scale factor error, bias, white noise etc. The

vector v is taken from the almanac and is assumed to be perfectly known. We-r,i

observe that when the measurement is error free and when the quaternion estimate

is accurate, yi is zero. On the other hand, when these assumptions do not hold,

then [i is a, generally non-linear, function of the instrument and attitude

errors.

The measured vector _bm, i can be expressed as follows

Vbm, i = Vb, i + a_-eV-lvb, i
(a_ + _i ) (2.2)

where _b, 1 is the error-free value of v when coordinatized in the b system, the

Jacobian matrix

z_ av
H -

e, i ae
v

-b, i

(2.3)

is the sensitivity matrix of the error associated with the measurement [bm, i as

a function of the instrument errors, The latter are expressed as a sum of a

narrow spectrum error vector, _e, and a wide spectrum error vector n. which is

modeled as a white noise error vector. The vector e contains all the

instrumentation errors mentioned before, while 6e denotes the difference between

and its compensation value which is the latest estimate of e denoted by $.

Define _q as follows

$q = q - q (2.4)

then

A(q) = A(q+$q) (2.5)
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therefore, based on the assumption that _q is small such that _ is close enough

to q, A(q) can be approximated as follows

4 OA(q)
w

Acq_= ^c,_)+ Z 0%
J--1

aqj
^

q

(2.6)

consequently

AC_)Zr, i = ACq)Zr, l
4 aACq)lag j

- Z -
J=l aqj _

(2.7)

Define

Since

aACq_) (z.8)

A(q) =

2 2 2+ 2
ql-q2-q3 q4

2(qlq2-q3q 4)

2(qlq3+q2q4 )

2(qlq2+q3q4 )

2+ 2 2+ 2
-ql q2-q3 q4

2(q2q3-qlq 4)

2(qlq3-q2q 4)

2(q2q3+qlq4 )

2 2+ 2 4
-ql-q2 q3+q4

(2.9)

then

G 1 = 2

3

(2.10a) G2 = 2
(2.10b)

G3=2

^

q4

^

-q3

^

ql

^

q3

(2.10c) G 4 = 2

^

q4

-q3

^

q2

_3

_4

-_.

__

_4

(2. lOd)

Define
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hj = CjXr, i (2.11)

and

then using (2.12), (2.7) can be written as

(2.12)

A(q)v = A(q)Vr ' , (2.13)- -r,i I - Hq i_q

Finally from (2.1), (2.2), (2.3) and (2.13) we obtain

Xi = [b,i + He, i_ + He, ln i - A(q)Vr,- i + Hq, iSq (2.14)

Since [b,i' A(q) and v are error-free, it is clear that- -r,i

Zb, i = A(q)Zr, i (2.15)

therefore (2.14) can be written as

Yi = He, iS _ + Hq, i8 _ + n_

where

(2.16)

Note that

n? = H
-1 e,i_i

(2.16) can be written as

(2.17)

(2.18)

The propagation of the vector [_qTt_eT]T (where T denotes the transpose) in

time can be expressed by the linear equation [8]

d__ 8e
dt

3p

F

_q

3e

3P

+ w (2. 19)
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where 6p contains additional states necessary to express (2.19) as a linear

equation driven by a white noise vector w. For compatibility with (2.19),

(2.18) is extended to include _p as follows

Xi : [Hq, ilHe, i[ 0 ] aq
_e

_p

+ _i (2.20)

The set (2.19) and (2.20) can be written as

x = F x + w (2.21a)

(2.21b)

where Hi=[Hq, i[He, i[0]. The latter equations can be used in an EKF to compute

x. the estimate of x at time ti.

Let xT=[qTIeTIpT] then according to the EKE algorithm, _Xi(-), the a-priori

estimate of X at time t i is used to calculate H i which is needed to obtain the

a-posteriori estimate x_i(+). The latter is then used to update the entire state

estimate as follows

_i(+) = _i(-) + _l(+) (2.22)

Using (2.21a), _i(+) is propagated in time to become _i+l(-), the a-priori

entire state estimate at time ti+ I. The dynamics matrix for the propagation of

X.(+) is denoted by A (see (2.23a). The covariance which is needed for computing
--i

^

the Kalman gain necessary for evaluating xi(+), is computed according to the

ordinary Kalman filter algorithm. To sum it up, the full EKF algorithm is as

follows

Between measurements

Solve from ti to ti+ I

= A[X(t),t]X (2.23a)

= A[X(t),t]P + P AT[x(t),t] + Q(t) (2.23b)
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with the initial conditions Xo=XI(+), Po=Pi(+). The solutions at ti+ 1 are

denoted by Xi+l (-) and Pi+1 (-) respectively. Q(t) is the spectral density matrix

[9] of w.

Across measurements

T ]-1Ki+ 1 = Pi+I(-)H_+ 1 Hi+lPi+l(-)Hi+ 1 + Ri+ 1 (2.23c)

^

Xl+ I(+) = Ki+l_Yi+ 1 (2.23d)

^ ^ ^

_Xi+ 1(+) = _Xi+ 1(-) + _xi+ 1(+) (2.23e)

[ +,.,+1 [Pi+l (+) = I - K i Pi+l (-) I - Ki+lHi+ 1
.o

T
+ Ki+lRi+lKi+ 1 (2.23f)

where Ri+ I is the covariance of n*-i+l"

Compensation

In computing (2.23a) and (2.23b) we need to use the gyro output vector w

which contains errors. Those errors are estimated as a part of p. Before each

time (2.23a, b) are used, the errors have to be appropriately compensated using

their estimate. Similarly, [bm, i' which is used in (2.1) to obtain [i' contains

erros which constitute e. Before each time [i is computed (for use in (2.23d)),

the errors in [bm, i have to be compensated using their estimate.

III. THE ROLE OF QUATERNION NORMALIZATION

The state measurement update given in (2.23e) can be written in an explicit

form as follows:

=

_'(+1 Ji+l i. _C-)
i+l

^

_q(+)

_$(+3

_(+)
1+1

(3.1)
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Unless convergence has been attained, _i+l(+) is not necessarily normal even if

_i+l (-) is. We know, however, that the quaternion which the algorithm is trying

to estimate is necessarily normal. We can then enforce normalization on _i+i(+)

with the hope that the enforcement of this quality of the correct quaternlon

will direct the estimated quaternion in the right track and will enhance its

convergence. Indeed, it was found in the past [7,8] that normalization is

helpful. In particular, it was found that when the attitude varies very slowly

between measurements, normalization, although not necessary, resulted in a

faster convergence; however, when the attitude changed rapidly between

measurements either filter tuning or normalization were necessary to avoid

divergence. The use of normalization is superior to tuning because, first,

tuning involves a tedious trial and error process, second, tuning is not a

robust solution, and third, with quaternlon normalization the final attitude

estimate is closer to the correct quaternion.

Four normalization schemes are discussed next.

IV. BRUTE FORCE (BF} NORMALIZATION

is performed as follows [7]. After _i+1(+) has beenThe BF normalization

computed in (2.23e) the quaternion part of the state (see (3.1)) is normalized

as follows

(÷) --  i÷i¢÷)li
(4.1)

and then, the normal quaternlon, _[+1(+), is used to re-form _i+l(+) as follows

_i+1(+) =

_*C+)

_C+)

i+I

(4.2)
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This straightforward mode of normalization constitutes an outside interference

in the EKF algorithm which has to be accounted for in order to avoid filter

divergence. It was shown [7] that the normalization operation of (4.1) is

tantamount to the following computation of q_+l(+)

_" c+) = (-) + c+) _i c-)_ i c+- )qi+l ) (4.3)i+1 i+1 _i+l +1 (- - - +1

Therefore, while the EKF algorithm presented in Section II assumes that the

a-priori quaternion estimate is updated according to (2.23e) as follows

_i+_(+) = _i+lC-) + _i+_c+) (4.4)

in reality, due to the normalization, it is updated according to (4.3). The

^T 3^
difference is then in the term -qi+l(-)qi+l qi+1(+). Because of this residual

term, the full reset implied by (4.4) does not hold anymore. Therefore,

following the logic of the EKF algorithm, the residual term,

^ ^T ^ +
-qi+l(-)qi+lSqi+l ( ) has to be propagated in time. It was shown [7] that this

mode of normalization does not affect the covariance computation of the EKF;

therefore, only the state computation has to be modified. In view of the

normalization operation of (4.1), the following changes have to be made in the

EKF algorithm presented in Section If. Between measurements, in addition to the

computation of -i+l_ (-) and Pi+l(-)' compute also _qi+l(-) as follows. Solve from

t I to t the differential equation
i+l

where F is the
q

: c-,-)

_q = F [XCt),t]_q (4.5)

1,1 submatrix of F, with the initial condition

and denote the solution at tl+ I by 8qi+l(-). Then form

^T 8^TXi+l(- ) = [ q_i+l(-),0T, o T] (4.6)

and change (2.23d) to read
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_i+I(+) = _i+l (-) + Ki+1[Yi+l - Hi+l_i+1(-)] (4.7)

The BF normalization algorithm has all the expected advantages mentioned in

Section III; however, it is not elegant in the sense that the normalization

constitutes an outside interference in the EKF algorithm which has to be

compensated. This compensation adds a certain complication to the algorithm

presented in Section If. Therefore we propose the following QPM normalization

scheme.

V. QUATERNION PSEUDO-MEASUREMENT (QPM) NORMALIZATION

According to this algorithm the updated quaternion _i+i(+) is used to form

a pseudo-measurement as follows

_n,i+l = _i+1 (+)/ II _i+l c+) II C5.1)

It is then assumed that the quaternlon is measured by an imaginary device, say

"quaternion-meter", and the output of this device is [n,i+l plus a small white

measurement error. Following this rationale a measurement update is performed

which is based on the quaternlon measurement. To accomplish that we realize from

(3.1) that [n,i+l is related to the state vector as follows

Yn, i+l = Hn, i+iXi+ 1 + nn, i+ 1 (5.2)

where

T
Xl+ 1 = [_qTle_Tl_pT]i+1 (5.3)

H
n, i+l

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 (5.4)

and Rn, i+l, the covariance of Dn, i+l' is the diagonal matrix
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R = diag[r 2 2 2 2
n,i+l ,r ,r ,r ] (5.5)

and where r is a small number. The a-priori state estimate for this measurement

^

update is, of course, Xi+l(+). Note that the output of this update is the full

state vector and not Just the estimate of, 5, the difference between _i+l and

its estimate Xi+l(+). This pseudo-measurement update is performed after the

computation in (2.23f) has been carried out. The pseudo-measurement update

algorithm is as follows. Kn, i+l is computed according to (2.23c) where Hi+ 1 and

Pi+l (-) and Ri+ 1 are replaced by Hn, i+l, Pi+l(+) and Rn, i+ 1 respectively. The

state update is then re-computed as follows

^ ^ ^

Xi+l(+) = Xi+l(+) + K [Yn,n,i+l - I+I - Hn, i+l_i+l(+)]
(5.6)

and P'I+I(+) is re-computed according to (2.23f) where Ki+ I, Hi+ 1 and Pi+l (-) are

replaced by Kn, i+l, Hn, i+ l and Pi+l(+) respectively. The new estimate and its

covariance are then propagated in time as before.

The QPM normalization performs quite well and achieves the expected

benefits of quaternion normalization provided r is well tuned. If this is not

the case, the attitude estimate may reach a wrong value, and if the attitude

changes between vector measurements, it may even diverge. The reason for this is

described next.

For the normalization to be effective one is tempted to choose a small r in

which case the filter practically replaces the stored quaternion estimate by the

normalized quaternion. However, the small "measurement noise", r, reduces the

variance of the quaternion estimation error considerably. Therefore, the filter

assigns a very high credibility to the normalized quaternion estimate even

though it is not yet the correct quaternion. Consequently, the filter does not

allow new vector measurements to alter the quaternion estimate and the latter is

stuck on a wrong value. If the quaternion changes now due to attitude change
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then the quaternion estimate diverges. In order to avoid this phenomenon one has

to tune the value of r which constitutes an additional design burden. Therefore

although, unlike the BF normalization) the QPM normalization blends naturally

into the EKF algorithm, the required tuning constitutes a considerable

disadvantage. To alleviate this problem we proposed the following magnitude

pseudo-measurement normalization scheme.

VI. MAGNITUDE PSEUDO-MEASUREMENT (MPM) NORMALIZATION

Unlike the previous scheme, where we assumed that we "measured" the

normalized quaternion, here we assume that we "measure" the square of the

_ quaternion Euclidean norm whose magnitude Is assumed to be I. This imaginary

: "norm meter" yields the reading z where

z = I + v (6.1)
n,i+l n,i+l

and where Vn, i+ 1 is assumed to be a white measurement noise whose variance is r.

Note that the "measured" quantity is a non-linear function of the quaternlon

components; therefore, we compute the effective measurement, Yn, i+l' as

yni.I=Zn ,2 A2 ,2], - I,i+I + _(+ 2, i+1 + q(+)3, i+l + _(+ 4, i+I
(6.2)

; Using (6.1) and (2.4), (6.2) can be written as

Yn, i+l = 1 - qj, i+l-_qj, i+l n,i+l

j=l

(6.3)

Neglecting products of 6qj,n+l' (6.3) can be written as

Yn, i+1 = 1 - - 2 i+l_qj + v, , n, i+I

j=l j=1

(6.4)

and since
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then (6.4) can be written as

Yn, l+l = [2q1,l+l12q2, i+l

4

j=l

= 1

2q3, i+1 2q4, i+1] 8ql,i+l

8q2,1+1

8q3, i+1

8q4, i+1

(6.5)

+ v (6.6)
n,i+l

Since qj, i+l j=1,2,3,4 is unknown, we follow the common practice of replacing

the quaternion components by their estimate, thus

Yn, i+l = [2q(+) 1, i+l [ 2q(+)2, i+ 1 ]2q(+)3, i+ 1 [2q(+)4,1+1] 8qi, i+l

8q2, i+1

8q3, i+1

_q4, i+l

4- V
n, i+l

(6.7)

The latter is the measurement equation which is used to perform a magnitude

pseudo-measurement normalization update. The sequence of operations is similar

to that performed when the QPM normalization update is carried out (see the

preceding section). The only difference is that now

4

Yn, i+l = I - [ _(+)2 j,i+l (6.8)

j=l

(6.9)

and

R = r (6. I0)
n, i+l

We realize that the fact that r is very small does not imply that the
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measurement of q is precise. It only implies that the measurement of II q l] is

precise. Therefore, now the variances of the quaternlon states do not increase

to a value close to r and thus the estimates of the quaternlon components do not

cling to wrong values and stay there like they do when the preceding QPM

normalization is applied with a small r.

VII. TEST RESULTS

The algorithms presented in this paper were and still are being tested now.

In these tests the EKF is applied to simulated as well as to real Earth

Radiation Budget Satellite (ERBS) data. Partial results are presented as

follows.

Quaternion normalization speeds up the convergence of the additive EKF when

used to estimate spacecraft attitude from vector measurements. Moreover, if the

attitude changes considerably between vector measurements, quaternlon

normalization replaces filter tuning which is necessary to avoid divergence. In

the latter case, quaternion normalization also reduces the final attitude

estimation error.

In Table 7.1 we see the final attitude estimation error when the EKF is

O

applied to simulated ERBS data. The initial attitude error is 30 and the value

-5
of r used in the QPM and MPM algorithms is I0

Table 7.1: Final Attitude Error in Degrees at i00 sec, r=10 -5

Yaw

Roll

Pitch

RMS

Without

Normalization

,0048

.0022

.0170

0.0178

Normalization Algorithm

BP

.0074

-.0002

.0060

O. 0095

QPM

.0057

.0019

-.0009

0.0061

MPM

.0069

.0039

-.0033

0.0086
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Note that the BF algorithm implies no measurement update therefore no r is used

in this run. We turn to Table 7.2 to see the advantage of the MPM over the QPM

-5
algorithm. We realize that while for r=lO both algorithms exhibit identical

-11
accuracy, the QPM algorithm fails when r=10 The reason for this difference

was mentioned at the end of Section V,

-II
Table 7.2: Final Attitude Error in Degrees at I00 sec, r=lO

Yaw

Roll

Pitch

Normalization Algorithm

MPMQPM

3.2387

10.3660

-0.7451

.0045

.0083

.0127

VIII. SUGGESTED FUTURE RESEARCH

Although the MPM normalization performed satisfactorily we suggest to

investigate an algorithm of implied normalization which does not really use

normalization. This algorithm is presented next.

In Section II we presented the development of the additive EKF for

quaternlon estimation. In that development we derived the linearized

relationship between the vector measurement error and the quaternion estimation

error which are summarized in (2.16). To meet this end we differentiated the

matrix A(q) given in (2.9). The differentials were partial differentials with

respect to the elements of q. As a result of the differentiations we obtained

the matrices Gj, j=I,2,3,4 which are listed in (2.10).

When q is indeed of unit length, A(q) is an orthonormal matrix; that is,

its columns (rows) are orthogonal to one another and are of unit length. If,

however, q is not of unit length, then the columns (rows) of A(q) are still

orthogonal to one another, but their length is not a unit anymore. It was proven
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in [I0] that the matrix A'(q) computed as follows

A'(_) - I A(_)
- li tl2 -

(8.1)

is not only orthonormal, but it is also the "closest" orthonormal matrix to

A(q); that is, of all possible orthonormal matrices, the distance between A*(q)

and A(q) is the smallest where by distance we mean the Euclidean norm of the

difference matrix A*(q)-A(q). It can be argued that if we use A"(q) rather than

A(q), we practically enforce normalization. This is so because normalizing

first and then using the normalized quaternion to compute A(_) is identical to

the computation of A_(_) as given in (8.1). The partial differentiation of (8.1)

with respect to the quaternion components yields

aA'(q) I 2qj I

rj = rjCq) - - I = ACq) + GjCq) (8.2)
- 8qj q II _ II 4 - II _ II z -

where Gj(_) is given in (2.10). The final algorithm is as given in Section II

with F. replacing G. in (2.11). We call this normalization scheme the llnearized
3 J

orthogonalized matrix (LOM) algorithm.

Finally, in the future we intend to apply all the normalization schemes

discussed here to real ERBS data.

IX. CONCLUSIONS

It was found again that quaternion normalization in the additive EKF for

attitude determination from vector measurement has the following advantages. If

the attitude changes slowly, normalization speeds up estimation convergence. If

attitude changes rapidly between measurements and no normalization is applied

then filter tuning has to be used in order to avoid divergence. However, if

normalization is applied, convergence is achieved without filter tuning.

Moreover, the final attitude estimation error is smaller. There is then a clear
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advantage to quaternlon normalization. Three quaternion normalization algorithms

were tested. The conclusions with regard to the use of each one of them is

listed next.

• The brute force (BF) normalization algorithm works well and exhibits the

normalization benefits described before.

• The quaternion pseudo-measurement (QPM) algorithm performs well only after

tuning.

• The magnitude pseudo-measurement (MPM) algorithm performs well and needs no

tuning.

Finally, we suggest the investigation of the linearized orthogonal matrix

(LOM) normalization whose development was presented in Section VII. All the

normalization schemes will be tested on real ERBS data.
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