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The paper describes perturbation techniques used for identification of rotating system 
dynamic characteristics. A comparison between two periodic frequency-swept perturbation 
methods applied in identification of fluid forces of rotating machines is presented. The description 
of the fluid force model identified by inputting circular periodic frequency-swept force is given. 
This model is based on the existence and strength of the circumferential flow, most often generated 
by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is 
presented. It is shown that the rotor stability is an entire rotating system property. Some areas for 
further research are discussed. 

1. INTRODUCTION 

Perturbation methodology is well known and widely applied in Control Theory. The main 
objective of perturbation is identification of the s stem characteristics by exciting the system with 
a known input function and observing (measuringfits response. The comparison between the input 
and output of the system gives an insight into the system characteristics, i.e., its transfer function 
(Fig. 1). The "system" can be a mechanical structure, or any other system, such as biological, 
economic, etc. When little is known about the system characteristics, the system is often referred 
to as a "black box." When the mathematical structure of the system characteristics is known (or 
rather assumed approximately known, such as, for instance linearity of the n-th order), the system 
is referred to as a "grey box." The identification procedure provides the parameters to the assumed 
mathematical structure of the system model. The transition from a "black box" to "grey box" is 
performed by iterative adjustments to the system model. It results from a series of perturbation 
tests conducted for various operating conditions. 
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Figure 1. - Identification of object charac- 
teristics by comparison of the input and Fi e 2. - Nonsynchronous perturbation technique 
output. rotating machinery. 
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1.1 Perturbation Techniques in Rotating Machinery 

Rotating machines are particular subjects of perturbation testing. They represent a special 
class of "active" mechanical structures. The main motion of a rotating machine is rotation, driven 
by an external energy source. In order to fully understand the rotating machine process, and 
identify its operational characteristics, the perturbation tests should be conducted on a machine at 
its operational conditions, in particular when the rotor rotates at its operating speed (Fig. 2). The 
rotative energy provides, therefore, an additional input to the system. Most often this input is 
considered uncoupled from the perturbation input/output flow. The rotating energy, as an 
additional input to the system has, however, a very important influence on the system: its 
characteristics become rotative speed dependent. The perturbation input should be entirely 
independent from the rotative energy input. This technique is called ttnonsynchronous" 
perturbation [I]. 

There are two particular cases of the perturbation technique applied to rotating machinery. 
In these cases only one input is used: (i) perturbation of the rotating machine at rest (like a 
"passive" structure), and (ii) synchronous perturbation. In the latter technique the rotative energy 
represents the only input to the system. In the synchronous perturbation method a controlled 
unbalance transfers rotational energy into an input force [2,3 . Both these particular perturbation 

characteristics. 
1 techniques often provide important, but also very limited, in ormation about the rotating machine 

1.2 Characteristics of Rotating Machines 

Perturbation testing of rotatin machines is used for identification of their mechanical d characteristics associated with modes o vibration. Shaft lateral/ bending modes attract the highest 
attention. In particular, the lowest lateral/ bending modes are of the greatest concern because, due 
to the specific role of internal damping in rotating systems, they are usually characterized by the 
highest vibration ampllit lades, thus creating conditions for rotor failures. 

In most rotating machines the shaft rotates in a fluid environment. Fluid involved in dy- 
namic motion becomes an important part of the system. Fluid/solid interaction causes the appear- 
ance of additional modes of vibration in the system. These particular modes have been identified 
by nonsynchronous perturbation testing [I]. Perturbation testing is used for identification of the 
rotating machine characteristics at various conditions such as under steady-state or variable load, 
unbalance, at different rotative speeds, including operational speed and above, at various 
temperatures, and other conditions. The information provided from the perturbation testing is used 
for model adjustments; it helps to predict stability of machine operation, provides tools for 
malfunction diagnostics, and assists in optimization of the machine performance. 

1.3 Perturbation Input 

Rotating machines can be perturbed by all classical input functions used in the identification 
of mechanical structures. Frequency swept periodic inputs [4-271, random inputs [28], and impulse 
inputs [29-351 became the most popular ones. Provided that the identified system is linear, all 
perturbation methods should lead to the same results. Each method has, however, its own strong 
and weak points which result in accuracy differences in specific applications. Two methods of 
nonsynchronous perturbation which have several advantages in comparison with other techniques 
are discussed below. 

1.4 Comparison of Two Frequency Swept Rotating Input Perturbation Techniques 
Used for Identification of Fluid Forces in Rotating Machines 

There are two main perturbation techniques of nonsynchronous one-mode testing used for 
identification of fluid force models in rotor/bearing, rotor/seal systems, as well as in fluid handling 
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Figure 3. - Nonsynchronous perturbation techniques: (a) perturbation by displacement (a 
stationary shaft and casing displacements are also used), (b) perturbation by force. 

machines mainly pumps). The basic advantage of these methods : is the rotational .character of \ the input unction in forward or reverse direction (the same or opposite to rotor rotation). This 
allows for .independent identification of forward and backward modes of the rotating machine. 
These two perturbation techniques differ by the inputloutput functions (Fig. 3). For rotor circular 
orbits* they are as follows: 

1 FORCE: ( F , + ~ F ~ ) A ~ ~  DISPLACEMENT: A&w~, El [Refs. 7,11,12,18-261 

[Refs. 4-6,8-10,13-171 

where A is rotor displacement amplitude, a is rotor res onse phase (also a = arctan (-Ft/F,)), w is 
rotor perturbation (excitation) precessional frequency P usually varying from zero to some w,,), t 

is time, j = .(/--Z, F, and Ft are radial and tangential forces respectively acting on the rotor. These 
forces are obtained by integrating the fluid pressure or measuring forces outside an elastically 
supported seal or bearing; F is the input force amplitude. 

In both cases the objective is identification of the "black box," i.e., the transfer function of 

the system. More precisely the sought functions are $w) = complex dynamic stiffness, or H(w) = 
1 - = transfer function = complex dynamic compliance of the system. The most often obtained 

E( w) 
resdt from either technique is the complex dynamic stiffness: 

Fr + jFt 
E(w) = A when the input is displacement. 

F e-ja ~ ( w )  = , when the input is force. (2) 

*A use of noncircular forces/displacements or occurrences of noncircular response orbits/forces 
represent generalizations of the perturbation mehod, useful for higher eccentricities of the rotor [13]. 
For full identification of system parameters it requires a double number of measurements. 
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The complex dynamic stiffness components are as follows: 

r r  F C O S  ~u Direct dynamic stiffness = DDS = - - 
A -  A  

Ft  Quadrature dynamic stiffness = QDS = - - - F s i n  a 
A  - A  

By limiting the input to a circular periodic function, both methodologies must yield exactlv 
the same results, provided that the system is linear, and the instrumentation yields comparable 
signal-to-noise ratios. 

As is evident from Eqs. (3) and (4), the force-to-motion amplitude ratios F,/A and Ft/A 
correspond to the direct and quadrature dynamic stiffnesses, respectively, often, in some published 
papers, with opposite sign convention. The authors use the notion of dynamic stiffnesses, well 
established in Mechanics. For a system with one complex degree of freedom (one lateral mode of 
the symmetric rotor with no gyroscopic effect) the Direct dynamic stiffness is composed of the 
static (direct) stiffness (K), minus the effect of inertia and cross damping. By definition, the static 
stiffness K is positive; therefore, it appears in the direct dynamic stiffness with the plus sign. The 
quadrature dynamic stiffness contains the product of the radial (direct) damping (D) and frequency 
w, minus the constant (perturbation frequency independent) cross coupled stiffness. Since damping 
is positive, it is reasonable to present the corresponding straight line Dw versus perturbation 
frequency with a positive slope. The data from Refs. [21-231 illustrated in figures below have been 
presented in this unified format. The elements of the discussed above dynamic stiffnesses 
correspond to the standard linear bearing or seal models with isotropic properties (fluid inertia 
matrix with no cross terms, damping, and stiffness matrices skew symmetric). 

The results of perturbation testing of rotor/fluid systems are discussed in the next section. 

2. FLUID FORCE MODEL IDENTIFIED BY INPUTTING CIRCULAR 

PERIODIC FREQUENCY SWEPT FORCE 

As a result of over eight years of testing and identification research, the authors have 
proposed a fluid force model for lightly loaded bearings seals, and fluid-handling machines, based 
on the significance of the steady circumferential flow [361. The model was identified experimentally 
main1 by using the frequency swept circular periodic perturbation force at the input of the 
rotorfiearing/seal systems. A similar fluid force model was previously developed theoretically, and 
has existed in a simplified version in the rotordynamic literature for at least 25 years (Bolotin [37], 
Black [38,39]). It has not, however, been fully exploited. Following the results of the perturbation 
testing, the most important improvement in the model introduced by the authors was the 
replacement of the constant "1/2," widely used in the fluid models, by the factor "X" (fluid 
circumferential average velocity ratio) as a function of fluid parameters and shaft eccentricity. This 
ratio has been identified for several cases of seals and bearings as a decreasing function of shaft 
eccentricity. 

The basic fluid circumferential average velocity ratio X is generated by the shaft rotation. 
Its value can, however, be strongly modified by forced fluid flow, such as preswirling and injections. 
Depending on the direction of the tangential preswirls and/or injections, A can be reduced when 
these directions oppose shaft rotation, or increased when the preswirls/injections are in the 
direction of shaft rotation. 



For an originally concentric shaft rotating at a constant rotative speed Cl and perturbed by 
an unbalanced auxiliary system providing the frequency swept rotating force with frequency w in a 
ran e at least covering the interval O<w<Cl for the "whirl" mode, the plot of direct dynamic B stif ness of the fluid dynamic effects (shaft and other mechanical effects excluded), versus 
perturbation frequency w approximately forms a parabola (Figs. 4 and 5), and thus can be described 
by three parameters. By using circular input forces and maintaining isotropy of the system (rotor 
gravity load balanced by centering springs so that the response orbits are circular, the authors 
identified the fluid force direct dynamic stifkess as [I]: 

DDS = Ko-Mdw-AO)2 (5) 
C 

where KO is the fluid film static radial (direct) stiffness, Mf is the fluid inertia effect, and X is the 
- 

fluid circumferential average velocity ratio. Note that the "cross damping" (skew-symmetric terms 
in the damping matrix) appears in (5) as a function of the fluid inertia and Coriolis' acceleration. 

The quadrature dynamic stiffness versus perturbation frequency usually forms a straight line 
(Figs. 6 and 7); thus, it can be described by two parameters. The authors have identified these 
parameters as 

ivhere D is the fluid film radial (direct) damping. The term Dw represents the passive effect of the 
shaft pushing the fluid, -DAQ is an active term transferring rotative energy into the fluid force 
pulling the shaft (tangential force). The quadrature dynamic stiffness (6) is the most representative 
and most important part of the fluid force model [40]. In spite of nonlinearities of both A and D as 
functions of shaft eccentricity, QDS appears as a distinctly straight line for all tested cases except 
for high shaft eccentricity [1,13]. This also means that there is practically no cross inertia effect irt 
the fluid force. Note that in the identified fluid force model the direct and quadrature dynamic 
stiffnesses carry the common factor A. This means that the peak of DDS and zero of QDS occur at 
the same perturbation frequency (Figs. 5 and 7). The results obtained b other researchers show, 
however, some differences in frequency for these values (Figs. 4 and 6f. This problem will be 
discussed in Section 7. 

Figures 4 to 7 illustrate the basic results obtained by various researchers, by using 
nonsynchronous perturbation techniques. 
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Figure 4. - Direct Dynamic Stiffness versus 
perturbation frequency for the system with 
circular displacement input, and force out- Figure 5. - Direct Dynamic Stiffness versus per- 
put. 6 denotes a nondimensionalizing co- turbation frequency for the system with circu- 
efficient. Courtesy of H. Ohashi [22]. lar force input, and displacement output [lo]. 



The original response vectors versus perturbation frequency are presented in Figs. 8 and 9, in 
the form of Bode plots. Mote that, in the technique which uses force input, the displacement 
response vector has a form characteristic of responses for a one-mode system to a periodic 
excitation with sweep frequency (Fig. 9). The occurrence of a resonance is obvious. In comparison 
with the response of a classical mechanicd system, the response phase is, however, ahead of the 

Figure 8. - Force response phase and am- 
litude versus perturbation frequency Figure 9. - Displacement response phase and ampli- 
perturbation by displacement. Cour- f tude versus perturbation frequency (perturbation 

tesy of T. Iwatsubo [23]. by force) [9]. 
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Figure 6. - Quadrature Dynamic Stiffness PERTURBATION FORWARD 

versus perturbation frequency for the 
system with circular displacement input, Figure 7. - Quadrature Dynamic Stiffness versus 
and force output. 6 denotes a nondimen- perturbation frequency for the system with 
siondizing coefficient. Courtesy of R. circular force input, and displacement output 
Ohashi [22]. 
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input force, and the phase sharply drops around 0". This indicates the "quadrature" nature of this 
particular resonant phenomenon. The resonant frequency occurs at about XQ, where 0, is the 
rotative speed. This means that XQ re~resents one of the svstem natural frequencies, which is 
generated purely by the fluid/ solid interaction. The system QDS becomes zero. This fluid-relat ed 
quadrature resonance was documented by Stone & Underwood in 1947 [4], and again by Bull in 
1955 [5], but these excellent works were not immediately pursued. When the force is used as the 
system input, as opposed to a displacement input, the physical interpretation of the results becomes 
clear. The peak amplitude, which occurs when the quadrature dynamic stiffness equals zero, is of 
course limited by the total direct stiffness term in exactly the same fashion as the resonance at the 
zero of the direct stiffness, (yielding the classical stiffness-over-mass-related natural frequency) is 
limited by the total quadrature stiffness term (classical damping). The peak amplitudes may 
become very high, if the shaft rotative speed approaches the 1 / X  value of the rotor system 
"me~hanical'~ natural frequency, corresponding to its first bending mode [16]. (Note that the 
responses include rotor mechanical effects.) In fact, instability occurs when both direct and 
quadrature dynamic stiffnesses zero at the same frequency. This subject is discussed in Section 5. 

By inputting a constant circular displacement and measuring the output in terms of forces, 
not only the accuracy of the results is lower, but also there is no clear physical interpretation of the 
results. The plot of force response amplitude versus perturbation frequency has an 
"anti-resonancet1 shape, a concave curve, a mirror image of displacement response amplitude versus 
frequency (Fig. 8). The phase is exactly the same in both techniques. It is obvious: by definition, 
.the phase represents the angle between the input vector and output vector, independent of the 
nature of the input and output functions. Note that the dip point of the response force amplitude 
occurs around one half of the rotative speed, i.e., the fluid circumferential average velocity ratio X is 
close to 112. The notion of the "force resonance," or rather "anti-resonance" is not well known in 
Mechanics. That is why by using the input force methodology, the authors have been more 
fortunate than those who used forces as outputs, to see direct physical interpretation of the results, 
namely that the value close to Xn & a system natural frequency. 

Note the advantage of the circular perturbation, as opposed to unilateral perturbation as in 
impulse testing. The results of forward perturbation (rotation and precession in the same direction) 
and backward perturbation (opposed direction) are significantly different (Fig. 9). The resonance 
occurs only for the forward perturbation, i.e., the "quadrature" natural frequency XQ of the system 
has the plus sign only (classical t'direct'l natural frequencies governed by stiffness and mass have + 
and - signs). 

3. FLUID FORCE MODEL IN DIFFERENTIAL FORM 

In more general terms, the identified fluid force model can be presented as follows. In the 
coordinate system which rotates at an angular velocity An the fluid force is assumed radial, with 
three components (Fig. 10): 

Fluid force in rotating coordinates = Mfi, + Di, + Koz, (7) 

where z,(t)=x,(t)+jy,(t) are the shaft lateral displacements in rotating coordinates; Mf, D and KO 
are the fluid inertia effect, damping and stiffness respectively. 

The coordinate transformation 

z r = z e  -jXnt , where z(t) = x(t) + jy(t) , j = G  



from rotating zr(t) to stationary coordinates z(t) yields the fluid force: 

Fluid force in stationary coordinates = Mt(z - 2jAQi-AlQ2z) + D(i-jAQz) + Koz (9) 

The fluid force model, in differential form (9), can be directly used in rotor dynamic 
analyses. In particular, for shaft periodic circular motion with a constant amplitude: 

Fluid force for periodic motion = A{-MdwAQ)2+ jD(wAQ) + ~ ~ ) e j ~  = 

where ii;(w) is the previously discussed complex dynamic stiffness. 

4. IDENTIFICATION OF THE NONLINEAR MODEL 

While determining the appropriate interpretation and use of the direct stiffness basic 
parabola, and the quadrature stiffness straight line, the authors are dso investigatin situations 
where the dynamic stiffness components diverge from parabolic and straight line shapes fI?igs. 11 to 
13). These are cases of nonlinearities, and discontinuous shifts of various basic parameters. An 
example is shown below. 
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Figure 10. - Fluid force model for lightly 
loaded shaft. 

Figure 11. - Direct and Quadrature Dynamic 
Stiffnesses with nonlinear effects (perturbation 
by displacement). 6 denotes a nondimension- 
alizing coefficient. Courtesy of D. Childs [21]. 



By inputting a force with sufficiently high amplitude F = mrw'(m,r are mass and radius of a 
controlled unbalance), the response becomes modified by system nonlinearities. The resulting 
dynamic stiffnesses diverge slightly from the paraboliclstraight line shapes (Figs. 12 and 13). This 
occurs most noticeably in the range of perturbation frequency where the response amplitude is the 
largest (around w = X f l )  (Fig. 9). By inputting forces with sequentially increasing amplitudes, F, 
for each consecutive test, the nonlinear functions in the fluid force model can be identified. This 
identification technique is graphically presented in Fig. 14. As a first step the DDS for a linear case 
(when F is small) is subtracted from the DDS for a nonlinear ease. The result gives the stiffness 
nonlinear function $ versus perturbation frequency. Using this relationship, as well as the response 
amplitude versus perturbation frequency for high F , the plot of $ versus shaft eccentricity can be 
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obtained. Note that the response amplitude A represents a rotating radial eccentricity of the 
shaft. Assuming lateral symmetry, the rotating eccentricity corresponds to the unidirectional static 
eccentricity of the rotor. 

By a very similar method, the fluid film radial damping nonlinearity can be identified from 
the quadrature dynamic stiffness, provided that the nonlinearity of A is relatively small [17]. 

Note that the nonlinear effects in the fluid film may be caused and/or influenced by fluid 
injections and preswirls [21], as well as cavitations [26]. 

5. ROTOR STABILITY: CRITERION AND MARGINS OF STABILITY 

The rotorlfluid system dynamic stiffness components as functions of perturbation frequency 
can be used to predict the rotor stability and the stability margin. 

In very general terms, the threshold of stability occurs when the "zeros" of the direct and 
quadrature dynamic stiffnesses occur at the same perturbation/precession frequency. In terms of 
frequency, the stability margin is the lowest difference between the zeros of the direct and 
quadrature dynamic stiffnesses (Fig. 15). 

In actual applications, both components of the fluid force dynamic stiffness become modified 
by the rotor system parameters. An example is discussed below. 

Consider an isotropic rotor supported in one rigid and one fluid-lubricated bearing (Fig. 16). 
The rotor rotates at a constant speed fl and is perturbed by a nonsynchronous periodic circular 
forward (in the direction of rotation) sweep frequency force F J ~ ~ .  The model of the system is as 
follows: 

1 

ERTURBATION FREQUENCY W 

Figure 15. - Rotor stability prediction using 
dynamic stiffness graphs. 

Figure 16. - Rotorlbearing system model. 



where M, D, K are rotor generalized (modal) mass, damping, and stiffness, for the first lateral 
mode respect~vely. The rotor system response is circular: 

Z = A&Wt+ a) (I3) 

where the amplitude A and phase cr can be calculated when Eq. (13) is substituted in Eq. (12): 

From Eq. (14) the amplitude A and phase a of the forced response (13) are obtained as 
follows: 

The whirl resonance (Fig. 9) occurs when the quadrature part of the denominator of Eq. (15) 
is equal to zero, i.e., when 

The resonant amplitude and phase are 

The actual peak amplitude depends, however, on whether the force amplitude F is constant 
or dependent on frequency w. 

Eq. (16) indicates the leading-phase phenomenon for low frequency. At w = 0 the phase is 

> 0 cr = arctan - 
K+Ko 

For AS2 > 0 the response is, therefore, ahead of the exciting force. 

Eqs. (15 and (16) also show clearly that the whirl resonance occurs only if Q and w have the 
same rotationd directions (perturbation forward). If w < 0 (perturbation backward), then the 
quadrature resonance does not take place (compare with experimental results, Fig. 9). 

The system complex dynamic stiffness is obtained from Eq. (14) as the ratio F / ( A ~ ? .  The 
dynamic stiffness components are 



DDS = -Mu2 - Mt(wAfl)2 + K + KO 
QDS = D,W + D ( e x n )  

The system dynamic stiffness is, therefore, a combination of the rotor and fluid-related terms. 

The eigenvalue problem for Eq. (12) provides the following eigenvalues: 

where 

The stability criterion, i.e., the requirement that all eigenvalues have non-positive real parts 
is as follows: 

which yields the rotative speed threshold of stability: 

The natural frequency at the threshold of stability is 
M+M ,, :p J "+"O 

(this is the imaginary 

part of the eigenvalue). 

Inequality (20) can also be solved in another form: 

The direct dynamic stiffness (18) is equal to zero when 

The values wD1,, are called roots (zeros) of the direct dynamic stiffness. The quadrature dynamic 
stiffness (19) is equal to zero when 



where wo is the root (zero) of the quadrature dynamic stiffness. The stability criterion (21) can, 
therefork be written as 

which means, for rotor stability, the root of the system quadrature dynamic stiffness should occur 
between the two roots of the direct dynamic stiffness. 

The m a r ~ i n  of stabilitv, in terms of frequency, is defined as a minimum distance between 
roots: 

This margin of stability is "horizontal," thus expressed in terms of frequency (Fig. 15). An 
additional "vertical" margin of stability can also be defined. It expresses the direct and quadrature 
dynamic stiffness closeness to the threshold of stability (Fig. 15): 

min [DDS(at wQ), QDS(at wDJ, QDS(at w,,)] 

The stability margin (25) indicates which parameter of the system is most likely responsible 
for the inst ability. 

The threshold of stability occurs when both direct and quadrature dynamic stiffness have the 
same root, i.e., either wDl = w or w - 

Q Q - W ~ 2  
. It means that at the precession frequency when these 

equalities occur, the total complex dynamic stiffness of the system equals zero (see Eq. (15) in 
which the denominator is zero at this case). 

When the threshold of stability is exceeded, the vibration amplitude increases, most often 
ending up in a limit cycle self-excited vibrations, known as "whirl" and "whip," which are governed 
by the system nonlinearities [40, 411. 

The fluid force model presented in the dynamic stiffness form provides clear suggestions for 
st ability improvements of rotor/bearing/seal systems. Higher st ability margins result when 

r X decreases (provided that DM>D,Mf, which is almost always satisfied) 
r KO increases 
r D decreases (most often is, however, insensitive to stability) 
o Mf decreases 

K and D, increase 
M decreases 

A higher stability margin results also when the rotative speed fl decreases. Since variations 
of fl can involve other rotor dynamic effects, such as balance resonance which may interact with 
fluid effects [40], fl is not included in the above list. 

The most effective parameters for rotor stability control are a decrease of the fluid 
circumferential velocity ratio X and an increase of the fluid film radial stiffness KO. The first is 
widely known in "anti-swirl" applications [41-511. The second, i.e., the increase of KO results 
directly from an increase of shaft eccentricit and/or increase of the fluid pressure. The latter 
conclusion applies to externally pressurized i('hydrostatie") bearing and seal designs, which are 
widely known for their stability features. The most surprising result concerns fluid radial damping 
D . In most cases, an increase of D has no influence on stability, or has even a minor negative 



effect. (This effect can be compared to destabilizing action of rotor structural/ internal friction at 
high rotative speeds.) 

An interesting result is obtained if the classical Half Power Bandwidth method is applied to 
the whirl resonance. The classical amplification factor $ may be calculated as 

where wres is given by Eq. (17) and w*, w2 are frequencies corresponding to the phases equal to 

245' or amplitudes at Ares/Jt (3 dB level). For the whirl resonance the amplification becomes 
(Fig. 9): 

The first fraction of Eq. (26) is the classical relationship of half the inverse of the dam ing 
factor. The second fraction indicates the closeness of the direct resonance (zero of DDS to 

6 
P 

quadrature resonance. (Shaft damping and fluid inertia effect were omitted in Eq. 26) for clarity. 
The whirl resonant amplitude becomes significantly magnified if the rotative spee is close to 1/ 1 
times the rotor lateral mode natural frequency. This effect has often been observed experimentally 
[161. 

Finally, the dynamic stiffness format can be used to successfully predict rotor instability in 
case of nonlinear distortions of the basic parabola/straight lines. The general idea alwillys holds 
true: Instability occurs when both DDS and QDS have zeros at the same perturbation/pracession 
frequency. Nonlinear effects may cause dramatic changes in the shape of DDS and/or QDS, 
including multiple zero points. Theoretical studies [52] proved, for instance, that the low frequency 
rotating stall instability can be predicted using the method discussed above. 

Note that the relationships discussed in this chapter hold true for the considered example of 
one mode isotropic rotor/bearing or rotor/sed system. When more modes are taken into account, 
the relationships become more complex. 

6. APPLICATIONS OF THE FLUID FORCE MODEL 

By implementing the model identified by the authors into rotating machine dynamic 
equations, several significant and valuable results were obtained. The results of analysis conducted 
for one, two, and three mode models of rotors are very encouraging [36,40,41,42,53,54]. The model 
allowed for explanation of new phenomena, such as the recently observed second mode whirl [53] 
and second mode whip [54]. The generalization from two and three modes to "n" modes is obvious 
[53]. All swirl preventive measures (such as anti-swirl, preswirl, swirl brakes, fluid injections) can 
also be easily included in the models [41,42], and thus would give designers very good insight into 
the expected efficiency of such devices for stability of rotating machines. 

7. FLUID FORCE MODEL ADJUSTMENTS AND GENERALIZATIONS 

The model of fluid force (9) identified by the authors, using force input perturbation testing, 
is certainly open to further developments. One adjustment, namely the addition of nonlinear terms, 



was discussed in Section 4. There exist also some other possible modifications to the model. These 
include: 

(i) Tangential components. In the original form (7), the fluid force was assumed to have 
radial components only. There is a high probability, especially when the shaft eccentricity 
increases, that the force components are not exactly radial, but also have a tangential part. FOP 
instance the stiffness force in (7) may require an addition: the term Koz, should be replaced by 
(KO-jKt)z, where Kt is tangential stiffness. 

(ii) Two fluid circumferential velocity ratios. In the model (7), it was assumed that a l l  
components of the fluid force rotate at the same angular velocity Afl. It might be necessary to 
introduce two different ratios XI, A2, one for the fluid inertia force, the other for the damping force. 
Thus, the adjusted model (9) will contain the terms: 

where Alfl and X2fl are angular velocities at which inertia and damping forces rotate 
correspondingly. Two different X ratios seem to be required in order to adequately identify the 
fluid force model in pumps (see Figs. 4 and 6 [22]). 

(iii) Higher order terms. Some results of perturbation testing [26] suggest that the fluid 
force contains terms of order higher than two. In particular a third order term (jerk) should be 
included. With an assumed additional value of the corresponding fluid circumferential velocity 
ratio, Xj ,  the model (9).might, therefore, be completed by the following term: 

where J can be considered as a complex parameter, containing radial and tangential components. 

(iv) Nonsymmetric fluid force. Most results of the perturbation testing have been obtained 
for symmetric cases: perturbation around the shaft centered position. When the shaft is statically 
displaced to higher eccentricity, the flow conditions are certainly modified. The fluid force then 
contains terms of nonsymmetric nature [13,14]. In particular, the nonlinear terms identified for 
symmetric cases as simple functions of radial eccentricity, may require adjustments. More research 
is required in this area. 

8. CONCLUDING REMARKS 

This paper discusses the use of nonsynchronous swept frequency harmonic rotating input 
perturbation techniques for identification of the fluid force model in lightly loaded 
rotor/bearing/seal systems. Two basic methods differ by a choice of input functions: either as a 
force, as used by the authors and a few other researchers [1,2,4-6,8-10,13-171, or as a displacement 
7,11,12,18-261. The measured output responses are displacements or forces respectively. While b 0th methods provide the system dynamic stiffness characteristics, the main difference between 

these two methods consists in data generation, acquisition, and processing; thus they provide 
different levels of signal-to-noise ratios. A significant contributor to noise is input/output phase 
readings. The first method provides a higher accuracy (around &0.3%) than the second method, 
especially in phase measurements. An estimated error of the first method final results is lower than 
*3%. An application of both methods to the same system (if possible) might ultimately provide the 
best identification data. 



The results, in terms of the system dynamic stiffness components obtained from both 
methods, are very similar, as should be expected. Based on results of hundreds of tests obtained 
over the past eight years, the authors have provided a consistent mechanical interpretation of the 
results, and proposed an improved model of fluid forces in lightly loaded bearings and seals 36 . 6 1 The model includes the fluid circumferential average velocity ratio as a function of s a t 
eccentricity, instead of a constant value 112 as in the classical models. (In some recent analyses the 
assumption about the constant 112 ratio starts gradually fading away.) The bearinglseal 
coefficients can easily be obtained from the proposed model as particular cases. The application of 
the improved fluid force model in rotor/bearing/seal systems yields results which stand in a very 
good agreement with observed and documented dynamic phenomena, such as whirl, whip, and 
higher mode whirl whip vibrations [36,40,41,53,54]. The model allows for an improved prediction I of the rotor stabi ity thresholds and stability mar 'ns, as well as quantifying stability control 
measures. Some possible further adjustments of the I? uid force model are also discussed. The latter 
would require more, well coordinated, experimental research. 

The database resulting from different types of perturbation methodologies applied to 
rotor/bearing/seal/pumg systems is now quite rich, including data from CalTech, Mitsubishi, 
Sulzer Brothers Ltd., Universities of Kobe, Tokyo, Osaka, Kaiserslautern, Texas A&M, and Case 
Western. I t  will be very useful to reduce the acquired experimental, as well as 
analytical/numerical, data in the form proposed in [55]. It will then become clearer what 
adjustments the model would require. It will also indicate directions for further research. 
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NOTATION 

A Amplitude of rotor vibration 
D,K, ,Mf Fluid radial damping, stiffness, and inertia effect respectively 
D,,K,M Rotor generalized (modal) damping, stiffness, and mass respectively 
DDS, QDS Direct and quadrature dynamic stiffness components respectively 
F Force amplitude 
Fr, Ft Radial and tangential force components 
s Eigenvalue 
t Time 
z = x+jy Rotor displacement in stationary coordinates 
zr = xr+jyr Rotor displacement in rotating coordinates 
a! Force/displacement phase 
- 
K Complex dynamic stiffness 
X Fluid circumferential average velocity ratio 
w Perturbation/precession frequency 
a Rotative speed 




