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CHAPTER I
INTRODUCTION i

Recent years have seen a dramatic increase in the use of computational
field simulation (CFS) for the solution of physical field problems which can be
modeled By systéms of parfiai differential equations (PDEs). At pfeseﬁt, com-
putational fluid dynamics (CFD) is the most widely applied and most thor-
oughly understood area of CFS. Current applications in CFD include flow so-
lutions about bodies composed of complex geometrical shapes including
sculpted surfaces. Correct modeling of physical phenomena in CFD requires
the use of an accurate description of the geometry involved in the problem.
Therefore, discretized curves and surfaces representing the geometry of a
physical field problem must be as accurate as possible. .

Geometry data for CFD problems are often given as a set of digitized
data points or as surface patches generated by computer aided drafting and
design (CADD) software. In either case, the geometrical entities of interest
are seldom analytical curves or surfaces. Digitized data sets usually contain
errors resulting from the digitizing process. These errors manifest themselves
as dimples, bumps, or ridges on the surface. CADD data bases may also con-
tain errors due to lack of second or third derivative continuity at surface patch
interfaces, again resulting in bumps or ridges. These errors are usually quite
small and are not easily detected unless the surface or curve is plotted at full
scale. However, it is not always practical or possible to examine a full scale

plot or model since producing them is both expensive and time consuming.
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Therefore, a method of interrogation is needed which will detect small flaws
without using a full scale representation of the geometry involved. After an
irregularity has been detected, it is then desirable to develop a means to cor-
rect the error without significantly perturbing the original geometry.

In order to effectively interrogate a geometric entity, a quantity describ-
ing the qualities sought must be defined. This quantity can then be calcu-
lated at various locations on the geometry and its quality assessed. Several
means of interrqgation have been suggested. For detectiqn'of irregularities in
surfaces, Kaufmann and Klass [1] use reflection lines. Beck [2] uses a variety
of methods including contour plots, shaded images, and maps of principal cur-
vature. Hoschek [3] uses k—orthotomic curves for interrogation of planar
curves, and Renz [4] uses second divided differences. Farin suggests the use of
curvature plots (Refs. [61,[61,[7]) since they are highly sensitive to changes in
curve shape and they allow easy detection and location of inflection points.
However, signed curvature applies only to planar curves and is, by definition,
nonnegative for space curves; as a more general approach, third derivative
may be used (Ref [8]).

Removal of irregularities in a curve or surface basically involves
smoothing or fairing the geometry. Many smoothing techniques have been put
forth. Smoothing of Bezier curves and surfaces is discussed by Hoschek[3].
Kjellander provides a method for smoothing cubic spline curves in Ref[9], and
bicubic parametric surface patches are discussed by Kjellander in Ref[10]. A
method for curves composed of digitized data points is given by Renz[4]. Sev-
eral methods for smoothing B—spline curves are presented by Klass[1], and by
Farin[6],[6],[7],[8],[11]. It should be noted that curve and surface smoothers

depend on the geometry model used.




Many mathematical methods of geometry description are available and
they all fall into two major categories, interpolation methods and approxima-
tion methods. Interpolation techniques are characterized by the generated
curve or surface passing through the physical data peints which describe the
object. Interpolation schemes include Lagrange and Hermite interpolation
[71,[12],13],[14],[15], Ferguson patches[13], Coon’s patches[13], and transfi-
nite interpolation[14], as well as polynomial splines[7]?[12],[13],[15] and ten-
sion splines[12]. Approximation techniques are somewhat different. Instead
of using points that lie on the object in question, they use a set of control
points which, in general, do not lie on the curve or surface being described.
This may lead to some misunderstanding. It should be noted that approxima-
tion techniques represent geometry as accurately as do interpolation methods
( in some cases, more accurately ). The difference lies in the fact that these
schemes store the object in question using a set of control points which do not
lie on the object. The two most widely used approximation techniques are Bez-
ier curves and surfaces and B—splines. Excellent treatment of Bezier methods
is given in Ref[7]; other works on Bezier methods include

Refs[12],[13]1,[15],[16]. B-splines are covered in Refs[7],[12],[17]1,[16].

- Smoothing schemes based on polynomial splines' or Bezier curves re-

quire that the entire curve or surface be modified. This is due to the fact that
polynomial splines do not exhibit the property of local control; Bezier curves
do not have this property either. However B-splines do exhibit local control
and allow the development of fairing algorithms which modify a curve or sur-
face only in the region immediately surrounding the affected control points.

Because B-splines exhibit the property of local control, and thus allow local

smoothing algorithms to be developed, the geometry model used here will be



based on the B—-spline representation. B—splines have already been incorpo-
rated into the EAGLE code (Ref[18]), thus making implementation of a B—
spline smoother a logical extension of existing capabilities.

This work is organized as follows: A brief discussion of various curve
modeling techniques is given in Chapter II. Chapter 1II is devoted to surface
generation, and Chapter IV presents the interrogation and smoothing algo-
rithms. Chapter V cont_ains results obtained using the interrogation and

smoothing routines.




CHAPTER II
CURVES

Many different kinds of geometry models exist. The two major catego-
ries are interpolation methods and approximation methods. Within each of
thoée i:ategories are methods which produce single curve.or surface patclies,
as well as schemes which result in a piecewise description of the geometry.
While methods resulting in single curve or surface patches are simple and pro-
duce smoothly varying geometric entities, they lack the ﬂexibility necesséry to
describe complex shapes. Polynomial segments of the degree necessary for de-
scription of these complex geometries exhibit unwanted oscillations. High de-
gree Bezier techniques eliminate the wiggles, however they are computation-
ally too expensive to be practical in real-world applications Refl7]. In
addition, single Bezier curves do not have the property of local control. Piece-
wise techniques, on the other hand, are theoretically and conceptually more
difficult, however they allow complex shapes to be represented and are compu-
i:ationa]ly more tractable than high degree Bezier curves. Probably the most
general of the piecewise or spline techniques is the non—uniform rational B—
spline[7].

For engineering purposes, single cur\ie segments higher than degree
three need not be considered. This is because cubic curve segments are true
three dimensional curves. Since engineering efforts are restricted to geome-
tries of three dimensions, the use of higher degree cuﬁes would simply intro-

duce unneeded complexity and computational requirements.
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The Parametric Cubic Curve

Mortenson({16] defines a parametric cubic ( PC ) curve as a continuous,

single—valued mathematical function of the form:

x = x(t) y = y() z = z(1) .

The parameter t ranges from t=0 at the start of the curve to t=1 at the end. In
vector notation, the curve is denoted as P(t) where the vector P has the compo-
nents x, y, and z in three dimensions. Derivatives of P are taken with respect

to the parametric variable t as follows.

() = PO uepy = EPQ)
P dt P dr?
Higher derivatives are calculated in a similar fashion, however for PC curves,
derivatives higher than third order are meaningless because they are zero.
Algebraically, a PC curve can be expressed as a cubic polynomial in the vari-

able t. Equation (2.1) is the algebraic form of a PC curve. Note that the coeffi-

cients of the t terms are vectors.

P(t) = a;® + a,* + a;t + a, ' (2.1)

A more physical definition of the PC curve is offered by the geometric form.
This form is derived by taking the first derivative of Equation (2.1) with re-
spect to the t and solving for the tangent vectors of the curve at the ends, PX0)
and PY(1). Then solving Equation (2.1) for the end points of the curve, P(0)
and P(1). The results are given as Equations (2.2). If Equations (2.2) are
solved for the algebraic coefficients a, Equations (2.8) result. Substituting
these back into Equation (2.1) and grouping the result according to vectors P




and Pt results in Equation (2.4:)

PO) = a,
P(l)=ay,+a,+a,+a; -

(1)=agt+ta; +ta, ta, 2.2)
P(0) = a,
P/(1) = a, + 2a, + 3a,
a, = P(0)
a, = P0) (2.3)
a, = — 3P(0) + 3P(1) — 2P(0) — PX(1)
a; = 2P(0) — 2P(1) + P(0) + PX(1)
P(t) = (2 — 32 + 1)P(0) + (— 222 + 3:22)P(1) + (2 — 22 + HPY(0)

+ (P = AP(D) (2.4)

The coefficients of the P and P! terms can be interpreted as blending func-
tions. These functions relate the physical curve to the parametric space of the
curve. If the coefficients of P(0), P(1), P%0), and PY1) are denoted Fy, Fg, F3,
and F4 respectively, then Equation (2.4) becomes

P(t) = F,P(0) + F,P(1) + F,P'(0) + F,P'(1), (2.5)

where

Fi=20-3%+1
F,= -2 + 3¢
Fo=p-20+1
F,=18-1¢.




In matrix form,

P
P(z)=[z3 r2z1] 2 -2 1 11|y
-3 3 -2 —1 1 - (2 6)
0 0 1 of]|P - '
Bezier Curves
The de Casteljau Algorithm

The de Casteljau algorithm generates an n—th degree polynomial curve
by repeated linear interpolation. The algorithm is stated as follows.

Given points by,...,b, in 3 space and a real number t,

r=1,...,
B = (1 - 08710 + B 10) {iz 0.n—r @
where
o) = b, .

The final step in the algorithm ( with r=n and i=0 ) will yield the point on the
curve at the parameter value t. Curves produced in this way are Bezier curves
and have several important properties, some of which are discussed in Ref [7].
These properties include:

» Affine invariance.
» Invariance under affine parameter transformations.
» Convex hull property.

» Endpoint interpolation.




A graphical interpretation of the de Casteljau algorithm for the cubic

case 1s shown in Figure 2.1 .

Figure 2.1 The de Casteljau algorithm for n=3.

Listed below are two examples of expansions of the de Casteljau algorithm for

the quadratic and the cubic cases.

n=2
bi(n = (1 — Dby + tb,
bi(n = (1 — b, + b,

b2(H) = (1 — Dby + 1b}

Substituting the first two Equations into the second, a closed formula results:




b3 = (1 — 0%by + 2¢(1 — Db, + b,

n=3

bl(H) = (1 — nby + 1b,
bl =1 - 0b, +1b,
bi(0) = (1 —nb, +.1b,

b3(1) = (1 — nbj + tb]
b2(1) = (1 — 1)b] + tb]

b3(1) = (1 — b} + tb}

Performing a substitution process similar to that for the quadratic case results

in Equation (2.8):
b3(1) = (1 — 1°by + 31(1 — )%b, + 31*(1 — Db, + b, (2.8)

Bernstein Polynomials

Bernstein polynomials are defined explicitly by

BY®) = C(n,d)i'(1 — n"~* tE€100.1] (2.9)

Where

Cn,i) = (’:) = {i!(n - " € [0,n]

0 , otherwise.
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A recursion formula for the Bernstein polynomials can be derived as follows

and the result is given as Equation (2.10):

By (0 = (G ) — o
_ (n7 l)tl(l . t)n—i + (’Z: ll)tt(l _ t)n'—'i
= (1=1)B" ')+ ¢t B}t - r€[0.1] (2.10)

The results of evaluating Equation (2.9) for the cases n=2 and n=3 are
given by Equations (2.11) and (2.12) respectively. These correspond to the

quadratic case and cubic case respectively:

BX0) = (1~—1)?

Bty =21 (1—1) (2.11)
BX(1) = P

By =(1—1)

Bity=3t(1~-1)? (2.12)
By =37 (1-1)

B =1

Some properties of Bernstein polynomials, from Refs [19], [20], [21], include
the partition of unity, the positive property, endpoint interpolation, the recur-
sive property, and symmetry:

» Partition of Unity: see Equation (2.13).

» Positive Property: For 0 < t < 1 Bernstein polynomials are positive.

» Endpoint Interpolation

» Recursive Property: see Equation (2.10).
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> BX =1 (2.13)
i=0
Proof: i
o LI . n
1= @+ 1—0)= Z(i)t‘(l — " = B
i=0 ~ i=0
B}O®) =1 iff i=0
Bil)=1 iff i=n
» Symmetr-y:. From the symmetry property of the binomial coefficients,
C(n,n—i)=0C(n, i),
B"_(t)=C(n, n—i)" " (1—1t)
=C(ni)1—1)[1-(1—-1)]""
=Bi(1-1). (2.14)

Derivatives of Bernstein polynomials are determined as follows:

L gy =4 Cini) (1 - 1)
=C,D it W (1—¢t) i=(n—-i)d(1—1r)i71]

i n! [ti-l(l_t)n—i]_(n—i)(n!)[ti(l__t)n—i—l]

IR M (n—1)
_ H . . _ . '
eessrey ACERIPA R e v ST ORI i
2B (1)=nlBZ (1)=BI"' (1)] - (215)




Bezier Curves Using Bernstein Polynomials
The Bezier curve is a simple approximation technique which takes the

form of Equation (2.16):

P() = i bB(1) 1 € [0,1] (2.16)

i=0
Here the b; are the control vertices of the curve, and the B(t) are the Bernstein
polynomials. A word about the subscﬁpt hbtatidr_l in the above Equations is
in order. Since the Bernstein polynomials depend on the number of control
vertices used in the curve description, the double subscript notation is neces-
sary. The subscript n denotes the degree of the curve ( i.e. n=2 for quadratic,
n=3 for cubic, etc. ). The subscript i1 indicates the control vertex associated
with the particular Bernstein polynomial. If the Bezier formulation of Equa-
tion (2.16) is expanded for the cubic case, Equation (2.17) results:

P@) = (1 — 1)°by + 31(1 — 0%b; + 37(1 — 1)b, + b, (2.17)

Equation (2.17) was obtained directly using the Bernstein polynomials, how-
ever, Bezier curves were first introduced in the form of a recursion formula
( the de Casteljau algorithm ). If one compares Equation (2.17) with Equation
(2.8), which was obtained from the de Casteljau algorithm with n=3, they are
the same. If Equation (2.17) is cast in the form of a PC curve, the blending

functions F now become

F,=01-1°
F, =311 —#)?
Fy =321 -1

— 43
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and Equation (2.17) becomes

P(t) = Fiby + Fyb, + F3b, + F b, (2.18)

or in matrix form,

P(t)=[t3 2t 1] ~1 3 -3 1]]%
3 -6 3 0f|h (2.19)
-3 3 0 0f|s, “L19)

1 0 0 ol

3

Because the Bernstein polynomials form a basis for Bezier curves, Bezi-
er curves inherit several properties intrinsic to the Bernstein polynomials.
The following is a partial list. Farin[7] provides a more complete listing.

» Affine invariance. Because of Equation (2.13), Bezier curves are in-
variant under affine maps.

» Invariance under affine parameter transformations.

» Convex hull property. Because of the positive property of the Bern-
stein polynomials. A

» Endpoint interpolation.

» Symmetry. Due to Equation (2.14). Algebraically, this is stated as

Equation (2.20):
> bBN:) = > b, B - 1) (2.20)
i=0 i=0

Derivatives of Bezier Curves
From Equations (2.15) and (2.16) the derivative of a Bezier curve can be

determined:
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L p(t) = nZ()( BINt) = BITN(1)) b,

This can be simplified to yield

n—1

4 p(1)=ny (4b) BIT(1) . (2.21)
i=0
Where
4b; = b;.; — b

Repeated application of Equation (2.21) produces a general formula for deter-
mining higher order derivatives of a Bezier curve. First, the forward differ-
ence operator d is generalized in Equation (2.22). The formula for the r—th

. derivative of a Bezier curve is given in Equation (2.23).

A7 =Y CCrk )= 1) *byy, (2.22)
k=1
4 | n—-r
. n: -
42 b1y = (—”T)!Z)A by BiT(1) (2.23)
=

Of particular interest are the derivatives at the ends of the curve. These cor-
respond to t=0 and t=1. Evaluating Equation (2.23) at t=0 and t=1, and recal-
ling the endpoint interpolation property of Bernstein polynomials, Equations
(2.24) and (2.25) result:




d’ .n _ ! r

a7 D00 = 574 "o (2.24)
4l pnpy=_nl___,rp (2.25)
dt’ (n—r)! ner

Subdivision of a Bezier Curve
| Subdiviéioxi is the procesé by which a single Bezier curve of degréé n,
defined over the interval t€[0,1] is divided into two curves of the same degree
defined over the intervals t€[0,a] and t€[a,1]. The following development is
due to Farin [7]. .

The first curve segment ( t=0 to t= a ) will be denoted as a™ and will
have control vertices ay,...,a,,. A local parameter v will be introduced such that
v = t/a; therefore, as v varies from 0 to 1, t varies from 0 to a. Since the curve
segment a® is part of the same curve segment as b“,‘all of their derivatives at t

= v = 0 must agree:

G P(0)=£5a%0); r=0.n : (2.26)

From Equation (2.23), the derivatives in Equation (2.26) depend only on the
control points ay,...,ar and by,...,b,. Now, if these two sets of r+1 points are tak-
en as control points of two degree—r Bezier curves, then then two curves are

the same for all v and t because of Equation (2.26):

ag(v) = by(?) (2.27)

Finally, from Equation (2.27) with v=1 and t=a,




- aj(1) = by(a) (2.28)

The left hand side of Equation (2.28) is actually a, ( the control points of the

first Bezier curve segment ). Therefore,

a;=bi(v) . | | (2.29)

Equation (2.29) is known as the subdivision formula for Bezier curves. This
allows the de Casteljau algorithm to compute the control i)olygon for the curve
segment corresponding to the interval [0,a]. Because of the symmetry property
given by Equation (2.20), the polygon of the curve segment corresponding to

the interval [a,1] is composed of the vertices b£,~ j

Parametric Spline Curves

The spline curve derives its name from a drafting tool called a spline.
This is a thin piece of wood, metal, or some other flexible material which is
made to pass through a series of established control points on the drawing of
interest. While the spline is held in place by weights, the designer uses it as a
guide to draw a smooth curve passing through the designated points.

The mathematical spline is a smooth piecewise polynomial curve
which can be drawn through any set of points. The degrée of the spline is de-
termined by the degree of the curves which make up each span of the spline.
There should be no kinks or rapid changes in curvature in the spline curve.
The spline curve will be denoted by s(u) where u is the global parameter of the

spline.‘ On each span of the spline, the curve will be written in terms a local
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parameter t. Therefore, on an particular span, the spline will be a function of

the local parameter t so that s(u) can be written as

x = x(t) y = 1) z=2z().

The locations in parametric space where the spans of the spliné join are
known as knots. Derivative continuity is prescribed at the knots. Quadratic
.splines are only capable of first derivative continuity ( Cl__), while cubic splines
may be C2. The set of knot values for the entire spline is called the knot vector
and will be denoted by U. Individual components of the knot vector are given

by u; where i denotes the location of the knot within the vector.

Global and Local Parameters
It will be useful to define two parameters for a spline curve, a global
parameter u and a local parameter t. The global parameter u varies continu-
ously over the entire spline curve, while the local parameter t is constrained to
the interval [0,1] on each span of the spline. The relation between the global
and local parameters is illustrated by Figure 2.2 and Equation (2.30).
f= i (2.30)

Uiy — Y

It is easy to confirm that over any parametric interval [u;,uj41], t will vary over
the interval [0,1]. Thus, the spline curve can now be written as s;(t) where the

1 denotes the i—th segment of the spline, and s(u) = sj(t).




Figure 2.2 Interplay between global and local parameters for a composite
curve

The Cubic Polynomial Spline
The cubic polynomial spline splines a set of data points, x;, with the pa-

rameter u. On any interval [u;j,uj41], the spline curve s(u) = s;(t) is given by

s{0) = 2l = 07 + Loy + (= ge)(L = D) + (i — e ). (2.31)
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The ¢; in Equation (2.31) are found by the tridiagonal system given below in

Equation (2.32).
Ciogtac+ ey =6(x 0y — 2x;+ x;_ ) (2.32)

Since the solution of Equation (2.32) is necessary to compute the spline, any
change in the data points x; results in changing the entire spline curve. This
means that the polynomiﬂ ép]ine lacks the property of local control. |

The ends of the spline require some special treatment. Several types of
end conditions can be prescribed including zero curvature or natural end con-
ditions, constant curvature or quadratic end conditions, and specified slopes.
Details on the various types of end conditions can be found in Ref[22].

Perﬁaps the most widely used end condition type is the quadratic end
condition. It will be used here as an example. In this case, Equation (2.32) is

replaced by

Cnr—1 = Xnp— 2Xyy_ + Xy o

for i = 2 and i = NI where NI is the number of data points on the spline curve.
The values of ¢ for the first and last points are determined by extrapolation as

follows:

€, = 2¢,— ¢4

Cnr = 20N 1~ Cnj—



Composite Bezier Curves

As mentioned earlier, single Bezier curves are not capable of describing

complex shapes unless they are of prohibitively high degree. However, the use
of composite Bezier curves will allow complex shapes to be modeled while
keeping computational requirements within reason. In addition, the concepts
of quadratic and cubic B—spline curves can be developed directly from compos-
ite Bezier curves. The following development is based on that of Farin [7] and

uses his notation.

Coﬁtinuity at Junction Points

Since individual Bezier curves are polynomials, they are continuous in
all derivatives. However, for composite Bezier curves, continuity at the junc-
tion points must be prescribed. The cases of C1 and C? continuity conditions
at these junction points provide a basié for the development of quadratic and
cubic B—spline curves respectively.

Let two Bezier curves s, and s; be described by control polygons
by,...,bn and by,...,boy respectivel& and defined over the intervals [ug,u;] and
[uj,ugl. If these curves are the product of a subdivision process, this means
that the curves s, and s; are part of a single polynomial curve defined over the
interval [ug,ug]. Therefore the control vertices of the two curves are related by

Equation (2.33):

b,y; =b_(n, i=0,..,n (2.33)

where

Uy — Uy

t=-=——2
Uy = Yy




Since the two n—th degree Bezier curves are part of one n—-th degree

polynomial, the two curves must agree in all derivatives up to the n—th deriva-
tive. From Equation (2.23), the n—th derivative of a Bezier curve depends only
on the surrounding n control vertices. Therefore, using that knowledge and
Equation (2.33), the C* condition for the junction point of two Bezier curves
can be constructed.

" Given two Bezier curves defined over the 'intervals [ug,u;] and -

[u;,ug] and by the control polygons b,,....b, and b,,...,bs, respec-
tively. They are r times continuously differentiable at uy iff

b, ;=b_(0, i=0,.,r ; (2.34)
where
e S
r= Uy = uy -

The C* condition can also be formulated by equating derivatives at the junc-
tion point. From Equation (2.23),

i i
1) 4i N Y ;=
(AO)A b,_; (AI)A by, i=0,..r. (2.35)

Note that the derivatives here are with respect to the global pérameter u and

not the local parameter t, therefore the chain rule applies.

C! Continuity
From Equation (2.35) withi=0,1,

bn=bn

and
A4,4b,_, = A44b, : (2.36)

or, expanding the second equation,

(ty — u)(bn — by_y) = (U — ug)bpyq — by)
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As can be seen from Equation (2.36), the three points by_1, by, b+ must be
colinear; however,-this is not sufficient to guarantee Cl continuity. The addi-
tional requirement is that the three points be in the ratio 8g: d;. This is illus-

trated in Figuré 2.3 . The C! condition can be used to_determine a formula for

Figure 2.3 The C! condition for composite Bezier
curves.

computing the location of the junction point by, given the two surrounding con-
trol vertices b,_3 and by4;. This formula is given by Equation (2.37) and will
be used shortly to develop the concept of a quadratic B—spline curve.

4
= mbn—l + AT_T_QA—lerl (2.37)

or

C2? Continuity
If a given curve is C! at the knot u; then from Equation (2.35), the addi-
tional requirement for C2 continuity is that an auxiliary point d be uniquely
defined by Equations (2.38) and (2.39).
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®
bn—l = (1 - tl)bn—2 + tld (238)
b,y =0 —1)d+ by, (2.39)
| ® where
U, — llo
S m =
| Note that t; is actually the local parameter of u; with respect to the interval
[ug,ugl. The polygon b,_o, d, by,o describes a single quadratic polynomial over
|
the interval [ug,us). Figure 2.4 shows a curve that is C? at the junction point
@
b,:
®
o
® . .
Figure 2.4 The C? condition for two degree—n Bezier curves.
® B—spline Curves
Quadratic B—spline Curves from Composite Quadratic Bezier Curves
If some quadratic spline curve s defined over the interval [ug,uy] is as-

sumed to be C! then the spline curve can be completely defined by the knot

vector u and the inner Bezier points by, by, bs,..., bgii1,...,bor, 1, bor.. The addi-
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tional points ( junction points ) required to define the composite quadratic Bez-
ier curve can be determined by the Cl condition given in Equation (2.36).
Solving Equation (2.36) for the junction point by; in terms of the inner Bezier
points, Equation (2.40) results: -

4, 4,
bu = g rabu T A A (2.40)

The polygon by, by, bas,..., bois1,--.,b21,-1, b, can now be called the B—
spline control polygon of the spline curve s. This polygon, along the its knot
vector u, completely describe the quadratic spline curve s. To indicate that the
control polygon now denotes a B—spline curve, the control polygon will be de-
noted by d, do, dy,...,d1 1, di. Figure 2.5 illustrates the relationship be-
tween the B—spline control polygon and the Bezier control net for the quadrat-

ic case. Note that the polygon for the curve is stored as follows:

d_, = b
d, = by

With the inner vertices given by

dl=b21+l i=0,...L_1 .

C2 Cubic B-spline Curve from Composite Cubic Bezier Curve
Consider a cubic spline curve defined over the knot sequence [ug,uy]. In
order for the curve to be Cl, Equation (2.40) must hold. For the cubic case, the

C! condition is given by Equation (2.41).
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Figure 2.6 Quadratic B-spline curve with its Bezier control polygon.

The additional condition for C2 continuity, previously given as Equations

(2.38) and (2.39), is now given by Equations (2.42) and (2.43):

_ 4,; 4,4
bs; A, +Aib3i—1 +A——i—l +Al_b3i+l (2.41)
4, + 4 4, ,
Pai-2 = At 4, + aidi-l +Ai—-2 +d4;, + Aidi (2.42)
_ 4, 4, ,+4,_,
by, _Ai—2 +4,_, +A‘_di—-1 +Ai—2 +4,_, +Aidi (2.43)

The ends of the spline are treated such that the first and last control vertices

- of the spline are coincident with the first and last points of the curve respec-
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PY tively. Equations (2.41) through (2.43) are valid for i=1,....L—1. For the end
points of the curve, Equations (2.44) are used.
® by=4d_, ]
b, = d,
_ 4 4,
2= For 4, % A w4,
4,_ _ (2.44)
® Bar o = - L—1 d . +- L=2 4 .
=2 A4, ,+4,_, L=t Ay _,+4, L
by, _, =4,
by =d;
@
o
o
®
®

dr.1=bsy,

Figure 2.6 Cubic B-spline curve with its control vertices and Bezier
points.
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The B—Spline Basis

Further theoretical development of B—splines requires defining them in
more analytical terms. Equation (2.45) is the Cox, de Boor recursion for B—
spline curves. This formula can be used to calculate B—spline basis functions.

for splines of any degree. When Equation (2.45) is expanded for the cubic

Niw) = g ——=3 N7 W) + g = Nl @) (2.45)
with
1 if u;_{=u<uy
N?(u) o {O else

case, Equation (2.46) results. Using Equation (2.45), the equation of a B—
spline curve for a given set of control vertices and a given knot vector is given
as Equation (2.47) where L is the number of interval on the spline. Note that
Equations (2.45) and (2.47) are given in terms of the global parameter u of the
spline. If these equations are cast in terms of the local coordinate t of the
curve instead of the global coordinate u, then Equation (2.47) becomes Equa-
tion (2.48) where t is the local coordinate of the ith segment of the curve and is
given by Equation (2.30). For the case of a cubic curve, the matrix form of
Equation (2.48) is given by Equation (2.49). Where M3 is a 3x3 matrix given
by Equation (2.50).
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(u — ui)3

u € fu;u; ]
(3 = 1) (U — ;) (Uipq —Uy) or it

 —uy)?

(i3 = uy) Uiy —u) Uiy —uy)

. uE U q,u ]
= Ui 1) Wipq— )

(00 — ) Wiq = Uipn) Wpq ~ Uigd) Wipq = Uiny)

+

U3 — w3 (U4 —u;)

ipz = u) Wiz —uy) Wipz = U40) Mips — Uigy)

. uelu. u .
(u1+4 __u)3 [ I+2’ l+3]

04 = Uigy) Mg —Uig9) Wipg = U;L3)

+

Uj4q — u)?

@gq = Uipr) Wips = Uing) WUipy — Uiya)

u€ i, q,u;y]

0w fuiui (2.46)
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L+n—1

Pu)= > dN'(). | (2.47)
i=0
i+n—1 -

P(= > AN (1) . (2.48)
j=i—1

i

d

| d

P =[1 1 28| M, (2.49)
d

i—1] -
it1]

i+2

Dérivatives of B—spline Curves

For purposes of interrogation and smoothing, the derivatives of a curve
should be calculated with respect to the curves global parameter. However,
Equation (2.48) and, in particular, Equation (2.49) are given in terms of a local
parameter. This requires the use of the chain rule in order to determine deriv-
atives with respect to the global parameter u of the curve. Consider a spline
curve si(t) where t is the local parameter of the curve in the interval [u;u;4].
The first derivative of the curve with respect to the global parameter u is given
by Equation (2.61). Higher order derivatives are given by Equations (2.52)
and (2.53).

For the case of cubic B—spline curves defined by Equation (2.49), first,
second, and third derivatives are given by Equations (2.64), (2.656), and (2.56)

respectively.
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®
My Myy Mlyy Py
My = My My My My (2.50)
o My Mgy Mgz My -
My Mapy Myz My
.. = @ — uj 1)
° U g = ¥_9) @y — % y) M = 1= (my +mpy)
my = — 3my my = = (my +my)
my = 3my My = — (myy +my+my,)
. nl4l = r"ll n114 =0
(u;_y — u;)>
ny, = my, =0
B Wi_q = Uipg) (g — Ujyy)
-0
. m = 3(ui+l B ui) (ui - ui-—l) ”134 5
= (Ui_q = Uipp) Wi — U q) my = (49 — 1))
3, — u)? U = upp3) (U — Uyyg)
My, = i+1 i
h (;_y = Uj49) (Ui_q = Ui q)
o e “i)z
[ 1 N 1 . 1
Uiy = Uipy) Wiey — Uiyr) (@ — Ui) (4 — u43) Mgz — Uiy) (iyy — w)
o
ds(u) _ds(f)gr _ 1ds[)
du ~ dr du A, dt (2.51)
® d2s(u) _ 1 4d*st)
duz Ay as (2.52)
I3
Bs@) _ 1 Ps0) (2.53)
® d? )} df
® s




d - 1 2
Lp1) _Z_[o 12 32| M,

d? _ 1
2P0 = ()0 0 2 6] M,

a3 - ¢l
EZEPi(t) = (Z)3[O 0 0 6]M,

{

di+1
di+2

di_y
i

diyy

diir
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(2.64)

(2.5b)

(2.566)




 CHAPTER III .
SURFACES

Curves are defined in terms of a one—dimensional parameter space with

global parameter u and local pé.rametér t. Surfaces, however, are defined in

terms of a two—dimensional parameter space with global parameters u and v
and local parameters s and t. There are many ways to represent surface

patches, however, this work will concentrate only on the tensor product form.

Bicubic Hermite Surface Patches
Surface patches of the kind found in the early versions of the EAGLE

surface code are bicubic Hermite patches. These are given by equation (8.1):

P(s,) = B(s)HB™(1) 38.1)

where

r(0,0) r(1,0) r,0,0) r,(1,0)
r(0,1) r(1,1) r, (0,1) r,(1,1)
H = |,.0,0) r(1,0) ru(0,0) ru(1,0)
r,(0, 1) ry(1,1) r,(0,1) ry(1,1)

1-3a?+ 2a°
3a2_2a3
B(a) = o — 2% + a® , a = st
—a?+a?

33
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Here, s and t are local coordinates of the spline and the global coordinates are
taken as the integer indices of the grid point. The parametric space of the

spline is shown in figure Figure 3.1 .

N1,N2
0,1 1,1
\ & L 7
v ]
l t
@ @
0,0 1,0
1.1 —_—S
u

Figure 3.1 Parametric space of a bicubic Hermite surface pétch

Tensor Product Bezier Surfaces

Recent versions of the EAGLE code include the capability of generating
tensor product Bezier surfaces (Ref[18]). This type of surface patch is a simple
extension of the Bezier curve technique. The mathematical form of a tensor

product Bezier surface patch is given by equation (3.2).

b™s,8) = > > b; BISBN) (3.2)

i=0j=0

A set of (n+1)x(m+1) control points define the surface. The surface may be
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generated by treating each row of the control net as a degree—n Bezier curve,

then treating each column of the result as a degree—-m Bezier curve. This

amounts to generating a surface by using a curve moving through space and

changing its shape. The matrix form of equation (3.2) for the cubic case is giv-

en by equation (3.3):

P(s,f) = SM, BM] T"

boo boy boy bos
_|b10 b1y b3 by
| bao byy bay by
by b3y b3y bis

S=[1ss*s%

- (3.3)

1 0 O O

-3 3 0 o

o My, 3-6 3 0

-3 3 -3 1
T=[1¢t¢#71

Figure 3.2 Surface created by a moving and deforming curve.
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Tensor Product B—spline Surfaces
Recent versions of the EAGLE code also have the capability of generat-

ing tensor product B—spline surfaces (Ref[18]). The relationship between B—
spline surfaces and B—spline curves is the same as that between Bezier sur-
faces and Bezier curves. Equation (3.4) gives the mathematical form for the

surface patch:

P(s,1) = 2 z d; NT(SN () o (3.4)
i=0j=0 : ,
Note that the basis functions N are the tensor product of the set of univariate

basis functions given by equation (2.45). The matrix form for the cubic case is

given by equation (3.5):

P(s,1) = SMDMIT" 3.5)
. where D is a 4 x 4 matrix of control points and Mg is the same as in equation
(2.60). The vectors S and T are composed of the local parameters s and t of the
point to be generated.

B-spline surfaces inherit all the properties possessed by B—spline
curves. This is due to the fact that the tensor product methdd can be broken
into a series of univariate operations each of which can be interpreted as gen-
erating a B-spline curve. Note that there are limitations to the tensor product
method. Perhaps the most restrictive of these is the necessity that only one
knot vector cén be prescribed for each direction on the surface. This is to say

that all u isoparametric curves must have the same knot vector and likewise,

all curves of constant v must be defined by a single knot sequence. Figure 3.3
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illustrates the parametric space of a surface which is definable by a tensor

product method, while Figure 3.4 shows the parameter space of one which

cannot be represented by a tensor product:

—

u

Figure 3.3 Knot matrix of a surface spline which can be represented
by a tensor product




38

° [/ / | \ \

=

u
Figure 3.4 Knot matrix of a surface spline which cannot be represented
by a tensor product




CHAPTER IV
INTERROGATION AND SMOOTHING

Chapters II and III have described some curve and surface modeling
techniques. However, if given a particular geometry, how can one access the
quality of that geometry, in terms of derivative continuity; and if necessary, -
improve upon it? Attempts to provide a practical solution to this problem have
resulted in a variety of techniques ( see Chapter I ). This work, however, will

focus on techniques provided by Farin[6],[7].

Interrogation of B—spline Curves

Several means of curve interrogation have been suggested. Curvature
plots provide a great deal of information about the shape of a curve. However,
their use is limited to planar or two dimensional geometries because curvature
is always nonnegative for spaée curves. The same two—dimensional limitation
applies to k—orthotomic curves. What is needed is a quantity which is highly
sensitive to small perturbations in the geometry but is not limited by spatial
dimension. The third derivative provides such a quantity and will be used for
interrogation of space curves. For planar curves however, signed curvature

will be used.

Calculation of derivatives is effected by use of equations (2.54) through

(2.66). For planar curves, curvature is calculated via equation (4.1). -For de-
termining derivative continuity, derivatives or curvature must only be calcu-
lated at the spline knots. All points on the interior of each span of the spline

are defined by polynomials and thus are continuous in all derivatives.

39
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Farin[7] suggests that a fair curve should be composed of segments with
smoothly varying curvature (i.e. there should be no slope discontinuities in the curva-
ture plot of a curve ). For planar curves, this definition is sufficient, however, for
space curves, the second derivative will be used in licu of signed curvature. Slope

discontinuities in second derivative are actually third derivative discontinuitics.

() = £ ) =y W W) S | “1)
[(x'@)? + ('(w)43/2 ,

The method used to locate discontinuities is to calculate the lett and right hand limits
of the third derivative at each spline knot and then compare them. This will be the

basis for a quantity known as local fairmess and leads to the following definition:

Definition: Let x(t) be a C2 parametric cubic piecewise curve with u as the global
parameter. Then the local fairness € is defined as

e =x"@,) - x'.”(u_) [ | (4.2)

Note that € is a local quantity since it may vary with the value of the parameter u. It
is reasonable to say that the point most in need of smoothing is the point with the
largest value of €.

A separate routine for interrogation of curves was not produced. The
method of interrogation presented here was incorporated into the smoothing

routine outlined below.

Interrogation of ces
The maximal and minimal curvatures of a surface at a point P are

known as the principle curvatures and are denoted by %; and %5. These curva-
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tures are calculated by finding the roots of equation (4.3) where the super-

scripts on P denote differentiation with respect to the parameter indicated.

(EG — F%)%? — (EN + GL — 2FM)x + (LN — M?*) =0 (4.8)
where

E = p%. p¢ L=P%.p

F =Pt¢-pY M= P¥ - n

G=P-P N=P"%-n
and

— Pux PY
= e x PN

The two major types of surface curvature are known as mean curvature H and

Gaussian curvature K. These are given by equations (4.4) and (4.5) respec-

tively.
— _ LN — M?
-1 _ EN + GL - 2FM ,
H—2(x1+x2) 2 (EG —F?) (4.5)

While these quantitieé/provide a great deal of information, they have limita-
tions. Gaussian curvature is always zero for cylinders of the form given in

equation (4.6) while mean curvature is always zero for minimal surfaces.

c(u,v) = (1 — w)X() + u[X(v) + V] (4.6)
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Absolute curvature, however, will always detect curvature in a surface. Abso-

lute curvature is given by equation (4.7):
xabs = lel + lx2| _ (4.7)

A subroutine for evaluation of principal, Gaussian, mean, and absolute
curvatures was developed for the EAGLE code. The routine. is capable of eva-
luating surface qualities of either B-spline surfaces or surfaces produced by
the original EAGLE surface spline routine, SPLSUR. In the latter case, deriv-
atives on the surface are calculated using the SPLINT subroutine ( see Ref
[23] ). The result is two data files, one containing points on the surface and
the other containing values of the five curvatures at those points. These files

are written in formatted PLOT3D single grid form.

Smoothing of B—spline Curves

In order to fair or smooth at a particular spline knot, the method used
must be local in nature. That is, when the method is applied, it only affects
the curve in a small region surrounding the point which was smoothed. The
technique used here is one proposed by Farin [6], [7]. First, the local fairness
is calculated at each knot in the spline; then the knot with the largest value of
e is chosen as the knot at which smoothing will take place. Let this knot be
the knot associated with the B—spline control point d;. The knot is then re-
moved from the knot sequence and a new location d; for the control point d; is
calculated. Then the knot is reinserted into the knot sequence sé that the
number of spline segments remains the same as in the origihal curve. The

criterion for the selection of a new location for the control point d; is third de-

rivative continuity at the knot. Mathématically, this amounts to equating the
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left and right hand limits of the third derivative at the spline knot ( e.g. driv-

ing e to zero ). The left and right hand limits of third derivative of a B—spline

curve at the ith knot are given by

)
PI0) = gyt mgd; tomgd g+ mgd; ),
(ipy = 1)
6
PQ) = lmgdi g + myd; o+ myd; + myd; ]
(; = u;_yq)

The values of coefficients of the d terms are calculated by equation (2.50). The

new location of the control point d; is given by equation (4.8):

7= 0 —udl; + (4 — u;_o)r; (4.8)
' Wiy — Uiy ,

with the points 1; and r; given by

l =

_ g — Ui — WUy — U0,
b

! (u; = u;_3)
Wiy — UM — (Uiyg — UMy
! (u; — u;_3)

Figure 4.1 illustrates the geometry behind equation (4.8).

The curve smoofhing routine developed for EAGLE takes, as input, the
control vertices and the knot vector which define a B—spline curve. The rou-
tine then smooths the spline as directed. The user may specify the number of
smoothing passeé to make, as well as a movement tolerance for points on the
curve. The user may also specify whether or not the routine is to interrogate
the curve and smooth only at points with large discontinuities. If the entire
curvé is to be smoothed, the user instructs the routine accordingly and all ver-
tices on the spline, with the exception of the first two, and last two are

smoothed according to equation (4.8).

nd
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Figure 4.1 Geometric interpretation of the B—spline smoother.

The movement tolerance, mentioned earlier, enables the user to specify
the maximum distance which any point on the curve is allowed to move. This
option may be used where geometry perturbations must be kept within certain
limits. Since the smoother moves the control vertices of the spline, maximum
allowable movement of a point on the curve must be translated to an allowable
perturbation limit for the curves control vertices. This is accomplished by use

of equation (4.9):

_ 1
i = ;0% (4.9)

¢ = ( MiT Mg s Miea T Ui
Dol =W Tl U T U T U



45
Here, e; is the displacement vector for a control vertex necessary to displace a
point on the curve by the vector dx;. Using equation (4.9), a maximum dis-
placement is calculated for eaéh control vertex on the spline. The movement of
the control vertices is monitored during the smoothing process to ensure that
none of the vertices are displaced more than the allowable tolerance. If equa-
tion (4.9) results in moving a control point farther than is allowed by the pre-
scribed tolerance, the point is moved in the desired direction, but only aé far as

the tolerance allows.

Smoothing of Tensor Product B-spline Surfaces

Fairing of surfaces is accomplished by using a tensor product method.
This amounts to using the curve smoothing routine to smooth the curve net
that defines the surface. Each curve of constant v is smoothed and the results
stored. Then, using the result of the first smoothing pass, each curve of con-
stant u is smoothed. This procedure constitutes one smoothing pass. The re-
sulting surface will be smoother than the original. The tensor product method
is discussed in detail in Ref[7], and its application to surface smoothing is dis-
cussed in Refs [6] and [7].

The surface smoothing routine developed for EAGLE takes, as input,
the knot vectors and control vertices Whi(;h define a tensor product B—spline
éufface. The surface is then smoothed using the tensor product method de-
scribed above. The user may specify that only certain regions of the surface
ére to be smoothed. A region is defined by giving the indices of the vertices on
two opposing corners of the patch. If the patch lies on the interior of the sur-
face, the entire patch is smoothed. However, if one or more of the edges of the

patch are coincident with one or more edges of the surface, the first two ver-

~ tices from the edge of the surface are not smoothed. The user may, as with
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® curves, specify a maximum allowable displacement. However, for surfaces,

this value is the maximum allowable movement for a control vertex, not for a

point which lies on the surface.




CHAPTER V
RESULTS AND CONCLUSIONS

The material in this chapter is concerned with results obtained using
the routines outlined in Chapter IV. Several examples of both ciirve and sur-
face smoothing are provided as well as the results obtained from the respec-
tive interrogation algorithms. Additional information is provided by results
obtained from a numerical simulation effected on a NACA 0012 airfoil both

before and after the smoothing algorithm had been applied.

Curve Smoothing Results

Waisted Body

The waisted body represents a simple geometric entity described by
four polynomial segments. Data for this geometry were given as a set of 120
raw data points obtained from evaluation of the piecewise polynomial function
describing the curve. The data points were then splined using a non—uniform
B—spline; this resulted in a spline curve consisting of 120 control vertices and
the associated knot vector. The curve smoothing routine was applied and the
results are presented in Figure 5.1 through Figure 5.4.

Figure 5.1 shows the control polygon of the spline both before and after
smoothing. As evidenced by Figure 5.1, the geometry is changed very little by
the smoothing process, however, Figure 5.2 illustrates the change in the
splines curvature plot. Note how slope discontinuities in the curvature plot
are virtually eliminated by the smoothing process. Figure 5.8 demonstrates
the effect of smoothing on the metric coefficient ny. The degree by which the

47
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geometry was perturbed is indicated by Figure 6.4. Note that the maximum

point displacement was only about 1.5 percent of the total arclength of the
curve. If Figure 5.1 is examined closely, it is hard to distinguish ( visually )
any change in thé geometry due to smoothing; however, Figure 5.2 and Figure

5.3 show that the continuity of the spline was substantially improved.

Digitized Curve

Figure 5.5 is a spline curve which was obtained from points digitized
from an physical model. Examination of the curve reveals visible discontinui-
ties in first derivative. A better indication of the splines condition is given by
the curvature plots in Figures 5.7 and 5.9.

This data set was smoothed in two different ways. First, the smoother
was allowed to pick the point with the largest third derivative discontinuity
and smooth there. The results after ten passes using interrogation and point
selection are shown in Figures 6.6. and 5.7. The actual spline curve is shown
in Figure 6.6, while curvature plots before and after smoothing are shown in
Figure 6.7. For the second case, the curve was smoothed without using the
interrogation algorithm. In both cases the same number of smoothing passes
were used. Figure 5.8 shows the spline after smoothing while Figure 6.9

shows plots of curvature both before and after smoothing.

NACA 0012 Airfoil
The purpose of including these routines in a numerical grid generation
program is to help enhance the quality of the geometry model used for numeri-
cal simulation. Therefore, it is appropriate that some indication be given of
how smoothing affects the results obtained from simulation programs. With
this purpose in mind, data for a NACA 0012 airfoil were taken from Ref[24]
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and splined. The data set for the airfoil consisted of 121 data points generated

from the spline. The spline was then smoothed and another 121 data points
generated. The smoothed and ﬁnsmoothed data sets are presented in Figure
5.10. Again, close examination is required in order to visually detect changes
in the geometry ( see Figure 5.11 ). Figure 5.12 shows curvatures for the
smoothed and unsmoothed geometries.

To test how smoothing effects numerical simulations, an incompressible
flow solution was ruh on both geometries. The development of the code used
in to obtain the solution is documented in Ref[25]. Plots of pressure coefficient
(CP) vs. X/C at zero degrees angle of attack for the two cases are shown in Fig-
ures 5.13 and 5.14. Notice the srhooth variation of CP for the modified geome-
try. Also note that the CP curve for the smoothed airfoil still agrees with ex-
perimental data. Color contour plots of the pressure field for the two cases are
given in Figures 6.15 and 5.16. The simulation was also run at five degrees
angle of attack. Plots of the pressure field near the leading edge of the wing
section are shown in Figures 5.17 and 6.18. Notice that, for the unsmoothed
geometry, the low pressure region on the upper surface exhibits ripples,

whereas the same region on the smoothed geometry does not.

Surface Smoothing Results

Flat Plate
A flat plate represents the simplest test for the surface smoother. Fig-
ures 5.19 through 5.22 show a plane to which perturbations have been ap-
plied. The surface in Figure 5.19 appears to be smooth and free of geometric
irregularities. However, examination of its absolute curvature, shown in Fig-

ure 5.20, reveals that the surface is actually rippled. After applying the fair-
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ing algorithm, the new surface, shown in Figure 5.21 appears unchanged, but

the curvature plot in Figure 5.22 shows that the irregularities have been re-

moved.

Sculpted Surface
Figure 5.23 shows a surface patch digitized from a model of a lifting
body vehicle. The surface is fairl& :;r;ooth as evidenced by the plot of absolute
curvature in Figure 5.24. The geometry was smoothed and the results shown
in Figures 5.25 and 5.26. Additional options available for surface interroga-

tion are shown by plots of first principal curvature and Gaussian curvature in

Figures 6.27 and 5.28 respectively.

F-15 Aft Quarter
The last example uses a digitized surface from the aft section of an F-15
fighter aircraft. The original surface is plotted in Figure 5.29 and contour
plots of Gaussian and absolute curvature are shown in Figures 5.30 and 5.31
respectively. The smoothed surface is shown in Figure 5.32 along with plots of

Gaussian and absolute curvature in Figures 5.33 and 5.34 respectively.

Conclusions and Recommendations
The interrogation and smoothing routines, outlined herein, represent a
powerful tool for evaluation of curve and surface quality as well as integrity
enhancement of geometry data. These routines are limited, however, since
they are unable to account for intended discontinuities. Research is still need-
ed in order to-produce an automated method for improving the quality of curve

and surface representations without destroying desired geometric irregulari-
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ties. At present, the only viable method is the use of these routines in an in-

teractive environment.
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Figure 5.4 Magnitude of total point displacement on the waisted body due to smoothing
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Figure 5.21 Planar surface after smoothi.ng'
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Figure 5.23 Original surface data for the lifting body surface patch
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Figure 5.256 Smoothed data for the lifting body surface patch
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