
1 2 Atmospheric
Propagation

N9 -1  781

/

Lead authors

Tony F. W. Embleton
National Research Council

Ottawa, Ontario, Canada

Gilles A. Daigle
National Research Council
Ottawa, Ontario, Canada

Introduction

How sound propagates from a source to a receiver outdoors is a complicated

problem because there are several wave propagation and meteorological mechanisms
that can affect the result. The shape and type of ground surface also play a part.

The received signal is influenced by each mechanism in a different way and to an

extent that depends on range, source and receiver heights, and sound frequency.

The study of sound propagation in the atmosphere has a long and interesting

history (refs. i and 2). As early as 1636, Mersenne (1588-1648) measured the speed of
sound by timing the interval between the flash and sound of a gun blast. He obtained

a value of 230 toises per second, equivalent to about 448 m/sec. A contemporary,

Gassendi (1592-1655) noted that the speed of sound was independent of its intensity,
since the speed was the same whether the sound was made by a large weapon, such

as a cannon, or a smaller one, such as a musket. Derham in 1708 concluded that
favorable winds speeded sound propagation while adverse winds retarded it: he did

not measure temperature but concluded that the speed of sound was the same in
summer as in winter. In 1740, Bianconi in Bologna showed that the speed of sound

definitely increased with increasing air temperature. The first precise measurements

of the speed of sound were probably those made in 1738 under the direction of the

Academy of Paris. When corrected to 0°C, the value obtained was 332 m/sec--
within about 0.3 percent of the best modern value--and it was obtained two and a

half centuries ago.
From about 1860 onward, there was considerable interest in fog signaling for

ships--Joseph Henry in the United States and Tyndall in Britain investigated what
we would today call absorption or scattering by water vapor. Stokes at that time in a

private letter to Tyndall wrote that scattering was more likely caused by temperature
differences in the air. Knowledge of sound propagation in the atmosphere has usually

developed in response to the needs of practical problems. During the first World War

there was the problem of locating artillery; in the 1930's, the need to understand
the loss of brilliance of music in concert halls; in the 1960's, the concern over noise

produced by many forms of new technology intense like commercial jet aircraft or

widespread like powered lawn mowers and air conditioning. Since then the increasing
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numbers of noise sources, and often their greater intensity, have increased the social

and political pressures on acousticians to yet again advance their knowledge of sound

propagation outdoors. Significant progress has been made in recent years (refs. 3
and 4).

This chapter reviews the current state of knowledge of each basic mechanism and
how each changes the spectral or temporal characteristics of the sound received at

a distance from the source. An understanding of these mechanisms is important

since some affect even short-range measurements, when one is often attempting to
characterize the source. Long-range measurements or predictions, such as when one

is attempting to predict the influence of a source on a neighboring community or to
detect the source at the greatest possible range, are affected in different ways and
by other mechanisms.

Some of the basic processes affecting sound wave propagation are present in any
situation. These are

1. Geometrical spreading--Sound levels decrease with increasing distance from the
source; there is no frequency dependence.

2. Molecular absorption--Sound energy is converted into heat as the sound wave

propagates through the air; there is a strong dependence on frequency.

3. Turbulent scattering--Local variations in wind velocity and temperature induce

fluctuations in phase and amplitude of the sound waves as they propagate through

an inhomogeneous medium; there is a moderate dependence on frequency.

Other phenomena occur only because of the presence of the ground and are usually
most significant near the ground. These phenomena and the features that cause
them are

1. Reflection at the ground surface--The sound field reflected at the ground inter-

feres with the direct sound field; interference is a repetitive function of frequency;
height of source and receiver, their distance apart, and the type of ground surface
are important parameters.

2. Type of ground surface--Surfaces have a finite and complex acoustic imped-
ance that results in a phase change on reflection of a sound field and a reflection

coefficient that is a function of angle of incidence; this in turn leads to the

existence of a ground wave in addition to a plane reflected wave and under some

circumstances, to a trapped surface wave.

3. Shape of ground surface--Concave ground surfaces can result in multiple ray

paths between source and receiver and hence increased sound levels; convex
ground surfaces such as berms or low hills can act as sound barriers and lead

to an acoustical shadow that is penetrated by diffracted and scattered waves.

4. Near-surface micrometeorology--The ground surface heats (usually daytime)
or cools (nighttime) relative to the atmosphere leading to vertical gradients

in temperature; viscous drag of the surface on wind produces similar vertical

gradients in wind speed; as a result, sound fields are refracted upward (warmer

ground or upwind) or downward (cooler ground or downwind).

Finally, these phenomena depend for the most part on different parameters, and so
each can be strong or weak depending on the particular circumstances. Furthermore

the phenomena coexist, and a given sound field may be influenced by different
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mechanisms at different frequencies, at different heights, or at different distances.

These coexisting mechanisms sometimes reinforce, and sometimes nullify, each other.

Geometrical Spreading

Some energy spreads out as it propagates away from its source. At distances that

are large compared with the effective size of the sound source, the sound wave fronts

spread spherically in three dimensions provided that the atmosphere is isotropic.
Note that sound does not necessarily radiate equally in all directions as it would

from a true point source. However, if the point source approximation is applicable,
the sound level decreases at the rate of 6 dB per doubling of distance. This situation

exists once the directionality pattern of the source does not change as a function

of distance. For coherent sources (those for which unique phase relationships exist

between all the radiating elements), the Fresnel region near the source extends to

a distance somewhat greater than the square of the source diameter, or square of

its length, divided by the wavelength of the sound. Within this near-field region
there is interference between coherent elements of the source and there are no simple

relations between sound levels and position.

One should take care in defining the effective size of the source. For example,

noise from an axial flow compressor is generated by flow past individual blades,

but the pure-tone components of this noise are generated coherently by the complete
annular ring of blades and are radiated from the inlet duct of the compressor (in some

engines also from the fan outlet). The effective size of the source is the diameter of

the inlet duct (or the distance between the inlet orifice and the fan outlet). When
the noise source is a turbulent jet, the effective size of the source can be the whole

mixing region, which is much larger than any dimension of the mechanical hardware.
The 6-dB decrease per doubling of distance relationship applies either to the

instantaneous sound pressure level (or time-averaged sound level of a stationary

source) or to the maximum sound pressure level reached during a passby of a moving
source.

One must be careful to distinguish these from certain measures of total sound

exposure received from a moving source during a passby event. Such measures as

single event noise exposure level (SENEL) represent the total value of sound pressure

squared when integrated throughout the passby event. In these cases, although the
maximum sound pressure level decreases by 6 dB per doubling of the closest distance

of approach, the length of time during which the sound pressure level is within a

given difference from the maximum value also doubles, and the net result for any
such time-and-intensity measures is that the level decreases at the rate of 3 dB per

doubling of distance from the source. Three decibels per doubling of distance also

represents cylindrical spreading of sound energy propagating away from a line source.
Such a sound is that from the traffic flow along a busy road, where the individual

vehicles are a line of discrete point sources each radiating sound incoherently with

respect to the others.
The phenomenon of geometrical spreading, and the corresponding decrease in

sound level with increasing distance from the source, is the same for all acoustic

frequencies or wavelengths. Certain parameters of the atmosphere directly affect

sound levels calculated from geometrical spreading, but these effects are very small

and rarely, if ever, detectable. For example, gross changes in temperature (not to be
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confused with transverse temperature gradients that produce refraction) change the
speed of sound and hence the sound energy density and measured sound pressure

levels. The sound level measured at the ground (temperature of 20°C) directly below
an aircraft flying at an altitude where the temperature is -40°C is 0.5 dB less because

of this 60°C temperature change than it would be if there were no temperature

change. In addition, if the relative humidity was 100 percent, the sound pressure

level at the ground would be decreased by a further 0.2 dB because of air density
changes alone.

Molecular Absorption

In contrast to geometrical spreading, the absorption of sound energy by the at-

mosphere is a significant function of frequency, temperature, pressure, and humidity.

Studies of molecular absorption have a history going back to the 19th century and
continue even today. In this section we summarize the basic mechanisms by which
acoustic energy is absorbed by the atmosphere, we discuss the current ANSI Stan-

dard for calculating atmospheric absorption (ref. 5), and finally we mention current
research to improve the accuracy of the calculations.

The absorption of acoustic energy by a mixture of gases occurs through two basic

physical mechanisms (ref. 6). The first involves the direct transfer of acoustic energy

(ordered motion) into heat energy (random motion) through processes involving
viscous effects and heat conduction. These two loss processes have been known since

the 19th century and are known today as classical absorption. The second basic

physical mechanism of absorption is molecular relaxation. The compressional energy
of the acoustic wave is redistributed into rotational and vibrational modes of the

molecules through binary collisions. The time lag associated with this transfer leads

to absorption of sound energy, with maximum absorption (per wavelength) being

reached at the relaxation frequency. For frequencies below 10 MHz, absorptions due

to classical losses and molecular relaxation are additive. Current theory assumes
that the total molecular absorption of acoustic energy by the atmosphere is the sum
of four terms:

a ---- acl q- aro t q- a O -]- a N (1)

where acl is the classical absorption, arot the absorption due to rotational relaxation,
and G O and a N are, respectively, the absorption due to vibrational relaxations of
oxygen and nitrogen.

The classical absorption is a function of temperature, pressure, and frequency. It
is the dominant absorption mechanism for acoustic energy at high frequencies. The

absorption due to rotational relaxation is also a function of temperature, pressure,

and frequency. Furthermore, the rotational relaxation frequency in the atmosphere is

well above 10 MHz. This permits the rotational absorption constant to be combined

with the classical absorption constant into one expression for practical purposes.

The combined expression yields the curve labeled "acl+rot" in figure 1. These two

absorptions provide the dominant losses at frequencies above approximately 30 kHz.

Historically, classical absorption and rotational relaxation were by themselves

unable to account for the loss of brilliance long observed in concert halls in the fre-

quency range above about 2 kHz. In response to this, theory was developed in the

early 1930's which included the contribution of the vibrational relaxation of oxygen.
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Figure 1. Decrease in sound pressure level with distance as a function of

frequency due to four molecular processes in equation (1). Temperature,
20 ° C; pressure, 1 atm; relative humidity indicated in percent.

In addition to frequency, temperature, and pressure, the vibrational relaxation ab-

sorption depends strongly on the concentration of water vapor. Collisions with water

vapor molecules speed the energy transfer process and hence influence the frequency

of maximum absorption. The dashed curves labeled "aO" in figure 1 indicate how
the relaxation frequency, and hence the absorption due to the oxygen relaxation,

changes at 20°C when the relative humidity increases from 1 to 100 percent. At nor-

mal temperatures and relative humidities, the oxygen relaxation provides maximum

absorption at frequencies above about 2 kHz.

In the 1960's and early 1970's, increasing activity was devoted to predicting
environmental noise in urban areas for community planning, including the control of

aircraft noise. Measurements began to show deviations from the theory for molecular

absorption at low frequencies, where most of the sound energy of environmental noise
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is found. Initially empirical procedures (ref. 7) were developed to account for the

discrepancies below 2 kHz. Later it was realized that the vibrational relaxation of

nitrogen is the main absorption mechanism at low frequencies. The contribution

to absorption of the nitrogen relaxation is illustrated by the curve labeled "aN" in

figure 1.

The total molecular absorption due to the four contributions in equation (1) is

shown by the curve labeled "Total" in figure 1. The absorption is predicted for a

pressure of 1 atm, temperature of 20°C, and relative humidity of 40 percent and
is expressed in decibels per 100 m. For example, the total absorption under these

conditions is about 1 dB/100 m at 2 kHz. A set of fairly simple equations for practical

calculations of the four terms in equation (1) form the basis of an ANSI standard

(1978) for atmospheric absorption (ref. 5). The scientific support and experimental

evidence for this standard are found in reference 6. The accuracy of the atmospheric

absorption calculated from this standard (ref. 5) is approximately 10 percent for

temperature from 0° to 40°C, relative humidity from 10 to 100 percent, frequency
from 50 Hz to 10 MHz, and atmospheric pressure less than 2 atm. The calculations

can have an accuracy of 5 percent over a more limited range of variables within the
ones quoted above. On the other hand, outside this quoted range, for example, at low

frequencies and low humidities, the accuracy of the calculation is usually worse than

10 percent. There is still a need for more fundamental work, especially at the more

extreme conditions, to increase the understanding of these processes. Some recent

work (ref. 8) aimed at extending the measurements at low frequencies has revealed

discrepancies in the accepted relaxation frequencies of oxygen. It is expected that
this and other new knowledge will result in a revision of the current ANSI standard

(1978).

Effects Due to the Presence of the Ground

In this section, we consider only the direct effects on sound propagation caused

by the ground. These effects are additional to those of geometrical spreading and

molecular absorption already discussed. We postpone until later any discussion

of near-surface micrometeorological effects such as those caused by heating or

cooling. Propagation effects caused by the ground are most significant within a

few wavelengths, that is, only a few meters above the ground surface. Furthermore,

the ground has a greater effect on sound waves traveling essentially horizontally

just above the ground than it does on sound waves impinging from nearly vertical
directions.

When the sound source and receiver are above a large flat ground, sound reaches

the receiver via two paths: directly from the source to the receiver, the direct field,

and after being reflected from the ground surface between the source and receiver,

the reflected field (fig. 2). Most ground surfaces are porous to some degree and

therefore their acoustic impedance is complex. In simple terms, one may think of a

resistive component of impedance that describes the losses of sound energy due to

thermal and viscous effects in the interstices of the ground material; there is also

a reactive component due to flow into and out of the porous ground in response

to the alternating acoustic pressure in the air just above the surface that results

in compression either of gas in the interstices or of the solid itself. The complex
acoustic impedance of the ground is associated with a complex reflection coefficient
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that is rarely as large as unity and is a function of angle of incidence. The sound

field reflected from the surface therefore suffers (1) a reduction in amplitude and

(2) a phase change between zero and _r radians (0 ° to 180°). There is another
more subtle, but very important, effect on the sound field: if the incident waves

are plane, the reflected waves are also plane because all parts arrive with the same

angle of incidence; but if the incident field is of some other shape (e.g., spherical),
then different parts of the wave front meet the plane surface with different angles

of incidence and are subjected to reflection coefficients that differ in magnitude and

phase. Thus the reflected field has a different shape; for example, a spherical field

no longer appears to come from a point source below the surface. Instead the source

region becomes blurred and theoretically stretches to infinity.
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(a) Source near the ground. (b) Source nearly overhead.

Figure 2. Schematic of the direct sound field by the ray path SM and that

reflected at the ground surface by the path SGM. (I is the location of the

geometric image of the source in the ground.)

Plane Waves

The reflection coefficient P_p for plane waves incident on a plane surface is given

in its simplest form by

sin 0 - Z1/Z 2 (2)
Rp = sin6+ Z1/Z2

where 8 is the angle of incidence (fig. 2) and Z1/Z2 is the ratio of the characteristic

impedance of air at ground level to the specific normal acoustic impedance of the
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ground surface. The impedance Z2 is complex. This simple form of the equation for

the complex reflection coefficient Rp is for a ground surface of local reaction, that is,

a surface whose reflection coefficient at any point is not significantly affected by the

sound field incident at neighboring points. If the ground can support a significant

amount of wave propagation, either in the solid material or in the air of the pores,
then the expression for the reflection coefficient becomes more complicated, but

its properties remain almost the same. In practice the impedance Z2 must always
remain finite, even though it is very large for hard surfaces such as concrete, so

that for 8 small enough to make sin8 << [Z1/Z2] , Rp always approaches -1 at
grazing incidence. Figure 3 shows the magnitude ]Rp[ and phase change ¢ of the

complex reflection coefficient Rp = [Rp[e i¢ for plane waves incident on a typical

grass-covered surface such as an airport or field. Only at grazing incidence does

the magnitude of the reflection coefficient reach unity, and this is accompanied by
a phase change on reflection of 7r radians (180°). For most angles of incidence
that are not close to grazing, the magnitude of the reflection coefficient is between

0.5 and 1.0, and the phase change on reflection of the sound waves is less than

about Ir/4 radians (45 °) and can often be ignored. The general features shown in

figure 3 apply for all ground surfaces although the angle of incidence scale (abscissa)

and the magnitude of the reflection coefficient scale (ordinate) change depending on
the acoustic impedance of the ground surface. For example, the magnitude of the

reflection coefficient [Rp[ always has a minimum when its phase change is 7r/2 radians
(90°). The angle of incidence for which this occurs becomes more nearly grazing as

the acoustic impedance of the ground increases, for surfaces like concrete, asphalt, or

packed earth, and becomes more oblique as impedance decreases, for softer ground
surfaces like snow or the ground in a forest.

Ground and Surface Waves

Because the magnitude and phase of the reflection coefficient Rp vary with angle

of incidence, as shown in figure 3, the total sound field near the ground cannot usually
be described mathematically by the simple addition of two terms, the incident sound

field and the reflected sound field multiplied by the plane-wave reflection coefficient

of equation (2). An additional term is required that allows, in effect, for the fact that

each curve in figure 3 is not a horizontal straight line. A more complete expression

for the sound pressure p, borrowed from electromagnetic theory and known as the
Weyl-Van der Pol solution is

P _ e ikrl eikr2 eikr2

Po krl + RP-_r2 "_- (1 -- Rp)r _r 2 (3)

In equation (3), Po is a constant, k is the wave number of the sound field (the number
of wavelengths in a length of 2r meters), rl and r2 are the ray paths in figure 2, and F

is a complex amplitude function (ref. 9) that allows for the curvature of the incident
sound field and, under some circumstances, the possible existence of a surface wave.

Mathematically F is related to the complex error function of a parameter w, known
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Figure 3. The magnitude [Rp] and phase change ¢ of the plane-wave reflection
coefficient as a function of angle of incidence 0 at three typical frequencies

for a grass-covered surface.

in this context as the numerical distance, and given by

Zl _2
w= (likr2) (sinO+-_2 ] (4,

The first term on the right side of equation (3) clearly represents the direct sound

field in both phase and amplitude, the second term represents the field reflected at

the ground surface but assuming the plane-wave reflection coefficient at the angle

of specular reflection, and the third term corrects the reflected field to account for
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the angle of reflection systematically varying with position along the surface. This

third term in equation (3) is called a ground wave in acoustics but may also include
a surface wave under some circumstances (beware that the term "ground wave" in

electromagnetic propagation applies to the whole right side of eq. (3)).

When the source and receiver are both relatively near the ground and are a large

distance apart, the direct and reflected fields (the ray paths rl and r2 in fig. 2(a))

become nearly equal and the grazing angle _ tends to zero. The direct and reflected

sound fields then cancel each other because Rp --_ -1, and any sound reaching the
receiver (apart from mechanisms to be described later) is explained theoretically by

this third term of equation (3).
The amplitude factor F is shown in figure 4 vs. the numerical distance w described

by equation (4). The factor F is complex and is shown for several values of the phase
angle _ of the ground impedance,

(Im Z2_

It is intuitively useful to consider the abscissa of figure 4, the numerical distance w,

as the propagation distance between source and receiver but scaled for the value of
frequency (proportional to k), for impedance Z1/Z2, and for angle of incidence 9. The

behavior of the ground wave during propagation is best described by assuming for

the moment that the ground surface is purely resistive, that is, the curve for _b -- 0°

in figure 4. This curve cannot contain any surface waves (see below). Then at short

distances w << 1, the ground wave suffers no excess attenuation, IF] is essentially

unity, and the second and third terms of equation (3) combine to describe a sound

field as if it were reflected from an infinitely hard surface. At greater distances

w >> 1, or equivalently at higher frequencies, the ground wave decreases at a rate
that is 6 dB per doubling of distance faster than that due to geometrical spreading
alone.

In reality the phase angle ¢ of the ground impedance is about 45 ° for grass-
covered and most other ground surfaces at least up to frequencies of a few kilohertz.

The curve for _b = 45 ° in figure 4 shows a substantial increase in IFI, especially for
numerical distances slightly greater than unity. This increase in ]F[ occurs only for

positive values of _b, which in turn are related to the porous or capacitive behavior of

ground surfaces for acoustic waves. The increase is due to the existence of a surface

wave which is coupled to the ground but propagates in the air with an amplitude

that has a maximum at the ground surface and decreases exponentially with height.
For those whose experience and intuition are more mathematical than experimental,

the ground wave corresponds to a branch line integral, and the surface wave to a

pole. Thus, for certain values of complex impedance, the third term in equation (3)

is given completely by a branch line integral, but as impedance is varied, it may

become necessary to allow for the contribution from a pole. In these cases the pole

contribution effectively appears to grow out of the contribution from the branch line

integral, just as the surface wave appears out of the ground wave when the values of
complex surface impedance allow.

Obviously ground and surface waves axe closely related but their fundamental

origins differ, as does their behavior during propagation. Ground waves exist because

curved wave fronts strike different parts of the ground at different angles of incidence
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Figure 4. The magnitude of the complex amplitude factor F in decibels as a

function of numerical distance w (eq. (_)). (From ref. 3; see also ref. 9.)

and because the reflection coefficient of finite-impedance ground is also a function

of angle of incidence. Ground waves exist unless the ground is infinitely hard or

infinitely soft or unless the incident wave fronts are plane, that is, the source can
be considered infinitely far away. Surface waves exist when the ground surface is

sufficiently porous, relative to its acoustical resistance, that it can influence the

airborne particle velocity near the surface and reduce the phase velocity of sound
waves in air at the surface. This traps some of the sound energy in the air, regardless

of the shape of the incident sound field, to remain near the surface as it propagates
from the source to the receiver. This latter point may be significant because surface

waves, which spread cylindrically (in horizontal directions only), decrease at 3 dB

per doubling of distance, whereas all other components of the sound field, including

the ground wave component of the reflected sound field, decrease by at least 6 dB

per doubling of distance. Though surface waves may initially decrease more slowly
with distance, they eventually decay rapidly relative to other components of the total

sound field because they are closely coupled to the ground surface and lose energy

exponentially with distance through viscous and thermal processes in the pores of

the ground.

Acoustic Impedance of Ground Surfaces

Sound waves incident on a ground surface are reflected and interfere with the

incident field. This interference field can be probed within a few wavelengths of

the ground to measure sound pressure and phase, or equivalently the position of
maxima and minima of pressure, or to measure the distribution of phase gradient or

of phase, in order to determine the reflection coefficient Rp. Alternatively the ground
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impedance can be found directly by determining the pressure and the particle velocity

at the surface. All these measurements are difficult to make with the necessary

accuracy for most ground surfaces, and so various techniques have been used, each

of which provides results of sufficient accuracy over a different but limited range of
frequencies or values of ground impedance. Anybody planning to undertake such

measurements is strongly advised to read the original papers so as to be aware of the

subtleties of the various techniques and precautions that are important to obtaining

valid results. We shall do no more than outline each of the measurement techniques

and indicate their principal strengths and limitations.

Some early values of ground impedance were measured in reference 10 with

an impedance tube "screwed" into the ground in situ to a depth of about 0.2 m.

Like several of the other techniques to be mentioned, these measurements are

restricted to normal incidence, suffer from the uncertainty of knowing exactly

where the theoretical ground surface is located, and can change the flow resistivity,

porosity, or other parameters of the microstructure of the ground surface. To

avoid some of these limitations, Dickinson and Doak developed a technique based
on measuring the pressure profile along a line perpendicular to the surface below

a loudspeaker suspended several meters above the surface--the ground surface
remained undisturbed and the sound field was unconfined. Later the interference

between the direct and reflected sound fields was measured (ref. 11) by moving

a microphone along an inclined path, GM in figure 2(a). This method allowed

measurements at oblique angles of incidence more appropriate to sound sources near
the ground but were restricted to frequencies greater than about 400 Hz, that is,

to wavelengths less than about 0.8 m, because the distance between interference

minima is increased (inversely as sin 0) and becomes very large near grazing angles

of incidence. More recently, a direct pressure vs. velocity, and hence impedance,

measurement (ref. 12) has been obtained with a Helmholtz resonator, one side of

the volume of the resonator being open and capable of being pushed into the ground

surface. A motor-driven mechanical source provides a known volume velocity source

and a microphone measures the resulting pressure. This technique is restricted
to frequencies below about 300 Hz both by the capabilities of the sound source

and by the requirement that the sound wavelength be large compared with the

dimensions of the resonator. Another technique that measures both pressure and

pressure difference near the surface, and hence by calculation the impedance at
the surface, has been used in reference 13 for small areas of sound absorbent

materials. Because of instrumental limitations and finite difference approximations,

this technique allows sufficiently precise measurements only for frequencies greater

than about 500 Hz. Still more recently, a two-microphone technique (ref. 14) has

been used to measure pressure, phase, and phase difference along a vertical line in
the spherically spreading interference field below a source suspended several meters

above the ground. Measurements have been made down to 30 Hz over grass-covered
ground.

A limited selection of measured values of the resistive and reactive components
of normalized specific normal impedance for grass-covered ground at different sites

is shown by the dashed curves in figure 5.

For many practical purposes our interest in the ground surface is merely the effect

it has on the sound field in the air above it. The direct effect is through the reflection

coefficient Rp that varies in the complicated way illustrated in figure 3 as a function
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Figure 5. Normalized resistive (real) and reactive (imaginary) components

of specific normal impedance for grass-covered grounds as a function of
frequency, ae = 150 × 103 Pa-sec/m 2 assumed in equations (7) and (8).

of angle of incidence and frequency. A simpler characterization of the ground is

its specific normal acoustic impedance, Z2 in equation (2). The impedance Z2 is

complex:

Z2 = R2 + iX2 (6)

where R2 is the resistive component of the ground impedance, and X2 its reactive

component. Most ground materials are porous, and thus for nonlayered grounds

the specific normal acoustic reactance of the surface is capacitive, or springlike in

electrical or mechanical analogs. The impedance Z2 is a function of frequency and

its two components for typical grass surfaces are shown in figure 5. Such impedance
curves were shown in reference 15 to be described for most porous ground surfaces

by a single parameter, the effective flow resistivity ae of the ground. In reference 15
the empirical expressions earlier given in reference 16 were used for the specific

acoustic impedance of fibrous porous materials. When the implied time dependence

is exp(-iwt), these equations become

Z2 1+0.051 (f) -0"75 --0.73Zl = _ee + i0.0769 \ae(f-- /_ (7)

65



Embleton and Daigle

Table 1. Ranges of Effective Flow Resistivity for Various Ground Surfaces

l Flow resistivity,Type of surface Pa_sec/m 2

0.1 m of new fallen, dry snow

Sugar snow

Forest floor, pine or hemlock

Grass on airfield, rough pasture

Rough roadside dirt, assorted particle sizes

Sandy silt, packed

Limestone chips, thick layer (0.01 to 0.025 m mesh) 1.5 to 4 ×

Old dirt roadway, stones (0.05 m mesh), interstices filled 2 to 4 :x

Earth, little vegetation and rain-packed 4 to 8 x

New asphalt, depending on particle size

Quarry dust, packed by vehicles

Old asphalt, sealed by dust and use

Concrete, depending on surface finish

7 to 30 × 103

25 to 50 x 103

20 to 80 × 103

150 to 300 x 103

300 to 800 × 103

0.8 to 2.5 x 106

106

106

106

5 to 15 × 106

5 to 20 x 106

25 to 30 x 106

30 to 100 × 106

where f is the frequency in hertz, aJ = 2rrf, and ae is the effective flow resistivity of

the ground in Pa-sec/m 2. Equation (7) is valid for a wide range of ground surfaces
but tends to overestimate both components of the impedance below about 200 Hz.

Table 1 gives the values of effective flow resistivity for various ground surfaces (ref. 17)
that can be used in equation (7) to provide the specific normal acoustic impedance

Z2. This in turn can be used in equation (2) to provide the complex reflection

coefficient Rp and, with figure 4, a complete description of the effect of the ground
on the sound field above it.

The predicted effect of four ground surfaces on the spectrum of a sound wave

measured 1.22 m above the ground at a distance of 500 m is shown in figure 6. In

figure 6(a) the source is 2 m above the ground (i.e., nearly horizontal propagation)

as in figure 2(a) and in figure 6(b) the source is essentially overhead as in figure 2(b).
The flow resistivity parameters of the four curves correspond roughly to snow, grass-
covered earth, packed earth, and concrete. The predominant feature of each curve in

figure 6(a) is the broad minimum of sound pressure level in the range of frequencies

from about 100 to 400 Hz over snow to around 4000 Hz over concrete. The shape

is determined by the large phase changes on reflection at nearly grazing incidence,

illustrated in figure 3, interacting with the phase differences as a function of frequency
that occur because of path length differences between the direct and ground-reflected

sound fields (fig. 2). In figure 6(b) for nearly perpendicular reflection at the ground
surface, there is almost no phase change on reflection regardless of the effective flow
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resistivity of the ground surface. The shape of the curves therefore differs very
little between surfaces and is determined almost entirely by path length differences.

The first minimum occurs at about 70 Hz, for which the receiver is at a height of

one-quarter wavelength above the ground (i.e., the reflected field travels an extra

half-wavelength compared with the direct field). Subsequent minima occur at 3, 5,

7, ...times 70 Hz.
It is convenient to be able to characterize a wide range of common ground surfaces

by the value of one parameter, whether selected from table 1 or measured for a specific
surface of interest. When the one-parameter model is not sufficiently precise, for

example, at frequencies below about 200 Hz, or when the ground changes significantly

near its surface or is noticeably layered, then more elaborate theory can be invoked.
In reference 18 the acoustical properties of homogeneous and isotropic porous soils

were shown to depend on four material parameters: flow resistivity, porosity, grain

shape factor, and pore shape factor ratio. Of these parameters, the flow resistivity a

and porosity Ft are the two most important; furthermore, the empirically determined
effective flow resistivity ae of the one-parameter model (eq. (7) and table 1) is

essentially given by the product aft. Though in general more complicated, the
four-parameter model yields a low-frequency and high-flow-resistivity approximation

that provides better agreement with measured impedances at frequencies below
200 Hz than does the one-parameter model (eq. (7)). The normalized surface

impedance derived from the four-parameter theory but limited to large values of
the effective flow resistivity ae and low frequencies is (eq. (14) of ref. 18):

(7)1.Z2 _-- 0.218 (1 + i) (8)
Z1

Equation (8) is an alternative to equation (7) and differs from equation (7) by

predicting that the resistive and reactive components of the ground impedance are

equal and vary as the inverse square root of the frequency. (Equation (7) predicts a
variation close to the inverse three-quarter power of frequency.)

This same low-frequency, high-flow-resistivity approximation also provides an

expression for the normalized surface impedance of a ground whose porosity decreases

with depth (eq. (31) of ref. 18):

Z2 0.218(°'e 1/2
ZI = : 1/2 + 9.74 (_)] (9)

Note that equation (9) is the same as equation (8) with the addition to the reactance

of a term in ae/f, where ae is an effective rate of decrease in porosity with depth.
It is predicted that the resistive component of the ground impedance is unchanged

by the rate of change of porosity below the surface.

When the ground consists of a porous layer backed by an essentially rigid

impervious base, the obvious additional parameter needed to describe the normal
surface impedance is the layer thickness g. The impedance of the surface layer Z/g

is then calculated by

Z_ - Z2 coth (_ik2_o_ ) (10)Z1 Z1
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(a) Source 2 m above ground.

Figure 6. Predicted transmission spectrum measured 1.22 m above the ground
for a source 500 m away.

where Co is the sound speed at the surface of the ground and the normalized wave
number k2 is given by

ooo k 2 = 1 + 0.0978 + i0.189 (11)

and Z2/Z1 is given by equation (7), or equation (8) if appropriate.

The low-frequency, high-flow-resistivity approximation allows simplification of the

expression for the surface impedance of a layered surface (ref. 18). At low frequencies,

for many ground surfaces but not for a layer of snow because its flow resistivity is

too small, equations (10) and (ll) can be replaced by (eq. (33) of ref. 18):

i38._____
Zgzl = 0.00082 aege + fee (12)
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where ge represents the effective thickness of the layer given by 9tg. The porosity

for many ground materials lies in the range 0.3 < Ft < 0.6. Equation (12) shows
that the normalized resistance of a surface layer backed by a hard rigid material is

independent of frequency and that its normalized reactance increases rapidly with

decreasing frequency.
The general effects on the sound field resulting from reflection at a layered surface

for nearly grazing angles of incidence are illustrated in figure 7 (ref. 19). These

sound pressure levels were measured at short range over a layered ground model of

reticulated foam backed by a hard concrete floor. The principal effect is to deepen the
minimum in sound pressure level in the so-called ground effect dip, in the region from

300 to 2000 Hz, compared with propagation over an infinitely thick layer of the same

surface material. Although shown in these results, the minimum in sound pressure

level does not necessarily occur at a higher frequency above a layered medium than

above an infinitely thick ground.

Ground Surfaces With a Discontinuity

of Impedance

As is apparent in figure 6(b), all types of ground have essentially the same effect on

sound fields reflected almost perpendicularly to the surface. Different types of ground

do however have different effects (fig. 6(a)) on sound traveling at nearly grazing angles
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Figure 7. Comparison of sound pressure level8 measured above layers of

reticulated foam (data points) with predictions from equation (lO)(curves).

of incidence. This latter configuration is of importance in many practical situations,
for example, sound from an aircraft on the runway or from vehicle traffic on the

highway, which propagates horizontally initially above an acoustically hard concrete
or asphalt surface and subsequently above a softer grass-covered surface. Several

authors (refs. 20-23) have developed theoretical solutions to the problem of nearly
horizontal sound propagation across an impedance discontinuity, and measurements

both indoors and outdoors up to horizontal distances of a few meters have been made

(ref. 24) for various types and distance ratios of hard and soft ground. In general
there is good agreement between predictions and measurements, and in all cases

the measured sound spectra are significantly different from what they would be for

homogeneous ground, whether all hard or all soft. A typical example of a measured

spectrum (ref. 24) is illustrated in figure 8 for a source 0.1 m high over asphalt and
receiver 0.5 m high over grass where the propagation distances are 2 m and 6 m over

the respective surfaces. Predicted spectra for a ground consisting of all asphalt or

all grass are also shown, as well as the predictions of the spectra using the theories
of references 21 to 23.

In the absence of specific calculations, which are time-consuming in many cases,

one can postulate from the variety of measurement configurations shown in the figures

of reference 24 that a good rule of thumb is to calculate the spectra by assuming first
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Figure 8. Measured changes in a sound field propagated across the impedance

discontinuity between asphalt and grass. Source height 0.1 m above asphalt

(ae = 30 × 106 Pa-sec/m -2) and receiver height 0.5 m above grass
3 2

((re = 85 × 10 Pa-sec/m- ); distances over surfaces were 2 m and 6 m,

respectively. (From ref. 24.)

that the ground is all hard and second that it is all soft acoustically. A reasonably

correct spectrum (within about 5 dB) can then be obtained by weighting the hard

and soft spectra in proportion to the distances propagated over the hard and soft
grounds.

Refraction by Vertical Gradients of Wind

and Temperature

Under most weather conditions both the temperature and the wind vary with

height above the ground. The velocity of sound relative to the ground is a function

of temperature and wind velocity, and hence it also varies with height, causing the

sound waves to propagate along curved paths. During the day solar radiation heats

the earth surface resulting in warmer air near the ground. This condition, called
a temperature lapse, is most pronounced on sunny days but can also exist under

overcast skies. A temperature lapse is the common daytime condition during most

of the year and ray paths curve upward.

After sunset there is often radiation cooling of the ground which produces cooler

air near the surface. In summer under clear skies such temperature inversions begin

to form about 2 hours after sunset, when they may extend to less than a meter

above the ground; as the night progresses, they extend to increasing heights and can

reach altitudes of the order of a hundred meters by sunrise. Throughout this period a

temperature lapse exists above the top of the growing temperature inversion. Within

the temperature inversion, the temperature increases with height and ray paths curve
downward.
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(a) Sound speed increasing with altitude.

(b) Sound speed decreasing with altitude.

Figure 9. Schematic showing the bending of ray paths.

When there is wind, its speed decreases with decreasing height because of drag

on the moving air at the ground. Therefore the speed of sound relative to the ground

increases with height during downwind propagation and ray paths curve downward.

For propagation upwind the sound speed decreases with height and ray paths curve
upward. There is no refraction in the vertical direction produced by wind when the

sound propagates directly crosswind. An illustration of the ray paths is shown in

figure 9. In a temperature inversion or for propagation downward, the ray paths

curve downward as in figure 9(a). Under specific conditions which depend on source
and receiver heights, horizontal range, and the strength of the inversion, additional

ray paths are possible that involve one or more reflections at the ground. In a

temperature lapse or for propagation upwind, ray paths curve upward away from

the ground as in figure 9(b). If the relation between sound speed and height is
linear, there is a limiting ray that just grazes the ground and beyond which no direct

sound energy can penetrate. This causes an acoustical shadow region. If, on the

other hand, the sound speed profile is not linear, the limiting ray is replaced by

a caustic because sound energy (rays) from various regions of the irradiated sound
field can reach the same region along the shadow boundary. The effects of the

temperature and wind profiles on the sound speed profile are additive. Rays curve
upward or downward in the real atmosphere depending on the relative strength of

the vertical gradients of temperature and wind speed. For example, an acoustic

shadow can exist even downwind if the temperature lapse dominates the wind speed
gradient to produce a sound speed that decreases with height. In what follows

we shall distinguish between downward and upward refraction irrespective of which
meteorological condition produces the effect.

Downward Refraction

The propagation of sound in a temperature inversion has been studied previ-

ously (ref. 25), but the principal results would be qualitatively similar for sound
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propagation downwind. We shall therefore discuss here the more general case of a
sound velocity profile that increases with height. The form of profile which is most

convenient for physical interpretation and mathematical computation is one where

the sound velocity increases linearly with height:

c = Co(1 + 7h) (13)

In equation (13), h is the height above the surface and 7 is the coefficient of increase

in velocity with height. We note that a linear variation with height is a good

approximation for most cases although it is not necessarily achieved in practice.
The sound rays between source and receiver are then circular arcs. When either the

sound source or the receiver is above the ground, in addition to the direct ray there
are reflected rays which also follow circular paths (fig. 10).

S _Nl

(a) At short or moderate source-to-receiver distances.

\ _ f \ f J

X /)'x 2'\\ /
\ / \ _" /

k / x /\ / \ /
\V \I \V'

(b) At longer source-to-receiver distances.

Figure 10. Bending of ray paths in downward refraction.

M

If source and receiver are separated by moderate distances of the order of

d = 100 m and are a few meters above the ground, there is only one reflected

ray, providing that we also assume average atmospheric refraction. The direct

and reflected ray paths are illustrated in figure 10(a). Note that the angle 8 for

the reflected ray is greater than for an unstratified atmosphere. The magnitude
of the reflection coefficient therefore deviates further from -1 and the destructive

interference between direct and reflected waves becomes less complete. The result

is less attenuation for frequencies around 500 Hz. This is illustrated by the

measurements (ref. 26) in figure 11. The curve labeled "0" represents sound levels
measured in the absence of stratification or crosswind while the curve labeled "+5"

represents results for downwind propagation. There is essentially no difference
between those two curves below 400 Hz at 110 m or below 300 Hz at 615 m from
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the source. At higher frequencies, however, the reduced attenuation for downwind

propagation is evident.

110 m
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Figure 11. Sound pressure levels relative to free field in 1/3-octave bands of

noise measured at 110 and 615 m from a jet engine (ref. 26). Number8

on curves indicate wind velocity, in m/sec, in the direction of propagation;

curves marked "L" are for a temperature lapse. (From ref. 3.)

In general at longer distances d there are more than one reflected ray path (refs. 25

and 27). The existence of these additional ray paths is easily predicted (ref. 25) from
elementary analytical geometry. Further, a particular ray may be reflected several

times between source and receiver. When there is one reflection at the ground for

any ray, there are three possible reflected ray paths. These are illustrated in figure

10(b) by the dashed curves. There is the ray reflected at the midpoint between

source and receiver, assuming for the moment that the source and the receiver are

at equal heights. The two other rays have a point of reflection displaced from this
midpoint, one striking the surface relatively near the source and the other near the

receiver. These additional paths further degrade the ground effect attenuation as
shown in figure 11, at 615 m for frequencies above 400 Hz.

In the general case of finite source and receiver heights h8 and hr, there are a

total of four reflected ray paths for each number of reflections per ray greater than

one. There is, however, an upper limit to the number of reflections at the surface,

unless hs = hr = 0. It is not difficult to develop a simple criterion to determine the

existence or absence of the higher order paths with multiple reflections. Let H1 be

the height of a ray path at its zenith (fig. 12). One can show for h8 and hr (( d,
that

_/d 2

H1 _ -_ (14)
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where equality occurs when hs = hr = O. Further, rays are realizable provided that

HI

Hn _ -_ > hs and hr (15)

Thus when n is sufficiently large that Hn < hs or hr then the corresponding ray
paths do not exist. To take specific examples, we assume that hs = hr -- 1.2 m and

_/-- 3 × 10 -5 m -1, typical for a temperature inversion. Then, from equation (14),

H1 = 0.04 m for d - 100 m. Thus there is only one reflected ray path as shown in

figure 10(a). Next, for d = 800 m, we find that H1 ----2.4 m and H2 -- 0.6 m. This

example corresponds to the illustration in figure 10(b). Finally at a much larger

distance, for example, d = 4 km, equations (14) and (15) yield H 1 _ 60 m and hence

H7 _ 1.2 m and H s _ 0.9 m. Thus, theoretically at least, there should be no ray
paths having more than about seven reflections between source and receiver when
both are 1.2 m above the surface.

..... _ _': :.._::::_ ....................... _':--_2":-__.: _._..

/

Figure 12. Schematic showing groups of ray paths in downward refraction that

have approximately the same heights at zenith. (From ref. 25.)

At these larger distances, when the ultimate goal is to estimate the sound levels at

a distant point as a result of sound traveling via the numerous ray paths, it is useful
to group them differently from the number of reflections a ray suffered between source

and receiver. A convenient grouping is according to the maximum height above the

surface reached by the path as shown in figure 12. Thus the four rays having zenith

heights of approximately H 1 have different numbers of surface reflections m; one has

m = 0, two have m -- 1, and one has m -- 2. These rays follow almost the same
path through the atmosphere and maintain partial coherence between themselves to

a much greater extent than between other similar groups of ray paths. Under such

conditions a method has been suggested (ref. 25) to estimate the sound levels at

distant receivers. The interference between the direct ray from the source and the

rays reflected at the surface are first calculated for the first grouping of individual

rays in the bundle having zenith HI. The amplitude and phase of the waves reflected

near the source are calculated from the impedance of the surface, assuming that this

is known, and added coherently to the direct ray, in effect assuming a composite

source (see ref. 25 for the details of the calculations). Because the ground surface

in the vicinity of the receiver can vary from one location to another, the sound rays
reaching the receiver after a last reflection in the vicinity of the receiver should, on
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average, be taken into account by adding their intensity to that of rays not suffering
this reflection. If the reflection coefficient of the surface near the receiver is known

to be unity, this implies adding 3 dB to the level given by the rays not reflected

in this region. However a more typical magnitude for the reflection coefficient is
less than unity and an average correction of 2 dB is suggested. The roles of sound

source and receiver are reciprocal, so this discussion is valid also when the ground

impedance near the receiver is known, but that near the source is not known or may

vary from one source location to another. The sound energy traveling via the other

groups of ray paths with zenith /-/2,/-/3, etc., experience different local turbulence

(see the next section) and hence are expected to add incoherently to the energy via
the primary group. The maximum correction to be added to the results calculated

for the primary group is about 2.2 dB when there are an infinite number of possible

paths (see ref. 25). In more realistic cases, when only a few of these paths exist, the

correction to be added is about 0.5 dB. In most outdoor sound propagation problems
this correction for multiple paths in downward refraction is therefore negligible.

The factors just discussed lead to the qualitative conclusion that downward

refraction can nullify the reduction in sound pressure levels caused by ground effects.

Sound levels therefore increase to the levels predicted by geometrical spreading and

molecular absorption alone, but in general not above such levels. Increases above such

levels are due to focusing caused by curved, that is, nonlinear, sound speed gradients

and are inevitably accompanied by decreases caused by defocusing elsewhere in the
sound field.

Upward Refraction

When the sound speed decreases with height, the sound rays are bent upwards,

away from the ground. For realistic sound speed profiles, there is a limiting ray

leaving the source which just grazes the ground. This limiting ray is shown in

figure 13, and when the sound speed decreases linearly with height, the ray is an

arc of a circle. Above this limiting ray the sound field is composed of direct and

ground-reflected waves. Below the limiting ray there is an acoustical shadow region
in which these waves theoretically do not exist; sound energy does however penetrate

this shadow region due to other, diffractive propagation mechanisms.

It is perhaps useful to remind ourselves that rays do not represent any real

physical entity. Rays are a convenient way of understanding various features of a

sound field. For example, interference is a wave phenomenon that depends on phase
differences between sound fields; rays provide a convenient set of geometrical lines

from which path length differences, and hence phase differences, can be calculated.

Similarly in figure 13 the limiting ray is a geometrical line whose trajectory can
be calculated and which divides the sound field into two regions; the sound field is

however continuous across the limiting ray, although it changes across a broad band

of space near the limiting ray at a rate which depends on the wavelength of the
sound and often on other geometrical factors--again, affirmation that what occurs

in a sound field is governed by wave mechanisms.

Above the shadow region, the sound field can be described by the same arguments

as before. A typical pair of direct and reflected waves is shown by the dotted curves

in figure 13 to the point M1. There is always only one ground-reflected wave and the

incidence angle 0 is smaller than for the unstratified atmosphere. The magnitude
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Figure 13. Schematic illustrating the main features of upward refraction.

(From ref. 31.)

the reflection coefficient is now closer to -1 and the destructive interference between

direct and reflected waves is enhanced. This increases the attenuation for frequencies

above about 500 Hz (see the curves in fig. 11 at 110 m, labeled "-5" for upwind

propagation and "-5L" for lapse conditions). These results were probably measured
just beyond the limiting ray into the fringe of the shadow; however the results still

show the effect described above. Theory to account for the changing incidence angle

due to the curved ray path has been described in reference 27, where calculated

curves predicted well the changes in the spectra of figure 11 at high frequencies.

At 615 m from the source the results labeled "-5" and "-5L" in figure 11 were

measured farther into the shadow region (M2 in fig. 13) and the description of

these results requires a very different analysis. A number of numerical methods

are available to compute accurate quantitative results (refs. 28 and 29). These
reconstruct the sound field allowing for the effects of diffraction, changes in sound

velocity with height, or other relevant factors. However to provide a better

understanding of the features involved, we shall describe the process in an alternative

and more intuitive way. The sound levels, in the absence of turbulence, can be

determined from diffraction theory (ref. 30), which suggests that the energy received

at M2 initially leaves the source and travels along the limiting ray to the ground.
Then it propagates in the air along the surface in a creeping wave. At an appropriate

distance, the energy is then shed from the creeping wave and travels to M2 along

the ordinary geometrical acoustics ray shown by the dashed curve in figure 13. An

example of an acoustical shadow governed by this mechanism is shown in figure 14.
The points are measurements made above an asphalt surface at a distance of 200 m

from a point source (ref. 31), at locations well within the shadow region. Predictions

obtained from creeping-wave theory, the solid curves, are in reasonable agreement

with the measured values except at the two highest frequencies close to the ground

and upwind, that is, where the sound pressure levels are lowest. This discrepancy
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is probably due to yet another mechanism, scattering by turbulence, whereby sound

energy is redistributed between various regions of otherwise coherently determined
sound fields.
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(a) Upwind. (b) Downwind.

Figure 14. Comparison of predicted and measured sound pressure levels within

shadow region at a distance of 200 m from the source over an asphalt

surface. Sound pressure levels marked by open symbols may be perturbed

by turbulence. (From ref. 31.)

Atmospheric Turbulence

The atmosphere is an unsteady medium (ref. 32) with random variations in
temperature, wind velocity, pressure, and density. In practice only the temperature

and wind velocity variations significantly affect acoustic waves over a short time

period. During the daytime these inhomogeneities are normally much larger than

is generally appreciated. Shown in figure 15 is a typical record of the temperature
measured 1 m above a flat ground surface on a sunny day. The measurement was

made with a fast response (< 1 msec) thermometer. Fluctuations in temperature of
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5°C which last several seconds are common and 10°C fluctuations not uncommon.

The wind velocity fluctuates in a similar manner and has a standard deviation

about its mean value that is commonly one-third of the average value. When
waves propagate through the atmosphere, these random fluctuations scatter the

sound energy. The total field is then the sum, in amplitude and phase, of these

scattered waves and the direct line-of-sight wave, resulting in random fluctuations in

amplitude and phase. The acoustical fluctuations are in some respects analogous to
more familiar optical phenomena such as the twinkling of light from a star.
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Figure 15. Typical recording of the temperature measured about 1 m above the

ground on a sunny summer day. The response time of the thermometer
was leas than i msec.

Large eddies are formed in the atmosphere as energy is injected into the turbu-

lence as a result of instabilities in the thermal and viscous boundary layers near the

ground. For example, we have seen in the section on refraction that the average

horizontal wind velocity varies as a function of height, being essentially zero at the
ground surface, and this variation creates turbulence of a size approximately equal

to the height. This is illustrated very clearly in reference 33. The size at which

the energy enters into the turbulence is called the outer scale of turbulence and is

designated by Lo. The eddies of sizes greater than Lo are generally anisotropic. The
spectrum in this range, called the input range, depends on how the turbulence is cre-

ated in the particular circumstances, and thus there is no general formula describing

the turbulence characteristics in this range.

In the range of the spectrum where the eddy size is smaller than Lo, the kinetic

energy of the turbulence is very much greater than the amount of kinetic energy

that can be dissipated due to viscosity in the time required for a large eddy to break
down into smaller eddies. Since the dissipation is negligible, almost all the kinetic

energy can be transferred to eddies of smaller size. Thus, the energy transfer can be

visualized as a process of eddy fragmentation where large-scale eddies cascade into

eddies of ever-decreasing size. The characteristics of the initial conditions disappear,

the fluid motion is almost completely random and irregular, and its features can be

described in statistical terms. This part of the turbulence spectrum is called the

inertial or Kolmogorov range.

However, as the eddy size becomes smaller, the fraction of available kinetic energy
being dissipated by viscosity increases. Eventually the smallest size go of the eddies

is reached where their kinetic energy is of the same order as the kinetic energy being

dissipated. At this size go, virtually all the energy is dissipated into heat and almost

no energy is left for eddies of size smaller than go. This size go is called the inner

scale of turbulence and is typically of the order of 1 mm. The spectrum range of

eddy size smaller than go is called the viscous range.
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The three characteristic ranges of the spectral density of the turbulent atmosphere
are illustrated in figure 16. The points are an example of a measured spectrum

of wind velocity fluctuations. Essentially, the points represent the fast Fourier

transform (FFT) of the time-varying signal recorded by the anemometer. The
measurements were made about 1 m above the ground and, as expected, the outer

scale is about 1 m.
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Figure 16. The three ranges of the atmospheric turbulence spectrum.
points are the result of an FFT analysis of a wind velocity recording.

The

For horizontal sound propagation near the ground in the range of frequencies
from a few hundred to a few thousand hertz and distances of hundreds of meters,

the propagation is most influenced by eddies having sizes greater than 1 m and
hence in the input region of the turbulence spectrum. As explained above, there

is no general formula describing the turbulence in this range. Measurements and

some simple theory, although still tentative, are beginning to provide information on

the mechanism governing the propagation through turbulence in this range (refs. 31

and 34). On the other hand, for air-to-ground propagation from an elevated source,
the outer scale is much greater than 1 m and the propagation is most influenced by

eddies in the inertial range of turbulence. Our understanding of the mechanism in

this case is much better, mainly because of the large body of knowledge accumulated

through work on atmospheric sounders (ref. 35).
Regardless of whether the significant turbulence is larger or smaller than the

outer scale, the scattering of sound by turbulence produces fluctuations in the

phase and amplitude of the received signal. The magnitude of the fluctuations

increases with increasing distance of propagation, sound frequency, and strength

of turbulence. Shown in figure 17 are measured phase (open points) and amplitude

(solid points) fluctuations plotted as a function of the calculated fluctuations (ref. 34).

The measured fluctuations are for a variety of frequencies, distances of propagation,

and strengths of turbulence. The calculated values are obtained from simultaneous

meteorological measurements. The graph shows that the phase fluctuations increase
without bound, as predicted, for increasing values of the variables. The amplitude
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fluctuations on the other hand, in addition to being systematically lower than the

phase fluctuations, clearly show saturation.
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Figure 17. Measured amplitude (solid points) and phase (open points) fluctu-

ations as a function of the corresponding calculated values. (From ref. 34.)

An effect of atmospheric turbulence, which is immediately suggested by the

results shown in figure 17, is the nuisance of coping with fluctuating levels during
noise measurements from relatively distant sources such as aircraft. However the

saturation of the amplitude fluctuations shown in figure 17 minimizes this problem.

The fluctuations in sound pressure level initially increase with increasing distance,

but quickly reach a limiting value. For example when the noise from aircraft

propagates under clearly line of sight conditions over distances of a few kilometers,

the measured sound pressure levels fluctuate about their mean value with a standard

deviation of no more than 6 dB. This is in agreement with the results of figure 17.

An effect of atmospheric turbulence which has traditionally been considered

important is the direct attenuation of sound by turbulence. If the sound is in

a highly directed beam, the turbulence attenuates the beam by scattering energy

out of it (ref. 36). However for a spherically expanding wave this attenuation is
negligible, because the scattering from turbulence is elastic and mostly in the forward

direction through a small scattering angle. Therefore, in a simpleminded way, the

energy scattered out from the line of sight is replaced by energy scattered back to

the receiver from adjacent regions. This implies that the energy level of the root-

mean-square sound pressure in an unsteady medium is the same as the level would

be in the absence of turbulence. The only mechanism by which turbulence could
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provide attenuation in a spherical wave field is backscattering (ref. 37). However

it seems that the attenuation provided by backscattering is much smaller than the

attenuation due to molecular absorption. The attenuation of sound due to scattering
from a moderately directional source must lie between the two extremes of a

finite-width beam and a spherical field, but has never been evaluated thoroughly.

It is generally believed (ref. 3) to be negligible for most applications.

Other acoustical phenomena are most strongly and directly affected by atmo-

spheric turbulence. For example the interference of direct and ground-reflected

waves depends critically on the exact phase relationship that exists between them.

The random fluctuations in phase shown in figure 17 bring into question the use of

coherent acoustical theory to describe this phenomenon, as was done earlier. The

points in figure 18 are excess attenuation measurements from reference 26 of jet noise

propagating across a grass-covered field for various distances. (Excess attenuation is
that which is over and above attenuation due to normal spreading and atmospheric

absorption.) The dashed curve is calculated using the coherent acoustical theory

described earlier. At frequencies below about 300 Hz, this theory adequately de-

scribes the measured values. However, above 300 Hz, the coherent theory begins

to consistently overpredict the depth of the ground shadow at a distance of 100 m.
The discrepancy between the measured points and the solid curve reaches about

10 dB at a distance of 1 km. The solid curves were calculated (ref. 38) by treating
the atmosphere as a turbulent medium and assuming a normal distribution of phase

velocities of sound having a standard deviation of about 2 parts per 1000 and some

partial coherence between the direct and the reflected path. Theory (refs. 38-40)

shows that the partial coherence between the two paths is very sensitive to the ra-

tio of path separation and coherence length of the medium. A coherence length of

about 1 m, typical of values measured close to the ground, was used to calculate

the curves in figure 18. To assume partial, rather than complete, coherence between

the interfering waves is the only simple way to obtain reasonable agreement with

measurements at all frequencies and distances. Alternatives such as using a different

value of ground impedance could have secured agreement at some frequencies only
at the expense of worse agreement elsewhere in the spectrum or at other distances.

Another example of the degradation of an acoustical shadow region was discussed

in the previous section. The measurements shown by the open symbols in figure 14

suggest that, in addition to the energy that is diffracted into the shadow region, the

sound scattered by turbulence is contributing to the total level. Although there is

as yet no direct quantitative calculation to support this hypothesis, it is consistent

with model experiments (ref. 41) using thin barriers.
In summary, atmospheric turbulence was evoked in the past to account for

decreased sound levels that did not appear to have any other explanation. However

this was before the role played by many of the relevant wave propagation mechanisms

had been appreciated. Now work is showing why, and to what extent, turbulence

enhances the sound levels in the various types of shadow regions.

Discussion

Up to now we have discussed the consequences of the finite impedance of the
ground on sound propagation outdoors in an ideal atmosphere. The discussion was

then extended to a stratified atmosphere with curved ray paths, but in the absence of
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Figure 18. Comparison of measured sound levels (ref. 26) with values predicted

from theory for jet noise propagating over a grass-covered field. (From

ref. 38.)
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turbulence, and subsequently to include the effects of the turbulent atmosphere, but

for straight line propagation. It is possible, at least theoretically, to assume straight

line propagation in a turbulent atmosphere. This could happen for propagation

downwind on a sunny day when, fortuitously, the wind velocity gradient equals the
temperature gradient in magnitude but differs in sign, to produce a zero sound

speed gradient. In practice, situations do occur where the sound speed gradient is

negligibly small and there is a body of theory (refs. 33 and 38-40) that accounts
for partial coherence due to turbulence and which shows reasonable agreement with

measurements (refs. 33 and 38).

However the idealization of a nonturbulent but stratified atmosphere may be

rarely achieved in practice. The presence of strong wind and temperature gradients
is usually accompanied by atmospheric turbulence. An exception could be a

temperature inversion in the absence of wind. Fortunately it is not difficult to extend

an existing model (ref. 27) to allow for partial coherence between the curved ray
paths.

An example of such a calculation is shown in figure 19. The curves are calculated

relative sound pressure levels as a function of distance for two frequencies and

three atmospheric conditions. The solid curves assume propagation above grass-

covered ground in a zero sound speed gradient but in the presence of atmospheric

turbulence which could correspond to a Turner class (ref. 33) of 1. This calculation
has been previously presented for one frequency in reference 31. At 125 Hz or

any other low frequency the result is indistinguishable from theory that neglects
atmospheric turbulence. However at 1.2 kHz the solid curve differs significantly

from the prediction of coherent theory. This latter theory begins to predict lower

sound pressure levels at a distance of about 50 m to attain -25 dB at 1 km, for a
discrepancy of 15 dB between coherent theory and the solid curve.

The short-dashed curves are calculated for a slightly less turbulent atmosphere

but, in addition, for a positive sound speed gradient (downward refraction). Beyond

400 m, ray theory predicts the existence of additional ray paths (see eq. (15)). At
125 Hz the results differ little from coherent theory. On the other hand at 1.2 kHz,
the increased incidence angle, the additional ray paths beyond 400 m, and the loss

of coherence all contribute to almost eradicating the attenuation produced by the

finite impedance of the ground (at the larger distances where there are many ray
paths, a simpler calculation was performed (ref. 25)).

The long-dashed curves were calculated for a slightly more turbulent atmosphere

than the short-dashed curves but now for a negative sound speed gradient (upward
refraction). The shadow boundary expected from ray theory occurs at 400 m.

Therefore, beyond 400 m the curve is calculated using diffraction theory (ref. 31). At
125 Hz the long-dashed curve differs from the solid curve only beyond 400 m, that

is, in the shadow region that exists in this case. At 1.2 kHz the long-dashed curve

differs negligibly from the result that would be obtained using coherent theory up
to about 400 m. This is because the reduced incidence angle of the reflected wave

produces lower sound pressure levels which are then enhanced because of partial
coherence between direct and reflected waves. For this particular calculation the

two effects almost cancel. Beyond 400 m the levels are determined by diffraction
theory up to some relative sound pressure levels shown by the shaded area. The

body of available experimental data (refs. 3, 26, and 31) shows that, in practice,
lower sound pressure levels are not achieved in a turbulent atmosphere. There is no
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Figure 19. Comparison of predicted sound pressure levels as a function of
distance for two frequencies and three atmospheric conditions. Propagation

over grass in presence of atmospheric turbulence.

rigorous theory to substantiate this at present. However there is some theory (ref. 41)

and experimental evidence (ref. 31) to support the explanation that scattering by
turbulence is responsible for these limiting sound pressure levels.

The features shown for the 1.2-kHz calculation are also found for frequencies

between 200 and 2000 Hz, but differ in detail. The results also differ in detail for

different atmospheric conditions, but the main tendencies remain. The curves are

examples of typical behavior justified on physical arguments and are consistent with

the behavior of experimental data (see fig. 13 of ref. 31 and the data in ref. 26).
In summary, because of variations in atmospheric conditions, it is not possible to

produce a unique prediction of sound pressure levels, especially for distances greater

than about 50 to 100 m. The levels will not exceed those given by inverse square law

and molecular absorption (unless there are sufficient multiple downward refractive
paths in which case the level may be enhanced by 1 to 2 dB) but can be, and usually

are, lower because of a combination of other mechanisms; the levels are rarely lower

by more than -25 to -35 dB because of the turbulent atmosphere.

Diffraction

The processes of diffraction arise from the mutual interaction of neighboring
elements of a wave field. They occur when the amplitude and phase of the sound
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field vary spatially in ways that are incompatible with the sound wavelength at any

given frequency. Far from any boundaries a sound field propagates in a relatively

simple way, and one can exploit this simplicity by describing the propagation in
terms of ray paths. However if a large solid body blocks the sound field, the ray

theory of sound propagation predicts a shadow region behind the body with sharply

defined boundaries, so in principle, on one side of the boundary there is a sound

field with well-defined phase and amplitude and close by on the other side of the

boundary there is essentially silence. This does not happen in practice; as the waves

propagate, sound "leaks" across this sharp boundary in ways governed by the laws
of wave motion and the boundary becomes less sharp. Diffraction effects are most

clearly evident in the vicinity of solid boundaries, or along geometrical ray boundaries

such as the limiting ray shown in figure 13.

Acoustic diffraction occurs in conjunction with a wide range of solid bodies: some

such as thin solid barriers are erected alongside highways or are carefully located to
shield residential communities from ground operations of aircraft; others such as

buildings are often built for other purposes but fortuitously provide some beneficial

shielding; yet others like undulating ground or low hills occur naturally and provide

shielding at much larger distances and bring forth other manifestations of diffraction

such as the creeping waves referred to earlier.

Most of the development of diffraction theory for sound waves has been adapted

from optical diffraction theory (refs. 42-44). It has been applied mainly to under-

stand and accurately predict the performance of thin barriers, including the practical

situations of barriers standing on ground of finite impedance, where effects due to

ground reflections and interference interact with diffraction of sound over the top

of the barrier (ref. 45). Other developments have been to describe the shielding

behavior of thick barriers (refs. 46 and 47), such as buildings or earth berms.

The simplest and most widely used procedure for determining the reduction of
sound pressure level due to diffraction around the edge of a barrier is described

in reference 48. One must first calculate the Fresnel number, which is simply the

minimum increase in distance that the sound must travel around the edge of the

barrier to go from source to receiver (fig. 20), divided by a half-wavelength A/2 at
the frequency of interest. The Fresnel number N is

2 (dl + d2 - d3)
N= X (16)

The reduction in sound pressure level is then given as a function of Fresnel number by

the curve in figure 21. This curve is obtained from diffraction theory assuming a thin

knife-edge barrier and no ground and then empirically allows for the presence of the

ground by reducing the loss of sound level by about 2 dB. This prediction curve is not

exact because the empirical correction does not account for the frequency dependence

(here, the Fresnel number dependence) of the ground-reflection interference in a

specific configuration of source, barrier, and receiver heights and distances apart.

The curve is correct to about +5 dB in most cases and is the mean curve through

the interference spectrum that would be measured, and can be predicted, in any
specific circumstances.

In practice the reduction in sound pressure level behind a barrier rarely exceeds

about 15 to 25 dB, except in extreme configurations when the diffraction angle,
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Figure 20. Schematic defining the necessary parameters for diffraction around
a thin barrier.

in figure 20, is very large. More commonly the performance of a barrier is limited

to these values by the effects of the turbulent atmosphere (ref. 41). As discussed

previously, scattering by turbulence provides an additional mechanism by which

sound energy can penetrate the shadow behind the barrier, thus resulting in an

upper limit to the reduction in sound pressure level. If the barrier is not continuous,
such as a row of detached houses, other empirical values are sometimes used. For

example, when the gaps between houses are 30 to 50 percent of the whole, a drop

of 2 to 3 dB is sometimes assumed for one row of houses, about 4 to 6 dB for two

or more rows. These are obviously average values and are greater directly behind a
house and much less in line with the break in the barrier.
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Figure 21. Reduction in sound pressure level relative to the free field without

a barrier as a function of Fresnel number N. (Curve from ref. 48.)
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When barriers are used specifically to reduce sound, it is good practice to locate

them, when possible, as closely as possible to either the source or the receiver. A

barrier of given height then results in a large value of the diffraction angle/9 and a

greater path lengthening (dl ÷ d2 -d3). This provides a larger insertion loss and
also more protection against degradation of this insertion loss by refractive effects

that, under appropriate meteorological conditions, can cause the direct sound field

to curve around the edge of the barrier. It is difficult to be precise because the

variables are so many, but refractive effects can often bend sound fields through a

few degrees in a distance of 100 m: this suggests that the diffraction angle/9 must be

at least 5 ° for a sound barrier to provide some amount of diffractive shielding under

most meteorological conditions.

At distances between source and receiver greater than a few hundred meters,

it is difficult to provide man-made barriers large enough to provide any noticeable

reduction in sound pressure levels. Naturally occurring topographical features such

as hills can often function as barriers, blocking the line of sight between source and

receiver. There has been very little systematic study of the acoustical effects of

terrain shape and type at long ranges, partly because of the wide range of possible

forms and the difficulties of understanding the general principles that could then be

applied to other terrains and partly because dominant meteorological effects would

often cast considerable uncertainty on any terrain-related results. The processes of
diffraction can however assist in understanding one very simple form of ground shape,

namely a spherical or cylindrical surface that curves downward. There is a close

analogy between a ground surface that curves downward in conjunction with sound

rays that travel in straight lines and a ground surface that is flat while sound rays

curve upward because of a temperature lapse or upwind propagation. The analogy

is shown in figure 22, where the reader will recognize that figure 22(b) has extracted
the relevant features from figure 13 that was earlier used to describe the behavior of

sound fields in upward refraction due to meteorological gradients. Measurements and

relevant theory (refs. 49-52) on grass and asphalt surfaces outdoors and artificial

surfaces indoors having shapes corresponding to figure 22(a) are the subject of current

work. Typical results (ref. 49) for propagation around a grass-covered cylindrical

mound having a radius of curvature of 25 m are shown in figure 23 for two source-

to-receiver distances and three receiver heights all within the shadow region.

M

Eqnivah'n!

thin s_'reen

d

Sketch A

The short dash curves in figure 23 represent the

prediction of simple diffraction theory when the

curved surface is replaced by an equivalent thin

barrier, with the height of the equivalent bar-

rier being determined by line-of-sight geometry
as shown in sketch A on the left. This predic-

tion is reasonably good at low frequencies, here

below about 500 Hz, but at higher frequencies it

underestimates the measured shadow by as much

as 20 dB. The short-long dashed line in figure 23 is the prediction for creeping-

wave diffraction mechanisms assuming a surface of infinite impedance, and the lower

solid line was calculated (ref. 51) assuming a grass-covered surface of finite acoustic

impedance. The trend of the measured values is clear for both receiver heights and

is as expected from the ground impedance values shown in figure 5--at the lower
frequencies the ground impedance is higher and can be idealized as a rigid boundary;
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Figure 22. Analogy between sound propagation in a homogeneous, isotropic

atmosphere over downwardly curving ground and sound propagation in an

upwardly refractive atmosphere, above a flat ground.

as frequency increases there is a smooth transition to the predictions assuming a low

acoustic impedance. The discrepancy between the measured points and the lower
solid line at d = 11 m and hr -- 0.25 m is attributed to atmospheric turbulence

(ref. 41).
Thus we see that diffractive mechanisms play an important part in the propaga-

tion of sound fields. These mechanisms are responsible for determining the sound

pressure levels in acoustical shadow regions, whether these shadow regions are pro-
duced by solid obstacles at short or long ranges or by refractive processes causing

the upward bending of sound rays.

Large-Amplitude Waves, Pulses, and

Sonic Booms

The discussion of sound propagation mechanisms so far in this chapter, as in
most of the acoustical literature, has assumed that sound waves propagate according

to linear laws in a linear medium. It has been assumed, for example, that the

speed of sound is a constant determined only by the properties of the air, principally

its temperature; that the frequency and wavelength of a given sound do not change

during propagation or as the sound is subjected to any of the mechanisms described so
far; and that the amplitude of the sound, and its spectral content, change during these

processes by the same fraction (or its sound pressure level by the same number of

decibels) regardless of whether the sound initially has a high or a low sound pressure

level. For many acoustical problems the assumptions of linearity, superposition of

waves, and the approximations of small-amplitude acoustics are perfectly adequate.
When a sound source is sufficiently intense or when the sound field remains at a

high enough level for a sufficient distance of propagation, then nonlinearity of many

of the wave propagation processes becomes important, gives rise to many further

phenomena, and can significantly affect the sound received by a distant observer.
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Figure 23. Sound pressure levels over a grass-covered curved ground with radius
of curvature of 25 m. Source on the ground.

Here we shall focus attention on one small group of nonlinear phenomena that are

all related to the fact that the propagation speed of any part of the waveform depends

on its own particular particle velocity. The result is that waveforms change shape
during propagation, their spectral content changes, shock waves may develop, and
there is increased absorption.

Waveform Distortion

As a sound wave propagates through air, the instantaneous pressure, particle ve-

locity, temperature, and density at any point in the waveform all vary simultaneously

and are closely related. In that part of the waveform where the pressure increases,

the temperature and density also increase, and the longitudinal particle velocity due

to the wave is in the direction in which the wave energy is propagating. (Conversely

when the pressure, temperature, and density simultaneously decrease, the particle

velocity is in the opposite direction to that in which the energy is being propagated.)
The zero crossings of the sound waveform travel with the "small-amplitude" speed
of sound, Co = 331.2 m/sec at 0°C, which is the speed of sound described earlier.

However other parts of the waveform, which we intuitively and most commonly think

of as a pressure waveform, each travel relative to the local part of the propagation
medium (refs. 53 and 54). There are two distinct effects on the speed with which
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individual elements of the waveform propagate. Consider an element of the wave

having an instantaneous positive pressure: first the temperature is momentarily in-
creased due to the sound wave and so the local speed of sound is increased to a value

given by
7-1

c = Co + --_u (17)

where 7 is the ratio of specific heats of air (7 _ 1.4) and u is the local particle

velocity. Second the waveform travels relative to the local medium which in this

region of positive pressure is traveling in the forward direction, also with the particle

velocity u. The net result is that this part of the waveform travels with a velocity

7-1 7+1
c = Co + ----_u + u = Co + --g--u (18)

Equation (18) is a general result that applies to all elements of a continuous waveform;
in particular when the acoustic pressure is negative, the particle velocity is in the

opposite direction and the negative half-cycle of the waveform travels in the direction

of propagation more slowly than the zero crossings. Furthermore the excess velocity
relative to Co for the zero crossings is proportional to the particle velocity u (or

proportional to the acoustic pressure p through the impedance relation p/u = pc

where p is density). Thus the positive peak of a waveform travels fastest and "catches

up" to the zero crossing ahead of it, while at the same time increasing its separation

from the zero crossing that follows it. The opposite process occurs for the negative

peak of the waveform. The net result of these differences in propagation speed is

that the waveform changes shape during propagation as illustrated in figure 24.

Figure 24 represents the pressure vs. time waveform that would be detected at

successively increasing distances of propagation. The wave is assumed to be an

infinitely long series of initially sinusoidal waveforms, one cycle of which is shown in
figure 24(a); it propagates from right to left, and retarded time is used to reduce the

corresponding zero crossings to t = 0 in each case. In those parts of the waveform

where cOp/Ot is positive, this gradient increases with distance of propagation; where

negative, this gradient becomes less steep. At some distance the rate of change in

pressure may become infinitely steep (in reality, it is finite but can take place over a
distance of the order of a mean free path of the gas molecules if the pressure difference

is sufficiently great) and this denotes the formation of a shock wave. In an initially

symmetrical sinusoidal waveform this discontinuity occurs at those zero crossings

where pressure is increasing (fig. 24(c)). As the waveform continues to propagate,
the shock wave extends over a bigger change in pressure as regions of lesser pressure

immediately ahead are overtaken by it, and higher pressure regions behind the shock

catch up to it. A shock wave represents an abrupt change in acoustic pressure and

a discontinuity in particle velocity, but once formed it travels with a velocity that is

the mean of that associated with the pressures and velocities immediately ahead of

and behind it. Hence, for an initially symmetrical sinusoidal waveform, the resulting

shock waves remain symmetrical and travel with the small-amplitude speed of sound

with the result that each cycle of the wave train remains of constant wavelength and

fundamental frequency.
Once a shock wave is formed, continued use of equation (18) leads to the situation

shown by the dotted waveform in figure 24(d), in which three different pressures
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Figure 24. Schematic of large-amplitude continuous waves at increasing

distances of propagation, showing pressure changes as a function of time.

would coexist simultaneously at the same place---an obvious impossibility. Instead,

the shock continues to propagate with an excess velocity which is nominally zero in a

continuous, symmetrical waveform, and the region where Op/Ot is negative becomes

less steep (eq. (18) still applies in this region). In particular, the element either at,

or just behind, the peak marked "A" in figure 24(d), continues to propagate with
a velocity given by equation (18) and so coalesces with the shock wave. Thus an

element, such as point A, that has a pressure just more than the pressure in the
shock wave catches up to the shock because of its greater velocity to produce a more

rapid reduction in pressure amplitude than would be predicted by linear absorption
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or dissipation mechanisms. Similar processes occur on the low pressure side of the

shock, with _.;b_ result that the magnitude of the shock is eroded from both sides

simultaneau_%J Tais enhanced rate of dissipation of acoustic energy is caused by the

enhanced rate of conversion of this energy into heat through thermal and viscous

processes associated with the very large thermal gradients across the shock front.
We have so far in this section described the nonlinear distortion of a sound wave

in terms of its waveform as a function of time. An equally valid approach is to

consider the change in its spectrum. The spectrum of an initially sinusoidal wave

(fig. 24(a)) is a single frequency fl having a wavelength A1 given by A1 = co�f1. As

the wave propagates and progressively distorts, in the limit into a train of triangular

waveforms, as shown by the solid line waveform in figure 24(d), the initial single-

frequency spectrum fl changes to include higher harmonics nfl (where n is an

integer). Before shocks have formed (figs. 24(a) and (b)), the amplitude of the
second harmonic in a spherically spreading wave grows at a rate given by (ref. 55)

dp2 n2(Pl)2 (xO)2e2_l(X_xo)l,, P2 0_2P2 (19)dx 0 -x- - --x -

In equation (19) the first term represents the growth of the second harmonic from

the fundamental at a rate depending (ref. 56) on the square of the fundamental

amplitude (Pl)0 which is itself subject to geometrical spreading (xo/x) and to a
small-amplitude attenuation coefficient al. The second term p2/x represents the

geometrical spreading of the second harmonic with distance of propagation, and
the third term its dissipative attenuation. Expressions similar to equation (19) can

be developed for higher harmonics and integrated to obtain the amplitudes of each

harmonic as a function of the distance of propagation. These details are beyond the

scope of this summary and interested readers are referred to references 54 and 55. In

equation (19) for a spherically spreading finite-amplitude wave, the rate of generation
of the second harmonic decreases as x -2, more rapidly than the magnitude of either
the first or the second harmonic, both of which decrease as x -1.

Large-Amplitude Pulses

The large-amplitude waves considered so far have been assumed to be repetitive
and symmetrical. Many large-amplitude waves are, however, transient pulses such

as blasts, gun shots, or sonic booms. In these waves the initial pressure distur-

bance, usually an increase in pressure, propagates into undisturbed air (fig. 25(a)).

Subsequent parts of the disturbance can have various forms such as a decaying os-

cillatory waveform or after one or two half-cycles a more or less immediate return to

a relativply undisturbed state.

.o before, nonlinear distortion occurs due to the finite magnitude of the particle

velocity u, as described by equation (18). The pulse becomes more distorted during

propagation, and at some distance a shock may form in the pulse where the pressure

rise time Op/at was initially steepest. For simplicity of description (and this is
often the case of practice), we assume that this is at the beginning of the pressure

disturbance. The zero crossings of the pressure pulse, up to this time (fig. 25(b))

travel with the small-amplitude sound speed Co. Once a shock has formed, it

propagates with a velocity that is the mean of that associated with conditions

immediately ahead of and behind it. This excess velocity is in the direction of
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Direct ion of propagat im_

(a) Decaying sine waveform.

Pressure

B

-._ - -- At_,.- - ._.._-- - A t _.

(b) Distorted wave form with (c) Elongated waveform.
shock where pressure gradient

was initially steepest.

Figure 25. Schematic of a large-amplitude sound pulse at increasing distances

of propagation showing pressure changes as a functiorcof time.

propagation and causes the first half-cycle of the pulse to elongate as the pulse

continues to propagate--later half-cycles of the pulse remain of constant duration

At1, until nonlinear distortion causes further and often unsymmetrical shocks to

form in those parts of the pulse. This is illustrated in figure 25(c) where one notes

that the first half-cycle has a duration At2 that is longer than that of the second

half-cycle of duration At1. If we denote the particle velocity of the first peak of the
wave, B in figure 25(c), by Umax, then the velocity of the head shock for a f,,l_e is
given by

"y+l
c = Co+ --Z--Um x (20)

The second most likely place for a shock to form is at the end of the second half-cycle
of the pulse, as shown in figure 25(c). This represents a typical N-wave, so-called

because of its shape. Given the asymmetry of pressure usually associated with this

tail shock, its mean velocity in the direction of propagation of the pulse is less than

that of the zero crossings. Thus the head shock travels faster than Co and the tail
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shock slower, so that both contribute to the lengthening of the pulse, or equivalently

an increased time duration between the head and tail shocks. The lengthening of

a pulse traveling into undisturbed air is a feature that does not occur during the
propagation of large-amplitude continuous waves even when shocks are present.

In terms of the spectrum of the pulse, this lengthening process represents a shift

in the sound energy to lower frequencies as propagation proceeds. This is in sharp

contrast to the shift in sound energy to higher frequencies as described earlier that is
related to the nonlinear distortion from an initially more or less sinusoidal waveform

to one having a more nearly triangular or saw-toothed shape_a process that occurs
both in pulses and in continuous waves of large amplitude.

Sonic Booms

An important type of large-amplitude acoustic pulse is that caused by a body

traveling faster than the local speed of sound (refs. 57 and 58). Of particular

interest is the sonic boom caused by an aircraft flying supersonically. Because the

aircraft is flying supersonically, pressure discontinuities (shock waves) are produced

instantaneously at the source and are not produced by waveform distortion during

propagation. Booms recorded on the ground from high flying aircraft are often good
approximations to N-waves. If the aircraft is long or is flying sufficiently high for the

N-wave to lengthen appreciably during propagation over a large distance, the head

and tail shocks can be heard as two separate events between which there is a brief

period of quiet. Reference 59 quotes results from several NASA Technical Notes

showing that the time between head and tail shocks for a fighter aircraft increases

systematically from about 50 msec to about 90 msec during propagation from 20 m
to 3 km.

These authors (ref. 59) and others show that the pulse shape measured near a

supersonic aircraft is not a simple N-wave but exhibits fine structure relating to the
details of the aircraft's cross-sectional area and lift distribution. Each increase in

cross-sectional area, such as the nose or leading edge of wing, produces its own head

shock; and each decrease, such as the back end of the fuselage or wing, its own tail

shock. However, following the same principles of propagation as described earlier,
each head shock that "starts out situated part way along the pulse, for example, that

due to the leading edge of the wing, propagates faster than the local speed of sound,

and makes its way forward in the pulse as the whole pulse propagates away from the
aircraft. At a sufficient distance, all such intermediate head shocks coalesce with the

frontmost head shock to produce a single head shock representing the beginning of

the N-wave. Similarly all the intermediate tail shocks, traveling more slowly than

the local speed of sound eventually coalesce into a single tail shock representing the
end of the N-wave.

It is sometimes observed that sonic boom waveforms differ noticeably from well-

defined N-waves. These discrepancies usually occur close to the head and tail shocks

and rarely in the intermediate parts of the waveform. The peaks of the waveform may

be very significantly rounded in shape; at other times the peaks appear to have sharp

spikes superimposed on them. These effects are caused by propagation of the waves

through turbulence and by refractive effects that can cause focusing or defocusing

of the N-wave pulses at particular measuring locations. Focusing and defocusing of

the waves can also be caused by aircraft maneuvers such as acceleration in straight
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flight or turns. These factors have been studied by numerous workers and the reader

should consult the literature for details (refs. 60-63).

Standards

The various sound propagation mechanisms described in the earlier sections of

this chapter have all been studied and quantified by means of measurements. In

some cases the measuring instruments used and methods of calculation or theories

developed for these phenomena have been agreed upon and are now embodied in
a number of national or international standards. A few of these standards are

specific to noise from aircraft, but most are of more general application and relate

to acoustical measurements of sound from almost any type of source. Here we

can merely comment briefly on a number of these standards because standards

are carefully developed precise documents, and anyone wishing to use a procedure
described in a standard should refer to the standard itself.

The standard ANSI S1.13-1971 (R1986) (ref. 64) provides guidelines for the
measurements of many different types of sound in various situations. A new standard

is being developed to address specifically the special problems of measurement of

sound pressure levels outdoors. The standards IEC 651(1979) (ref. 65) and ANSI

S1.4-1983 (ref. 66) deal with the basic sound measurement system and specify

frequency weighting and time constants. The standards ANSI S1.6-1984 (ref. 67),

ANSI S1.8-1969 (R1974) (ref. 68) and ISO 1683-1983 (ref. 69) attempt to provide

uniformity in the reporting of results. The latter two standards differ over the

reference quantities to be used for vibratory velocity and acceleration. A major
revision of ANSI SI.ll has been undertaken and the revised version, ANSI S1.11-

1976 (R1986) (ref. 70), includes specifications for both digital and analog filters. The

standard ANSI S1.26-1978 (ref. 5) relates directly to the propagation phenomenon

described earlier in this chapter. It is currently undergoing revision to allow for

more realistic values of attenuation at low frequencies and to include methods for

calculating the attenuation of bands of noise and for calculating attenuation along

a propagation path where the atmospheric properties change, for example, with

altitude. Several other standards relate to specific types of aircraft operation under

specific circumstances: SAE AIR-923 (ref. 71), SAE AIR-1672B (ref. 72), ISO 2249-
1973 (ref. 73), and IEC 561(1976) (ref. 74).

The use of standard measurement procedures and methods of calculation has the

obvious advantage of uniformity and of increasing the comparability of measurements

made at different locations and times. However, in the subject of atmospheric sound

propagation our collective knowledge of the several mechanisms involved and how

they interact has advanced rapidly. For this reason, the discussion of some of the

mechanisms in this chapter is based on new understanding that was not available at
the time some of the standards were written.

References

1. Hunt, Frederick V.: Orig/ns in Acoustics. Yale Univ. Press, 1978.

2. Lenihan, J. M. A.: Mersenne and Gassendi. Acustica, vol. 1, no. 2, 1951, pp. 96-99.

3. Piercy, J. E.; Embleton, T. F. W.; and Sutherland, L. C.: Review of Noise Propagation in the

Atmosphere. J. Acoust. Soc. America, vol. 61, no. 6, June 1977, pp. 1403-1418.

4. Embleton, T. F. W.: Sound Propagation Outdoors--Improved Prediction Schemes for the 80's.

Noise Control Eng., vol. 18, no. 1, Jam-Feb. 1982, pp. 30-39.

96



Atmospheric Propagation

5. American National Standard Method for the Calculation of the Absorption of Sound by the Atmosphere. ANSI

S1.26-1978 (ASA 23-1978), American Natl. Standards Inst., Inc., June 23, 1978.

6. Bass, H. E.; Sutherland, L. C.; Piercy, Joe; and Evans, Landon: Absorption of Sound by the

Atmosphere. Physical Acoustics, Volume XVII, Warren P. Mason and R. N. Thurston, eds., Academic

Press, Inc., 1984, pp. 145 232.

7. Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating

Aircraft Flyover Noise. ARP 866A, Soc. Automot. Eng., Aug. 1964.

8. Zuckerwar, Allan J.; and Meredith, Roger W.: Low-Frequency Absorption of Sound in Air. J. Acoust.

Soc. America, vol. 78, no. 3, Sept. 1985, pp. 94_955.

9. Wait, James R.: Electromagnetic Waves in Stratified Media, Revised Edition Including Supplemented Material.

Pergamon Press Inc., c.1970.

10. Dickinson, P. J.; and Doak, P. E.: Measurements of the Normal Acoustic Impedance of Ground

Surfaces. J. Sound 84 Vib., vol. 13, no. 3, Nov. 1970, pp. 309-322.

11. Embleton, T. F. W.; Piercy, J. E.; and Olson, N.: Outdoor Sound Propagation Over Ground of

Finite Impedance. J. Acoust. Soc. America, vol. 59, no. 2, Feb. 1976, pp. 267-277.

12. Zuckerwar, Allan J.: Acoustic Ground Impedance Meter. J. Acoust. Soc. America, vol. 73, no. 6,

June 1983, pp. 2180-2186.

13. Allard, Jean F.; and Sieben, Benita: Measurements of Acoustic Impedance in a Free Field With

Two Microphones and a Spectrum Analyzer. J. Acov.st. Soc. America, vol. 77, no. 4, Apr. 1985,

pp. 1617 1618.

14. Daigle, G. A.; and Stinson, Michael R.: Impedance of Grass-Covered Ground at Low Frequencies

Measured Using a Phase Difference Technique. J. Acoust. Soc. America, vol. 81, no. 1, Jan. 1987,

pp. 62-68.

15. Chessell, C. I.: Propagation of Noise Along a Finite Impedance Boundary. J. Acoust. Soc. America,

vol. 62, no. 4, Oct. 1977, pp. 825-834.

16. Delany, M. E.; and Bazley, E. N.: Acoustical Properties of Fibrous Absorbent Materials. Appl.

Acoust., vol. 3, no. 2, Apr. 1970, pp. 105 116.

17. Embleton, T. F. W.; Piercy, J. E.; and Daigle, G. A.: Effective Flow Resistivity of Ground

Surfaces Determined by AcousticM Measurements. J. Acoust. Soc. America, vol. 74, no. 4, Oct. 1983,

pp. 1239-1244.

18. Attenborough, K.: Acoustical Impedance Models for Outdoor Ground Surfaces. J. Sound 8_ Vib.,

vol. 99, no. 4, Apr. 22, 1985, pp. 521-544.

19. Nicolas, J.; Berry, J.-L.; and Daigle, G. A.: Propagation of Sound Above a Finite Layer of Snow.

J. Acoust. Soc. America, vol. 77, no. l, Jan. 1985, pp. 67-73.

20. Naghieh, M.; and Hayek, Sabih [.: Diffraction of a Point Source by Two Impedance Covered Half-

Planes. J. Acoust. Soc. America, vol. 69, no. 3, Mar. 1981, pp. 629-637.

21. Rasmussen, K. B.: A Note on the Calculation of Sound Propagation Over Impedance Jumps and

Screens. J. Sound _4 Vib., vol. 84, no. 4, Oct. 22, 1982, pp. 598-602.

22. De Jong, B. A.; Moerkerken, A.; and Van der Toorn, J. D.: Propagation of Sound Over Grassland

and Over an Earth Barrier. J. Sound _ Vib., vol. 86, no. 1, Jan. 8, 1983, pp. 23 46.

23. Koers, Peter: Diffraction by an Absorbing Barrier or by an Impedance Transition. Noise Control: The

International Scene, Proceedings--Inter-Noise 83, Volume 1, Inst. of Acoustics (Edinburgh, U.K.), c.1983,

pp. 311-314.

24. Daigle, G. A.; Nicolas, J.; and Berry, J.-L.: Propagation of Noise Above Ground Having an

Impedance Discontinuity. J. Acoust. Soc. America, vol. 77, no. 1, Jan. 1985, pp. 127 138.

25. Embleton, T. F. W.; Thiessen, G. J.; and Piercy, J. E.: Propagation in an Inversion and Reflections

at the Ground. d. Acoust. Soc. America, vol. 59, no. 2, Feb. 1976, pp. 278-282.

26. Parkin, P. H.; and Scholes, W. E.: The Horizontal Propagation of Sound From a Jet Engine Close

to the Ground, at Hatfield. J. Sound _ Vib., vol. 2, no. 4, Oct. 1965, pp. 353-374.

27. Hidaka, Takayuki; Kageyama, Kenji; and Masuda, Sadahiro: Sound Propagation in the Rest

Atmosphere With Linear Sound Velocity Profile. J. Acoust. Soc. Japan (E), vol. 6, no. 2_ Apr. 1985,

pp. 117-125.

28. Raspet, R.; Lee, S. W.; Kuester, E.; Chaslg, D. C.; Richards, W. F.; Gilbert, R.; and Bong, N.:

Fast-Field Program for Sound Propagation in a Layered Atmosphere Above an Impedance Ground.

J. Acoust. Soc. America, vol. 77, no. 2, Feb. 1985, pp. 345-352.

97



Embleton and Daigle

29. Lee, S. W.; Bong, N.; Richards, W. F.; and Raspet, Richard: Impedance Formulation of the Fast

Field Program for Acoustic Wave Propagation in the Atmosphere. J. Acoust. Sac. America, vol. 79,

no. 3, Mar. 1986, pp. 628-634.

30. Pierce, Allan D.: Acoustics- An Introduction to Its Physical Principles and Applications. McGraw-Hill Book

Co., c.1981.

31. Dalgle, G. A.; Embleton, T. F. W.; and Piercy, J. E.: Propagation of Sound in the Presence of

Gradients and Turbulence Near the Ground. J. Acoust. Sac. America, vol. 79, no. 3, Mar. 1986,

pp. 613-627.

32. Tatarski, V. I. (R. A. Silverman, transl.): Wave Propagation in a Turbulent Medium. McGraw-Hill Book

Co., Inc., 1961.

33. Johnson, Mark A.; Raspet, Richard; and Bobak, Michael T.: A Turbulence Model for Sound

Propagation From an Elevated Source Above Level Ground. J. Acoust. Sac. America, vol. 81,

no. 3, Mar. 1987, pp. 638-646.

34. Daigle, G. A.; Piercy, J. E.; and Embleton, T. F. W.: Line-of-Sight Propagation Through

Atmospheric Turbulence Near the Ground. J. Acoust. Sac. America, vol. 74, no. 5, Nov. 1983,

pp. 1505-1513.

35. Brown, Edmund H.; and Hall, Freeman F., Jr.: Advances in Atmospheric Acoustics. I_v. Geophys.

Space Phys., vol. 16, no. 1, Feb. 1978, pp. 47-110.

36. Brown, E. H.; and Clifford, S. F.: On the Attenuation of Sound by Turbulence. J. Acoust. Sac.

America, vol. 60, no. 4, Oct. 1976, pp. 788-794.

37. Wenzel, Alan R.: Radiation and Attenuation of Waves in a Random Medium. J. Aeoust. Sac. America,

vol. 71, no. 1, Jan. 1982) pp. 26-35.

38. Dalgle, G. A.: Effects of Atmospheric Turbulence on the Interference of Sound Waves Above a Finite

Impedance Boundary. J. Acoust. Sac. America, vol. 65, no. 1, Jan. 1979, pp. 45-49.

39. Clifford, Steven F.; and Lataltis, Richard J.: Turbulence Effects on Acoustic Wave Propagation

Over a Smooth Surface. J. Acoust. Soc. America, vol. 73, no. 5, May 1983, pp. 1545-1550.

40. Hidaka, T.; Kageyama, K.; and Masuda, S.: Fluctuation of Spherical Wave Propagating Over

a Ground Through Atmospheric Turbulence. J. Acoust. Sac. Japan (E), vol. 6, no. 2, Apr. 1985,

pp. 247-256.

41. Daigle, G. A.: Diffraction of Sound by a Noise Barrier in the Presence of Atmospheric T_rbulence.

J. Acoust. Sac. America, vol. 71, no. 4, Apr. 1982, pp. 847-854.

42. Keller, Joseph B.: Geometrical Theory of Diffraction. J. Opt. Sac. Americaj vol. 52, no. 2, Feb. 1962,

pp. 11_130.

43. Elmore, William C.; and Heald, Mark A.: Physics of Waves. McGraw-Hill Book Co., c.1969.

44. Born, Max; and Wolf, Emil: Principles of Optics, Fourth ed. Pergamon Press Inc., 1970.

45. Isei, T.; Embleton, T. F. W.; and Piercy, J. E.: Noise Reduction by Barriers on Finite Impedance

Ground. J. Acoust. Sac. America, vol. 67, no. 1, Jan. 1980, pp. 46-58.

46. Pierce, Allan D.: Diffraction of Sound Around Corners and Over Wide Barriers. J. Acoust. Sac.

America, vol. 55, no. 5, May 1974, pp. 941 955.

47. Fujiwara, K.; Ando, Y.; and Maekawa, Z.: Noise Control by Barriers--Part I: Noise Reduction by a

Thick Barrier. Appl. Acoust., vol. 10, no. 2, Apr. 1977, pp. 147-159.

48. Maekawa, Z.: Noise Reduction by Screens. AppL Acoust., vol. 1, no. 3, July 1968, pp. 157-173.

49. Daigle, G. A.; and Embleton, T. F. W.: Diffraction of Sound Over Curved Ground. J. Acou_. Sac.

America, vol. 79, suppl, no. l, Spring 1986, p. $20.

50. Pierce, Allan D.; Main, Geoffrey L.; and Kearns, James A.: Curved Surface Diffraction Theory

Derived and Extended Using the Method of Matched Asymptotic Expansions. J. Acoust. Sac. America,

vol. 79, suppl, no. 1, Spring 1986, pp. $30-$31.

51. Berry, Main; and Daigle, G. A.: Propagation of Sound Above a Curved Surface. J. Acoust. Sac.

America, vol. 81, suppl, no. 1, Spring 1987, p. $97.

52. Berthelot, Yves H.; Kearns, James A.; Pierce, Allan D.; and Main, Geoffrey L.: Experimental

Investigation of the Diffraction of Sound by a Curved Surface of Finite Impedance. J. Acoust. Sac.

America, vol. 81, suppl, no. 1, Spring 1987, p. $97.

53. Blackstock, David T.: Connection Between the Fay and Fubini Solutions for Plane Sound Waves of

Finite Amplitude. J. Acoust. Sac. America, vol. 39, no. 6, June 1966, pp. 1019-1026.

54. Blackstock, David T.: Nonlinear Behavior of Sound Waves. I'2th International Congress on Acou._s.

Canadian Acoustical Assoc., July 1986, Plenary 3.

98



Atmospheric Propagation

55. Pernet, D. F.; and Payne, R. C.: Non-Linear Propagation of Signals in Air. J. Sound 86 Vib., vol. 17,

no. 3, Aug. 8, 1971, pp. 383-396.

56. Thuras, A. L.; Jenkins, R. T.; and O'Neil, H. T.: Extraneous Frequencies Generated in Air Carrying

Intense Sound Waves. J. Acoust. Soc. America, vol. 6, no. 3, Jan. 1935, pp. 173-180.

57. Proceedings of the Sonic Boom Symposium. J. Acoust. Soc. America,, vol. 39, no. 5, pt. 2, May 1966,

pp. S1-$80.

58. Sonic Boom Symposium. J. Acoust. Soc. America, vol. 51, no. 2, (pt. 3), Feb. 1972.

59. Carlson, Harry W.; Mack, Robert J.; and Morris, Odeil A.: Sonic-Boom Pressure-Field Estimation

Techniques. J. Acoust. Soc. America, vol. 39, no. 5, pt. 2, May 1966, pp. S10 S18.

60. Kane, E. J.: Some Effects of the Nonuniform Atmosphere on the Propagation of Sonic Booms. J.

Acoust. Soc. America, vol. 39, no. 5, pt. 2, May 1966, pp. $26-$30.

61. Maglieri, Domenic J.: Some Effects of Airplane Operations and the Atmosphere on Sonic-Boom

Signatures. J. Acoust. Soc. America, vol. 39, no. 5, pt. 2, May 1966, pp. $36-$42.

62. Pierce, Allan D.; and Maglieri, Domenic J.: Effects of Atmospheric Irregularities on Sonic-Boom

Propagation. J. Acoust. Soc. America, vol. 51, no. 2, pt. 3, Feb. 1972, pp. 702-721.

63. Wanner, Jean-Claude L.; Vallee, Jacques; Vivier, Claude; and Thery, Claude: Theoretical and

Experimental Studies of the Focus of Sonic Booms. J. Acoust. Soc. America, vol. 52, no. 1, pt. 1,

July 1972, pp. 13-32.

64. American National Standard Methods for the Measurement of Sound Pressure Levels. ANSI S1.13-1971

(R1976) (Partial revision of S1.2-1962 (R1971)), American National Standards Inst., Inc., July 14,

1971.

65. Sound Level Meters, First ed. Publ. 651, International Electrotechnical Commission, 1979.

66. American National Standard SpeciJication for Sound Level Meters. ANSI S1.4-1983 (Revision of S1.4-1971)

(ASA 47-1983), Acoustical Soc. America, 1983.
67. American National Standard Preferred Frequencies, Frequency Levels, and Band Numbers for Acoustical

Measurements. ANSI S1.6-1984 (Rev. of S1.6-1967 (R1976)) (ASA 53-1984), Acoustical Soc. of

America, 1984.

68. American National Standard Preferred Reference Quantities for Acoustical Levels. ANSI S1.8-1969 (R1974)

(Corrected edition), American National Standards Inst., Inc., Feb. 24, 1969.

69. Acoustics--Preferred Reference Quantities for Acoustic Levels. ISO 1683-1983 (E), International Organiza-

tion of Standards, 1983.

70. American National Standard Specification for Octave Band and Fractional-Octave Band Analog and Digital

Filters. ANSI S1.11-1986 (ASA 65-1986) (Rev. of ANSI S1.11-1966 (R1976)), Acoustical Soc. of

America, 1986.

71. Method for Calculating the Attenuation of Aircraft Ground to Ground Noise Propagation During Takeoff and

Landing. AIR 923, Soc. Automotive Engineers, Mar. 1, 1968.

72. Practical Methods To Obtain Free-Field Sound Pressure Levels From Acoustical Measurements Over Ground

Surfaces. AIR 1672B, Soc. Automotive Engineers, Inc., June 1983.

73. Acoustics_escription and Measurement of Physical Properties of Sonic Booms. ISO 2249-1973 (E),

International Organization of Standards, 1973.

74. Electro-Acoustical Measuring Equipment for Aircra]t Noise Certification, First ed. Publ. 561, International

Electrotechnical Commission, 1976.

99




