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Abstract

ACOuStiC emission was interpreted as modes of vibration in finite

aluminum and graphite/epoxy plates. The 'thin plate' case of classical

plate theory was used to predict dispersion curves for the two funda-

mental modes described by the theory and to calculate the shapes of

flexural waveforms produced by a vertical step function loading. There

was good agreement between the theoretical and experimental results for

the aluminum. Composite materials required the use of a higher order

plate theory (Reissner-Mindlin) combined with lamination theory in or-

der to get good agreement with the measured velocities. Plate modes

were shown to be useful for determining the direction of motion of a

source. Thus, with a knowledge of the material, it may be possible to

ascertain the type of the source. For example, particle impact on a

plate could be distinguished from a crack growing in the plate.

A high fidelity transducer was needed to distinguish the plate

modes. After evaluating several types of transducers, a broadband ul-

trasonic transducer was found which satisfied the fidelity requirement

and had adequate sensitivity over the 0.1 to 1MHz range. The waveforms

were digitized with a 5 MHz transient recorder. The dispersion curves

were determined from the phase spectra of the time dependent waveforms.

The aluminum plates were loaded by breaking a 0.5 mm. pencil lead

against the surface of the plate. By machining slots at various angles

to the plane of a plate, the direction in which the force acted was

varied. Changing the direction of the source motion produced regular

variations in the measured waveforms. Four composite plates with dif-

ferent laminate stacking sequences were studied. To demonstrate appli-

cability beyond simple plates, waveforms produced by lead breaks on a



thin-walled composite tube were also shown to be interpretable as plate

modes. The tube design was based on the type of struts proposed for

Space Station Freedom's trussed structures.

ii



Acknowledgments

The author would like to thank a number of people without whom this

work would not have been possible. First and foremost, gratitude is due

my wife, Karen, for her love, support, patience, and understanding

throughout this endeavor. Our parents and families also provided sup-

port and encouragement that was greatly appreciated.

I am grateful to my thesis advisor in the Materials Science and En-

gineering Department at Johns Hopkins University, Dr. Robert E. Green,

Jr. The knowledge of the mechanics of materials and the propagation of

elastic waves which he imparted to me during my earlier years at Hopkins

served me well throughout the course of this research. His allowance

of my participation in the nonresident student research program to car-

ry out the research at NASA Langley Research Center and his assistance

in the logistics of this were of tremendous value. Also at Johns Hop-

kins, Dr. Jim Wagner and his graduate students, Jim Spicer and John

Deaton, were of great assistance in providing the optical interferom-

eter and assisting with the measurements presented in the transducer

evaluation section. The remaining faculty within this department also

contributed greatly to my education as well as provided friendship and

support. Thanks is also due to a number of graduate students and former

students including Paul Kelley, Lou Phillips, Joe Krynicki, and those

listed previously, who provided friendship which made my years at Hop-

kins most enjoyable.

In the Nondestructive Evaluation Science Branch at NASA Langley Re-

search Center, where most of this research was performed, Dr. Joe Hey-

man and Dr. Eric Madaras are acknowledged. They provided both technical

and financial support and allowed me the freedom needed to pursue this

iii



work. Also, John Dorighi, a visiting summer student from the University

of Colorado, pzovided assistance in the gr/ep tube measurements and in

proofreading this thesis. Many other members of the Nondestructive

Zvaluation Science Branch, too numerous to mention by name, also pro-

vided technical and moral support during this research.

Last, but certainly not least, is the acknowledgment of Dr. Mike

Gorman of the Department of Aeronautics of the Naval Postgraduate

School. As my De Facto advisor during our collaborative research ef-

forts, he provided the initial ideas and motivation for this work and

has provided brilliant technical insights throughout its progress. His

patience and support through almost daily coast to coast phone conver-

sations were invaluable. His friendship, company, and golf tips during

our several meetings made this research most pleasurable as well as

lowered my handicap. The collaborative assistance of Steve Ziola, a

graduate student of Dr. Gorman, is also acknowledged.

iv



Table of Contents

Abstract ........................................................... i

Acknowledgments .................................................. iii

Table of Contents .................................................. v

List of Figures .................................................. vii

List of Tables .................................................. xiii

I. Introduction .................................................... 1

II. Transducer Evaluation ......................................... 20

II.l Introduction .......................................... 20

II.2 Frequency response determination by constant

amplitude, swept-sine input ........................... 23

II.3 Acoustic wave input generated by pencil lead

break on thick aluminum plate and comparison

with theory ........................................... 37

II.4 Acoustic wave input generated by pencil lead

break on thin aluminum plate and comparison

with output from optical interferometer ............... 50

II.5 Summary and Conclusions ............................... 59

III. Plate Wave Propagation in Aluminum Plates .................... 60

III.l Introduction .......................................... 60

III.2 Classical plate theory ................................ 61

III.3 Source orientation effects ............................ 68

III.4 Prediction of the flexural mode by a normal

mode solution ......................................... 76

IV. Plate Wave Propagation in Composites .......................... 97

IV.I

IV.2

IV.3

Introduction .......................................... 97

Theory ................................................ 98

Dispersion measurements in composite plates .......... 121



IV.4 Flexural modewaveforms in composite plates

and comparison with predictions based on the

normal mode solution technique ....................... 138

IV.5 Plate wave propagation in a graphite/epoxy

Space Station Freedom (SSF) strut tube ............... 144

v. Summary and Conclusions ....................................... 152

References ....................................................... 159

vi



List of Figures

Figure i.I

Figure 2.1

AE event definitions ...... ............................. 3

Experimental apparatus for constant amplitude,

swept-sine input for AE transducer evaluation ......... 24

Figure 2.2 Constant amplitude, swept-sine, tone burst input

signal used for transducer evaluation ................. 25

Figure 2.3 Magnitude of frequency spectrum of transducer

drive input signal (Figure 2.2) ....................... 26

Figure 2.4 Output of 3.5 MHz ultrasonic transducer subjected

to constant amplitude, swept-sine input ............... 26

Figure 2.5 Output of RI5 transducer subjected to constant

amplitude, swept-sine input ........................... 27

Figure 2.6 Output of $9208 transducer subjected to constant

amplitude, swept-sine input ........................... 27

Figure 2.7 Output of Pinducer transducer subjected to constant

amplitude, swept-sine input ........................... 28

Figure 2.8

Figure 2.9

Spectrum of 3.5 MHz ultrasonic transducer subjected

to constant amplitude, swept-sine input ............... 29

Spectrum of RI5 transducer subjected to constant

amplitude, swept-sine input ........................... 30

Figure 2.10 Spectrum of S9208 transducer subjected to constant

ampJ_tude, swept-sine input ........................... 30

Figure 2.11 Spectr_n of Pinducer transducer subjected to

constant a_plitude, swept-sine input .................. 31

Figure 2.12 Deconvolved output and input response function of

3.5 MHz ultrasonic _ransducer ......................... 33

Figure 2.13 Deconvolved response f_nction of RI5 transducer ....... 34

Figure 2.14 Measured frequency response and_4nanufacturer's

calibration for RI5 transducer ........................ 34

Figure 2.15 Deconvolved response function of $9208 transducer ..... 35

Figure 2.16 Deconvolved response function of Pinducer transducer .. 35

vii



Figure 2.17 Source, trigger sensor, and transducer positioning

for evaluation of transducers with simulated AE

source in thick aluminum plate ........................ 38

Figure 2.18 Experimental apparatus for evaluation of

transducers with simulated AE source in thick

aluminum plate ........................................ 40

Figure 2.19 Theoretical plate surface displacement due to

point source step function loading at a distance

of 0.0762 m. on the same surface of the plate ......... 45

Figure 2.20 Theoretical prediction and experimental signal

detected by ultrasonic sensor for lead break

source on thick aluminum plate ........................ 46

Figure 2.21 Theoretical prediction and experimental signal

detected by RI5 sensor for lead break source

on thick aluminum plate ............................... 47

Figure 2.22 Theoretical prediction and experimental signal

detected by $9208 sensor for lead break source

on thick aluminum plate ............................... 47

Fiaure 2.23 Theoretical prediction and experimental signal

detected by Pinducer for lead break source on

thick aluminum plate .................................. 48

Figure 2.24 Source, trigger sensor, and transducer positioning

for evaluation of transducer with simulated AE

source in thin aluminum plate ......................... 51

Figure 2.25 Experimental apparatus for evaluation of transducers

with simulated AE source in thin aluminum plate ....... 51

Figure 2.26 Block diagram of optical interferometer ............... 52

Figure 2.27 Simulated AE signal in thin aluminum plate

detected by ultrasonic transducer and optical

interferometer ........................................ 54

Figure 2.28 Simulated AE signal in thin aluminum plate

detected by ultrasonic transducer and optical

interferometer with expanded time and amplitude

scales ................................................ 55

Figure 2.29 Simulated AE signal in thin aluminum plate

detected by RI5 transducer and optical

interferometer ........................................ 57

viii



Figure 2.30 Simulated AE signal in thin aluminum plate

detected by $9208 transducer and optical

interferometer ........................................ 57

Figure 2.31 Simulated AE signal in thin aluminum plate

detected by Pinducer transducer ....................... 58

Figure 3.1 Coordinate axes of plate .............................. 61

Figure 3.2 Plate dimensions and positioning of sensors

and source ............................................ 70

Figure 3.3 Cross sectional view of plate and slot

illustrating transducer positions ..................... 71

Figure 3.4 Experimental apparatus for measurements of

the effects of source orientation on plate waves ...... 71

Figure 3.5 Typical out-of-plane displacement component

for a lead break source in an aluminum plate

indicating the flexural and extensional plate modes ... 72

Figure 3.6 Out-of-plane displacement components for waves

generated at different source angles. Each waveform

is offset by two volts to allow comparison ............ 73

Figure 3.7 Average peak amplitudes of out-of-plane

extensional and flexural modes for sources at

different angles. The error bars are +/- one

standard deviation .................................... 74

Figure 3.8 In-plane displacement components for waves

generated at different source angles. Each

waveform is offset by one volt to allow comparison .... 75

Figure 3.9 Average peak amplitudes of the in-plane

extensional mode for sources at different angles.

The error bars are +/- one standard deviation ......... 76

Figure 3.10 Positioning of sensors used for experimental

measurements and theoretical calculations for

AE signals in thin aluminum plate ..................... 85

Figure 3.11 Predicted flexural response for source to

receiver distance of 0.127 m. evaluated by

normal mode and integral transform techniques ......... 87

Figure 3.12 Filter coefficient used in normal mode solution

to account for transducer response .................... 89

ix



Figure 3.13 Apparatus used to measure AE signals generated

by pencil lead breaks in thin aluminum plate .......... 91

Figure 3.14 Distance of propagation versus extensional wave

arrival time and linear fit used to determine

trigger time delay .................................... 92

Figure 3.15 Theoretical normal mode and experimental

waveforms for distance of propagation of

0.0762 m. in thin plate aluminum ...................... 92

Figure 3.16 Theoretical normal mode and experimental

waveforms for distance of propagation of

0.1016 m. in thin plate aluminum ...................... 93

Figure 3.17 Theoretical normal mode and experimental

waveforms for distance of propagation of

0.127 m. in thin plate aluminum ....................... 93

Figure 3.18 Theoretical normal mode and experimental

waveforms for distance of propagation of

0.1524 m. in thin plate aluminum ...................... 94

Figure 3.19 Theoretical normal mode and experimental

waveforms for distance of propagation of

0.1778 m. in thin plate aluminum ...................... 94

Figure 3.20 Theoretical normal mode and experimental

waveforms for distance of propagation of

0.1778 m. in thin plate aluminum for long times ....... 95

Figure 4.1 Differential element of thin plate exhibiting

moments and forces ................................... 113

Figure 4.2 Block diagram of experimental apparatus used

to measure extensional velocities in composite

plates ............................................... 122

Figure 4.3 Plot of extensional arrival time versus

distance of propagation for 90 degree

propagation in [016] graphite/epoxy plate ............. 123

Figure 4.4 Experimental setup for flexural velocity

measurements in composite plates ..................... 129

Figure 4.5 Measured and theoretical flexural dispersion

for 0 degree propagation in [016] graphite/epoxy

plate ................................................ 130

x



Figure 4.6 Measured and theoretical flexural dispersion

for 45 degree propagation in [016] graphite/epoxy

plate ................................................ 131

Figure 4.7 Measured and theoretical flexural dispersion

for 90 degree propagation in [016] graphite�epoxy

plate ................................................ 131

Figure 4.8 Normalized difference between CPT and HOPT

flexural dispersion predictions for aluminum

and unidirectional gr/ep composite ................... 132

Figure 4.9 Measured and theoretical flexural disperslon

for 0 degree propagation in [0,9014s graphite/epoxy

plate ................................................ 133

Figure 4.10 Measured and theoretical flexural disperszon

for 45 degree propagation in [0,9014s graphite/epoxy

plate ................................................ 134

Figure 4.11 Measured and theoretical flexural disperslon

for 90 degree propagation in [0,9014s graphite/epoxy

plate ................................................ 134

Figure 4.12 Measured and theoretical flexural disperslon

for 0 degree propagation in [04,904] s graphite/epoxy

plate ................................................ 135

Figure 4.13 Measured and theoretical flexural dispersion

for 45 degree propagation in [04,904] s graphite/epoxy

plate ................................................ 135

Figure 4.14 Measured and theoretical flexural disperslon

for 90 degree propagation in [04,904] s graphite epoxy/

plate ................................................ 136

Figure 4.15 Measured and theoretical flexural dispersion

for 0 degree propagation in [0,45,-45,9012s

graphite/epoxy plate ................................. 136

Figure 4.16 Measured and theoretical flexural dispersion

for 45 degree propagation in [0,45,-45,9012s

graphite/epoxy plate ................................. 137

Figure 4.17 Measured and theoretical flexural dispersion

for 90 degree propagation in [0,45,-45,9012s

graphite/epoxy plate ................................. 137

xi



Figure 4.18 Theoretical normal modeand experimental waveforms
for distance of propagation of 0.127 m. along
the 90 degree direction in [016] graphite/epoxy ....... 141

Figure 4.19 Source and receiver positions on [016] graphite/epoxy
plate for measurementof flexural modewaveform
along 90 degree propagation direction ................ 141

Figure 4.20 Theoretical normal modeand experimental waveforms
for distance of propagation of 0.127 m. along the
0 degree direction in [016] graphite/epoxy ............ 142

Figure 4.21 Source and receiver positions on [016] graphite/epoxy
plate for measurementof flexural modewaveform
along 0 degree propagation direction ................. 143

Figure 4.22 Experimental setup for measurementsof simulated
AE waveforms in graphite/epoxy SSFtube .............. 146

Figure 4.23 AE waveform on SSFgraphite/epoxy tube generated
by pencil lead break on surface of the tube with
source to receiver distance of 0.1524 m.............. 150

Figure 4.24 AE waveform on SSFgraphite/epoxy tube generated by
pencil lead break on end of the tube with source
to receiver distance of 0.1524 m..................... 150

xii



Table 4.1

Table 4.2

Table 4.3

Table 4.4

List of Tables

Lamina properties of AS4/3502 graphite epoxy ......... 124

Measured and theoretical extensi'onal velocities

for AS4/3502 graphite/epoxy laminates ................ 125

Properties of AS4/976 single lamina and laminated

plate with layup the same as the tube wall layup ..... 145

Theoretical and experimental plate mode velocities

in graphite/epoxy composite SSF tube ................. 149

xiii





I. Introduction

Acoustic emission (AE) is defined as the release of transient

elastic waves in solids as a result of rapid localized redistribu-

tions of stresses which accompany the operation of damage mechanisms.

Examples of events which cause AE include micro-cracking in metals

and matrix cracking and fiber breakage in composites. These AE sourc-

es can be precursors to the ultimate failure of the material. Since

the waveforms contain information about the source such as its loca-

tion, orientation, type, and size, it is desirable to capture these

waves. If such information can be obtained by analysis of the wave-

forms, it can be used to determine the type and amount of damage to

the structure. This can be used in models which predict the remaining

life of a structure.

According to Liptai et al. [i], the earliest use of acoustic emis-

sion analysis occurred in the study of seismology. They report that

the first clearly documented investigation of acoustic emission in

structural materials was performed by Joseph Kaiser in the 1950's. He

studied emission released during loading of polycrystalline metal

specimens. It was pointed out by Kaiser that the emission is affected

by the previous load history of the specimen in metals. A

previously loaded metal specimen did not release AE until the load

reached a level higher than the previous maximum load. This effect is

now known as the Kaiser Effect and has been used to determine the

previous maximum load on a metal structure.

The potential usefulness of AE for structural monitoring was

soon recognized. However, the interpretation of AE signals has proven

quite difficult because of the complexity of propagation of elastic

waves through solids. As discussed by Green [2], in an infinite,
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elastic, anisotropic solid, three modesof propagation are allowed

along any given direction. Oneof these will be a longitudinal or

quasi-longitudinal modewhile the others will be transverse or quasi-

transverse modes. Thesemodeswill propagate with different veloci-

ties and interfere with one another. If boundaries or surfaces on the

solid are nowconsidered, the complexity increases. As pointed out by

Auld [3], whenone of these modesinteracts with a boundary, reflect-

ed and transmitted waves of all three modesmaybe generated. Addi-

tionally, in boundedmedia, there are additional modesof propagation

available such as surface, plate, or interface waves. Furthermore,

the frequency response of the transducer and detection electronics

will also alter the acoustic emission waveform.

Another difficulty in AE is the transient and sporadic nature of

the emissions. Before digitizers or transient recorders were commonly

available, it was difficult to capture individual AE events. Even to-

day, the memoryrequirements necessary to capture the thousands of

events that can occur in a single test are a major obstacle.

In order to avoid these problems, most AE testing does not capture

entire waveforms and attempt to directly interpret them to obtain

source information. Instead, features of the signals, the so called

AE parameters, are measured by analog circuitry which can quickly

process the signals. These parameters are plotted against other pa-

rameters of the test such as the load, strain, or temperature of

the test specimen. After repeated tests on identical specimens, em-

pirical inferences can be made about the sources of the emissions.

These inferences allow future AE data to be classified, and then

the type and amount of damage in a specimen to be predicted.

Typical features or parameters of the AE waveforms used for this pur-



3

pose include the peak amplitude, rise time, duration, energy, and

counts above threshold. A typical AE waveform along with an explana-

tion of these parameters is presented in Figure i.i.

' /__._/AE ENVELOPEf
PEAK AMPLIT_ / i 1 %'

..... , ........ _ -- THRESHOLD

" U

t AE COUNTS

I

--. , EVENT DURATION
I

; i

I

' -.4.4----+-RISE TIME

v

Peak Amplitude - Maximum voltage level of the AE event.

Duration - The length of time that the event remains above the
threshold once detected.

Counts - The number of times that the event crosses the threshold

of the system.

Energy - The area under the AE envelope.

Rise Time - The time it takes an AE event to reach its peak

amplitude, once detected.

Figure i.I AE event definitions.

This approach to interpreting AE data, which will be referred to

as conventional AE, has been used successfully in a number of appli-

cations. These include structural monitoring, materials testing,

and process monitoring. These applications have been in a wide vari-

ety of industries including aerospace, nuclear power, and materials
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processing and testing. The first documented practical application

appears to be that of monitoring the proof testing of Polaris solid

rocket motor casings by Green et al. [4] in 1964. Other examples of

the use of AE for structural monitoring include the testing of a re-

actor pressure vessel by Votava and Jax [5] and the detection of

failure modes in high pressure storage tanks by Le Floc'h [6]. In the

area of process monitoring, Bentley et al. [7] applied acoustic emis-

sion to welding process monitoring. Machining processes have been

monitored with AE by Lan and Dornfeld [8]. A review of a number of

applications of AE is presented by Spanner [9].

The use of conventional AE monitoring during materials testing has

been quite extensive, especially for composite materials. Among other

things, it has been used to approximately locate damage sites and

give real time information on the initiation and progression of dam-

age. This has allowed information to be obtained on the operation

of various failure mechanisms under different testing conditions.

One interesting feature of AE in composites is that the Kaiser Ef-

fect usually does not hold. Significant AE begins to occur at load

levels lower than the previous load maximum in repeated loading

tests. The ratio of the load at which the emission begins to the pre-

vious maximum load was termed the Felicity Ratio by Fowler and Gray

[I0]. This effect has been investigated by a number of authors.

As for other work on the use of AE in composite materials, Hamstad

[II] has presented an extensive review. In this, it was noted that,

at the time, over 500 papers and reports on AE had been published

since 1970.

Thus, the conventional approach to interpretation of AE data has

seen a number of successful applications. It is, however, not without
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its limitations. The most severe of these is that the empirical in-

ferences relating the measuredAEparameters to the sources are

strongly dependent on the geometry and material of the specimen. This

is because of the effects that these parameters have on the

detected waveforms and thus the measured AE parameters. The relation-

ship between, for example, the number of AE counts and the applied

load on a steel pressure vessel of a particular size will be entirely

different on a pressure vessel of a different size or geometry or

on a vessel made of a composite material. Hill and Ei-Dardiry {12J

discussed and demonstrated the effect of specimen geometry on AE pa-

rameters. Therefore, the application of the technique has been gener-

ally limited to situations where large numbers of identical specimens

are available to establish the relationships and large numbers of

identical specimens are to be monitored using those relationships.

This is why the monitoring of pressure vessels with AE has been

such a successful application.

A similar limitation of conventional AE is its sensitivity to

the choice of transducer and detection electronics used for signal

measurement. If the location of the transducer on the specimen, the

bonding of the transducer to the specimen, or the resonant

frequency of the transducer are varied, the detected waveforms and

thus the measured AE parameters can be entirely different. Changes in

the detection electronics such as the amount of signal

amplification or filtering bandwidth also produce changes in the mea-

sured parameters. Likewise, the measured AE patterns are sensitive to

variables such as the detection threshold voltage level. Also, as

noted earlier, the release of AE is dependent on the previous load

history of the specimen.
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Therefore, the conventional approach to AEanalysis is affected by

a numberof factors which severely limit the utilization of the tech-

nique. Furthermore, erroneous conclusions can be drawn if strict at-

tention is not paid to all of these factors. These facts have been

the motivation for research into the generation, propagation, detec-

tion, and interpretation of AE waves. The knowledgegained from

this research can lead to wider and more successful applications of

the AE technique.

Oneearly approach to obtaining more information about emission

sources was to analyze the detected signals in the frequency domain

by spectral analysis. This was based on the belief that different

source mechanismsshould have different source time functions which

would, therefore, yield waveformswith different frequency spectra.

The early work by Kaiser, discussed by Liptai et al. [I], pointed out

that the predominant frequency of AE signals in tensile tests of alu-

minumand steel specimens shifted as the load increased. Frequency

analysis has been explored by a numberof other researchers, however,

frequency analysis of AEwaveforms to differentiate source mechanisms

has had very limited success. The primary reason is because the de-

tected signals are colored by the frequency dependent attenuation

of the material, the geometry of the specimen, and the frequency re-

sponse of the transducer and detection electronics. The spectrum of

the detected wave will be entirely different from the spectrum of the

AE source function and in only a very few cases have true AE source

spectra been obtained. However, spectral analysis of signals has been

of value in selecting instrumentation to optimize detectability and

in isolating background noise (See the review by Eitzen et al. [13]

and references contained therein).
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In order to circumvent affects of the changes in the waveforms

by the material, transducer, and electronics, research has been un-

dertaken in an area commonlyreferred to as quantitative AE. Much

of the research carried out in this area was presented by Eitzen et

al. [13] and references contained therein. This research has sought

to characterize the source function that created the AE wave which

was then altered by the effects of propagation and detection. To ac-

complish this goal, a transfer function formalism has been used

whereby it was assumed that the AE waveform was altered by two ef-

fects. The first effect was that caused by the geometry and

material in the propagation of the signal from the source to the de-

tection location. The second effect accounts for the transducer and

detection electronics. These can be considered as linear transfer

functions applied to the original signal. Once these transfer func-

tions are known, the source function can be obtained by a deconvolu-

tion procedure which can be accomplished as a division in the

frequency domain.

The transfer function for the transducer and electronics is essen-

tially an absolute calibration. This provides the relationship be-

tween the input mechanical signal and the resulting output voltage at

all frequencies. The foundations for transducer calibration were pre-

sented by Breckenridge et al. [14]. This task has been successfully

accomplished by researchers at NIST (formerly NBS) and an excellent

review of the work is presented by Eitzen et al. [13] and

references contained therein. In this work, a waveform was obtained

with the sensor to be calibrated from a simulated AE event. This sim-

ulated event was caused by a pencil lead break (Hsu-Neilsen source)

or a glass capillary break on the surface of a large steel block. The
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dimensions of this block were large enough so that the wavescould be

approximated as propagating in a semi-infinite half space. That is,

it was designed so that no reflections from lateral boundaries

would arrive at the receiving transducer within the time that the

wave was detected. This waveform was then calibrated against one of

two other signals. The first was that of a signal obtained by a ca-

pacitive transducer positioned at an identical distance from the

source. This capacitive sensor was absolutely calibrated. This al-

lowed absolute calibration of the unknown sensor.

The second signal used for calibration was that of a theoretically

predicted signal. The theory used was that for a semi-infinite half

space presented by Lamb [15] and Pekeris [16], which was originally

developed for the understanding of seismic wave propagation. The in-

put forcing function was assumed to be a step unloading of the sur-

face. The magnitude of this input force was measured by sensors

attached to the lead or capillary breaking mechanism. Agreement in

the results of calibrating against the two different standards was

within a few percent and the accuracy of the calibration was estimat-

ed at about five percent.

Although the use of calibration and deconvolution offers a signif-

icant improvement in the fidelity of the detected signal, there is

a limitation. In frequency ranges far away from the resonant band-

width of the transducer, there may be zero or near zero

sensitivity. In these ranges, signal content will be lost which can-

not be recovered by calibration and deconvolution. Thus, in

addition to calibration, research efforts have also been spent on de-

veloping new transducers that offer broader band frequency responses.

Sometimes capacitive sensors have been used, but they lack in sensi-
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tivity and can be used only on conductive materials. Proctor [17] has

developed an improved piezoelectric AE transducer that has flat fre-

quency response over the 50 kHz to 1 MHz bandwidth. This sensor con-

sists of a conical piezoelectric element mounted on a large

cylindrical brass backing. The brass backing eliminates reflections

and ringing within the sensor element. More recently, Proctor [18]

has developed a high fidelity piezoelectric tangential displacement

transducer for acoustic emission. This sensor measures the tangential

surface displacement component instead of the component normal to the

surface measured by most sensors.

The effect of propagation through the material on the AE signal

has been studied using a Green's function approach. A Green's func-

tion predicts the displacement of a body resulting from a point

source, impulse (delta function) loading at some point in the body.

In actuality, a Green's tensor is needed in the most general case due

to the vector nature of the displacement and of the applied force. In

the case of the application of force couples, spatial derivatives

of the Green's tensor are needed.

Assuming linear elasticity so that the law of superposition ap-

plies, any source function can be built up from the superposition

of delta functions of varying amplitudes. Thus, the Green's tensor

can be used to deconvolve the geometrical effects of propagation from

the detected signal. The Green's tensor has been calculated for an

isotropic, semi-infinlte, half space from theory. It has also been

calculated for a thick isotropic plate of infinite lateral dimensions

using generalized ray theory as demonstrated by Pao et al. [19].

Hsu [20] has developed a computer algorithm which accomplishes

these calculations. Generalized ray theory predicts the displacements
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by calculating all rays of propagation including those reflected

and modeconverted which will reach the detection point up to a cer-

tain point in time. Thus, the solution by generalized ray theory is

valid only for a limited period of time. More complicated

geometries cannot be treated directly by theory. However, finite dif-

ference methods have been used by Fukunagaand Kishi [21] to deter-

mine the Green's function of a compact tension specimen.

This Green's function approach together with calibrated transducer

deconvolution has been applied successfully in laboratory experiments

to determine the AE source function by a number of authors. An excel-

lent review of the earlier work in this area is presented by Eitzen

et al. [13] and references contained therein. Later research in

this area includes that of Scruby et al. [22] who characterized

acoustic emission from fatigue crack extension and Kim and Sachse

[23] who characterized an acoustic emission source from a thermal

crack in glass. Others contributing in this area include Enoki and

Kishi [24], Ohtsu and Ono [25], and Wadley and Scruby [26] to name

but a few.

Most of the previously mentioned work on AE source characteriza-

tion has neglected the distortion of the elastic wave caused by fre-

quency dependent attenuation in the material. C. P. Hsiao [27] has

included this effect in his work on the propagation of acoustic emis-

sion signals in polymeric media. Yu and Clapp [28] investigated the

effect of frequency dependent attenuation caused by grain

scattering on signals in polycrystalline metals.

This research on determining the source function of AE signals has

greatly increased the understanding of the generation, propagation,

and detection of AE waves. For a number of reasons, however, this
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quantitative approach has been limited to laboratory research and has

not been useful for applied AE monitoring. One reason is that of

the complexity of the analysis and the resulting need for large

amounts of computer time to analyze even a single event. Typical AE

tests on composites may result in tens of thousands of AE signals.

The calculation of a single Green's functions for a thick plate may

require several hours of computer time. This makes the quantitative

analysis of the large number of events impractical. This problem,

however, may be overcome in the future with faster and more

powerful computers.

The complexity of the theory also currently limits applications to

the geometries of thick plates of infinite lateral extent or semi-in-

finite half spaces. Furthermore, even in these simple geometries, so-

lutions only have been obtained for isotropic materials. Thus,

analysis of AE signals in composite materials in this manner is not

yet possible. Also, the deconvolution procedures used to remove the

artifacts of the transducer and propagation are sensitive to noise

and the need for absolutely calibrated wide band transducers with

good sensitivity has been a drawback.

Thus, new approaches to interpreting AE signals to determine

source information are being sought. One such approach which has been

under study recently involves interpreting the signal in thin plate

structures in terms of its plate mode characteristics. Many practical

structures for AE monitoring have plate or shell characteristics

wherein one dimension is much smaller than the other two. Examples of

this include aircraft and spacecraft external skins, pressure ves-

sels, and piping. In materials of such geometry, the elastic waves

propagate in modes whose propagation characteristics are dependent on
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the plate thickness and boundary conditions in addition to the

usual dependence on the elastic properties and density of the materi-

al. These modes are commonly called Lamb waves because of the early

studies by Lamb [29] into their propagation. Rayleigh [30] was also

involved in the early research of these waves.

These waves can be divided into three types. One type causes out-

of-plane plate deformations which are symmetric about the midplane of

the plate and are called symmetric modes. The other has out-of-

plane plate deformations which are antisymmetric about the plate mid-

plane. These are called antisymmetric modes. The third mode has

transverse particle vibrations which are horizontal to the plane of

the plate and thus are called shear horizontal or SH modes. It was

demonstrated theoretically that all three types of these waves have

an infinite number of modes. These modes are dispersive which means

that the velocity of the mode is dependent on the frequency of the

wave. Graff's book [31] contains a large number of the references

to the literature on Lamb wave propagation.

As discussed in Graff's book [31], approximations can be made to

derive a set of equations of motion which describe the propagation of

the lowest order mode of each Lamb wave type at low frequencies. This

theory is known as classical plate theory (CPT) and has been shown to

be a valid approximation in the regime where the wavelength is

large with respect to the plate thickness. The waves predicted by

this theory are referred to as plate waves. The symmetric plate

wave is often called the extensional wave while the antisymmetric

plate wave is called the flexural wave. The horizontal shear wave

is called the SH plate wave. This theory will be discussed in much

greater detail in a later section.
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Although manypractical structures monitored by AE have plate or

shell geometries in which Lambmodesmaypropagate, little research

has been carried out on the interpretation of transient AE waves as

combinations of these modes. Most of the previous research on Lamb

waves has been for one of two applications. The first has been for

the understanding of low frequency structural vibrations. The

second has been related to the generation and propagation of high

frequency ultrasonic waves. This includes the vibration of piezoelec-

tric crystal transducers and the propagation of sinusoidal ultrasonic

waves. One exception to this was a study by Pollock [32] who has

shown the existence of a number of Lamb modes in AE signals in

thick walled pressure vessels. He measured the velocity of several

modes and found them to be in agreement with predictions from Lamb

theory.

Other work not related to AE, but concerning the propagation of

transient waves in plates, were studies by Press and Oliver [33]

and Medick [34]. In the former, flexural plate waves resulting from a

transient spark source near a thin aluminum plate were detected and

analyzed. In Medick's work, flexural waves in plates also were de-

tected. The source was the impact of a rifle bullet. Medick

compared his results with theoretical predictions from CPT. He demon-

strated good agreement between theory and experiment.

In more recent research, Gorman [35] has focussed on

interpreting AE signals in thin plates in terms of their plate wave

content. Several interesting points were demonstrated in this work.

First, in the range of frequencies considered by most AE

experiments (20 kHz to 1 MHz), the in-plane shear mode was not ob-

served and the other two modes dominated the detected signals.
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These signals were generated by pencil lead breaks (Hsu-Neilsen

sources). The most interesting feature of this work, however, was

that the amplitudes of the two modes were dependent on the source

orientation. Lead break sources on the surface of the plate created a

much larger flexural mode while those on the edge of the plate creat-

ed a much larger extensional mode. This suggested that the relative

amplitudes of these two modes contain information about the source

orientation.

Additionally, Gorman pointed out how the different velocities of

the extensional and flexural modes could cause errors in the location

of the source of emission. Most location techniques used in conven-

tional AE assume a single propagation velocity value. In the case

of multiple velocities, these techniques may locate erroneously de-

pending on which mode triggers the timing circuitry used for loca-

tion. One final interesting feature of this work was the use of a

conventional high frequency (5 MHz) ultrasonic transducer for the de-

tection of the AE signals in the low kHz to 1 MHz frequency band-

width. This transducer seemed to provide a much flatter frequency

response than a conventional resonant sensor. However, this

response was not well characterized.

Gorman and Ziola [36] followed this work by capturing and analyz-

ing AE signals from a real AE source in composite plates. The

source mechanism was that of transverse matrix cracking (TMC) which

is created in cross ply laminates under tensile load. The waveforms

consisted of the plate modes (which sometimes are called the lowest

order Lamb modes). However, in this case, the extensional mode had

a much larger amplitude. This, they concluded, was consistent with

the large in-plane motion of TMC sources. Their understanding of
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plate modepropagation allowed muchmore accurate location of the

AE sources. They were able to comparetheir calculated locations fa-

vorably with locations determined by ultrasonic measurements made af-

ter the test.

The investigation of plate wave AE in thin plates was continued in

this research. First because of the need to use a broad band trans-

ducer to accurately measure the plate wave displacements, four dif-

ferent types of acoustic sensors were comparatively evaluated to

determine the one which offered the best combination of bandwidth and

sensitivity properties. The transducers which were examined

included a 3.5 MHz broadband ultrasonic transducer (Panametrics) sim-

ilar to that used by Gorman [35]. In addition, a conventional 150 kHz

resonant AE sensor (Physical Acoustics Corporation RI5), a conven-

tional broadband AE sensor (Physical Acoustics Corp. $9208), and a

pinducer (Valpey-Fisher Co.) were evaluated. All four types were com-

paratively tested by comparing their outputs when subjected to

three different input stimuli. The first input signals were the vi-

brations of another nominally identical 3.5 MHz ultrasonic transducer

driven by constant amplitude, swept-sine tone bursts over the 20

kHz to 1.5 Mhz frequency range. The transducers were coupled to

each other in a face-to-face manner. The second input signals were

acoustic waves in a thick aluminum plate generated by pencil lead

breaks at an equal distance of propagation for all four sensors.

These signals were compared with theoretical predictions using the

program by Hsu [20]. The third input signal was that of a simulated

AE event in a thin aluminum plate caused by a pencil lead break. This

was compared with the output of a laser interferometer located at

an identical distance from the source. This interferometer was
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known to be sensitive to the normal component of the displacement

of the plate surface. In all three experiments, the ultrasonic trans-

ducer demonstrated the flattest frequency response while offering

sensitivity as good as or better than the conventional broad band

AE sensor. Thus it was chosen for use in the remaining plate wave

measurements.

Having chosen and characterized an acoustic transducer, measure-

ments were made of AE signals propagating in thin aluminum plates

caused by simulated AE sources (lead breaks). Two phenomena were in-

vestigated. The first was a more extensive evaluation of the effect

of source orientation on the relative amplitudes of the two plate

modes. Slots were cut into the surface of the plates which allowed

the lead break to be oriented at other angles with respect to the

plate surface. The previous research by Gorman [35] had only consid-

ered sources normal to the surface (90 degrees) and along the edge of

the plate (0 degrees). In this research, signals were captured for

sources at angles of 30 and 60 degrees with respect to the plane of

the plate. Increasing source angles caused larger amplitude

flexural modes while decreasing source angles caused larger amplitude

extensional modes. This provided further evidence that the relative

amplitudes of plate modes contain information about the source orien-

tation.

The second phenomenon investigated in the aluminum plates was

the propagation of the flexural waves. A normal mode approach was

used to solve the classical flexural equation of motion for the

case of a finite plate. This solution was shown to agree with predic-

tions for propagation in an infinite plate obtained by integral

transform techniques up until the time at which reflections begin
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to appear. The normal mode approach, however, predicted the reflec-

tions of the flexural mode from the boundaries of the plate. Good

agreement was exhibited between theory and experimental

measurements over the frequency range in which the assumptions used

to derive the classical equation remained valid.

The propagation of plate waves was also investigated in several

gr/ep composite laminates of different ply layups. In this case,

the material was no longer isotropic. The extensional and flexural

velocities were measured as a function of frequency for several di-

rections of propagation. Comparison of the measured flexural disper-

sion with theoretical predictions based on CPT using material

properties obtained from the composite manufacturer showed a lack

of agreement. It was determined that the effects of shear deformation

and rotatory inertia which are neglected in CPT were the cause for

the discrepancy. These effects were shown to be much larger in the

composite than in the aluminum. A higher order plate theory (HOPT)

which includes these effects was used and it yielded much better

agreement.

However, a small difference between theory and experiment remained

wherein the measured velocities were consistently slightly less

than those predicted. This was also true for the extensional veloci-

ties which were measured and predicted. This discrepancy was attrib-

uted to variability in the actual composite elastic properties from

those obtained by the manufacturer.

An attempt to predict the shape of the flexural mode was carried

out for a unidirectional gr/ep composite laminate. The CPT flexural

equation of motion for an orthotropic material was used and again a

normal mode solution was obtained. Experiment and theory were com-
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pared for propagation at different angles of propagation with respect

to the fiber axes. Agreement between theory and experiment for the

composites was not nearly as good as that for the aluminum. The devi-

ation of the material properties from those predicted was one culprit

in the disagreement between theory and experiment. The major source

of error was the limitations of CPT which had been demonstrated by

the dispersion measurements. HOPT calculations of the flexural mode

wave shape are being considered, but are not discussed in this the-

sis.

Additional measurements were carried out on a thin-walled gr/ep

composite tube of the design and layup designated to be used on the

structural struts holding together NASA's Space Station Freedom

(SSF). The layup of this tube was [I0,-10,30,-30, I0,-I0] s. Even

though the geometry of this tube was not the same as that of a simple

flat plate, similar extensional and flexural modes were observed in

AE signals from simulated sources. The velocities of the

extensional mode and the flexural mode at very low frequency were

measured and compared with predictions from the simple classical

plate theory. Good agreement was obtained.

This work further demonstrated the importance of plate waves in

the interpretation of AE signals in plate or plate-like materials.

The effect of source orientation on the plate modes was documented.

This demonstrated the potential for obtaining source information from

the observation of these modes. Classical plate theory was shown to

adequately predict the flexural plate mode displacements in a

finite aluminum plate. In composite plates, it was proven that a

higher order plate theory was needed to account for the effects of

shear and rotator inertia. However, in either case, the advantage
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of these theories over the exact theory used in previous quantitative

AE studies is its relative simplicity. This allows its implementation

on finite plates and for anisotropic materials such as composites

which has not been previously possible. Furthermore, although the re-

striction to thin plates or shells might seem to be a limitation,

it is pointed out that many structures of practical testing

interest can be approximated as thin plates or shells. An example

given by the SSF strut tube was examined.
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II. Transducer Evaluation

II. 1 Introduction

AS discussed in the introduction, previous research by Gorman [35]

indicated that a conventional damped, thickness gauging, ultrasonic

transducer with a nominal resonance peak of 5 MHz provided broad band

response to AE signals in the low kHz to 1 MHz frequency bandwidth.

In this research, experiments were carried out to better characterize

a similar ultrasonic transducer which had a nominal resonance of

3.5 MHz. These experiments were performed for several reasons. The

first was to demonstrate that the voltage output of the ultrasonic

transducer was proportional to the normal surface displacement over

the range of frequencies contained within AE signals in thin

plates. The second was to obtain a relative calibration of variations

in the amplitude response of the ultrasonic transducer as a

function of frequency. The final motivation was to compare the re-

sponse of this transducer to those of several conventional AE sen-

sors.

The demonstration of the displacement sensitivity of the ultrason-

ic transducer was necessary so that comparisons of experimental wave-

forms detected by this sensor could be made with theoretical

predictions of the surface displacement of the flexural plate mode in

later work. It was accomplished by comparing the voltage output of

this transducer to that of a displacement sensitive optical interfer-

ometer when both were detecting simulated AE signals in a thin alumi-

num plate. These simulated AE signals were generated by pencil lead

breaks (Hsu-Neilsen sources) and were detected by both sensors at

equal distances of propagation from the source. Good agreement was
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obtained which demonstrated that the ultrasonic transducer was indeed

displacement sensitive over the range of frequencies contained in the

plate modesof the AE waveforms.

The displacement sensitivity of the ultrasonic transducer was fur-

ther demonstrated by comparing its output to theoretical displacement

predictions for a waveform in a thick aluminum plate which was

again generated by a pencil lead break. These theoretical predictions

were obtained using the computer program by Hsu [20].

Additional research by Gorman [37] has since demonstrated the dis-

placement sensitivity of the 5 MHz ultrasonic transducer that was

used in his experiments. He compared the voltage output of his ultra-

sonic transducer to that of the NIST conical transducer which was re-

ported by Proctor [17] to be displacement sensitive. The signals used

to compare the transducers were flexural mode plate waves caused by

lead breaks on the surface of a thin aluminum plate.

The amplitude response as a function of frequency of the 3.5 MHz

ultrasonic transducer was needed to allow better comparisons with

theoretical predictions of flexural mode waves in thin plates. This

was accomplished by driving the transducer with a nominally identical

ultrasonic transducer which was excited by a swept sine tone burst

electrical signal which had constant amplitude from 20 kHz to 1.5

Mhz. The sensors were coupled together in a face-to-face manner as

described by Dunegan [38]. The output response of the driving trans-

ducer was deconvolved from the measured frequency response.

Although this technique does not provide an absolute calibration of

the transducer in terms of volts of output per unit displacement at

each frequency, it yields a relative calibration of how the amplitude

of the output of the transducer varies with frequency for a
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constant level of input. This was all that was needed in the later

work on predicting the flexural modewaveformto allow good compari-

sons between theory and experiment. Furthermore, this calibration

method was used on the conventional AE sensor3 and showedthe superi-

or frequency response of the ultrasonic transducer. A comparison of

the calibration obtained with this technique was shown to be in

good agreement with that of one of the conventional AE sensors

which was obtained from the manufacturer.

In all, four different transducers were evaluated. The first was a

conventional ultrasonic transducer (Panametrics) . This sensor was de-

signed to be used as an ultrasonic generator or receiver and has a

broad band frequency response centered at 3.5 MHz. As an AE detector,

it was used to detect signals at much lower frequencies. The diameter

of this transducer was 1.27 cm.

The second sensor evaluated was a conventional resonant AE

sensor (Physical Acoustics Corporation model RI5) . The RI5 was re-

ported by the manufacturer to have a primary resonant frequency

near 150 kHz. Typical application of this transducer pairs it with

a 100-300 kHz bandpass filter in the preamplifier. The diameter of

this transducer was also 1.27 cm. The RI5 and transducers made by

other manufacturers with similar frequency characteristics are proba-

bly the most widely used AE transducers in conventional AE testing.

The third sensor was an AE sensor (Physical Acoustics

Corporation model $9208) which was designed to have a broad band fre-

quency response over the 100 kHz to IMhz range. Over this range,

the $9208 was reported to be a displacement sensor providing a volt-

age output proportional to the surface displacement. The overall di-

ameter of the sensor was 2.54 cm. However, the active area in contact
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with the specimen had a diameter of only 1.27 cm.

The final sensor studied was a Pinducer (Valpey-Fisher model VP-

1093). This sensor wasalso designed to be broad band with a reported

frequency range from near DCto 1.2 MHz. However, this sensor was

sensitive to the velocity of the surface instead of the

displacement according to the manufacturers literature and as demon-

strated by these experiments. Additionally, it offered essentially

point detection capability because of its very small diameter. The

diameter of the active element was 0.135 cm.

II.2 Frequency response determination by constant amplitude, swept-

sine input

In this experiment the input signal for evaluating the frequency

response of the transducers was the vibration of another 3.5 MHz ul-

trasonic transducer (Panametrics). It was coupled face-to-face to the

transducer under evaluation using a silicone grease compound. The

driving ultrasonic transducer was excited by a constant amplitude,

swept-sine, tone burst electrical signal. This signal was generated

with a function generator (Krohn-Hite Model 5300). The outputs of the

transducers were digitized at a 5 MHz sampling frequency (0.2 _sec.

sampling rate) with a transient recorder (Lecroy Model 6810). No

preamplification or filtering of the transducer outputs was used. The

waveforms were recorded on a personal computer (IBM AT) for future

analysis and display. A block diagram of the experimental apparatus

is shown in Figure 2.1.

The frequency range of the driving electrical signal was approxi-

mately 20 kHz to 1.5 MHz with a linear increase in frequency over the

duration of the pulse. The pulse duration was 92 _3ec and its ampli-
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Figure 2.1 Experimental apparatus for constant amplitude,

swept-sine input for AE transducer evaluation.

tude was 17 volts peak to peak. A plot of the digitized time record

of this input signal is presented in Figure 2.2. Apparent

variations in the peak amplitude of the signal occur in this plot

during later times of the pulse. This was an artifact of insufficient

digital sampling at the higher frequencies of the pulse. These higher

frequencies arrived during later times of the pulse due to the swept-

sine nature of the pulse. Although the digitized waveform did not

yield a truly accurate representation of the peak amplitude of the

signal at these high frequencies, the maximum frequency content of

the input signal (1.5 MHz) was below the Nyquist cutoff frequency

of 2.5 MHz for the 5 MHz sampling frequency. Thus aliasing of the

signal should not have occurred.

The frequency response of this signal was computed by means of a

digital Fast Fourier Transform (FFT) using a wave analysis software
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Figure 2.2 Constant amplitude, swept-sine, tone burst input

signal used for transducer evaluation.

package (Keithley Asyst 2.1) on the personal computer. The

magnitude of the spectrum of this signal is plotted in Figure 2.3. In

this figure, the magnitude of the spectrum was presented on a loga-

rithmic scale where the decibel (dB) was referenced to one _volt.

The spectrum exhibited the expected constant amplitude of the input

excitation signal over the 20 kHz to 1.5 MHz frequency range.

The output signals of each of the four transducers when

subjected to this input were recorded and are depicted in Figure

2.4 to Figure 2.7. The sensitivities of the transducers, which are

the ratios of the output voltage to the input mechanical vibration

are all different. Because of this variation in sensitivity and the

linear amplitude scales used in the plots, the amplitude scales of

these four plots are different. This allows the details of each wave-

form to be clearly seen.
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The RI5 exhibited the highest peak sensitivity over this frequency

range as demonstrated by the largest peak amplitude output voltage

for the constant amplitude input vibration. The ultrasonic transducer

and the $9208 were next in order of decreasing peak sensitivities

with similar peak amplitudes. The peak amplitudes of these two trans-

ducers were only about a factor of six less than that of the RI5

which on a logarithmic scale was a reduction of about sixteen dB. The

Pinducer had the smallest peak voltage output.

The high peak sensitivity of the RI5 was expected because of its

narrow band resonant design. This resonant frequency response was

demonstrated in Figure 2.5 by the large variations in amplitude of

the waveform as the frequency increases with time. This behavior will

be more clearly demonstrated in the frequency spectrum plots to fol-

low. The output of the ultrasonic transducer was much flatter indi-
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cating a better frequency response while the amplitude fluctuations

of the $9208 and the Pinducer indicated some resonant structure.

Although, the frequency responses of the transducers were observed

in the time domain signals because of the linear swept-sine

constant amplitude nature of the input, it was more clearly

revealed by examining the magnitude of the spectrum of the signals.

Again, FFT's were performed on the signals and converted to a loga-

rithmic scale referenced to one _volt. Plots of the spectrums are

presented in Figure 2.8 to Figure 2.11 where the logarithmic ampli-
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jected to constant amplitude, swept-sine input.

tude scale allows the plots from all of the transducers to be shown

on the same scale.

Although the input electrical signal applied to the driving ultra-

sonic transducer was of constant amplitude, the output of this trans-

ducer most likely, was not. This was because the output response of
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this transducer changed this signal and caused the actual input to

the transducers under evaluation not to be of constant amplitude.

Thus, the previous spectrum plots provided only a relative comparison

of the outputs to this common input and are not truly the frequency

responses of the transducers. To determine this, the effect of the

output response of the driving transducer was deconvolved from the

output signals.

To accomplish this deconvolution, several assumptions were made.

First, the coupling layer and impedance mismatches between the dif-

ferent transducer faces were neglected. Next, it was assumed that the

input and output electronics as well as the input and output trans-

ducers all behaved in a linear fashion. This allowed linear

transfer function formalism to be applied. In linear transfer func-

tion formalism, the output of a device is the convolution of the in-
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put signal with the response function of the device. Thus, the output

of the transducer under evaluation (TO) can be expressed as

TO = EI ®DR®TR®DE Eq. 2.1

where EI is the electrical input drive signal, DR is the output re-

sponse of the driving transducer, TR is the actual response of the

transducer under evaluation, DE is the response of detection elec-

tronics, and _ represents convolution. This convolution can be ac-

complished in the frequency domain as a simple multiplication of

the frequency responses while deconvolution is carried out as a divi-

sion in the frequency domain.

The frequency responses of the electrical input signal (EI(f)) and

of the output of the transducer under evaluation (TO(f)) were known

from the FFT's of these two signals. Additionally, it was assumed

that the response of the detection electronics (the transient record-

er) was flat and equal to unity. Thus, Eq. 2.1 was rewritten as

TO(f) = EI(f) ×DR(f) ×TR(f) Eq. 2.2

where only the desired TR(f) and the output response of the driving

transducer (DR(f)) remain unknown. To evaluate DR(f), one further as-

sumption was made. It was assumed that the output response of the

driving ultrasonic transducer was equal to its input response.

Thus, in the case where the two nominally identical ultrasonic trans-

ducers are coupled together for evaluation,

TO(f) = EI(f) ×DR(f) 2 Eq. 2.3

This enables DR(f) to be evaluated from the expression
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DR(f) = Eq. 2.4

when TO(f) was the response obtained when the ultrasonic transducer

was under evaluation. After DR(f) was determined, the response func-

tion of each transducer TR(f) was evaluated by

TO (f)
TR(f) = Eq. 2.5

EI(f) ×DR(f)

The resulting output response function of the ultrasonic drive

transducer was plotted in Figure 2.12. This is also the deconvolved
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input response function for this transducer. The deconvolved input

response functions of the remaining three transducers are presented

in Figure 2.13, Figure 2.15, and Figure 2.16. These were also all
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plotted on identical logarithmic amplitude scales for comparison.

As expected from the previous time domain plots, the RI5 had the

largest peak amplitude, but large resonant structure was present. The

largest resonant peak was at 158 kHz which was near the reported res-

onant frequency of 150 kHz for this sensor. Other peaks were also

present at 375 kHz and 1 MHz. A calibration for this sensor which was

obtained from the manufacturer is shown in Figure 2.14 along with the

measured frequency response. Good agzeement is seen between the two

curves.

The ultrasonic transducer demonstrated a very flat response

above 400 kHz. Below this frequency, the response dropped off in a

roughly linear fashion with frequency except for a couple of small

resonant peaks. The plots for the $9208 and the Pinducer demonstrated

resonant behaviors, although they were not as severe as that of the

RI5.

These figures again demonstrate the superior flat frequency re-

sponse of the 3.5 MHz ultrasonic transducer and the resonant struc-

tures of the other sensors. In the deconvolved responses, the

difference in peak amplitudes between the RI5 and the ultrasonic

transducer was approximately 25 dB.

Thus, from this analysis, it was clear that the 3.5 MHz ultrasonic

transducer offered a much flatter frequency response and therefore

better fidelity than any of the sensors tested. Not only were its

frequency characteristics better, it had a sensitivity in terms of

7,f:ak amplitude equal to that of a conventional broad band AE trans-

ducer. Its peak amplitude output was approximately 25 dB less than

that of the RI5, which had a severe resonant structure. However, it

is again pointed out that this was only a relative comparison of
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the behavior of the different sensors and not an absolute calibra-

tion. A numberof assumptions were madesuch as neglecting the cou-

pling layer, any impedancemismatches between the different sensor

faces, as well as the assumptions stated in the deconvolution analy-

sis.

II.3 Acoustic wave input generated by pencil lead break on thick alu-

minumplate and comparison with theory

In these experiments, the outputs of the four different transduc-

ers were compared when the common input stimulus was an acoustic wave

generated in a large, thick aluminum plate by a pencil lead break

(Hsu-Neilsen source). This source is commonly used to simulate an

AE event because the transient nature of the breaking of the lead

is similar to the transient nature of many real AE sources such as

crack growth. This simulated source is often modeled as a point

source, step function unloading of the surface.

The plate used for these experiments was 2024 aluminum. Its thick-

ness was 2.54 cm. while the lateral dimensions were 122 by 61 cm.

Large lateral dimensions were necessary in order to avoid reflections

of the acoustic wave from the lateral boundaries within the time pe-

riod of observation. The source and detector were also positioned

near the center of the plate to minimize reflections. Using the mea-

sured velocity of the fastest wave, the longitudinal wave, of 6540

m/s., the first reflection from a lateral boundary should not occur

until 186 _sec. after the source motion. Only the first 60 _sec. of

the signal were compared with theory. Since no reflections from the

lateral boundaries took place during this period, the plate was ap-

proximated as being infinite in lateral extent. Thus, comparisons
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with theoretical predictions for an infinite plate could be used.

Generalized ray theory, which was discussed briefly in the intro-

duction [Chapter I, p. 9], was used for these calculations. This the-

ory also required that the plate be at least ten times thicker than

the distance of propagation. A distance of propagation of 7.62 cm.

was chosen which easily met this requirement. The source and receiver

were both on the same side of the plate. The source-receiver configu-

ration is shown in Figure 2.17. One further assumption was made in

I 122 cm. I

TRIGGER SENSOR

®
×

/
SOURCE LOCATION

TRANSDUCER

UNDER

EVALUATION

®

7.62 cm.

Figure 2.17 Source, trigger sensor, and transducer position-

ing for evaluation of transducers with simulated

AE source in thick aluminum plate.

these calculations. That is, both the source and the detector are

points or have very small spatial extent. In the case of the lead

break source, this assumption was valid because of the small diameter

,_f the lead. However, the area of the receivers were much larger.

This was a source of disagreement between the measured waveforms

and theoretical predictions.

The transducers evaluated were the same as those in the previous
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section. An additional RI5 sensor was placed next to the source loca-

tion. Its output was used to trigger the recording of the waveform by

the transient recorder. Again a 5 MHz sampling frequency was used

in the digitization of the signals and the recorded signals were

stored on the personal computer for later display and analysis.

Because of the small voltage output of these sensors for this in-

put, the signals were first preamplified. The preamplifier

(Physical Acoustics Corporation model 1220A) amplified the signal

by 40 dB. The internal filter of this preamp was removed and replaced

with a 1 _F capacitor as per the manufacturers instructions. This al-

lowed the preamp to perform with the broadest bandwidth possible. The

frequency response of the preamplifier was characterized with tone

burst input signals of various frequencies from a function generator.

It was found to be essentially flat from near D.C. to 1.5 MHz.

One problem in examining the signal output of this preamp was that

the input 28 volt D.C. power supply and the output of the preamp

traveled over the same BNC cable in a so-called phantom power ar-

rangement. This was overcome by A.C. coupling the output/power supply

signal to the transient recorder which removed the 28 volt D.C. level

from the signal. The 28 volt power was provided by a conventional

AE system (Physical Acoustics Corporation model Locan-AT) . A block

diagram of the experimental apparatus is presented in Figure 2.18.

In addition to simply comparing the outputs of the different

transducers to each other, the outputs were compared to that predict-

ed by theory. This was accomplished using a computer program by Hsu

[20] which calculated the components of the Green's tensor, Gij

(_,x,t), for an isotropic, thick plate of infinite lateral extent.

The components of this tensor are the i'th component of the displace-
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ment at x due to a point force of step-function time dependency oc-

curring at _ in the j'th direction. An overbar is used to designate

vector quantities. The force was assumed to be initiated at t=0.

The theoretical basis of this program was an approach known as

generalized ray theory. A detailed explanation of this approach was

presented by Eitzen et al. [13]. Another detailed presentation of the

generalized ray approach to the solution of problems involving

waves propagating in thick plates was put forth by Pao and Gajewski

[39] and is reviewed by Pao et al. [19]. A detailed analysis of gen-

eralized ray theory is well beyond the scope of this work. However,

the basic concepts of linear elasticity on which it is based and a

brief discussion of the concept of generalized ray theory are pre-

s,_nted below.

The plate is assumed to behave in a linear elastic fashion.

Thus, the stresses (aij) are related to the strains (_kl) through
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(_ij ----Cijkl_kl Eq. 2.6

where Cijkl is the elastic stiffness tensor. The Einstein summation

convention regarding repeated indices applies here and throughout the

remainder of this work. Because the deformation of the material is

assumed to be small, the small strain definition of the strain tensor

is used which is given by

i _ui _uj

Eij= 2 i Eq. 2.7

where u i are the displacements and x i are the coordinate axes of the

body. Furthermore, the material of the plate is assumed to be isotro-

pic. Thus, only two independent elastic coefficients are needed to

describe the behavior of the material. The Lame' coefficients k and

are used. This allows the rewriting of Eq. 2.6 as

aij -----_kk_ij + 2_Eij Eq. 2.8

where 6ij is the Kronecker delta.

The governing equations of motion are given by

_aij _2u i
Eq. 2.9

where p is the mass density and fi are the components of the body

force per unit mass of material. Using Hooke's law for an isotropic
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material to substitute for the stress, the definition of strain,

and assuming the material to be homogeneous, these governing equa-

tions can be rewritten in terms of the displacements as

a2u

u) + V2u +pf = Eq. 2.10

The forcing function for a lead break is assumed to have a time de-

pendence of the Heaviside step function, H(t), which is equal to 0

for t<0 and 1 for t _ 0. The spatial dependence is assumed to be

that of a point source.

Solutions to these equations of motion with this type of forcing

function for an infinite isotropic body have been determined. An ex-

ample is given by Pao [40]. These solutions show that two waves are

generated that propagate outward from the source. The first is a lon-

gitudinal wave that has a velocity, (cl) , given by

+ 2

ci p
Eq. 2.11

The second is a shear wave which travels with a slower velocity,

(Cs), given by

Eq. 2.12

In the case of propagation in a plate, these same waves are emit-

ted from the source. However, as the waves propagate away from the
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source, they will interact with the boundaries. Eachwavemayreflect

and modeconvert or generate surface wavesdepending on the angle

of incidence and the boundary conditions on the surface of the plate.

In the generalized ray approach, a calculation of the displacement

contribution of each generalized ray that will reach the detection

location from the source is made for a certain length of time. This

generalized ray may be a direct traveling wave or a wave that has un-

dergone reflections and mode conversions. The contributions of all of

these generalized rays are summed up to give the displacement at

the detector position. Thus, the solution is exact for the length

of time evaluated. For later times, it is incorrect because addition-

al waves will arrive whose displacement contributions have not been

taken into account. The difficulty in this approach is that the num-

ber of reflections grows exponentially with time. This causes limita-

tions on the length of time and distance of propagation for which the

solution can practically be calculated.

A computer program was written by Hsu [20] to evaluate the dis-

placement of a thick plate for the case when the input forcing func-

tion was a Heaviside step function (H(t)). This code was written in

Fortran and in this case was run on a VAX 780 (Digital Equipment

Corp.) computer. The inputs required by the program were the distance

from the source to the detector (assumed to be on the upper surface

of the plate), the location along the z axis of the source, the

thickness of the plate, the shear and longitudinal wave speeds of the

plate, the shear modulus of the plate, the number of points to evalu-

ate, the time step between each point, and the amplitude of the

source. Additionally, the direction of the applied force and the di-

rection of the motion to be predicted had to be input as indices into
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the program since it could evaluate any componentof the Green's ten-

sor, Gij.

The source to receiver distance was set equal to 0.0762 m. and the

source was positioned on the same surface as the receiver. This

matched the theoretical assumptions to the experimental conditions.

The longitudinal and shear wave speeds were measured ultrasonically

by a pulse-echo technique using longitudinal and shear wave transduc-

ers to generate and detect the respective longitudinal and shear

waves. The values determined were c] = 6540 m/s. and cs= 3210 m/s.

The shear modulus was calculated using the measured shear wave veloc-

ity and an assumed density of 2690 kg/m 3. Its value was determined

to be 27.7 GPa. The plate thickness was input as 0.0254 m. Since

the source amplitude was not experimentally measured, it was set

equal to I. The program output was then normalized for each transduc-

er to allow relative comparisons. The indices of Gij used were 33 to

evaluate the displacement normal to the surface (z direction)

caused by a force also normal to the surface. 256 points were calcu-

lated with a time spacing between points of 0.2 _sec.

The output of the program was the absolute amplitude of the normal

component of the surface displacement in m. which is plotted in Fig-

ure 2.19. The largest peak in the displacement shown in this Figure

is caused by the Rayleigh wave. A number of other waves arrive before

this peak including the direct longitudinal wave, the once and

twice reflected longitudinal waves, and a shear wave that was created

by the mode conversion of a longitudinal wave upon reflection.

These all have much smaller amplitudes than that of the Rayleigh

wave. The next larger peak after the Rayleigh wave coincides with the

predicted arrival of the once reflected shear wave.
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Theoretical plate surface displacement due to

point source step function loading at a distance

of 0.0762 m. on the same surface of the plate.

In order to compare the theoretical displacement with the

outputs of the transducers, the output of the program had to be nor-

malized in time and amplitude. The time shifting was necessary be-

cause of the small delay (several _sec.) in triggering the digitizer

in the experimental measurements. The computed signal was

normalized in time by shifting it until the peak of the Rayleigh wave

arrival coincided with the same peak on the experimental waveforms.

This peak was the largest of both of the signals and was thus

easily recognizable. The Rayleigh wave peak was not used in the am-

plitude normalizing, however. This was because of the sharp

risetime and thus high frequency components in the theoretical sig-

nal. This peak was not tracked well by any of the transducers. If

this peak were used, the details of the other arrivals could not eas-
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ily be seen in the theoretical signal. The amplitude of the theoreti-

cal signal was scaled so that the first longitudinal arrival was

the same as that for the experimental signal.

In the case of the pinducer, the derivative of the theoretical

displacement was used for comparison. This was because of the veloci-

ty sensitivity of this sensor. The derivative was evaluated numeri-

cally with the Asyst software package. The theoretical velocity was

scaled to the experimental pinducer output in the same manner as that

used for the displacement comparison_ of the other transducers.

The experimental outputs of the four sensors along with the nor-

malized theoretical outputs are exhibited in Figure 2.20 to Figure
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Theoretical prediction and experimental signal

detected by ultrasonic sensor for lead break

source on thick aluminum plate.

2.23. Since none of the transducers were able to reproduce accurately

the amplitude of the Rayleigh wave because of its impulsive nature,

all four plots are shown with an expanded amplitude scale in which
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the peak of the Rayleigh wave is off scale and not shown. This allows

for a better comparison of the theory and experiment for the other

arrivals.

In the cases of the ultrasonic sensor, the RI5, and the $9208, the

timing of the arrivals of the different waves seem to agree reason-

ably well with theory up until the arrival of the once reflected

shear wave (2S wave). The impulse nature of the Rayleigh wave and the

large 2S wave induce ringing in the sensors, particularly in the RI5.

Additionally, theory predicts a long low frequency ramp downward af-

ter this 2S arrival caused by the interference of numerous other re-

tlected and mode converted waves. This low frequency response is also

not captured by any of the sensors. These features cause the lack

of agreement between the theory and experiment after this point.

One further factor that causes the experiment not to agree with the
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theory, particularly for the high frequency Rayleigh wave, is that

the theoretical prediction is for a point detector. Except for the

pinducer, all of the sensors have large areas of detection which

cause phase cancellation across the face of the transducer for sig-

nals with wavelengths less than the diameter of the transducer. In

the case of the low frequency plate waves that are studied later,

this is less of a concern since the wavelengths are much larger.

The output of the pinducer also agrees reasonably well with the

theoretical velocity prediction up until the arrival of the 2s

wave. This demonstrated that it was indeed sensitive to velocity

while the other three sensors were sensitive to the displacement.

As for a comparison of the different sensors, the RI5 again

gives the largest output and thus highest sensitivity. However, it

shows the most ringing and the least accurate reproduction of theory.

The $9208 and the ultrasonic sensor were comparable. The $9208 repro-

duced the Rayleigh wave slightly better, but demonstrated slightly

less sharp details of the smaller earlier arrivals. The pinducer

again yielded the smallest output.

In summary, these measurements demonstrated the velocity sensitiv-

ity of the Pinducer and the displacement sensitivity of the other

three sensors. They allowed a relative comparison of the sensitivi-

ties and fidelities of the different sensors. This comparison again

showed that the RI5 provides the highest sensitivity at the expense

of fidelity. The broad band $9208 and the ultrasonic sensor

provided a more accurate reproduction of the theoretical signal. How-

ever, it is again stressed that these are only relative comparisons

and not absolute calibrations.
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II.4 Acoustic wave input generated bypencil lead break on thin alu-

minumplate and comparison with output from optical interferometer

The final transducer evaluation method was to compare the ouputs

of the different sensors when the input was that of an acoustic

wave in a thin aluminum plate generated by a pencil lead fracture.

This input was similar to that investigated in the remainder of the

research. The responses of the transducers were also compared to that

of an optical interferometer which was known to be sensitive to the

normal component of the surface displacement. This allowed a

further demonstration of the displacement sensitivity and flat fre-

quency response of the ultrasonic transducer. Similar comparisons

of piezoelectric transducer outputs against that of an optical inter-

ferometer have been performed by Majerowicz [41] who investigated the

effect of specimen geometry as well as detecting transducer on the

measured waveforms.

Again, the same transducers were evaluated. The plate to which

they were coupled was aluminum 2024 and again a silicone grease cou-

plant was used. The plate was 0.635 cm. in thickness and had

lateral dimensions of 38.1 cm. by 50.8 cm. The lead break source

was positioned at the center of the plate. An RI5 sensor was posi-

tioned next to the source and used to trigger the digitizer. The

transducer and interferometer beam were positioned at a distance of

7.62 cm. from the source as shown in Figure 2.24. A preamplifier

wa3 again used to amplify the output of the transducers. The gain was

,_? dB and no internal filter was used. The signals were digitized

_t a 5 MHz sampling frequency with the transient recorder and

stored on the personal computer. A block diagram of the
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experimental apparatus is presented in Figure 2.25

The optical interferometer used was a prototype path stabilized

Michelson interferometer designed and built by Spicer et al. [42].

The design was based on that of Dewhurst et al. [43] for which the

basic elements are shown in a block diagram in Figure 2.26. Path sta-
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Figure 2.26 Block diagram of optical interferometer.

bilization was used to eliminate large low frequency optical path

length changes in the reference arm of the interferometer. These

low frequency effects are often much larger than the desired tran-

sient acoustic signals and are a result of environmental disturbances

such as building vibrations and refractive index variations. They are

generally less than 1 kHz in frequency. Path stabilization was accom-

plished by using the output signal from the interferometer to drive a

piezoelectric element mounted behind the reference mirror in a low

frequency feedback loop. This eliminated the low frequency environ-

mental effects. Above the low frequency used in the feedback loop

(about 1 kHz), the interferometer was reported to have a flat fre-

quency response to 50 MHz.

1

Displacement of the surface of the specimen by _k caused a

change in the optical path of ik which resulted in a shift of the
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fringe pattern by 1 fringe. This shift of i fringe corresponded to

a certain peak-to-peak voltage output from the interferometer depend-

ing on a number of factors including the input power of the laser,

the sensitivity of the detector, and the reflectivity of the

surface of the specimen. In practice, however, it was measured by ex-

amining the output of the interferometer when the specimen was sub-

jected to large amplitude vibrations such as by lightly tapping it

with a finger. Knowing the wavelength of the laser light, which was

633 nm. for the Helium-Neon laser used in this research, an

absolute calibration factor in terms of volts/meter was determined.

This calibration factor could, in theory, be used to convert the out-

put of the interferometer into absolute surface displacement provided

the amplitude of vibration is small enough for the interferometer

to remain in its linear operating range.

Although a calibration factor was obtained, the method of inducing

the acoustic wave used in this experiment prevented its

application. In breaking the lead to generate the acoustic wave,

the pencil was held by hand and the load was gradually increased un-

til the lead fractured. The large vibrations of the unsteady hand

loading the pencil caused the interferometer to jump several fringes.

These vibrations were at frequencies higher than that corrected for

by the path stabilization, but much lower than that of the acoustic

transients caused by the lead breaks.

In previous absolute calibration experiments described by Eitzen

et al. [13], a mechanical fixture was used to circumvent this prob-

lem. In this fixture, a screw was gradually tightened which applied

load to the lead until it fractured. Such a fixture would have been

useful in these measurements to eliminate these low frequency,
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large amplitude vibrations created by the unsteady hand. However,

since such a fixture was not available, the low frequency

vibrations were eliminated from the signal by filtering the interfer-

ometer output with a i0 kHz high pass filter (Allen Avionics model

F2072). The insertion loss due to the filter would have had to be de-

termined and corrected for in order to apply the absolute calibration

factor. Also, there was uncertainty as to whether the

interferometer was always within its linear operating range due to

these large amplitude vibrations.

A plot of the wave detected by the ultrasonic transducer and the

interferometer is shown in Figure 2.27. In the signal from the ultra-
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tected by ultrasonic transducer and optical in-
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sonic transducer in this figure, the earliest wave arrival was that

due to the extensional plate mode. It is the small amplitude motion

seen arriving at about 10 _sec. The extensional mode was also visi-
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ble in the interferometric signal although it was downin the noise

level. A view of these signals with an expandedamplitude and time

scale to more clearly show the extensional wave is presented in Fig-
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Simulated AE signal in thin aluminum plate de-

tected by ultrasonic transducer and optical in-

terferometer with expanded time and amplitude

ure 2.28. The large amplitude signal arriving after the extensional

mode at about 20 _sec. is that caused by the flexural plate mode.

This mode is dispersive with the higher frequencies traveling with

higher velocities. This is clearly seen in Figure 2.27. The in-

plane shear mode wave is not seen in the output of either sensor. The

first reflection of the flexural mode from a lateral boundary appears

to arrive at about 90 _sec. in both signals of this figure. The high

frequency, small amplitude ripple seen, particularly on the ultrason-

ic transducer output, is of undetermined origin. It may be the result

of higher order plate modes.

A detailed analysis of the propagation of these plate modes is
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presented in a later section of this work. For the present, it was

only of interest to compare the outputs of the sensors with that of

the displacement sensitive interferometer. The ultrasonic

transducer reproduced the output of the interferometer very well up

to about 80 _Lsec. with the exception of its increased sensitivity to

the high frequency ripple. The discrepancy between the two signals

for the low frequencies arriving after this time is believed to

have been caused by phase shifting and filtering by the 10 kHz high

pass filter on the interferometric signal. Supporting this conclusion

was the fact that the higher frequency signals caused by the reflec-

tion of the flexural wave that occurred during this same time

period were in agreement in both signals. There were two additional

factors that may have caused any discrepancy between the observed

waveforms. The first was that of positioning errors in placing the

sensors. The other was that of the point detection of the interferom-

eter as opposed to the large sensing area of the transducer. However,

at the large wavelengths of these low frequency plate waves, the lat-

ter factor was not a concern.

The output of the RI5 transducer along with that of the interfer-

ometer are plotted in Figure 2.29. This figure clearly demonstrates

the resonant behavior of the RI5 sensor. Except for the small exten-

sional wave and the first half cycle of the flexural wave, no agree-

ment is seen between the output of this sensor and that of the

interferometer. The output of the RI5 is, of course, higher indicat-

ing its better sensitivity, but the reproduction of the actual signal

is quite poor.

The signals from the $9208 and the interferometer are presented in

Figure 2.30. Again, up until about 60 _sec., the output of the $9208
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corresponds well with that of the interferometer. Beyond this time,

the same problem occurs as was discussed when comparing the results

of the interferometer to the ultrasonic transducer. That is, the ef-

fects of the 10 kHz high pass filter alter the interferometer signal.

In this case, however, the reflection of the flexural wave is some-

what obscured in the $9208 signal because of its higher sensitivity

to low frequencies. The output of the pinducer is shown in Figure
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Simulated AE signal in thin aluminum plate de-

tected by Pinducer transducer.

2.31. It was not compared to the signal from the interferometer as no

agreement was expected because of its velocity sensitivity.

In summary, these measurements provided additional relative evalu-

ations of the performance of the different transducers. The ultrason-

ic transducer was shown to provide an output consistent with that

of a displacement sensitive optical interferometer when both were ex-

cited by the plate mode acoustic waves. The drastic resonant behavior
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of the RI5 sensor was again clearly demonstrated.

II.5 Summary and Conclusions.

This set of experiments provided a means to evaluate the perfor-

mance of four types of acoustic transducers and yielded relative com-

parisons of their behavior. The 3.5 MHz broad band ultrasonic

transducer demonstrated superior frequency response over the band-

width of interest (20 kHz to 1.5 MHz) and thus should provide

higher fidelity reproductions of AE signals. Its response was demon-

strated to be proportional to the displacement in this frequency

range. The $9208 was also displacement sensitive and its peak sensi-

tivity was slightly higher than that of the ultrasonic transducer.

However, it was shown to have more resonant behavior than the ultra-

sonic transducer.

The resonant RI5 sensor had a significantly higher peak sensitivi-

ty, but it was achieved at the expense of its frequency response. The

pinducer offered much lower sensitivity which was probably due to its

smaller active area. In addition, it was shown to be sensitive to the

velocity of the surface.

In applications such as simple, conventional AE testing where high

output sensitivity is necessary, the RI5 sensor is ideal. However,

for quantitative signal analysis and interpretation, the ultrasonic

transducer seems to be a better choice. Thus, it was used in the in-

vestigations of plate mode propagation that are discussed next.
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III. Plate Wave Propagation in Aluminum Plates

III.l Introduction

The next area of investigation in this research was that of

plate wave propagation in isotropic 2024 aluminum plates. Numerous

references to this subject are given in Chapter I. This work was per-

formed in order to better understand the propagation of AE pulses

in isotropic media before attacking the more formidable problem of

plate waves in highly anisotropic composite materials. The investiga-

tion of plate waves in aluminum focussed on two areas. The first

was a further evaluation of the effect of source orientation on plate

modes to include sources other than those normal to the plate surface

or plate edge. The in-plane displacement component was also

measured for the sources at different angles. This component of dis-

placement was not reported in the previous study demonstrating the

effects of source orientation by Gorman [35].

The second area of investigation of plate modes in isotropic mate-

rials centered on the calculation of the shape of the flexural mode

wave. The classical plate theory bending equation of motion was

solved for the case of a normal point force, step function

unloading on a finite plate. A normal mode approach was used for this

solution and the results of these theoretical predictions were com-

pared with signals generated by a pencil lead break. The lead break

provided a source similar to a step function. These theoretical pre-

dictions are the first known attempts to predict the AE response in a

finite plate with an analytical solution. All previous work in quan-

titative predictions of AE signals in plates has been for the case of

plates of infinite lateral extent.
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The theory for the propagation of plate waves is based on the ex-

act elasticity equations which were used to predict the response of a

thick, infinite plate in the last chapter, but a number of assump-

tions about the geometry and the type of deformation are made which

allow much more simplified equations of motion to be derived. These

equations describe the lowest order symmetric or extensional mode and

the lowest order antisymmetric or flexural mode as well as the in-

plane shear mode. This theory is known as classical plate theory.

In this section, only the case of a homogeneous, isotropic plate is

considered. In the next section on composites, the plate equations of

motion will be extended to the case of a homogeneous, orthotropic ma-

terial.

The coordinate axes of the plate are chosen such that the x and

y axes are in the midplane of the plate. The z axis is normal to

the plate with its origin at the center of the plate as shown in Fig-

ure 3.1. The displacements are u, v, and w which are along the x,

Figure 3.1 Coordinate axes of plate.

y, and z axes respectively. The deformation of the material is

again assumed to be small so that the definition of strain given in
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Eq. 2.7 remains valid. The plate is assumed to be very thin and under

the condition of plane stress. For the case of plane stress, O×z =

Ozx = Oyz = Ozy = _zz " 0. These conditions are substituted into the

first two equations of motion given in Eq. 2.9 to yield the equations

of motion for the in-plane stresses. These equations are

_X + _y- + Pfx =..... P_t 2
Eq. 3.1

and

ax + -_- + Ply = Pbt 2 Eq. 3.2

For an isotropic material under the condition of plane stress, the

generalized Hooke's law relations are given by

E EV

(_xx -- £xx + . £yy '
(I -- V 2) (i -- V2]

Eq. 3.3

EV E

-- £xx + £yy '
On' ( i -- V 2) ( I -- V 2)

Eq. 3.4

and

E

a.y = %.. = (!.¥v)-e_ Eq. 3.5

where E is the Young's modulus of elasticity and v is the Poisson's

ratio. These are a different set of elasticity coefficients for iso-
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tropic materials and are related to the previously used Lame' coeffi-

cientsby

(3k+ 2_)

E = -i_+_Y-- Eq. 3.6

and

Eq. 3.7

Substituting the definition of stress, followed by the

definition of strain into the equations of motion and simplifying

yields the equations of motion for in-plane displacements for a thin,

isotropic, homogeneous, linear elastic plate under plane stress.

These are

(1 -v 2) lax 2+ (1 + v) ax-a_,

i- v _2u h _2u

+ = Eq. 3.8

and

E . _2v _2u
( 1 --v2) L_)-Y_+ (1+v) _x-a_,

l_v a=v_ a2v
+ ( _-)o_x2j+Pfy = Pat 2

Eq. 3.9

These equations govern the propagation of the extensional and

the in-plane shear (SH) plate waves. Since the in-plane shear mode

wave has not been observed in the AE signals of interest in this

work, it is not discussed further. In order to gain insight into
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how an extensional wave propagates, it is next assumed that the

body forces, fx and fy, are zero and that a sinusoidal plane wave is

propagating along the x axis with particle displacement in the x di-

rection. Its displacement is given by

U -- A0 ei(_t-k×) Eq. 3.10

and

v=0
Eq. 3.11

where A 0 is the amplitude, _ is the angular frequency in radians/

sec., k is the wave number, and i is the imaginary number which is

equal to _-i. The wave number is related to the wavelength, A, by

2_

k = -_ . Also, the angular frequency, _, is related to the frequency

(f in Hz) by _=2_f. The phase velocity, c, can be expressed in

terms of k and _ as

C ----k Eq. 3.12

After substituting Eq. 3.10 and Eq. 3.11 into the equations of mo-

tion, Eq. 3.8 and Eq. 3.9, and solving for the phase velocity, the

following expression is derived,

Eq. 3.13

where c e is used to designate the extensional plate mode velocity.
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Eq. 3.13 is the velocity equation or dispersion relation for exten-

sional mode waves. It predicts that this mode of propagation

travels with a constant velocity that is independent of frequency.

It is demonstrated later that the velocity of the flexural mode

does suffer dispersion. In other words, the velocity of each frequen-

cy component is dependent on frequency. Furthermore, it is noted here

that the exact theory of elasticity predicts that the lowest order

symmetric mode also suffers dispersion. Remember, however, that the

previously presented equations for extensional plate modes were not

those of exact elasticity theory, but assumptions were made concern-

ing the displacements. The assumption that the material was thin

was used so that the condition of plane stress could be applied. In

the range of plate thicknesses for which this assumption is valid,

these equations do agree with the exact theory and provide a valid

description of the extensional or in-plane motion of the plate.

The thin plate criterion is often expressed in terms that the

wavelength must be greater than some number of plate thicknesses.

Medick [34] used the criterion that the wavelength must be sixteen

times the plate thickness in his study of flexural wave

propagation. However, this number was arbitrarily chosen based on the

agreement of classical plate theory predictions and his

experimental data. Using the relationship between velocity, frequen-

cy, and wavelength, the thin plate criterion can also be expressed as

a maximum frequency at which the classical plate theory is valid.

The derivation of the classical plate theory equation of motion

for the flexural mode of propagation for an isotropic plate is well

known and widely documented. For this reason, the derivation is not

reproduced here, but the reader is referenced to an excellent presen-
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tation of this derivation by Graff [31]. The derivation of the flex-

ural equation of motion for an orthotropic plate is presented in

the next chapter on composite materials.

The assumptions used to derive this equation of motion include all

of those used to derive the extensional equations of motion. Further-

more, the plate is assumed to be under a state of pure bending in

which plane sections of the plate remain plane and perpendicular to

the midplane of the plate. The effects of rotary inertia are also ne-

glected. Based on these assumptions, the equation of motion for the

flexural mode in terms of the displacement, w, and the bending stiff-

ness, D which is given by,

Eh 3
O ._. ..............

12 (I -v 2)
Eq. 3.14

is found to be

_2 1%

DV4w(x,y,t)+phvw:x'y't"--q(x,y,t)
_t 2

Eq. 3.15

where q(x,y,t) is the normal component of the body forces or a con-

centrated normal surface load, h is the plate thickness, and V 4 is

the Laplacian of the Laplacian or the biharmonic operator. In Carte-

sian coordinates, this is

V4w: v_V_w: _x2+_-y-_tD?+_y_j Eq. 3.16

which can be simplified to
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w _4w
V4w _4w 4

Eq. 3.17

To examine the dispersion behavior, it i3 again assumed that there

are no body forces present and that a harmonic plane wave is propa-

gating along the x direction. The displacement is given by

W ----A0 ei(_t-kx) Eq. 3.18

Substituting this into the equation of motion (Eq. 3.15) and reducing

terms yields the dispersion relation

Eq. 3.19

in which cf is used to denote the flexural velocity. This equation

demonstrates that the flexural mode is dispersive with a square

root dependence on the frequency of the wave.

According to this dispersion relation, the velocity of the flexur-

al mode increases with increasing frequency. One problem is immedi-

ately noticed. That is, the velocity increases without bound. This,

of course, is not physically possible. It is caused by the assump-

tions made in deriving the classical equation of motion. Again, for

thin plates and low frequencies where these assumptions are valid,

the predicted flexural behavior is valid and would agree with that

predicted by the exact theory.
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III.3 Source orientation effects

In the previous investigation of plate waves in aluminum and com-

posite plates by Gorman [35], measurements were made of the out-of-

plane displacement component of plate wave AE signals produced by

lead break sources. The source orientations investigated were those

with the source normal to the plate surface and with the source nor-

mal to one edge of the plate. It was discovered that the out-of-plane

displacement component for the case of a lead break normal to the

plate surface contained a large flexural mode signal and a small ex-

tensional mode signal. When the source was normal to the plate

edge, the out-of-plane displacement component of the extensional mode

was large while that of the flexural mode was almost nonexistent.

These results make intuitive sense when the direction of the

source motion is considered. When the lead break is normal to the

surface of the plate, the majority of the displacement due to the

source motion is also normal to the plane of the plate resulting in

flexural motion. However, because of the Poisson effect, there is

still a small in-plane deformation caused by this source which gener-

ates the small extensional component observed. The reverse should

be true when the source is normal to the edge of the plate. Based

on these results, it was proposed that characterization of actual

AE signals in terms of plate waves may be useful in determination

of the source type or orientation.

To investigate this effect further, signals were generated by lead

break sources in aluminum plates at angles in addition to normal to

the plate surface (90 degrees) and normal to the plate edge (0 de-

grees). Sources were excited at the intermediate angles of 30 and
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60 degrees. This was accomplished by breaking the lead on specially

machined slots in the plate which were described by Gorman and Pross-

er [44] and are detailed below. Additionally, the in-plane displace-

ment component was measured by placing a transducer on the opposite

edge of the plate.

Four plates were used in this study, all of which were aluminum

2024. The dimensions of the first three plates were 0.508 m. in

width, 0.381 m. in length, and 0.00635 m. in thickness. The fourth

plate had the same thickness, but was only 0.254 m. in length and

width. The first of the three plates which were identical in size,

contained no slot and was used in the study of sources at 90 degrees.

The second and third plates contained slots that allowed the lead

break source to be at 30 and 60 degrees respectively, with respect to

the plane of the plate. For the 30, 60, and 90 degree breaks, the

source was located at the center width of the plate and at a length

of 0.127 m. from the plate edge. A RI5 sensor was positioned next

to the source location and used to trigger the transient recorder.

The out-of-plane displacement sensor which was a 3.5 MHz ultrasonic

transducer was positioned on the surface of the plate at the center

width at a distance of 0.127 m. from the source location. The in-

plane sensor which was another 3.5 MHz ultrasonic transducer, was

coupled to the opposite edge of the plate at the center width.

Thus, it was 0.254 m. from the source location. The positioning of

the source, slot, and transducers relative to the plate are illus-

trated in Figure 3.2.

For the 0 degree source break, the lead was broken on one edge

of the fourth plate at the center width. The out-of-plane sensor

was positioned at the center width at a distance of 0.127 m. from the
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Figure 3.2 Plate dimensions and positioning of sensors and

source.

source. The in-plane displacement sensor was placed at the center

width on the opposite edge of the plate and was thus 0.254 m. from

the source. This smaller plate allowed the distance of propagation

for the in-plane displacement component of the wave created by the

0 degree source to be the same as used for the other source angles.

The 30 and 60 degree slots were 0.0127 m. in width and were ma-

chined to a depth of half of the plate thickness (0.003175 m.). The

length of the slot was then determined by the desired angle of the

slot with respect to the plane of the plate. A cross sectional view

along the center of the plate illustrating the slot and transducer

positions is shown in Figure 3.3.

The resulting signals from the in-plane and out-of-plane displace-

ment sensors were preamplified by 40 dB. The preamplifier contained a
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20 kHz high pass filter for these measurements.The amplified signals

were digitized at a 5 MHzsampling frequency on the transient record-

er. The digitized waveformswere stored on the personal computer

for later analysis and display. A block diagram of the experimental

apparatus is presented in Figure 3.4. At each source angle, the break

TRANSIENT
RECORDER

COMPUTER

PREAMPAND FILTER

!
TRIGGER

SENSOR AND

SOURCE LOCATION

!

t
OUT-OF-PLANE IN-PLANE

SENSOR SENSOR

Figure 3.4 Experimental apparatus for measurements of the

effects of source orientation on plate waves.
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was repeated ten times to determine the variability of the

magnitude of the step unloading force applied to the plate.

A typical out-of-plane displacement waveform due to a lead break

source on an aluminum plate is shown in Figure 3.5. The extensional

1.5 o o
EXTENSIONAL WAV 

WAW l
1

o 0.5
>

0

Figure 3.5

!

4.000 10 -5 8.000 10 -5 0.00012

TIME (SEC.)

Typical out-of-plane displacement component for

a lead break source in an aluminum plate indicat-

ing the flexural and extensional plate modes.

and flexural modes are identified in this figure. The velocities of

the two modes were determined previously by measuring the arrival

times at different distances. The measured velocities agree with

those predicted by theory which confirms that these are indeed the

plate modes. This waveform was detected by the broad band

ultrasonic transducer. When a typical narrow band resonant AE trans-

ducer such as the RI5 is used, the two modes are indistinguishable

because of the ringing in the transducer.

The out-of-plane displacement components of the waves created by

lead breaks at the four source angles are plotted in Figure 3.6.
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The waveform shown at each angle was from a lead break that

produced a signal with a peak amplitude nearest the average peak am-

plitude for the ten breaks. For the source motion in the plane of the

plate (0 degree or edge break), it can be seen that the extensional

mode has its largest peak amplitude while the flexural mode has its

minimum. As the source angle increases, the extensional mode peak am-

plitude decreases. For increases in source angle toward normal to the

plate, the flexural peak amplitude increases except for the 60 to

90 degree cases where the 60 degree flexural amplitude is slightly

larger than that 0f the 90 degree break. At present it is unknown why

this anomaly occurred but, it is being investigated further.

The average peak amplitudes Of the out-of-plane displacement com-

ponents of the flexural and extensional modes are plotted versus

source angle in Figure 3.7. The standard deviations of the ten mea-
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Figure 3.7 Average peak amplitudes of out-of-plane exten-
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surements are plotted as the error bars in this figure. The increas-

ing amplitudes of the flexural mode and decreasing amplitudes of

the extensional mode with increasing source angle are as expected ac-

cording to the argument used previously regarding the direction of

source motion. At the intermediate angles of 30 and 60 degrees, the

amount of source motion in the plane and out of the plane of the

plate is proportional to the appropriate vector component of the

source force. Thus as the angle increases, there should be an in-

creasing flexural mode and decreasing extensional mode which is as

observed.

Examples of the in-plane displacement components for the four

source angles are shown in Figure 3.8. Again, it is pointed out

that the 0 degree measurement was made on a separate plate with a
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length of 0.254 m. to maintain a constant source to receiver dis-

tance. In these waveforms, the extensional amplitude again

decreases with increasing source angle. However, it is interesting

that the in-plane component of the flexural mode is not detected even

for large source angles where it should be largest. Recall that the

out-of-plane component of the extensional mode is observed for all

source angles. The average in-plane peak amplitudes of the extension-

al mode versus source angle is plotted in Figure 3.9. The standard

deviation-is again indicated by error bars.

These measurements confirmed the previous results by Gorman [35]

that the orientation of an AE source has an effect on plate modes

in thin plates. Furthermore, it was demonstrated that this effect oc-

curred at source angles other than normal to the plate (90 degrees)

and normal to the plate edge (0 degrees). The effect of source orien-
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tation was also observed on the in-plane component of the displace-

ment of the plate modes.

Thus, it is expected that quantitative source information can be

obtained by the measurement of the amplitudes of the components of

the plate modes due to real sources. One example of interest will

be the case of impacts, particularly hypervelocity impacts which

are a concern to spacecraft such as the proposed space station. Mea-

surements of the amplitudes of the plate modes should allow determi-

nation of the angle of the impact and the energy of the impact

which will allow a better estimate of damage.

III. 4 Prediction of the flexuzal mode by • nommal mode molutlon

In order to better understand the propagation of AE plate wave
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signals and the applicability of classical plate theory,

theoretical predictions of the displacement of the flexural mode were

made. The predictions were based on a normal mode expansion technique

which was described by Gorman and Prosser [45] and is presented be-

low. This solution technique was applied to the classical flexural

equation of motion. The advantages of this approach are that it al-

lows the solution to be obtained for the case of finite plates and is

easily adaptable to the case of anisotropic media which is demon-

strated in the next chapter. Furthermore, it is computationally

much less intensive than solutions based on exact theory which are

available only for infinite plates.

The results obtained by this approach were compared with predic-

tions for an infinite plate based on an integral transform solution

to the same classical flexural equation of motion. This comparison

should demonstrate agreement up until the point at which

reflections begin to occur in the normal mode solution. The predic-

tions for the finite plate were also compared with experimental mea-

surements. The experimental waveforms were generated by pencil lead

breaks normal to the surface of the aluminum plate.

The normal mode expansion technique has been used widely on a num-

ber of problems including free and forced vibrations of strings and

rods. The derivations of the solutions for strings and rods were pre-

sented by Graff [31] and that for the plate is presented below.

This approach has previously not been applied to the problem of AE

3_gnals because of the much higher frequency content of these tran-

sient signals. The higher the frequency, the more terms that must

be summed to obtain a good approximation. However, with the speed

of modern computers, this approach is now feasible for AE signals.
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In deriving the normal mode solution for the flexural wave, it was

assumed that the flexural motion was governed by the classical equa-

tion of motion given in Eq. 3.15. All of the assumptions used to de-

rive this equation are again implied; the plate is homogeneous,

isotropic, thin, and under the condition of plane stress. The defor-

mations are also assumed to be small and the coordinate axes and dis-

placements are the same as those used in the earlier section on

classical plate theory.

Before the solution for the case of forced motion can be solved,

the normal modes for free vibration of the plate must be

determined. Thus, solutions to the homogeneous equation of motion,

DV4w(x,y,t) +@h_ W__Xiy,2 I t__)_= 0

_t 2
Eq. 3.20

are sought, in which, the forcing term q(x,y,t) has been set equal to

zero. In order to solve this equation for the displacement, w, a sep-

aration of variables approach was used. The vertical displacement was

assumed to have a form with harmonic time dependence given by

-i _t
w(x,y,t) = X(x)Y(y)e Eq. 3.21

where X(x) and Y(y) are functions (complex, in general) depending

only on x and y respectively. Substituting Eq. 3.21 into Eq. 3.20 and

reducing terms yields

xIVy +2XIIy II +XY TM -_4Xy = 0 Eq. 3.22
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where the Roman superscripts indicate differentiation and _ is de-

fined as

Eq. 3.23

In order for separation of variables to occur, it must be true that

either

yII = __y and yIV = 4y Eq. 3.24

or

X II = -_2X and X Iv = _4X Eq. 3.25

Assuming the latter, then X must have a form of combinations of sines

and cosines.

The exact form is dependent on the boundary conditions chosen.

It is shown by Graff [31] that for this choice only the condition

of simply supported boundaries can be satisfied. That is, at least

one pair of opposite sides of the plate must have simply supported

boundary conditions. Other boundary conditions including clamped

and free boundaries are possible for the other plate edges.

However, the least difficult case to consider is that in which all

four edges are simply supported.

Assuming the origin of the coordinate axes is at one corner of the

plate and the length of the plate along x is a and that along y is b,

then the plate edges are at x=0, x=a, y=0, and y=b. Simply
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supported boundary conditions at x=0 and x=a imply that the displace-

ment, w, and the bending moment per unit length, Mx, are equal to

zero at the plate edges. In terms of the displacement, these boundary

conditions are

_2 w _2 w

w = +V =

_x 2 _y2
0 Eq. 3.26

at x=0 and x=a. The expressions for the bending moments and their re-

lations to the displacements are discussed in more detail in the der-

ivation of the classical flexural equation of motion for

anisotropic materials in the next chapter. Substitution yields that

Eq. 3.26 can only be satisfied if

X n -- sin (Unx) Eq. 3.27

where

nE

(_n-- --a for n = (I, 2, 3, ...).
Eq. 3.28

Likewise, applying the simply supported boundary conditions at y=0

and y=b yields that

Ym = sin (TroY) Eq. 3.29

where

m_

__- for m = (i, 2, 3 .... ). Eq. 3.30
b-m
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Thus, the spatial dependence of the solution for the problem of

free vibration of a rectangular plate is given by an infinite

number of modes described by

Wnm = XnY m = sin (_nX) sin (YmY) Eq. 3.31

The frequency of each mode, _nm , is determined by substituting the

modes back into Eq. 3.22 which yields

2 2 2 4 4
(O_n 4 q- O_ _mnU_m-- _nm) XnX m ----- 0 Eq. 3.32

where

2

_4.m _nmPh= ....._ - Eq. 3.33
D

Solving for _nm yields

nm ta2 _" b2) #'4_)h

Eq. 3.34

The solution for free vibrations in a rectangular isotropic plate

is then expressed as a double series of an infinite number of modes

as

oo oo

w(x,y,t) : E E Xn(x)Ym(Y)e-i_'t Eq. 3.35
n : Im:l

or
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_ Wnm (x, Y) e -i (O" t

n=Im=l

Eq. 3.36

The solution to the inhomogeneous equation of motion in which

the forcing function q(x,y,t) is not equal to zero, can be

expressed as

w (x,y,t) = wn.(×,y)q.(t)
n=lm=l

Eq. 3.37

where the qnm(t) are determined from the forcing function. Substitut-

ing this solution into the equation of motion, Eq. 3.15, yields

n = Im = 1 <- _t _.....+ p%_nmqnm (t) Wnm (x,Y)-

q (x,y,t)

ph
Eq. 3.38

Next, both sides of this equation are multiplied by Wij(x,y) and in-

tegrated from x=0 to a and y=0 to b. This allows the property of or-

thogonality of the normal modes to be applied which means that

a b

]w_(x,y)wij(x,y) xdy- 0
x-0 y=0

Eq. 3.39

except when n=i and m=j. For the case of simply supported edges, when

ab

n=i and m=j this expression is equal to -_. Eq. 3.38 is then re-

duced to
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_2qnm(t) D 4
_t2 +p_nmq_(t)

a b
4

pha-b ; f Wnm(X'y)q (x'y't)dxdy

x-0 y=O

Eq. 3.40

The solution to this equation for zero initial conditions is given by

t

qnm(t) : p-_ Qnm(z) sin(_nm(t-_)d_
Eq. 3.41

where

a b
4

Qnm(t) = ab I I Wnm(x'y)q(x'y't)dxdy

x=O y=O

Eq. 3.42

The shape of the input forcing function must now be considered. An

impulse loading at x=_ and y=_ is chosen. The form of this input is

q(x,y,t) = P_(x-_)_(y-_)6(t) Eq. 3.43

where P is the amplitude of the impulse. Substituting this and carry-

ing out the integrations yields the solution for the displacement as

- - sin_ x sin?mY sin_n_SinYm_SinO_nmt
= 4P Z "

n=Im=l nm

Eq. 3.44

The solution for the case of the desired step function input can be
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obtained by integrating this solution with respect to time. The re-

sult is

w(x,y,t) =

4P " " sin_nX sinYmY sin_n_ sinym_ (I -- COS_nmt )

n = Im= 1 (L)nm

Eq. 3.45

Because this solution is of the form of an infinite double sum, it is

impossible to evaluate the result exactly. However, if enough terms

are evaluated as to include all of those which have a frequency with-

in the frequency range of interest, the resulting approximate solu-

tion will be valid.

Two programs were written to evaluate this expression numerically.

The first version evaluated the solution as expressed above. The sec-

ond version imposed filtering which approximated the receiving trans-

ducers response on the solution so that the theoretical and

experimental data could be compared. It was easier to apply the fil-

tering response on the theoretical data than it was to deconvolve the

transducer response from the experimental data. The filtering proce-

dure and the filter coefficients are discussed later.

Both programs were written in the Pascal computer language and

compiled and executed on a personal computer (Macintosh IIfx). The

input parameters for the program included the length, width, and

thickness of the plate, as well as its density, Poisson's ratio,

and Young's modulus. Also, the position of the source and receiver

were needed along with the number of modes to be summed, the number

of points in time and the time spacing between points.

The values used for the input parameters were chosen to match ex-
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perimental measurements made on a 0.003175 m. thick aluminum 2024

plate. The width of this plate was 0.508 m. and its length was

0.381 m. The value for the Poisson's ratio was 0.3, the density was

2770 kg/m 3, and the Young's modulus was 73.0 GPa. The source posi-

tion was the same for all of the calculations at the center width

(0.254 m.) and at a length of 0.127 m. from one edge. The calcula-

tions were repeated with the receiver positions always along the cen-

ter width (0.254 m.) but at a distance of from 0.0762 m. to 0.1778 m.

from the source at intervals of 0.0254 m. The positioning of the sen-

sors relative to the plate is shown in Figure 3.10.

T
0. 127 m

_L

I 0. 508 m. I

T x _k RECEIVERx

0.1016 m. x/_ POSITIONS

x (0.0254 m.x BETWEEN EACH

0. 0762 m.

-/-- _x

TRIGGER SENSOR LEAD BREAK SOURCE

0. 254 m. --I

T
0. 381 m.

l
Figure 3.10 Positioning of sensors used for experimental mea-

surements and theoretical calculations for AE

signals in thin aluminum plate.

The number of modes summed was from n=l to I00 and m=l to 100

for a total of 10,000 modes. Calculating _nm for n=100 and m=100 us-

ing Eq. 3.34 and then using the relation
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COnm

= Eq. 3.46

reveals that the maximum frequency content of the calculated signal

is 834 kHz. The maximum frequency for which all of the possible modes

of frequency equal to or less have been included in the summation

is given by the minimum of fl,100 and f]00,1- This frequency is 300

kHz for fl,100 which is above the maximum frequency content of about

200 kHz observed in the experimental flexural signal.

The number of points evaluated was either 512 or 1024 with a spac-

ing of 0.2 _sec. between points. This was consistent with the 5 MHz

sampling frequency used in the experimental measurements. The time to

complete a theoretical calculation for a 1024 point waveform was

480 seconds for the model without filtering and 633 seconds with fil-

tering.

The results of the theoretical calculation without filtering

were compared to those from a calculation for an infinite plate.

The solution for the infinite plate was obtained by integral trans-

form techniques and was presented by Medick [34]. It is given by

where

P [i( )r 2
w (r,t) = ...................tH

4Z (phD) I/2 t
Eq. 3.47

H(x) = _-Si(x) +xCi (x) -sin(x)
Eq. 3.48
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with Si(x) and Ci(x) being the sine and cosine integrals, respective-

ly. In this equation, r is the distance from the source to the re-

ceiver. This 8olution was evaluated on a personal computer (Macintosh

IIfx) with Mathematica (Wolfram Research Inc.).

The normal mode solution and that for the infinite plate should be

the same up until the point of the arrival of the reflections in

the normal mode predictions. Thus, the calculations for the compari-

son were carried out for a large enough plate and short enough time

period that reflections were avoided. For these calculations, the

plate dimensions and transducer positions were the same as those dis-

cussed earlier with the source to receiver distance being 0.127 m.

A plot of the normal mode solution and that obtained for the infinite

plate are shown in Figure 3.11. Excellent agreement between the two

2,0 ]0 -9

1.5 10 -9

d 1.0 10 .9

0-io_ 5.0 1

0

_-5.0 10 -1°

-I. 0 1 0 -9

-i. 5 I0 -9

-2.0 10 -9

0

Figure 3.11

I I I I

._ NORMAL MODE SOLUTION

..... INTEGRAL TRANSFORM SOLUTION

! !

20 40 60 80 i00
TZME {_SEC. )

Predicted flexural response for source to receiv-

er distance of 0. 127 m. evaluated by normal mode

and integral transform techniques.
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solutions is demonstrated.

In order to compare the theoretical solution obtained by the nor-

mal mode approach to the experimental waveforms, it was first neces-

sary to correct for the filtering on the signal induced by the

transducer response. As mentioned previously, it was easier to imple-

ment the filtering on the theoretical signal than to deconvolve the

transducer response from the experimental signal. The process of fil-

tering the theoretical signal was accomplished by multiplying the am-

plitude contribution of each mode by a filter coefficient which was

dependent on the frequency, _nm, of that mode. The filter coeffi-

cients were determined by fitting the frequency response of the ul-

trasonic transducer used in the measurements as determined from the

face-to-face swept sine evaluation to a second order polynomial (qua-

dratic) fit. This fit worked well for higher frequencies but did

not agree below 30 kHz where the transducer response declined more

rapidly than the fit. Thus, an additional linear roll off filter

was implemented in this frequency regime. The value of the filter co-

efficient was equal to 1.0 if _nm was greater than 4.928 X 106 rad./

sec. (fnm > 784 kHz). Between 1.885 X 105 rad./sec. (30 kHz) and

4.928 X 106 rad./sec., the filter coefficient (fc) was given by

fc = 0. 052 + 3.82X10-7(0nm- 3. 876X10-140_2nm Eq. 3.49

and below 1.885 X 105 rad./sec. (30 kHz), fc was given by

^-14 2 .
fc = (0.052+3.82X10-7(_nm-3.876XIu 0)nm )

* (-- 0.275 + 6. 812XI0-6_nm ) Eq. 3.50
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A plot of the filter coefficient values versus frequency is shown

in Figure 3.12. Because of the y-intercept values determined in the

o9
1.2

Z
O

o9
Z

0.8

Z 0.6

t)
H

0.4

O

0.2

H 0

0

Figure 3.12
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I '! I !

2 105 4 105 6 105 8 105 1 106

FREQUENCY (HZ)

Filter coefficient used in normal mode solution

to account for transducer response.

fit of the transducer response, the filter coefficient is predicted

to be negative for frequencies less than approximately 6 kHz. Thus,

in the program, the filter coefficient was set equal to zero for

the 0 to 6 kHz frequency range.

It is noted that this filtering procedure provides a way of rela-

tively, not absolutely, comparing the theoretical and experimental

wave shapes. This is because the filtering coefficients were not

based on an absolute calibration of the transducer output in terms of

volts per meter. They only provided a relative value of the signal at

each particular frequency as compared to the value at frequencies

above 784 kHz where the filter coefficient was arbitrarily assigned

the value 1.0. Thus, the amplitudes of the theoretical waveforms
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are in meters while those of the experimental waveforms are in volts.

These could easily be made absolute, if needed, with the use of an

"absolute" transducer such as a capacitive or optical sensor.

The experimental waveforms were acquired from a plate of

aluminum 2024 of thickness 0.003175 m. As discussed previously, the

dimensions were 0.508 m. in width and 0.381 m. in length. The

source was a pencil lead break (Hsu-Neilsen source) which has a

time dependence which can be approximated by a step function. The po-

sition of the source was at the center width of the plate and at a

length of 0.127 m. from one edge. An RI5 AE transducer was positioned

next to the source point. It provided a trigger signal for the tran-

sient recorder which was used to digitize the waveform detected by

the 3.5 MHz ultrasonic sensor. The sampling frequency of the tran-

sient recorder was 5 MHz and the captured waveforms were stored on

the personal computer for later display and analysis.

The receiver positions were the same as those used in the model

calculations. These were at the center width of the plate at distanc-

es of 0.0762 m. to 0.1778 m. from the source in 0.0254 m. intervals

as shown in Figure 3.10. The detected signals from the ultrasonic

sensors were amplified by a preamplifier in which no filter was used.

A block diagram of the experimental apparatus is presented in

Figure 3.13.

In order to compare the theoretical and experimental waveforms, it

was necessary to correct for timing delays in the triggering of the

transient recorder. This was analyzed by measuring the arrival time

of the extensional wave at each distance of propagation. The distance

was then plotted versus the arrival time and fit to a line using a

least squares fit. The y-intercept yields the time of any delay in
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f

TRANSIENT

RECORDER

COMPUTER

PREAMP

(NO FILTER)

RECEIVING

SENSOR

TRIGGER SOURCE

SENSOR LOCATION

Figure 3.13 Apparatus used to measure AE signals generated

by pencil lead breaks in thin aluminum plate.

triggering, while the inverse of the slope is the extensional plate

wave velocity. Figure 3.14 shows this plot and the linear fit. The

trigger delay was determined to be 6.64 _sec. while the extensional

velocity was predicted to be 5427 m/sec. Based on this analysis, each

experimental waveform was shifted back 6.6 _sec. to account for this

trigger delay.

The experimental and theoretical waveforms for the first i00

_sec. are compared in the plots of Figure 3.15 to Figure 3.19. On

the time axes of these plots, the time beyond which theory and exper-

iment should agree based on the criterion expressed by Medick [34] is

indicated by zc- This is the time at which the wavelength is equal

to sixteen times the plate thickness. It can be seen that there is

good agreement between theory and experiment beyond this initial

critical time. Before Zc, the higher frequencies in the predicted

normal mode solution arrive much earlier than those in the experimen-
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tal waveform. This is as expected, since the classical flexural

wave dispersion relation predicts velocities that increase without

limit as the frequency increases. This caused the predicted veloci-

ties to be higher than the actual velocity at higher frequencies.

The experimental and theoretical waveforms for the propagation

distance of 0.1778 m. are replotted in Figure 3.20 for a longer peri-

3 J I _ _ 2 10 -l°
THEORETICAL WAVEFORM

_al.5 .... 0
o H
>.t.

0 .......... 2 1 0 -10

-" EXPERIMENTAL WAVEFORM

-1.5 _ I • A I i I -4 10 -1°

T_c
0 40 80 120 160 200

TIME (_SEC.)

Figure 3.20 Theoretical normal mode and experimental wave-

forms for distance of propagation of 0.1778 m.

in thin plate aluminum for long times.

od of time. In this plot, the effects of finite dimensions of the

plate are observed as reflections in both the theoretical and experi-

mental waveforms. Again, because of the limitations of the applica-

bility of classical plate theory in the high frequency portion of the

_eflections, absolute agreement is not obtained. However, qualita-

tively the reflection portion of the signals are similar.

In summary, the normal mode expansion technique has been shown

to be a feasible method for predicting flexural vibrations in
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finite aluminum plates. Because of the high speed of modern

personal computers, the solution obtained by the summation of

10,000 modes was accomplished in only a few minutes. With this number

of modes, the frequency content of the theoretical signal was suffi-

cient to allow comparisons with experimental AE signals created by

pencil lead breaks. Good agreement was shown between theory and ex-

periment over the range of frequencies for which classical plate the-

ory remains a valid approximation. It is noted here that the normal

mode expansion technique may be applicable to higher order plate the-

ories which would allow better agreement with experiment at higher

frequencies. Furthermore, the solution obtained by normal mode expan-

sion was shown to be in agreement with that predicted by an

integral transform technique for an infinite plate up until the

time that reflections begin to occur in the normal mode solution.
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IV. Plate Wave Propagation in Composites

iv.1 Introduction

The final area of investigation in this research was a study of AE

propagation in anisotropic composite materials. Composite

materials, because of their high strength and stiffness along with

their low density, are becoming an increasingly important material in

the aerospace industry. However, because of the inhomogeneous and

anisotropic nature of these mater_a]s, their nondestructive evalua-

tion (NDE) by conventional techniques such as ultrasonics, AE, and

thermal analysis is much more difficult. In particular, AE signals in

composites are more difficult to interpret than in isotropic metals

not only because of the previous]y mentioned factors, but also be-

cause of the multiple AE sources that are active in composites. These

may include fiber breakage, matrix cracking, fiber matrix

debonding, and delamination. In order to begin to better interpret AE

signals in composites to determine the locations and nature of the

sources, it is first necessary to better understand the propagation

of these signals in these materials.

Thus, this provided the motivation for this portion of the re-

search. It was again shown that AE signals in composite plates propa-

gated with plate wave characteristics. The applicability of classical

plate theory was investigated for waves in these materials. In par-

ticular, classical anisotropic plate theory was evaluated for pre-

dicting the velocities of the extensional and flexural modes and

the waveshape of the flexural mode.

Measurements of the extensional velocities at angles of propaga-

tion of 0, 45, and 90 degrees with respect to the plate coordinate
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axes were made in graphite/epoxy (gr/ep) composite plates with sever-

al different fiber layups. These were compared with theoretical pre-

dictions based on classical plate theory for an anisotropic material.

Similar measurements were also made for the flexural mode except that

the velocities were determined at a number of frequencies to evaluate

the dispersion behavior of this mode. Again, these were compared with

theoretical predictions both for classical plate theory as well as

a higher order plate theory. Then, the normal mode expansion tech-

nique used previously to predict the flexural wave shape in

aluminum was extended to allow predictions in these composite materi-

als. Comparisons between theoretical and experimental waveforms

were then made.

Additionally, to demonstrate that the propagation of AE signals as

plate modes is not limited to simple flat plates, an investigation of

AE signals in a practical structure of interest was made. This struc-

ture was a thin walled gr/ep composite tube of a design proposed to

be used on the strut structure holding together NASA's proposed Space

Station Freedom (SSF). The velocities of the extensional and flexural

modes were measured and compared with theoretical predictions.

IV.2 Theory

Before proceeding with the measurements in composites, the theo-

retical tools used to understand and predict the behavior of plate

waves must be extended to account for the anisotropy of these materi-

als. To accomplish this, the equations needed to predict the in-plane

and bending elastic properties of a laminated orthotropic plate are

first presented. These are based on well known laminated plate theo-

ry. Following this, classical plate theory is extended to include the
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anisotropic elastic properties predicted by laminated plate theory.

Using these equations of motion, the dispersion relations for the ex-

tensional and flexural modes of orthotropic composites are predicted.

Then, the extension of the normal mode expansion technique to the

case of special orthotropic symmetry is carried out.

It is pointed out in advance that experimental measurements of the

flexural dispersion, to be presented later, were not in good agree-

ment with classical plate theory predictions. This turned out to be

due to the effects of shear and rotatory inertia which are

neglected in classical plate theory. Subsequent calculations of the

displacements also showed poor agreement with experimentally measured

waveforms. Consequently, dispersion relations based on a higher order

plate theory, which accounts for these effects, were derived and

shown to be in agreement with the measured velocities. The results

point the way to improved computations of displacement, however, this

was not carried out in this work.

Laminated plate theory for composite materials has been treated by

a number of authors. Two good references presenting a detailed treat-

ment of this subject and which are the basis of the material present-

ed here are Whitney [46] and Tsai and Hahn [47]. The assumptions on

which laminated plate and classical plate theory are based were ex-

plicitly stated by Whitney [46]. They are reproduced here for clari-

ty. The assumptions are:

"i. The plate is constructed of an arbitrary number or layers of

orthotropic sheets bonded together. However, the orthotropic

axes of material symmetry of an individual layer need not coin-

cide with the x-y axes of the plate.

2. The plate is thin, i.e., the thickness h is much smaller than

the other physical dimensions.
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3. The displacements u, v, and w are small compared to the plate

thickness.

4. In-plane strains £x, £y, and £xy are small compared to unity.

5. In order to include in-plane force effects, nonlinear terms

in the equations of motion involving products of stresses and

plate slopes are retained. All other nonlinear terms are ne-

glected.

6. Transverse shear strains _xz and £yz are negligible.

7. Tangential displacements u and v are linear functions of the

z coordinate.

8. The transverse normal strain £z is negligible.

9. Each ply obeys Hooke's law.

10. The plate has constant thickness.

Ii. Rotatory inertial terms are negligible.

12. There are no body forces.

13. Transverse shear stresses Oxz and _yz vanish on the surfaces
z=+/-h/2. "

The first step in laminated plate theory is to show the stress-

strain relations for a single unidirectional orthotropic lamina.

For this, the x axis is designated to be along the fiber direction

and the y axis is perpendicular to the fiber direction in the plane

of the lamina. The relation between stress and strain for a lamina is

given by

(_yy = Qyx Qyy £yy

xy 0 Q ,s

Eq. 4.1

where the Qi)'s are the elastic stiffness coefficients and the engi-
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neering shear strain, 7xy, is used. The engineering shear strain is

twice the tensorial shear strain which was defined in Eq. 2.7.

Since Qxy=Qyx, only four stiffness coefficients are needed to de-

scribe the elastic properties of an orthotropic lamina. These are re-

lated to the engineering properties of the lamina by

E
X

Qxx = Eq. 4.2
] -- VxVy

E

Y Eq. 4.3
QYY = l-VxVy

VxEy VyEx

Qxy - 1 " VxV Y 1 - VxVy
Eq. 4.4

and

=E Eq. 4.5QSS S

where E x is the longitudinal Young's modulus, Ey is the transverse

Young's modulus, E_ is the longitudinal shear modulus, and V x and V 7

are the longitudinal and transverse Poisson's ratios respectively.

The stiffness coefficients presented above are those relative to

the designated axes where the x axis was along the fiber and the y

axis was perpendicular to the fibers. The stiffness coefficients

for a lamina relative to different axes, 1 and 2, in which 1 and 2

are still in the plane of the lamina, but have been rotated by an an-

gle, 8, are also important. The angle e is defined to be positive
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whenthe 1-2 axes are rotated counterclockwise from the x-y axes.

These are needed in the calculation of laminate stiffness

properties in which all laminae are not aligned with their fiber di-

rection along the same axes. The so-called off-axis stiffness coeffi-

cients are calculated by applying transformation relations which

are given by

Qll = m4Qxx + n4Qyy + 2m2n2Qxy + 4m2n2Qss Eq. 4.6

Q22 - n4Qxx +m4Qyy + 2m2n2Qxy + 4m2n2Qss Eq. 4.7

QI2 = m2n2Qxx + m2n2Qyy + (m4 + n4) Qxy- 4m2n2Qss Eq. 4.8

Q66 = m2n2Qxx+m2n2Q -2m2n2Qxy+ (n12 n2) 2yy - Qss Eq. 4.9

QI6 = -m3nQxx+mn3Qyy + (m3n-mn3)Qxy+2(mSn-mn3)Qss Eq. 4.10

and

Q26 = -mn3Qxx+mSnQyy + (mn3-m3n)Qxy+2(mn3-mSn)Qs, Eq. 4.11

where m = cos(8) and n = sin(8). Because of the symmetry of the

stress and strain tensors, these coefficients are also symmetric with

Qi)=Qji. However, it is noted that now six coefficients are needed,

in general, to describe the off-axis elastic behavior of the lamina.

Next, the in-plane and bending stiffnesses of a laminate are con-

sidered. The fiber direction of each orthotropic laminae is defined

to be at an angle, 8, with respect to the x axis of the laminate.
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The y axis of the laminate is orthogonal to the x axis and is also in

the plane of the plate. The z axis is orthogonal to x and y and

thus is perpendicular to the plate with its origin at the midplane of

the plate. The stress and momentresultants for such a laminate are

defined as

h
2

(Nx'Ny'Nxy) : ]" ((_x (k)'(_(k)y '(_xy(k)_dz'

h

2

Eq. 4.12

and

h

2
(k)

, ) zdz(Mx, My, Mxy) = _ (O_ k) o_k),(_xy

h

2

Eq. 4.13

where the superscript k indicates the k'th layer of the laminate

and h is the thickness of the laminate.

The constituitive relations relate the stress and moment result-

0 £(} 0
ants to the midplane strains, (£x' 'y'_xy ) ' and the curvatures,

(Kx, Ky, Wxy) which are defined by

_2 w

------ Eq. 4.14
x _x 2
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82w

Ky = .....
ay2

Eq. 4.15

and

Eq. 4.16

They are given by

NINy

N xy __

Mx I

My

Mxy I

A11 AI2 A16 B11 B12 B16

AI2 A22 A26 B12 B22 B26

AI6 A26 A66 BI6 B26 B66

BII BI2 BI6 DII DI2 DI6

BI2 B22 B26 DI2 D22 D26

BI6 B26 B66 D16 D26 D66

E 0
X

°xy

X

try

•Kxy_

Eq. 4.17

where the Aij's are the in-plane stiffnesses, the Dij's are the bend-

ing stiffnesses, and the Bij's are the stiffnesses coupling in-plane

and bending effects. If the laminate is symmetric such that the upper

half of the laminate is the same as the lower half except the stack-

ing sequence is reversed in order to maintain the midplane

symmetry, then all of the Bij are equal to zero.

The in-plane stiffness coefficients as a function of the

laminate stiffnesses are given by
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h
2

Aij : I _)ij-(k) dz
h

-2

Eq. 4.18

while the bending coefficients are given by

h

Dij I O (k)-- --ij Z 2dZ

h

2

Eq. 4.19

If the plate is symmetric, then AI6=A26=0 and thus only four stiff-

ness coefficients are needed. However, all six of the bending stiff-

ness coefficients are nonzero for a general symmetric laminate. If

the symmetric laminate contains only fiber orientations of 0 and 90

degrees (i.e. a cross ply laminate) then DI6=D26=0. This is known as

a _specially" orthotropic laminate.

The stiffness properties of the laminate transform to different

axes in a similar fashion to those of an individual lamina. If the

new axes are the x'-y' which are still in the plane of the plate

but with the x' axis rotated by an angle 0 from the x axis, then the

in-plane stiffnesses for a symmetric laminate are given by

i

A11 -- m4All+ n4A22 + 2m2n2A12 + 4rn2n2A66 Eq. 4.20

A22 = n4All+m4A22 + 2m2n2A12+ 4m2n2A 66 Eq. 4 21
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AI2 - m2n2All+m2n2A22+ (ml+nl)A12-4m2n2A66 Eq. 4.22

' 2 2
A66 = m2n2All+m2n2A22-2m2n2A12+ (m 2-n ) A66 Eq. 4.23

i

AI6 = -m3nAll+mn3A22+ (m3n -mn3)Al2+2(m3n-mn3)A66 Eq. 4.24

and

t

A26 -- --m3nAll+mn3A22 + (mn3-m3n)A12+2(mn3-m3n)A66 Eq. 4.25

where again m=cos(0) and n=sin(0) and 8 is positive if the rotation

from the unprimed axes to the primed axes is in a counterclockwise

direction. All six stiffness coefficients are now needed to

describe the elastic behavior of the laminate.

If the laminate is a symmetric cross-ply laminate, the bending

stiffnesses transform in the exact same way as the in-plane stiff-

nesses. The appropriate equations can be obtained by replacing the

A's with D's in Eq. 4.20 to Eq. 4.25. If the laminate is symmetric

but has lamina with layup angles other than 0 or 90 degrees, the

transformation relations are

DII = m4D 4 Dll+n 22 + 2m2n2D 12 + 4m2n2D 66 + 4m3nD 16 + 4mn3D26

Eq. 4.26

D22 -- n4O]l +m4D22 + 2m2n2D 12 + 4m2n 2D 66 - 4mn3D16-4m3nD26

Eq. 4.27
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m2n2Dll+m2n2D22 + (m4+n4)D12 -4m2n2D66

+2(mn3-m3n)D16+2(m3n mn3)-- D26 Eq. 4.28

D66 m2n2D 2Dii +m2n 22 2m2n2D12 + (m2 n2) 2_- _ _ D66

+ 2(mn 3-m3n)D16 +2 (m3n--mn 3) D26 Eq. 4.29

I

D16 = -m3nDll+mn3D22 + (m3n-mn3)D12+2(m3n-mn3)D66

+(m 4-3m2n 2) D16+ (3m2n 2-n4)D26 Eq. 4.30

and

p

D26 = -mn3D_1+m3nD22+ (mn3-m3n)D12+2(mn3-m3n)D66

+ (3m2n2- n4) DI6+ (m4- 3m2n2)D26 Eq. 4.31

The derivation of the classical governing equations for in-plane

motion in an orthotropic plate is essentially identical to that for

the isotropic plate with the exception of substituting the orthotro-

pic constituitive relations. The resulting equations of motion for an

orthotropic plate are

_2U 0 _2U 0

+A66
AI__x2 _y2

_2V0 _2U 0

+ (A_.+_) _x_y_= ph _t _-
Eq. 4.32

and
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_2v o _2v o _2u o _2v o

+ (A12+A66)(_x_y = phA22 _y2 +A66 _x 2 _t 2
Eq. 4.33

where the subscript 0 indicates the displacements along the

midplane of the plate.

As was the case for isotropic materials, these equations predict

two modes of propagation. However, because of the anisotropy, the

modes are not pure extensional and pure in-plane shear except when

propagating along directions of material symmetry. Instead, they are,

in general, quasi-extensional and quasi-in-plane shear. This means

that each mode will have particle displacement components in the di-

rection of propagation as well as perpendicular to the direction of

propagation. The mode with the largest component of its particle dis-

placement in the direction of propagation is the quasi-extensional

wave. This is the in-plane mode of interest as again the quasi-in-

plane shear has not been observed experimentally in AE signals creat-

ed by pencil lead breaks.

The dispersion behavior of the quasi-extensional wave is much more

complicated than the isotropic case. Because of the anisotropy, the

velocity of this mode is dependent on the direction of propagation.

The dispersion relations are again obtained by giving the displace-

ment a plane wave form and substituting into the equations of motion.

However, to consider the directional dependence, a general form for

the displacements must be chosen which includes the direction of

propagation. Thus, for a general direction of propagation, i× is the

direction cosine between the direction of propagation and the x

axis and ly is the direction cosine between the direction of propaga-
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tion and the y axis. The displacements are then given by

i ((_t-kxl. -kyly)
U0 = A0_xe Eq. 4.34

and

i(_t-kxl.-kyly)
V 0 = A0_ye

Eq. 4.35

where A 0 is the amplitude and the _i's are the particle displacement

direction cosines.

Substituting these displacements into the equations of motion

and reducing terms yields

IA . 2 +. _2 phc 2

lllx /_ 66 1 y --

(AI2 + A66) Ixly

(AI2 +A66) ixly

2 2 _ phc:A661x +A221y

ixI:0
Y

Eq. 4.36

where c is the phase velocity and is equal to _/k. The nontrivial

solution for this equation will be obtained when the determinant of

the two by two matrix is equal to zero. Setting the determinant equal

to zero will yield a quadratic equation in phc 2. The two values for

the velocity correspond to the quasi-extensional and the quasi-

shear mode. In general, the quasi-extensional mode is the faster of

the two modes and thus will be the root computed with the positive

radical in the quadratic formula. This can be verified by computing

the particle displacement direction cosines, at, which are the eigen

vectors, for both velocities. These determine which mode is quasi-ex-

tensional and which is quasi-shear.

The solutions for several directions of propagation of interest
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are now calculated. The first is for propagation along the x axis

or the 0 degree direction of the laminate. In this case, Ix=l and

ly=0. Thus, the problem reduces to

f

det IAll - _hc2 0

l 0 A66 - phc'•

= 0 Eq. 4.37

which, of course, has the two solutions

Cl = @ph
Eq. 4.38

and

C2 = _ph
Eq. 4.39

The particle displacement direction cosines for c I are easily comput-

ed and are _x=l and _y=0. Since _x=ix and _=ly, the particle dis-

placements are along the direction of propagation. Therefore, it is a

pure mode extensional wave. For the in-plane shear mode, _x=0 and

_y=l. For this mode, _xlx=_ly=0 which means that the particle dis-

placements are perpendicular to the direction of propagation. Thus,

it is a pure shear mode.

For propagation along the y axis or the 90 degree direction, the

extensional mode velocity is given by
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A22
c_ = qph "

Eq. 4.40

Since this is also a symmetry axis of the orthotropic laminate,

both modes propagating in this direction are also pure mode. For

propagation at 45 degrees between x and y, the direction cosines

j2
are given by ix=ly = 2 " Both modes become quasi-modes and the quasi-

extensional velocity is given by

where

i ....

(All+2A66+A22) _-

Ce = 4ph "
Eq. 4.41

R : (All+ 2A66+A22) 2- 4 (Ali +A66 ) (A22+A66) + 4 (A12+A66) 2

Eq. 4.42

Thus, the calculation of the quasl-extensional velocity for off-

axis propagation is much more complicated and is affected by all of

the elastic moduli.

Another method for calculating the dispersion behavior as a func-

tion of angle in an orthotropic plate is to first rotate the axes

so that the direction of propagation is along the x' direction. The

rotated coordinate axes are x' and y' which remain orthogonal and

in the plane {)f the plate. The ang]e between x and x' is 8 and is

positive if the rotation is counterclockwise from the unprimed

axes. For such a coordinate transformation, the in-plane elastic

r

stiffnesses, Ai], are given in Eq. 4.20 to Eq. 4.25 where, in gener-
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al, all six Ai) , are nonzero. The equations of motion are then red-

erived in terms of the x'-y' coordinate system to include all six

Ai) and the u' and v' displacements. They become

2 • •

• 0u 0 • 02u 0

A11 0x 0y
'2 + A 66 '2

, , _2v" 0

+ (AI2+A66) -- _----_,
_x 0y

2 t

, _ V 0

+AI6 o_x'2

2 ' 2 •

• 02U'o , 0 Vo 0 Uo

160x'Oy '2 = ph+2A ' +A26 o-)y _t _
Eq. 4.43

and

2 ' "_ 2 '0 u o • .2u"o , ,

A-6_ f_X "2 6_y OX c_y

2 ' 2 " 2 ' 2 '
• 0vo _ • o_vo , 0vo 0vo

+ 2.A 26- , • + A22 '2 = ph-- --
+A66 0x ,2 _x 0y @y _t 2

Eq. 4.44

A plane wave propagating along x' which has displacements of the form

• i(_t-kx')
U 0 : A0_ ,e Eq. 4.45

X

and

• i(_t-kx)
v 0 = A0_ ,e Eq. 4.46

Y

is then substituted into the equations of motion. The resulting dis-
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persion relation for the quasi-extensional mode is

ce = 2_)h ...... Eq. 4.47

The derivation of the equation of motion for flexural wave propa-

gation was presented by Graff [31] for an isotropic material. The

only change needed to extend this de, ivation to anisotropic media

is the use of the anisotropic constituitive relations which was in-

cluded by Whitney [46]. In these derivations, a differential volume

element of the plate is considered. The element has a thickness of

h which is also the thickness of the plate and has lateral dimensions

of dx by dy. As usual, the x and y axes are in the plane of the plate

and the z axis is normal to the plate with its origin at the midplane

of the plate. This differential element is shown in Figure 4.1 with

M
yx

Q × qdxdy Q y

MxY M • | • MYx

' _ -Mxy + -_x-- dx

(]My× _Qy _Q ×

_y dy ey+ _y dy Q× _ _x dx

Figure 4.1 Differential element of thin plate exhibiting mo-

ments and forces.
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the bending and twisting moments, normal loading, and shear forces

exhibtited. The bending moments per unit length, M x and My, arise

from distributions of normal stresses, _x and Oy. The twisting mo-

ments per unit length, Mxy and Myx, come about because of shearing

stresses, T×y and Ty x while the shear forces per unit length, Q× and

Qy, are caused by the shear stresses, Txz and _yz-

The forces in the x, y, and z directions can now be balanced. This

results in three equations of motion. Along z, the equation of motion

is

(-Qx) dy + (Qx + -_x--dx)dy -Qydx + (Qy+ dy)dx

+qdxdy = phdxdy---- Eq. 4.48

where the term on the right side of the equation is the mass * accel-

eration restoring force. The displacement w is the displacement of

the midplane of the plate. Higher order contributions to the

moments caused by the normal loading q have been neglected. The equa-

tions along the x and y axes are

_My

(My+ _y dy)dx-MydX+Mxydy

_Mxy

- (Mxy+-_x-dx)dy-Qydxdy = 0
Eq. 4.49
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_M x

(Mx+ _x dx)dy-Mxdy-My×dX

_Myx

+ (Myx+ @y dy)dx-Uxdxdy = 0
Eq. 4.50

where rotatory inertia effects have also been neglected.

tions are reduced by cancelling terms to

These equa-

_Qx _Qy %2w
Eq. 4.51

8My _ _Mxy

@y _x - Qy : 0 ,
Eq. 4.52

and

8M x 8Myx

_x + _y -Ux : 0
Eq. 4.53

Qx and Qy are then solved using the last two equations and substitut-

ed back into Eq. 4.51. This yields one equation of motion in terms of

the moments and the normal loading as

_2M x _2My x _2Mxy _2My _2 w
+ ...... + +q =ph

_x 2 dxdy dydx _y2 _t-2 "
Eq. 4.54
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The relationships between the momentsand the displacements are

nowconsidered. Assumingthe plate is symmetric allows the momentsto

be written in terms of the curvatures from Eq. 4.17 as

iMxII 11DI2D16111My : 12 D22 D26 _y

Mxy 16 D26 D 66 K x

Eq. 4.55

The curvatures were given in terms of the d_splacements in Eq. 4.14

to Eq. 4.16 and can be substituted into Eq. 4.54. Reducing terms

yields the classical flexural equation of motion for an orthotropic

composite material as

_4w _4w _4w

r_ +4DI_ax +2(D_2+2D66 )11_x4 3,9y _xZ_y

_4w _4w _2w
+4 +D +ph - qD26 x y322 y4 - Eq. 4.56

if the composite Js symmetric and has only plies in the 0 and 90 de-

gree directions, the composite is specially orthotropic and DI6 and

D?6 are both zero. In this case the equation of motion reduces to

_4w _4w _4w _2w
+2(D +2D66 ) +D +ph -

DI]_x4 12 _X2_y2 22_y4 _t _ - q
Eq. 4.57

The dispersion behavior for the flexural mode is again

determined by substituting the displacement for a plane wave propa-

gating in an arbitrary direction into the equation of motion. This
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i ((ot-klxx-klyy)W =A0e Eq. 4.58

Substitution into Eq. 4.56 and reducing terms yields

Eq. 4.59

for the dispersion relation for an orthotropic composite where

4+4D16131 +2(D +2D66 ) 2 2 3 4S = DIll x x y 12 ixly+4D261xly+D221y

Eq. 4.60

For the case of a specially orthotropic material, substitution into

Eq. 4.57 yields

1 4 2 _+ .....4D111x + 2 (DI2 + 2D66) ix ly D221y j_
Cf = .......................ph ...........

Eq. 4.61

The predicted dispersion is again a function of frequency as was

the case for the isotropic material with the higher frequencies trav-

elling with higher velocities.

It is noted that the dispersion can also be obtained by first ro-

tating to a primed coordinate system with the direction of propaga-

tion along the x' axis as was done for the extensional mode

dispersion equations. Solution in this manner yields
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4/D _-

_ph
Eq. 4.62

where DI]' is given in Eq. 4.26.

The solution for the displacement of the flexural mode created

by a step function forcing function _n a specially orthotropic finite

plate can be obtained using the normal mode expansion technique.

The approach is exactly the same as was demonstrated for the isotro-

pic aluminum. Again, the plate dimensions are given by a thickness h,

length along the x direction a, and width along the y direction b.

The point loading source of amplitude P is at x=_ and y=_ while the

receiver is located at x and y. The resulting solution,

4P _ _ sin_nXSinYmYSin(_n_Sin_m_(l--coSO)nmt)
w (x,y,t) phab £02

n=Im=l nm

Eq. 4.63

is of the same form as that for aluminum except that the frequency is

now given by

where

i ............

0[2 2D llO_4n+ D22'_'4m+ 2 (DI2 + 2D 66) nYm

(d)nm = ............ _)h ..........
Eq. 4.64

nK

= Eq. 4.65_n a

and
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m_

'ym- -5
Eg. 4.66

Experimental measurements of the dispersion of the flexural mode

in composites, which are presented in the next section, were not in

good agreement with the predictions of classical plate theory, espe-

cially at higher frequencies. This is because of the effects of shear

and rotatory inertia which are neglected by classical plate theory.

These effects are more significant for the composites than they

were for isotropic aluminum because of the relatively low

transverse shear modulus in composites. This limitation on

classical plate theory also leads to discrepancies between the normal

mode solutions and experimental waveforms.

The dispersion behavior for composites based on a higher order

theory which includes the effects of shear deformation and rotatory

inertia was also calculated. This theory was put forth by Tang et al.

[48] following earlier work by Yang et al. [49]. This was an exten-

sion of the work by Mindlin [50] on the effect of shear and

rotatory inertia on the flexural motion of isotropic plates. The de-

tails of the derivation of this theory are not presented here. Howev-

er, the predicted dispersion behavior for a symmetric orthotropic

laminate predicted by this theory is presented. It is obtained when

the determinant of the following matrix of coefficients is set

equal to zero

21 M22 M23

31 M32 M331

Eq. 4.67
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2 2 +A55 - I(D2Mn = Dllk212+2D16k21xly+D66 k ly Eq. 4.68

MI2 -- Dz6k2+ (D12+D66) k21xly Eq. 4.69

MI3 : iA55kl×
Eq. 4.70

M21 = D16k2+ (D12+D66) k21xly Eq. 4.71

M22 D66k212 + 2D16k21 1 +D22k212 + -I_ 2= x x y y A44
Eq. 4.72

M23 = iA44kly
Eq. 4.73

M31 =-iA55klx Eq. 4.74

M32 -----iA44kly
Eq. 4.75

and

M33 A55k212 +A44k212-p *(_2= x y
Eq. 4.76

In the previous equations,

(p*, I) =

h

z" 2

J
h

Z = ....

2

p(l, z2) dz Eq. 4.77

and
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2

Ai]= kikj I

h
Zm---

2
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(Qij)kdZ for i,j = 4,5. Eq. 4.78

In Eq. 4.78, the k i are shear correction factors which were deter-

mined to yield the best agreement with exact theory when ki2=5/6.

The subscript k refers to the k'th layer of the laminate. Solving the

determinant for the wavenumber as a function of _ yields a cubic in

k 2. Only the root which approaches zero as the frequency approaches

zero is the correct root. Once k as a function of _ is known, the

phase velocity, cf, is determined as a function of frequency using

the relation

Cf = k Eq. 4.79

IV.3 Dispersion measurements in composite plates

Measurements of the extensional velocities and the flexural dis-

persion in four composite laminates are now presented. The measure-

ments were made along three directions in all of the laminates. These

were the 0 degree direction or along the x axis of the laminate,

the 90 degree direction or along the y axis of the laminate, and

along the 45 degree direction. The extensional velocities were com-

pared with predictions from classical plate theory. The flexural dis-

persion measurements were compared with predictions from both

classical plate theory and the higher order plate theory.

The composite laminates investigated were all manufactured from

prepregs consisting of AS4 fibers (Hercules) in a 3502 epoxy resin.
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They were laid up and cured as per the manufacturers instructions.

Each laminate consisted of 16 plies with a nominal thickness of

2.26 mm. The length along the x direction of each laminate was

0.508 m. while the width along the y direction was 0.381 m. The

four layups were [016], [04,904]s , [0,9014s , and [0,45,-45,9012 s .

In the measurement of the extensional velocities, the plate

modes were generated by pencil lead breaks. The waves were detected

with the 3.5 MHz ultrasonic transducer and preamplified by 40 dB with

no filtering. A signal from a RI5 transducer positioned next to the

source was used to trigger the digitizer which recorded the waveforms

at a 5 MHz sampling frequency. The captured waveforms were trans-

ferred to a personal computer for storage and analysis. A block dia-

gram of the experimental apparatus is shown in Figure 4.2.

TRANSIENT

RECORDER

COMPUTER

PREAMP RECEIVING

TRIGGER SOURCE

SENSOR LOCATION

Figure 4.2 Block diagram of experimental apparatus used to

measure extensional velocities in composite

plates.

While the source position was maintained constant, the receiving

transducer was moved back in increments of 2.54 cm. and the lead

breaks repeated. Measurements were made over the source to receiver
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distance range of 7.62 cm. to 17.78 cm. For all measurement direc-

tions, the source and receiving transducer were positioned as far

away from plate edges as possible to avoid complications from reflec-

tions. The earliest arrival of the extensional mode relative to the

trigger time was recorded at each distance. Then, for a given direc-

tion of propagation, the arrival times versus distances were

plotted and a least squares linear fit determined for the data. The

slope of the line provided the velocity for that direction of propa-

gation. A plot of the data and fit for propagation in the 90 degree

0.2

direction of the [016] plate is exhibited in Figure 4.3 as a typical

! !
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Figure 4.3
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Plot of extensional arrival time versus distance

of propagation for 90 degree propagation in [0]6]

graphite/epoxy plate.

example. It is noted that the fitted line does not pass through zero.

This was because of the delay time in triggering the transient re-

corder for each measurement. This delay time was a constant and was

caused by the finite time required for the signal from the trigger
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sensor to reach the trigger threshold voltage.

The nominal lamina material properties obtained from Dr. Doug

Chairns [51] at the prepreg manufacturer (Hercules) used in the theo-

retical calculations are presented in Table 4.1. It was noted by him,

Lamina thickness = 1.413 X 10 -4 m.

Density = 1550 kg/m 3

Fiber volume = 60%

Qxx = 145.5 GPa. Qxy = 2.91 GPa Qyy = 9.69 GPa Qss = 5.97 GPa

Table 4.1 Lamina properties of AS4/3502 graphite epoxy.

however, that the actual properties of this material could vary sig-

nificantly depending on cure conditions, length of time of prepreg

storage before use, and minor variations in resin chemistry and fiber

volume content. This has been observed by many researchers in compos-

ite materials. For example, Prosser [52] measured the complete set of

linear elastic moduli T300/5208 graphite/epoxy. Several of the moduli

were significantly less than the nominal properties for that material

with one that was measured to be 30 percent less.

The measured and theoretical extensional velocities for all four

laminates are shown in Table 4.2. The measured velocities were con-

sistently lower than the predicted velocities with the exceptions

of the 90 degree measurements in the [016] and the [04,904] s plates

and the 45 degree measurement in the [0]6 ] laminate. With these ex-

ceptions, the measured velocities were all in the range of two to

nine percent less than the theoretical velocities. This indicated

that the manufacturer's properties used in the calculation were some-

what higher than those in the actual material. The 45 degree [016 ]



125

Laminate

Direction of

Propagation

Measured

Velocity (m/s)

Theoretical

Velocity (m/s)

[0]_]

[04 , 904] s

[0, 90] 4s

[0, 45, -45, 90] 2._

0 9020 9690

45 3510 7004

90 2700 2500

0 6380 7087

45 5210 5469

90 7300 7087

0 6550 7087

45 5020 5469

90 6450 7087

0 6050 6321

45 5990 6322

90 5750 6321

Table 4.2 Measured and theoretical extensional velocities

for AS4/3502 graphite/epoxy laminates.

measurement was much less than theoretically predicted. It is not

known why this discrepancy occurred and further investigation is

needed. The remaining two exceptions, propagation at 90 degrees in

the [016] and the [04,904] s laminates, were only slightly higher than

predicted values.

The velocity of the flexural mode was also measured in the four

plates. Measurement of the first arrival time of this mode to calcu-

late the velocity was inadequate because of its dispersive nature.

Thus, a Fourier phase spectra technique was used which enabled mea-

surements of the phase velocity over a range of frequencies. These

measurements were then compared with predictions based on classical

plate theory and higher order plate theory.

The Fourier phase technique for measuring velocities in dispersive
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media has been used by a numberof authors including Sachse and Pao

[53], Pao and Sachse [54], Veidt and Sayir [55], Dean [56], and AI-

leyne and Cawley [57]. Sachse and Pao [53] used this technique to

characterize the dispersion of ultrasonic bulk waves and

extensional rod waves. Both Veidt and Sayir [55] and Dean [56] used

this technique to characterize similar flexural waves in polymer

and composite plates.

In the Fourier phase technique, the elastic wave is detected at

two different distances away from the source of the wave along the

direction of propagation of interest. The phase (_) of the wave at

each position at a given frequency is determined by performing a Fou-

rier Transform on the signals and computing the phase. The phase dif-

ference (A_) over the distance between the two transducers (Ax) is

then computed for each frequency. The wave number (k) and velocity

(c) are then calculated at each frequency by

A_0 (f)

k (f)= Ax Eq. 4.80

and

2Kf 2KfAx
c(f) = ...... : ....

k (f) A_(f)
Eq. 4.81

The difficulty in this technique arises from the fact that there

is a 2nK uncertainty, where n is an integer, in evaluating the

phase of the wave at any given frequency. Thus, there is the same un-

certainty in calculating the change in phase over the distance of

propagation between the two sensors. This has been handled in differ-

ent ways in past research. Sachse and Pao [53] unwrapped the phase by
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starting at the lowest frequency and adding 2E to the phase value

each time a discontinuity in the slope of the phase occurred. Dean

[56J time shifted the record of the second transducer until a refer-

ence phase point on the second record was at the same point in time

as the same reference phase point on the record of the first trans-

ducer. The actual phase difference was then given by the measured

phase difference plus the time shift multiplied by 2Ef where f is the

frequency. Since he was using an ultrasonic transducer with a

pulser as his source, he was able to monitor the reference point as

the transducer distance was gradually increased to the second mea-

surement distance.

In this research, a combination of two approaches was applied to

circumvent the problem of 2nE phase uncertainties. First, measure-

ment of the phase change along a given direction of propagation was

repeated for several different distances. If the velocity over

these different distances is a constant, the change in phase per unit

A_
distance of propagation, Ax' should be the same for all measure-

ments. Thus, a computer algorithm was developed which added integer

A_
multiples of 2E to the measured phase differences, computed _xx for

each measurement, and then determined when they were most nearly

equal for all of the measurements. This does not fully eliminate

the problem as there will be various multiples of integers which will

satisfy the constraint that the change in phase per unit distance

be the same at all measured distances.

To determine which set of integers yields the correct phase

change, another constraint was applied. The constraint was based on

the assumption that the velocity of the flexural mode approaches zero

as the frequency approaches zero which is predicted by theory. Addi-
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tionally, it was assumedthat the velocity change with frequency is

smooth with no discontinuity. Based on these assumptions, the phase

change at the lowest frequency calculated will be with the lowest set

of integers that meet the first condition of minimizing the differ-

A_
ences of _x for the measured values. At subsequent frequency val-

ues, the set of integers used are those that minimize the differences

without allowing a large change in the phase change per distance

which would mean a discontinuity in velocity versus frequency. The

maximum allowed change in phase difference per unit distance

between frequency points which were spaced at approximately 2 kHz in-

tervals was approximately +/- 1 rad./cm. This value was chosen as

it was much larger than any expected change per frequency point as

predicted by theory, but it was small enough to prevent jumping to

higher or lower sets of integers in which the calculated _xx values

were also nearly equal.

This approach is essentially equivalent to limiting the amount

that the phase can change from frequency to frequency which is the

approach used to unwrap the phase by Sachse and Pao [53]. The corre-

sponding limits on the velocity change per frequency point that

this constraint allows is dependent on frequency.

The experimental setup used for these experiments is shown in Fig-

ure 4.4. The two receiving sensors were 3.5 MHz ultrasonic transduc-

ers while the trigger sensor was a RI5. The preamplifiers were set at

40 dB amplification with no filtering. The source was a pencil lead

break repeated with the transducers at separations of 1.91, 2.54,

3.18, 3.81, and 4.45 cm. along propagation directions of 0, 45, and

90 degrees for each plate. The source and receivers were kept as

nearly in the center of the plate as possible to minimize reflec-
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TRIGGER SOURCE
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Figure 4.4 Experimental setup for flexural velocity measure-

ments in composite plates.

tions. The waveforms were digitized at a sampling frequency of 1

MHz and then transferred to the personal computer.

Prior to computing the FFT to determine the phase, the higher fre-

quency extensional mode and the reflections arriving later in the

flexural mode were zeroed out in the computer. Previous Fourier anal-

ysis of the flexural mode signals when digitized at much higher sam-

pling frequencies (100 MHz) showed that the maximum frequency

component in the flexural mode was about 200 kHz. Thus, aliasing

was not a concern even at the low sampling frequency of 1 MHz.

Initial processing of the waves consisting of computing the

phase after FFT Fourier Transforming the data was carried out on

the personal computer with the Asyst waveform processing package. The

phase values for each measurement at each frequency over the range of

2 to 160 kHz. were then transferred to another personal computer

A9
(Macintosh IIfx) where the actual A_ values and the corresponding

velocities were calculated using a program written in C ++. The aver-
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age velocity of the five measurementswas taken to be the measured

velocity while the standard deviation of the measurementswasused as

the error in the measuredvelocity.

Themeasuredvelocities for the 0, 45, and 90 degree directions in

the [016] graphite epoxy plate are plotted in Figure 4.5 to Figure

v

-4
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• CLASSICAL PLATE THEORY

[] HIGHER ORDER PLATE THEORY
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Figure 4.5

40 80 120 160

Frequency (kHz)

Measured and theoretical flexural dispersion for

0 degree propagation in [016] graphite/epoxy

4.7. The predicted velocity dispersion curves for classical plate

theory (CPT) and the higher or de[ plate theory (HOPT) are also

shown in these plots. The agreement between measurement and HOPT is

excellent for the 90 degree propagation direction. For propagation at

45 and 0 degrees, the measured values are consistently less than

those predicted by HOPT. This is consistent with the extensional ve-

locity measurements which were less than theoretical predictions.

The effect of shear and rotatory inertia is clear when the CPT and

the HOPT are compared in these plots. CPT and HOPT are in agreement
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Measured and theoretical flexural dispersion for

90 degree propagation in [0]6] graphite/epoxy

plate.
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at low frequencies in all cases where the approximations of CPT are

valid. The discrepancy between the two increases with increasing fre-

quency as the velocity predicted by CPT increases without bound.

It is also apparent that the difference between HOPT and CPT is

much greater for the 0 and 45 degree directions than for the 90 de-

gree direction. This is expected since the shear modulus is much

smaller in comparison to the Young's modulus in those directions. CPT

is based on the assumption of no shear deformation which implies an

infinite shear modulus. Thus, better agreement is provided by CPT

when the shear modu]us is ]arge with respect to the Young's

modulus. Even better agreement occurs in aluminum as is shown in Fig-

ure 4.8. This figure plots the difference between CPT and HOPT nor-

o

t)

t)
0

0.5

<

0 "

I I i

ALUM I N UM

UNIDIRECTIONAL GR/EP /

0.4 • 90 DEGREE PROPAGATION

m-
O UNIDIRECTIONAL GR/EP

0.3 0 DEGREE PROPA_

/

0.I I

• - •

0

Figure 4.8

40 80 120 160

Frequency (kHz)

Normalized difference between CPT and HOPT flex-

ural dispersion predictions for aluminum and uni-

directional gr/ep composite.

malized by the shear velocity for both the aluminum (0.3175 cm.

thickness) and the [0]6] graphite/epoxy plates. The normalized dif-
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ference for aluminumat 160 kHz is about 0.i. This is why such good

agreementwas obtained between the CPTnormal modesolution and ex-

periment in the last chapter.

Plots of the measuredflexural velocity along with the

velocities predicted by CPT and HOPT for the remaining three lami-

nates are shown in Figure 4.9 to Figure 4.17. The measured flexural

co

v
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Figure 4.9

MEASURED VELOCITY

O CLASSICAL PLATE THEORY

[] HIGHER ORDER PLATE THEORY

I ! l

40 80 120 160

Frequency (kHz)

Measured and theoretical flexural dispersion for

0 degree propagation in [0,9014s graphite/epoxy

plate.

velocity for all three directions of propagation in all three lami-

nates follows the behavior predicted by HOPT except for having values

slightly less than theoretical predictions. This again, is consistent

with the possibility that the values of the material elastic proper-

ties obtained from the manufacturer and used in the theoretical cal-

culations may be somewhat larger than those of the actual material

studied in this research.

In summary, measurements were made of the extensional and flexural
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plate modevelocities in four different graphite epoxy laminates in

three different directions. The extensional modevelocity wasmea-

sured based on its first arrival time while the flexural modeveloci-

ty wasmeasuredover a range of frequencies up to 160 kHz. because of

its dispersive nature. These measurements were compared with predic-

tions based on classical plate theory. In the case of the flexural

mode, a comparison was also made with a higher order plate theory

which included corrections for the effects of shear deformation and

rotatory inertia. These effects were shown to be considerable for the

case of the composite materials while they were negligible for alumi-

num plates.

The measured extensional velocities were, with only a couple of

exceptions, two to nine percent less than those predicted by

theory. The measured flexural velocities were also consistently

less than those predicted by higher order plate theory. The possibil-

ity that the material properties used in the calculations were higher

than those of the actual material was discussed. This would account

for the discrepancy between the measured and theoretical

velocities. By making additional measurements along other

directions of propagation, it should be possible to invert these mea-

surements to determine the actual material properties.

IV.4 Flexural mode waveforms in composite plates and comparison

with predictions based on the normal mode solution technique

In this section, measurements of the flexural mode waveforms gen-

erated by pencil lead break sources in composite plates are present-

ed. These measured waveforms are compared with predictions based on

the normal mode expansion solution technique to classical plate theo-
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ry for a specially orthotropic material. This is an identical experi-

ment to that carried out on isotropic aluminum plates which was

discussed in III.4. As the limitations of CPT have already been dem-

onstrated in the flexural dispersion measurements, good agreement be-

tween theory and experiment is not expected. Therefore, only two

measurement comparisons will be presented which further prove this

point. These will be measurements along the 0 and 90 degree direc-

tions of propagation for the [0]6] composite plate.

The computer program used for the theoretical predictions was sim-

ilar to that used for the isotropic aluminum calculations with modi-

fications made to account for the anisotropy. The program was based

on the theory derived in IV.2 for a specially orthotropic material.

The code was written and compiled in the Pascal language and executed

on a personal computer (Macintosh IIfx). The filtering of the theo-

retical waveforms to account for the transducer frequency response

was carried out in the same way as discussed previously in III.4. The

time needed to compute each theoretical waveform was only

marginally slower than that for the isotropic case with a 2048

point waveform requiring 1280 seconds for computation.

The normal mode program revised for special orthotropy was checked

by comparing its output to the isotropic program when the input mate-

rial coefficients obeyed the symmetry laws for an isotropic material.

These are

DII = D22 - D , Eq. 4.82

DI2 = VD , Eq. 4.83
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(i -v)
2 D 4.84

where V and D are the Poisson's ratio and bending modulus respective-

ly for an isotropic material (aluminum). The outputs of the two pro-

grams were found to be identical as expected.

The experimental apparatus and method was the same as that used in

the aluminum plate experiments. The waveforms were detected with

the ultrasonic transducer and digitized at a 5 MHz sampling frequency

with the transient recorder. The transient recorder was triggered

by the signal from a RI5 sensor positioned next to the lead break

source. The signal was preamplified 40 dB without any filtering.

The signal was stored on a personal computer (IBM PC-AT) and then

later transferred to another personal computer (Macintosh IIfx) for

comparison with the theoretical waveforms.

The experimental waveform and the normal mode solution for propa-

gation along the 90 degree direction are shown in Figure 4.18. The

dimensions of the plate were 0.508 m. in length along the fibers

and 0.381 m. in width transverse to the fibers. The source position

was at the center length (0.254 m.) at a distance of 0.127 m. from

the edge. The receiver position was also at the center length at a

distance of 0.127 m. from the source position or 0.254 m. from the

plate edge as demonstrated in Figure 4.19. Agreement between theory

and experiment is not bad along this direction since CPT remains a

good approximation as demonstrated by the dispersion measurements.

However, the agreement is not nearly as good as occurred for the alu-

minum plate where CPT is an even better approximation. Since the nor-
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Figure 4.18 Theoretical normal mode and experimental wave-

forms for distance of propagation of 0.127 m.

along the 90 degree direction in [0]6] graphite/

epoxy.
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Figure 4.19 Source and receiver positions on [016] graphite/

epoxy plate for measurement of flexural mode

waveform along 90 degree propagation direction.



142

mal modeapproach treats the finite plate problem, it includes the

effects of the 0 degree properties even for the 90 degree propagation

solution. This further degrades the theoretical solution and is espe-

cially evident in the premature reflections which occur in the theo-

retical waveform.

The theoretical and experimental waveforms for propagation along

the 0 direction in the unidirectional graphite/epoxy plate are

shown in Figure 4.20. In this case, the source position was at the

6 I i 0 l
THEORETICAL WAVEFORM --

3 _ 0 :D
0

_ 0

EXPERIMEI ?AL WAVEFORM
I l I-3

1 10 -9

-I 10 -9

-2 i0 -9

0

Figure 4.20
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TIME (_SEC.)

Theoretical normal mode and experimental wave-

forms for distance of propagation of 0.127 m.

along the 0 degree direction in [016] graphite/ep-

oxy.

center width of the plate (0.1905 m.) and at a distance of 0.127 m.

from the edge along the fiber direction. The receiver position was

also at the center width and an additional 0.127 m. from the source

position along the fiber direction as demonstrated in Figure 4.21. As

to be expected from the dispersion measurements along this direction,
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Figure 4.21 Source and receiver positions on [016] graphite/

epoxy plate for measurement of flexural mode

waveform along 0 degree propagation direction.

the agreement between theory and experiment is nonexistent. This

again shows the limitations of CPT for graphite/epoxy composites.

In summary, the normal mode solution technique has been extended

to the case of a specially orthotropic composite material. This ap-

proach remains valid for these materials. However, the classical

plate theory to which the solution technique was applied is of limit-

ed applicability to gr/ep composites because of the effects of

shear and rotatory inertia which are neglected. This was demonstrated

previously by the dispersion measurements and again is demonstrated

by the lack of agreement particularly in the 0 degree direction.

The next logical step would be to attempt to implement the normal

mode solution technique to the higher order plate theory. This has

been done by Chow [58] for the case of an impulse load. He was inter-

ested in the dynamic response (low frequency vibrations) of composite

plates subjected to impact. The application of the normal mode solu-

tion to the higher order plate theory for the interpretation of
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acoustic emission will be investigated in future research.

IV.5 Plate wave propagation in a graphite/epoxy Space Station Freedom

(SSF) strut tube.

In the final experimental section of this work, an investigation

of the propagation of simulated AE waves in a medium with a

geometry other than a simple flat plate was carried out. The material

investigated was again graphite/epoxy composite. However, the geome-

try was of a long circular cylindrical thin-walled tube. The design

and layup of this tube was identical to that to be used in the pro-

posed Space Station Freedom (SSF) and thus is a practical structure

of importance and interest. The purpose of this experiment was to de-

termine if AE signals in thin media other than flat plates propagated

with plate mode characteristics. Also, the applicability of classical

plate theory to predicting the velocity of the modes of propagation

was of interest.

In the experiment, the out-of-plane components of AE signals pro-

duced by lead breaks on a graphlte/epoxy tube of dimensions and de-

sign to be used on SSF were measured using broad band transducers

as discussed by Prosser et al. [59]. The signals were shown to con-

sist of plate modes. The amplitudes of the modes were again shown

to be affected by source orientation by creating lead breaks on the

edge as well as the surface of the tube. Since the specimen being

tested is actually a tube geometry, the plate wave predictions are

only an approximation. However good agreement might be expected at

the frequencies measured since the wavelengths are smaller than the

radius of curvature. Measurements of the velocities of both modes

were made for propagation along the tube (0 degrees), around the tube
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circumference (90 degrees), and at 45 degrees. These velocities

were then compared with velocities predicted from classical plate

theory using stiffness coefficients predicted by laminated plate the-

ory and good agreement was demonstrated.

The tube studied in this research was AS4/976 (Fiberite) graphite/

epoxy with a wall laminate stacking sequence of [+/-I0, +/-30, +/-

10] s. The tube had dimensions of 4.5 meters in length, 0.0508 m. in

inner diameter, and 0.0035 m. in wall thickness. The predicted mate-

rial properties for a single lamina of this material obtained from

the manufacturer are shown in Table 4.3. Also given in Table 4.3

SINGLE LAMINA PROPERTIES

Ex (GPa) Ey(GPa) Es(GPa) nx ny p (Kg/m 3)

147.6 9.65 3.2 0.30 0.02 1560

LAMINATED PLATE PROPERTIES

Laminate thickness h = 3.528xi0 -3 m

In-plane stiffness (MPa-m)

All A22 AI2

433 44.6 50.8

Bending stiffness (Pa-m 3)

DII D22 DI2 D66

463 43.9 46.7 47.6

A66

51.6

DI6 D26

27.9 4.96

Table 4.3 Properties of AS4/976 single lamina and laminat-

ed plate with layup the same as the tube wall

layup.
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are the predicted properties for a plate with a layup the sameas

that of the tube wall.

Pencil lead breaks were used to simulate acoustic emission signals

in the tube. The waves were detected using a 3.5 MHz ultrasonic

transducer while a RI5 narrowband sensor was used to trigger the

transient recorder. The detected signals were amplified and

filtered with a preamplifier which had a 20 kHz high pass filter. The

digitized signals were stored on a personal computer for later analy-

sis. A block diagram of the experimental setup is shown in Figure

4.22.

PREAMP

TRANSIENT

RECORDER

COMPUTER

TRIGGER

_q_--PREAMP AND FILTEB

I RECEIVING

LEAD BREAK IAE SOURCE

GRAPHITE/EPOXY TUBE SPECIMEN

Figure 4.22 Experimental setup for measurements of simulated

AE waveforms in graphite/epoxy SSF tube.
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For measurementof the velocity along a given direction, the tran-

sient recorder was triggered by the RI5 sensor which was positioned

next to the source. The arrival times of the extensional and flexural

modes were recorded for a given distance of propagation. The receiv-

ing transducer was then moved by a preselected distance along the de-

sired propagation direction and the lead break repeated. Four to

six data points were taken for each mode and direction of propaga-

tion. The values of arrival time were then plotted against the trig-

ger sensor to receiving sensor separation. A linear least squares fit

was applied to the data and the slope was taken to be the velocity.

As in the composite plate measurements, the earliest detected de-

viation of the wave from zero was used for the arrival time of the

extensional wave. Velocity measurements for the flexural mode, howev-

er, were more difficult. This was because of multiple paths of propa-

gation for waves which would arrive at the sensor location and

interfere with the directly propagating wave of interest. These waves

were reflections and waves that propagated around the tube at other

angles. This prevented the phase velocity technique used previously

on the plates from being used.

A much simpler approach was used to determine the arrival time

of a particular frequency component of the flexural mode. The ap-

proach was to pick out the half-cycle of the wave which had a half-

period which corresponded to the frequency of interest. The arrival

time of this half-cycle of wave was chosen to be the center point

of the half-period and was designated the arrival time of the fre-

quency of interest. This was accomplished using movable cursors on

the personal computer display of the waveform using software

(LeCroy Catalyst program) supplied with the digitizer. This is only
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an approximation since there are multiple frequency componentscon-

tained within the half-cycle of wavewhich wasmeasured. Furthermore,

these frequencies are not linearly spaced in arrival time because

of the nonlinear dispersion behavior. However, this gives a rough es-

timate of the arrival time of a frequency componentof interest.

Since classical plate theory is applicable only at low frequen-

cies, the flexural measurementswere madeat the lowest frequency

possible. The lowest frequency in the data which was unperturbed by

refections was at about 50 kHz. At 50 kHz. in the worst case of the

unidirectional composite plate (i.e. the 0 degree propagation direc-

tion), the normalized difference between CPTand HOPTwas only

about 10%. Thus, for a layup with multiple ply angles, CPTshould

yield agreement to better than 10%at this low frequency. For 50

kHz., the time for the arrival of the portion of the wave with a half

cycle time of I0 msec. was used. Thesearrival times were then used

to computethe flexural modevelocity.

The measuredand theoretically predicted extensional and

flexural velocities for all three directions of propagation are pre-

sented in Table 4.4. Goodagreementwas obtained for both the exten-

sional and flexural velocities with two exceptions. The measured 45

degree extensional velocity was much less than predicted which also

occurred in the composite plate measurements. The measured 90

degree flexural velocity was much higher than predicted. Further in-

vestigation is needed to explain these discrepancies.

To investigate the effects of source orientation of plate mode am-

plitudes in the tube, lead breaks were positioned on the surface of

the tube and on the end of the tube. Thus the source motion was ei-

ther normal to the tube surface or in-the-plane of the tube. A wave-
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0
45
90
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EXTENSIONALWAVES

Theoretical ce
(km/s)

8.87
5.97
2.85

Experimental c e

(kin/s)

8.89

4.13

3.12

Angle

(degrees)

0

45

90

FLEXURAL WAVES

Theoretical cf dispersion relation

(m/s) (f -- frequency in Hz)

7.61 (f) 1/2

6.67 (f)1/2

4.22 (f)1/2

Angle

(degrees)

Theoretical cf

(km/s at 50 kHz)

Experimental Cf

(km/s at 50 kHz)

0 1.70 1.82

45 1.49 1.46

90 0.94 1.41

Table 4.4 Theoretical and experimental plate mode veloci-

ties in graphite/epoxy composite SSF tube.

form due to lead break on the surface of the tube with a source to

receiver distance of 0.1524 m. is presented in Figure 4.23. A compar-

ison with Figure 4.24, which shows a waveform for an identical dis-

tance of propagation but with the lead break on the end of the

tube, demonstrates the effect of source orientation on the amplitudes

of the plate waves. The edge break produces an extensional wave

with a large out-of-plane displacement component. The surface break

also produces a large out-of-plane displacement component, but in the

flexural mode. As discussed previously, this fact may be useful in

obtaining source information for actual sources in composites.
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In summary,acoustic emission signals from simulated source events

in a graphite/epoxy thin-walled composite tube have been captured and

analyzed. These waves contained the extensional and flexural modes.

The velocities of these modes were measured and compared favorably

with predictions based on classical plate theory. The effect of

source orientation on the amplitudes of the two modes was

documented for sources normal to the tube and in-the-plane of the

tube. As before, the normal source created a wave with a larger flex-

ural mode amplitude while the in-plane source created one with a

larger extensional mode amplitude. This work demonstrates that AE

signals propagate in practical thin-walled structures of interest

with plate mode characteristics. Additionally, it demonstrates that

classical plate theory is useful in some cases where the geometry

is not that of a simple flat plate.
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V. Summary and Conclusions

The propagation characteristics of the plate modes of acoustic

emission waves in thin aluminum plates and thin graphite/epoxy com-

posite plates and tubes have been studied in this research. Prior

to these measurements, however, the effects of the transducer on

the measurement of these waves were considered. This was necessary so

that transducer artifacts could be accounted for when comparing mea-

sured waveforms with theoretical predictions.

Evaluation of the transducer response was accomplished by three

techniques. In each technique, the response of the broad band ultra-

sonic transducer (Panametrics 3.5 MHz) used in the plate wave mea-

surements was compared to those from three other conventional

piezoelectric AE sensors. The three sensors were a 150 kHz resonant

sensor (Physical Acoustics Corporation model RI5), a conventional

broad band AE sensor (Physical Acoustics Corporation model $9208),

and a broad band, small area, velocity sensitive pinducer (Valpey-

Fisher). The first evaluation technique consisted of comparing the

output responses of the sensors when they were stimulated by

another transducer which was driven with a swept sine tone burst over

the frequency range of interest. The second technique compared

their responses when the input wa:_ a simulated AE signal generated by

a pencil lead break (Hsu-Neilsen) source on a thick aluminum plate.

In this case, the responses were also compared with theoretical pre-

dictions. The final method compared the responses when the input

source was again a simulated AE signal generated by a lead break

which in this case propagated to the sensor Jn a thin aluminum plate.

The output of a displacement sensitive optical interferometer was

used for comparison in the third evaluation method.
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In all three methods, the ultrasonic transducer proved to be the

best for quantitative measurements of AE waveforms because of its

flatter frequency response characteristics. This means that it yield-

ed a higher fidelity reproduction of the actual signal that it was

attempting to measure. The peak sensitivity of this sensor was not as

great as that of the resonant sensor, but it compared favorably

with the other two broad band transducers. Comparison with an optical

interferometer demonstrated that the output of the ultrasonic trans-

ducer was proportional to the normal surface displacement. Although

the frequency response curve generated by the swept sine input tech-

nique was not useful for absolute calibration in terms of meters of

displacement per volt of transducer output, it was used to remove the

transducer frequency response allowing relative comparisons of theo-

retical waveforms with experimental predictions.

Two experiments on the propagation of plate modes in aluminum

plates were carried out. These were measurements of the effect of

source orientation on the amplitudes of the two plate modes and the

comparison of theoretically predicted flexural mode waveforms with

experimental measurements. In the first experiment, the in-plane

and the out-of-plane displacement amplitudes of the extensional and

flexural modes were measured for lead break simulated AE sources with

varying orientations. The lead was broken normal to the surface of

the plate (90 degrees), normal to the edge of the plate (0

degrees), and at angles of 30 and 60 degees. The later two source an-

gles were accomplished using specially machined slots in the plate.

Measurements of the waveforms at equal distances of propagation dem-

onstrated that the amplitudes of the two plate modes were dependent

on the source orientation. As the out-of-plane component of the
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source motion decreased from its peak when the source was at 90 de-

grees to its minimum when the source was at 0 degrees, the flexural

amplitudes of the waveforms decreased. Simultaneouslv, the extension-

al wave amplitude increased since the in-plane component of source

motion was increasing as the source motion moved toward 0 degrees.

These measurements may be a first step toward the solution of an im-

portant problem in AE testing, that is, the problem of determining

the source type and orientation from measured AE waveforms.

The second experiment in the thin aluminum plates compared experi-

mentally measured flexural mode waves with theoretical predictions

for a finite plate based on a normal mode expansion solution tech-

nique for classical plate theory. The experimental waveforms were

again generated by pencil lead breaks to simulate an AE source.

Agreement between theory and experiment was excellent over the

lower frequency regime for which classical plate theory is valid. One

advantage of this solution technique is that it can handle the case

of a finite plate which has never been solved by previous solutions

of exact elasticity theory. Additionally, it is computationally

much less intensive than solutions to the exact theory for propaga-

tion in an infinite plate and it is easily extended to include the

anisotropy of composite materi_ls. The importance o_ this research is

that the propagation of an AE waveform from a known source must be

well understood before the more difficult problem of determining

the source characteristics of an unknown source based on the measured

waves can be handled.

Numerous experiments were ca_ tied out to investigate the propaga-

tion of plate modes in anisotropic laminates of graphite/epoxy. The

velocity of the extensional mode along the 0, 45, and 90 degree prop-
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agation directions was measured in four plates, each having different

ply layups. The measured velocities were compared with those predict-

ed by classical plate theory. In general, the measured velocities

were slightly lower than those predicted from theory. A possible ex-

planation for this was that the elastic properties used in the calcu-

lations which were obtained from the manufacturer were larger than

those of the actual material. Variation in the elastic properties

caused by variations in the resin chemistry, cure cycle conditions,

and fiber volume are common for this material.

The flexural velocity was also measured along the same three di-

rections of propagation in these laminates. However, because of the

dispersive nature of this mode, it was measured over a range of fre-

quencies with a differential phase technique. These measurements were

_Iso compared with predictions based on classical plate theory.

Lack of agreement was exhibited even at low frequencies and this

was demonstrated to be caused by the effects of shear and rotatory

inertia which are neglected by classical plate theory. These

effects are much more significant in materials such as graphite/epoxy

composites where the shear modulus is much smaller than the Young's

modulus.

A higher order plate theory was described which takes these ef-

fects into account. Much better agreement was obtained between the

measured flexural dispersion and that predicted by HOPT. Again, how-

ever, the measured values were consistently less than those predicted

by HOPT using elastic properties obtained from the manufacturer. This

is consistent with the extensional measurements and the theory that

the properties used in the calculations were higher than those of the

actual material. It may be possible to make additional measurements
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at other angles of propagation and invert them to determine the actu-

al elastic properties of the material. Since the actual properties of

the material are critical for engineers in applications of this mate-

rial, this nondestructive method of determining them is of great im-

portance and will be investigated in the future.

The normal mode solution technique of classical plate theory for

the specially orthotropic composite material was presented. Experi-

mental measurements of the flexural mode waveform were compared

with theoretical predictions for the 0 and 90 degree directions of

propagation in the unidirectional laminate. The lack of agreement for

this particular case was expected because of the limitations of

CPT, especially for propagation along the 0 degree direction. In this

direction, the ratio of the shear modulus to the Young's modulus is

at its minimum for this material. Better agreement might be

obtained by extending the normal mode solution to the HOPT. It was

pointed out that this has been done previously for the case of impact

loading of a composite plate. The application to the step function

loading problem for AE propagation is another area to be investigated

in the future. This research is an important component in providing a

better understanding of the problem of AE signal interpretation and

will help in the effort to extract information about real AE sources.

The final experimental investigations were of AE waveforms propa-

gating in a thin-walled graphite/epoxy tube. This tube was of the

proposed design to be used on the strut elements of the proposed

Space Station Freedom. Because of the thin-walled nature of this

structure, the AE signals propagated as plate modes even though the

geometry was not that of a simple flat plate. Thus, the understanding

of these modes of propagation is important for the monitoring of AE
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in important practical structures. The extensional and flexural ve-

locities were again measuredand shownto comparefavorably with the-

ory. The effect of source orientation was also demonstrated for

sources normal to the tube surface and normal to the end of the tube.

In summary,a detailed study of the propagation of plate waves

in AE signals has been carried out. This is of great importance due

to the thin-walled nature of manypractical structures of interest

such as the SSFtube. Other examples include the external skins of

air and space craft and pressure vessel walls. In order to obtain

quantitative information about the sources of emission in these

structures from measured AE waves, the propagation of these modes

must be well understood and characterized.

Several important future research directions became apparent dur-

ing the course of this research and are pointed out here. The first

is to investigate further the cases where anomalous measurements were

present or where theory and experiment were not in agreement in

this work. These cases include the unexpected behavior of the flexur-

al mode amplitudes for the source orientations of 60 and 90 degrees

in the aluminum plates. Also, the extensional velocity in the 45 de-

gree direction of propagation in the unidirectional plate which was

much lower than predicted needs further study.

Another research direction is the applicability of plate wave mea-

surements for the characterization of material properties. This is

especially important for composite materials where there can be sig-

nificant variations from sample to sample. The applicability to AE of

the normal mode solution technique to higher order plate theory for

composite materials also needs investigation. Another area of great

importance is the study of source orientation effects on the plate
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mode amplitudes for real sources of emission such as matrix cracking,

fiber breakage, and delamination in composites. Finally, a research

area that should be studied is the application of the knowledge of

plate mode AE propagation toward more accurate AE source location,

again, especially in composites.
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