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SUMMARY

The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-

stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical

configuration was used as the subject aircraft. The investigation indicates that extreme forward

migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe

aerodynamic instability and trim moments that must be counteracted. Adequate stability can be

provided by active control of elevons and rudder, but use of elevons to produce trim moments

results in excessive trim drag and fuel consumption. To alleviate this problem two solution

concepts are examined. Active control of the center of gravity (c.g.) location to track the

aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to

significant fuel savings. Active control of the direction of the thrust vector produces required trim

moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded

that the combination of active flight control to provide stabilization, c.g. position control to

minimize trim moment requirements, and thrust vectoring to generate required trim moments has the

potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO

vehicles.



SYMBOLS AND ABBREVIATIONS

a.c° aercxtynamic center

APAS

0_

Aerodynamic Preliminary Analysis System

angle of attack

angle of sideslip

c.g. center of gravity

A c.g. change in c.g. position

_ELE symmetric elevon deflection

SAIL antisymmetric elevon deflection

5RU D rudder deflection

8,1- change in thrust vector angle

F 8, M aerodynamic forces and moments

roll angle

7 flight path angle

Isp specific impulse

K T ...... lhrtist vector gimbal angle gai n

m.a.c, mean aerodynamic chord
• = .... =_ _ _: _

M Mach number ----
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POST Program to Optimize Simulated Trajectories

bcx.ty axes roll rate

q bcxty axes pitch rate



dynamic pressure

r b_xly axes yaw rate

SSTO single-stage-to-orbit

t time

T thrust

T.E. trailing edge

Q acceleration along flight path

W weight of vehicle

Xcg command command value of c.g.

Xac longitudinal position of a.c.
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INTRODUCTION

Earth-to-orbit space transportation system concepts have been studied for many years to satisfy

anticipated mission needs (refs. 1-4). A key objective of these studies has been to define vehicles

that substantially reduce the cost of manned space transportation. These studies have identified

concepts using both near-term and more advanced technology. One of the promising concepts

using advanced technology is a fully reusable, single stage vehicle with airbreathing propulsion.

This concept is theoretically feasible through the total integration of high specific impulse

airbreathing propulsion, lightweight high temperature structural materials, advanced aerodynamic

design, and highly integrated flight/propulsion control and guidance systems. A vehicle of this

class has never flown and theoretical analyses have shown that the propulsive efficiency of the

vehicle will be critical to its success. One way to increase the propulsive efficiency is to reduce the

total drag of the vehicle. Drag reduction increases the overall vehicle effective specific impulse.

Beside configuration changes, such as increasing wing sweepback angle and decreasing local

surface inclination angles, there are less apparent ways associated with stability and control that can

reduce total drag. The aerodynamic center (a.c.) of single-stage-to-orbit (SSTO) class vehicles

migrates forward a significant fraction of fuselage length as the vehicle accelerates to orbital speed

(refs. 5-10). This migration of the a.c. results in aerodynamic instability and nose-up pitching

moments that must be balanced in order to hold the vehicle at required angles of attack (refs. 8, 9).

Normally, the balancing trim moment would be generated by deflecting aerodynamic control

surfaces; however, even moderate control surface deflections can cause significant trim drag at

hypersonic speeds (refs. 11-12). By controlling the center of gravity (c.g.) and causing it to track

the a.c., the lift moments and associated trim drag can be reduced, and by controlling the direction

of thrust, lift moments can be partially or completely offset, again reducing the trim drag.

The objective of this research is to investigate the potential of two concepts for reducing the trim

drag of SSTO vehicles. Control of the c.g. position for reducing trim moment requirements and

control of the thrust direction for generating trim moments will be studied. The benefits of these

concepts are estimated for the ascent to orbit of a generic SSTO configuration by comparing the fuel

consumed from takeoff to orbit with and without each system. A six degrees-of-freedom computer

simulation is used to quantify the results.



ANALYSIS

Study Configuration The vehicle chosen for this study is based on a hypersonic configuration that

has been tested experimentally from low subsonic to high hypersonic Mach numbers (refs. 5-7).

The full scale vehicle dimensions and gross weight were determined from a vehicle sizing analysis

iterated together with point-mass ascent trajectory analyses. This iterative analysis yielded a

200 ft long, 295,000 lb takeoff-weight vehicle. Aerodynamic, propulsion, and mass models for

this vehicle, given in reference 15, were developed to allow guidance and flight control studies to be

conducted. Appendix A describe_ the concept of these models.

The planform and side view of the study configuration are shown in figure 1. The vehicle

geometric characteristics are given in Table I. The fuselage centerline mounted wing has

conventional right and left trailing edge elevons with the hinge line perpendicular to the fuselage

centerline. The small canards shown in figure 1 have a 6 percent thick symmetrical 65-A series

airfoil and are deployed only at subsonic speeds. In this study, canard incidence is maintained at 0 °.

The fuselage is modelled as a conical forebody, a cylindrical engine nacelle section, and a cone

frustrum afterbody.

Reference Trajectories The reference trajectories basically involved two horizontal takeoff single

stage ascents along 1000 lb/ft 2 and 2000 lb/ft 2 maximum dynamic pressure paths to an altitude

where orbital velocity was obtained followed by a pitch-up maneuver, coasting to a 110 n.m.

apogee, and a circularization bum. These trajectories are described in more detail in reference 12,

and they are referred to as 1000 lb/ft 2 and 2000 lb/ft 2 reference trajectories in this report.

A_r0_lynamic Center and Center of Gravity Migration The migration of the longitudinal position of

the a.c. (Xac) and c.g. (Xcg) as the vehicle accelerates to orbital velocities is shown in figure 2. The

quantities Xac and Xcg are given in terms of percent body length and mean aerodynamic chord as a

function of flight Mach number. The APAS program was used to estimate the position of the a.c.

as discussed in reference 15. The c.g. position data shown in figure 2 are given in terms of the

flight Mach number for the 2000 lb/ft 2 reference trajectory.

From takeoff to Mach 1 the canard is deployed and the vehicle is aerodynamically unstable

longitudinally. When the canard is retracted at Mach 1, the a.c. shifts aft and the vehicle becomes

stable. As Mach number increases, the a.c. migrates forward and between Mach 6 and 8 the a.c.

moves ahead of the c'g., as shown in figure 2. At this point the vehicle becomes unstable again,

and as the velocity increases to orbital values the a.c. moves further forward causing the vehicle to

become more unstable longitudinally (and directionally).

2



Theforwardmigrationof thea.c.relativeto thec.g.exceeds35percentof them.a.c,and

15percentof fuselagelength. This forwardshiftof thea.c.with increasingMachnumberis

characteristicof hypersonicvehicles(refs.5-10). In additionto the instability problem, the forward

travel of the a.c. causes an increasingly large nose-up pitching moment that must be balanced or

trimmed in order to hold the vehicle at the desired angle of attack.

EICvon and Vehicle Drag The standard method to counteract the nose-up pitching moment caused

by the forward travel of the a.c. would be to deflect the elevons trailing edge down to generate the

required nose-down trim moment. The problem with this method is, at hypersonic speeds, even

small trailing edge down deflections of elevons cause an unacceptable increase in drag.

To illustrate this elevon trim drag problem, consider a 20" down deflection. The variation of the

incremental drag coefficient with Mach number, with and without trailing-edge down symmetric

elevon deflections, is shown in figure 3. The total drag coefficient of the vehicle at a given Mach

number, not counting the drag due to angle of attack and rudder, is given by the upper curve. At

higher Mach numbers the drag increment of the elevons at 20 ° deflection is significant and is of the

same order as the drag increment of the vehicle. Data in reference 15 show that for trailing edge

down symmetric deflections greater than 20 ° the drag increment exceeds that of the basic vehicle.

The trend shown in figure 3 is characteristic of hypersonic vehicles controlled by aerodynamic

control surfaces; for example, the shuttle orbiter (ref. 11). These trends of significant drag created

by deflected control surfaces suggest that minimizing control deflections and control deflection bias

for trim, especially at high Mach numbers, can significantly reduce the total drag of the vehicle.

Fuel Consumed Due to E!evon Drag In the study reported in reference 12 it was found that for the

present configuration the fuel consumption due to elevon drag for the 1000 lb/ft 2 and 2000 lb/ft 2

reference trajectories was excessive. For these two cases the altitude above the earth as a function

of time since takeoff is shown in figure 4; engine shutdown comes at approximately 1100 seconds

after takeoff for the 2000 lb/ft 2 case and at 2400 seconds for the 1000 lb/ft 2 case. The weight of

fuel used along these two paths as a function of flight Mach number is shown in figure 6. The fuel

consumption due to elevon drag alone exceeds 17,000 lbs along the 1000 lb/ft 2 path and 6,500 lbs

along the 2000 lb/ft 2 trajectory.

One reason for the unacceptable fuel consumption is the significant drag associated with use of

elevons for trim as discussed above. Mach histories of the elevon deflections, presented in figure

5, show that maximum deflection bias reaches 12 ° trailing edge down in the 2000 lb/ft 2 case and



16° in the 1000 lb/ft 2 case. Bigger elevon deflections are required in the 1000 lb/ft 2 case because

the trim angle of attack is approximately twice that of the 2000 lb/ft 2 case and this leads to a greater

trim moment to counteract. Additionally, the 1000 lb/ft 2 case uses more fuel because the elevons

remain deflected for a longer time and the ascent takes almost twice as long.

The excessive fuel consumption caused by the relatively small trim deflections of the elevons

suggests that using aerodynamic control surfaces for trim moment generation in SSTO class

vehicles may not be practical. This realization led to the investigation of the potential benefit of c.g.

control to reduce trim moments and thrust vectoring to produce part of the required aim moments.

Potential Benefits of c.g. Control The magnitude of the undesired trim moments can be reduced if

the vehicle c.g. position is actively controlled, so that the lift force passes approximately through the

c.g. Decreasing the undesired trim moments would result in reductions in elevon deflection bias

and consequently, fuel consumption. Conceptually, the c.g. could be controlled by selective

depletion of remaining fuel; however, the issue under consideration in this study is not how to

control the c.g., but rather what the benefit would be of controlling the c.g. If c.g. control is

shown to be beneficial, then implementation scheme and trade-off studies could be performed.

Potential Benefits of Vectored Thrust Active control of propulsion system thrust direction can

generate all or some of the aim moments needed. Used in this fashion, thrust vectoring trim control

should result in decreased elevon deflection bias and could result in reduced fuel consumption.

Active control of propulsion system thrust direction could be implemented by controlling the

airbreathing engine geometry or by utilizing a vectorable rocket propulsion system. As in the case

of c.g. control, the issue under consideration is not how to control the thrust direction but rather

what is the benefit of controlling the thrust direction.

RESULTS AND DISCUSSION

The c.g. position control and the thrust vectoring concepts described above are evaluated

independently by comparing the ascent-to-orbit fuel consumed for each concept to the fuel

consumed while using the baseline vehicle, elevon trim alone. Evaluations are performed for both

reference trajectories. The six degrees-of-freedom simulation used for the analysis is described in

Appendix B.

c.g. ControlSystem Implementation The method used to control the c.g. was to override the

baseline table of c.g. position (as a function of vehicle weight) and set the c.g. position equal to the
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predetenlainedlocationof thea.c.asafunctionof flight Machnumberas

Xcgcommand= Xac(M)

In thesimulationit wasassumedthatthec.g.couldtracktheestimatedaerodynamiccenterposition,

andit wasassumedthatthe"c.g.controlsystem"hardwareweightwasnegligible.

Elevon Deflections with c.g. Position Control The left elevon deflection angle as a function of

Mach number for the 1000 lb/ft 2 and 2000 lb/ft 2 maximum dynamic pressure ascents with and

without c.g. position control are shown in figure 7. The right elevon deflection angle history is for

all practical purposes the same and is not depicted. The instantaneous mean value is basically the

deflection bias required to produce the trim moment to hold the vehicle at the desired angle of attack.

Without c.g. position control the relatively large deflections above Mach 5 are not desirable, and as

was shown previously, these deflections cause unacceptably high drag and increased fuel

consumption. Causing the c.g. to track the a.c. reduces the moments required to hold the vehicle at

desired angles of attack and reduces the elevon deflection bias to the -2 to 2 ° range. As will be

demonstrated, reducing the elevon deflection bias significantly reduces the fuel consumed to orbit.

The unrealistic magnitudes of the elevon angles, above Mach 22, were used to perform the pitch-up

maneuver computed to enter the transfer orbit. After this maneuver, dynamic pressure decreases

rapidly and aerodynamic control effectiveness is lost. These elevon deflections are an artifact of the

simulation; they produced very little drag due to the low dynamic pressure, and consequently,

insignificant fuel penalty. In an actual vehicle, a reaction control system would be used to provide

attitude control during the transfer orbit coast phase.

Fuel Consumption with c.g. Control The effect on fuel consumption of the c.g. tracking the a.c. is

shown in figure 8. The total fuel consumption to orbit for the 1000 lb/ft 2 and 2000 lb/ft 2 maximum

dynamic pressure ascents with and without c.g. control are plotted as a function of time after

takeoff. The time scale on the figure is started at 1000 seconds and the fuel consumed scale is

started at 140,000 lbs so the differences in fuel consumption are easier to show. The horizontal

portions of the curves correspond to the engine-off coast phase of the ascent.

The reduced elevon deflections decreases the :_agof the elevons and hence the total drag of the

vehicle. The decreased drag results in reduced thrust required to maintain the desired flight path.

As shown in figure 8 this drag reduction decreases fuel consumption by more than 3000 lbs fuel

along the 2000 lb/ft 2 path and more than 6000 lbs along the 1000 lb/ft 2 path.



It is notedthatthefull amountof fuel attributedto elevondragshownin figure5 is notsaved

becausethevehiclefliesata slightlyhigherangleof attackto compensatefor theslightlossof lift

causedby smallerdeflectionsof theelevons.Thehigherangleof attackproducesslightlymore

fuselageandwing pressuredragthanin thebaselinecaseandtherefore,nullifies someof thebenefit
derivedfrom thereducedelevondeflections.

Thefairly significantfuel savingsoverthebaselineattributedto thec.g.trackingthea.c.indicates

thepotentialof maintainingneutralaerodynamicstabilitythroughc.g.controland/orconfiguration

controlanddesignin horizontaltakeoffSSTOlaunchvehicles.Neutrallongitudinalstabilityhasthe

advantageof minimizingaerodynanaictrim momentsandreducingcontroldeflectionsneededto

maneuverthevehicle.Therequireddynamicstabilityandhandlingqualitiescanbeprovidedbyan

automaticflight controlsystem.

Eff_¢[ of Thrust Vectoring To evaluate the thrust vectoring concept, the total fuel consumed with

thrust vectoring is compared to that of the baseline using the same six degrees-of-freedom

simulation of the two ascents used in the c.g. control study. It is assumed that the "thrust vectoring

control system" has sufficient authority to counteract the aerodynamic forces and keep the elevon

deflections close to 0% and it is also assumed that the thrust vectoring does not decrease the

efficiency of the propulsion system. However, the thrust along the body x-axis is reduced by the

cosine of the thrust vector angle. Finally, it is assumed that the thrust vectoring control system adds

negligible weight.

The method used to simulate thrust vector control is to gimbal the thrust vector in proportion to the

integral of the symmetric elevon angle as given by

T_0 t

8T = K 8Et.E dt

where the gimballed thrust is assumed to act at the aft end of the fuselage. This control law is

designed to keep the symmetric elevon angle close to zero.

The effect of thrust vectoring trim control on elevon deflections for the 1000 lb/ft 2 and 2000 lb/ft 2

maximum dynamic pressure ascents is shown in figure 9. The independent variable is the flight

Mach number. The lower curves are for the baseline without thrust vector control. The use of

thrust vector control generates most of the required trim moment and reduces the elevon deflections

for trim to the -2 ° to 2 ° range throughout the Mach range.
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Thethrustvectoranglerequiredfor trim asafunctionof flight Machnumberfor the1000lb/ft2 and

2000lb/ft2 ascentsis shownin figure 10. Thevaluesabovethezerodeflectionline correspondto

anosedownmoment.Thegreatestthrustvectoranglesoccurwith the 1000lb/ft2casebecausethis

caseflewat ahigherangleof attackresultingin a largertrim momentcoefficient.

In thesimulationtheengineswereshutdownatMach24.2to beginthecoastto thedesiredapogee;

beyondthisMachnumbertheelevonsprovidedall of thetrim momentrequired.Theincreasein

computedthrustvectoranglebeyondthisMachnumberiscausedbythecontrollaw thatintegrated

theelevonangleto obtainthedesiredthrustangle.As in thec.g.controlcase,in anactualvehiclea

reactionjet controlsystemwouldbeusedto maintainattitudecontrolduringthecoastphase.

Theeffectof thrustvectortrim controlon fuelconsumptionis shownin figure 11. Thetwo curves
on theleft givethetotal fuel consumptionfor the2000lb/ft2maximumdynamicpressureascent,

andthetwoon theright arefor the 1000lb/ft2case.In all four casestheindependentvariableis

elapsedtimesincetakeoff.

In bothcasesthrustvectoringsavessignificantfuel overthebaseline.As demonstratedearlier,

activelycontrollingthethrustvectoranglesoasto minimizethelift anddragmomentkeepsthe

elevondeflectionsin the-2° to 2° range.Thereduceddeflectionreducesthedragof theelevonsand

hencethetotaldragof thevehicle.Thedragreductionresultsin reducedthrustandfuel

consumptionrateneededto maintainthedesiredflight path;thissavesapproximately2800lbsof
fuel alongthe2000lb/ft2pathand5500lbsalongthe1000lb/ft2 path.

As in thec.g.controlcasetheseresultsalsoillustratethatthefull amountof fuel consumption

attributedto elevondragshownearlieris notsavedbecausethevehiclefliesat aslightlyhigher
angleof attackto compensatefor lossof lift causedby reducedelevondeflections.Thefairly

significantfuel savingsoverthebaselinevehicleattributedto thethrustvectoringcontrolsystem

indicatethepotentialof thrustvectorcontrolin thisclassof launchvehicles.

Thisstudyaddressesaconfigurationwherethebaselinethrustvectorpassesthroughthec.g.

Considerthemoregeneralcasewherethebaselinethrustvectorpassesaboveor belowthec.g. The

resultspresentedin thissectionindicatethathavingthethrustvectorabovethec.g.decreasesthe

trim momentrequirementfor anaerodynamicallyunstableconfigurationandincreasesit for an

stableconfiguration;havingthethrustvectorbelowthec.g.hastheoppositeeffect. This factis

importantsinceit indicatesthattrim dragcanbedecreasedbyproperalignmentof thethrustvector

in thedesignprocess.
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Combined Stability Augmentation. c.g. Control. and Thrust V_oring Based on the favorable

evaluations of c.g. control and thrust vectoring control as possible means of reducing trim drag, the

two concepts were integrated and tested. The c.g. control system was given one-half the authority

needed to cause the c.g. to track the a.c., and the thrust vectoring system was used to provide the

remaining moment needed to keep the mean elevon angles close to zero. A guidance and stability

augmentation system was used as before to provide dynamic stability and tracking of the desired

precomputed paths.

With the combined system no significant improvement in fuel savings over the individual systems

was found, and the thrust vector angles, as expected, reached one-half the values obtained when

thrust vectoring was used alone. The practical benefit of integrating the two concepts lies in the fact

that in practice, c.g. and thrust vectoring control systems would have limited authority and together

the capacity of the total system would be increased.

Effect of Propulsion System on Vehicle Stability Hypersonic propulsion systems can significantly

affect the stability of the vehicle. It is shown in reference 16 that at hypersonic speeds the thrust

coefficient can change by more than 10 percent per degree change of angle of attack. In a typical

underslung scramjet system an increase in angle of attack increases the engine capture area which

equates to an increase in the total mass of air captured by the inlet, thereby decreasing the

equivalence ratio. Even though the capture area increases, the resulting decrease in equivalence

ratio will more than likely reduce the net thrust and thereby cause a stable nose down moment

(provided that the thrust vector passes below the vehicle c.g.). If the fuel flow rate is increased as

the ,angle of attack is increased, such that the equivalence ratio remains constant, then an increase in

thrust would be expected due to the increased capture area. This thrust increase with angle of attack

would then result in an unstable nose up moment. Thus, it is seen that the vehicle becomes either

more or less stable depending on how the fuel flow is controlled and whether or not the thrust

vector passes above or below the c.g.



CONCLUDING REMARKS

A study of trim drag reduction concepts for a generic horizontal-takeoff single-stage-to-orbit

(SSTO) vehicle has resulted in the following findings.

1. The aerodynamic center migrates forward a significant fraction of fuselage length as the flight

Mach number increases to orbital values, and this migration causes aerodynamic instability and

unacceptably large changes in longitudinal trim moments.

2. Use of elevons to counteract the trim moments results in a moderate elevon deflection bias and

an increase in drag which leads to excessive fuel consumption.

3. Controlling the c.g. location so it tracks the vehicle a.c. yields a more neutrally stable

configuration, reduces trim moment requirements and elevon deflection bias, increases control

power, and results in significant fuel savings.

4. Controlling the direction of the thrust vector to produce trim moments decreases elevon

deflection bias and also results in significant fuel savings.

5. The combination of active c.g. position control to improve stability and minimize trim moment

requirements and thrust vectoring control to generate trim moments has the potential to minimize

trim drag and significandy reduce the ascent fuel consumption for horizontal-takeoff SSTO

vehicles.
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TABLE I.- GEOMETRICCHARACTERISTICSOF CONFIGURATION

Wing:

Reference area (includes area projected to fuselage centerline), ft 2 ....................... 3603

Aspect ratio ....................................................................................... 1.00

Span, ft ............................................................................................ 60.0

Leading edge sweep angle, deg, ....................................................... 75.97

Trailing edge sweep angle, deg .................................................................. 0.0

Mean aerodynamic chord, ft .................................................................. 80.0

Airfoil section ................................................................................. diamond

Airfoil thickness to chord ratio, percent .......................................................... 4.0

Incidence angle, deg ............................................................................... 0.0

Dihedral angle, deg ................................................................................ 0.0

Wing flap (elevon):

Area each, ft 2 .................................................................................... 92.3

Chord (constant), ft ............................................................................. 7.22

Inboard section span location, ft ....... 15.0

Outboard section span location, ft ........................................................... 27.78

Vertical tail, body centerline:

Exposed area, ft 2 ............................................................................... 645.7

Theoretical area, ft 2 ........................................................................... 1248.8

Span, ft ........................................................................... 32.48

Leading edge sweep angle, deg ................................................... ............. 70.0

Trailing edge sweep angle, deg ............................................................... 38.13

Airfoil section ................................................................................. diamond

Airfoil thickness to chord ratio, percent ......................................................... 4.0
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TABLE I.- CONCLUDED

Rudder:

Area, ft2 .................................................. ....................................... 161.4

Span, ft ............................................................................................ 22.8

Chord to vertical tail chord ratio, percent...................................................... 25.0

Canard:

Exposed area, ft2 ............................................................................... 154.3

Theoretical aspect ratio .......................................................................... 5.48

Span, ft ............................................................................................ 33.6

Leading edge sweep angle, deg................................................................ 16.0

Trailing edge sweep angle, deg................................................................. 0.0
Airfoil section....................................................................... NACA 65A006

Incidence angle, deg.............................................................................. 0.0
Dihedral angle, deg.................................................. .............................. 0.0

Axisymmetricfuselage:

Theoretical

Cone half

Cylinder

Cylinder
Boattail

Boattail

Moment

length, ft ........................................................................... 200.0

angle, deg.............................................................................. 5.0
radius (maximum), ft ................................................................ 12.87

length, ft .............................................................................. 12.88

half angle, deg........................................................................... 9.0

length, ft ................................................................................. 40.0
reference center, ft .................................................................. 124.01
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Appendix A

Vehicle Simulation Models

This appendix describes conceptually the aerodynamics, propulsion, and mass models for a generic

slender winged-cone hypersonic vehicle. The models and data are described in more detail in

reference 15.

Aerodynamics Model Experimental aerodynamic data including control surface effectiveness and

drag increments were not available across the Mach range so they were estimated. A subsonic-

supersonic-hypersonic analysis code, referred to as the Aerodynamic Preliminary Analysis System

(APAS) (ref. 13), was used to predict the longitudinal and lateral-directional force and moment

coefficients. Data were estimated at Mach numbers from 0.3 to 24.2; angles of attack from -1.0 ° to

12.0°; right elevon, left elevon, and rudder deflections from -20.0 ° to 20.0°; and canard deflections

from -10.0 ° to 10.0 °. The data were implemented in the simulation (described in Appendix B) as

table look-up functions.

Propulsion Model The propulsion model used in the study was created by using a modified version

of the cycle analysis method presented in reference 14. The thrust coefficient and specific impulse

were determined as functions of Mach number from 0 to 25, dynamic pressure from 0 to

5000 lb/ft 2, and fuel equivalence ratio from 0 to 100. (These "end values" of dynamic pressure

and equivalence ratio had no physical meaning and were used for programming convenience.only.)

Mass Model The vehicle mass model is based on the assumption of distributed fuel and rigid

structure; fuel slosh was not considered. The mass of the vehicle and its moments of inertia varied

as fuel was consumed. The total weight of fuel consumed WCON was obtained by integrating the

fuel flow rate over the time the engines were thrusting as

I

WCO N "- W dt

where

w=T
Isp
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Thevehicleweightwasthengivenby

W = W0- WcoN

whereW0 is theinitial weightof thevehicle. It is assumedthatthec.g.movesonly in thex-body

axisdirectionasfuel is consumed.Thee.g.location,Xcg, andthemassmomentsof inertiawere

implementedin thesimulationasatablelook-upfunctionsof vehicleweight. Theproductsof

inertiaareneglected.

Appendix B

Description of the Simulation

The block diagram of the simulation used in this study is shown in figure 12. The six degrees-of-

freedom version of POST (ref. 17) was used as the simulation program. Standard symbols are

used in the figure to represent the simulation variables.

The Vehicle Model block contains the vehicle equations of motion involving an oblate rotating Earth

and standard atmosphere. A fourth-order Runga-Kutta integration algorithm with step size of

0.1 sec was used. Angles of attack and sideslip, Mach, and dynamic pressure from the Vehicle

Model block are inputs to the Aero Data block that generated the basic aero forces and moments.

Dynamic pressure, Mach, flight path angle, and acceleration, computed in the Vehicle Model block,

are input to the Outer Loop Guidance block. This block contains the desired variation in dynamic

pressure, flight path angle, and acceleration as a function of Mach number for two precomputed

1000 lb/ft 2 and 2000 lb/ft 2 maximum dynamic pressure trajectories. Algorithms in this block

compute angle of attack and throttle commands as a function of errors in dynamic pressure, flight

path angle, and acceleration. The command value of angle of attack is input to the Inner Loop

Control block that provides artificial stability for the vehicle and causes the vehicle angle of attack to

become equal to the command v_due. The Inner Loop Control block determines the elevon and

rudder commands. These commands are input into the Aero Data block that computes the

incremental forces and moments due to the aerosurface deflections. Symmetric elevon deflection

input to the Thrust Vector Control and c.g. Control blocks determines the thrust vector angle and

change in c.g. position, respectively, to minimize elevon deflection bias. Throttle command, Mach,

and dynamic pressure are input to the Propulsion Data block, and this block generates the thrust and

specific impulse that are passed to the Vehicle Model block. The fuel consumption data are

comp,ted in the Vehicle Model block.
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