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Abstract j"
7

Due to their structural flexibility, spacecraft and space manipulators are multibody

systems with complex dynamics and possess a large number of degrees of freedom. This

publication uses the spatial operator algebra methodology _o develop a new dynamics for-

mulation and spatially recursive algorithms for such flexible multibody systems. A key

feature of the formulation is that the operator description of the flexible system dynamics is

identical in form to the corresponding operator description of the dynamics of rigid multi-

body systems. A significant advantage of this unifying approach is that it allows ideas and

techniques for rigid multibody systems to be easily applied to flexible multibody systems.

The algorithms use standard finite-element and assumed modes models for the individual

body deformation.

A Newton-Euler Operator Factorization of the mass matrix of the multibody system

is first developed. It forms the basis for recursive algorithms such as for the inverse dynam-

ics, the computation of the mass matrix, and the composite body forward dynamics for the

system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix,

each of whose factors is invertible, is developed. It leads to an operator expression for the

inverse of the mass matrix, and forms the basis for the recursive articulated body forward

dynamics algorithm for the flexible multibody system. For simplicity, most of the develop-

ment in this publication focuses on serial chain multibody systems. However, extensions of

the algorithms to general topology flexible multibody systems are described.

While the computational cost of the algorithms depends on factors such as the topol-

ogy and the amount of flexibility in the multibody system, in general, it appears that in

contrast with the rigid multibody case, the articulated body forward dynamics algorithm is

the more emcient algorithm for flexible multibody systems containing even a small number

of flexible bodies. The variety of algorithms described here permits a user to choose the al-

gorithm which is optimal for the multibody system at hand. The availability of a number

of algorithms is even more important for real-time applications, where implementation on

parallel processors or custom computing hardware is often necessary to maximize speed.
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1. Introduction

Due to their structural flexibility, spacecraft and space manipulators are multibody systems

with complex dynamics and possessing a large number of degrees of freedom (dofs). This

publication describes a spatial operator formulation for the analysis and development of

efficient dynamics algorithms for such flexible multibody systems. This approach represents

a reformulation and extension of the spatial operator algebra methodology [1] for the dynamics

of flexible multibody systems [2].

The formulation developed in this publication uses spatial operators and closely par-

allels the corresponding formulation for rigid multibody systems. In effect it represents a

unified methodology for the analysis and development of efficient dynamics algorithms for

general topology, rigid/flexlble multibody systems. Indeed, the analysis and recursive algo-

rithms developed here for the inverse dynamics, the computation of the mass matrix, and

the forward dynamics of the flexible multibody system closely resemble the corresponding

analysis and algorithms for the rigid multibody system.

It is assumed that all deformations of the bodies are small and a linear model of

elasticity is used. However, large articulation at the hinges is allowed. No special assumptions

are made regarding the nature of the component bodies, and the algorithms use standard

finite--element and assumed modes models for the body flexibility. For notational simplicity,

and without any loss in generality, the main focus of this publication is on flexible multibody

systems with serial chain topology. The extensions required for systems with tree and closed-

chain topology are discussed at the end of the publication.

Section 2 summarizes the symbols and notation used in this publication. Section

3 contains the development of the equations of motion for the multibody system. The

recursive relationships between the modal spatial velocities, modal spatial accelerations, and

modal spatial forces are described. Using these, spatial operators are used to develop the

Newton-Euler Operator Factorization of the system mass matrix.

Section 4 describes a recursive Newton-Euler inverse dynamics algorithm for the

flexible multibody system. This algorithm computes the vector of generalized forces cor-

responding to a given state and the vector of generalized accelerations for the multibody

system. In Section 5, the Newton-Euler Operator Factorization of the mass matrix is used

to develop the recursive composite body forward dynamics algorithm for the system. A part

of this algorithm consists of an algorithm for the recursive computation of the multibody

system mass matrix.

Section 6 describes operator factorization and inversion results that form the basis for

the recursive articulated body forward dynamics algorithm. First, a recursive algorithm for

the computation of certain articulated body quantities is defined. These quantities are used

to develop a new operator factorization, denoted the Innovations Operator Factorization of



the system mass matrix. In contrast with the Newton-Euler Operator Factorization, the

factors in the Innovations Operator Factorization are square and invertible operators. This

fact is used to develop an operator expression for the inverse of the mass matrix. A more

efficient algorithm for computing the articulated body quantities is described at the end of

the section. Using the operator expression for the mass matrix inverse, Section 7 describes

the recursive articulated body forward dynamics algorithm for the multibody system. This

algorithm requires neither the explicit formation of the system mass matrix nor its inversion.

Section 8 discusses the computational complexity of the various algorithms described

in this publication. It is shown that the articulated body forward dynamics algorithm is

more efficient than the composite body forward dynamics algorithm, even for systems with

a modest number of bodies and flexible modes. Section 9 describes the extensions of the

dynamics formulation and algorithms developed here to flexible multibody systems with tree

and closed-chain topologies.

2. Notation

Coordinate free spatial notation [1, 3] is used throughout this publication. Briefly a spatial

velocity of a frame is a 6-dimensional quantity, whose upper 3 elements are the angular

velocity while the lower 3 elements are the linear velocity of the frame. A spatial force is a

6-dimensional quantity, whose upper 3 elements correspond to a moment vector while the

lower 3, to a force vector.

In the stacked notation used in this publication, a variety of indices are used to

identify different spatial quantities. Thus for instance, Vs(jk) denotes the spatial velocity of

the jth node on the U h body, V_(k) = col{V,(jk)} denotes the vector of the spatial velocities

of all the nodes on the U h body, while V_ = col{V_(k)} denotes the vector of the spatial
velocities of all the nodes for all the bodies in the serial chain. The index k will be used to

refer to both the k th body as well as the k th body reference frame .T'k, with the usage being

apparent from the context. Some key quantities used in this publication are defined below

(also see Figure 1).



em

N

t_

m

em

el

em

03

mm

em

03
t_

m
u

ee

o_

3



General Quantities:

k

diag{x(k)}

t(x,u)

¢(x,y)

= [z] x E R a×a and denotes the skew-symmetric cross-product matrix associ-

ated with the 3-dimensional vector z

dz
= n and denotes the time derivative of x with respect to an inertial frame

dt

denotes the time derivative x with respect to the body-fixed (rotating) frame

denotes a block diagonal matrix whose U k diagonal element is x(k)

denotes a column vector whose k th element is x(k)

E T_3, the vector from point x to point y

I [(x,y) ) Tt6X6,
= E the spatial transformation operator which trans-

0 I

forms spatial velocities and forces between points x and y

Individual Body Nodal Data:

n,(k)

jk

Io(k, jk)

6,,(jk)

u(jk)

number of nodes on the k th body

the body reference frame with respect to which the deformation field for the

k th body is measured. The motion of this frame characterizes the motion of

the k th body as a rigid body.

denotes the jth node on the k th body

E R 3, the vector from .7"k to the location (before deformation) of the jth node

reference frame on the k th body

E 7U, the translational deformation of the jth node on the k th body

= lo(k,jk)+St(jk) E R 3, the vector from .T'k to the location (after deformation)

of the jth node reference frame on the k th body

E Ra the deformation angular velocity of the jth node on the k th body with

respect to the body frame Yk

ERa, the deformation linear velocity of the jth node on the U h body with

respect to the body frame .T'k

E Re, the spatial displacement of node jk. The translational component of

u(jk) is 5t(jk), while its time derivative with respect to the body frame _k is

fi(jk) = (5_(jk) )



J(jk) • "n. 3x3, the inertia tensor about the nodal reference frame for the jth node

on the k th body

p(J,,) E g. 3, the vector from the nodal reference frame to the node center of mass

for the jth node on the k th body

m(jk) the mass of the jth node on the k th body

Ms(jk)

! \

( ff(jk) m(jk)f_(jk) / • Te"6x6, the spatial inertia about the nodal

--m(jk)_(jk) m(jk)I )
reference frame for the jth node on the k th body

diag{M,(jk)} (/?_s,,,(klx6,_,(O, the structural mass matrix for the k th body

E R 6'_°(k)×s"'(k}, the structural stiffness matrix for the k th body

Individual Body Modal Data:

n (k)

,(k)

the number of assumed modes for the k th body

= nm(k)+ 6, the number of deformation plus rigid-body dofs for the k th body

E 74n"(k), the vector of modal deformation variables for the k th body

• g. z, the modal slope (or differential change in orientation) displacement

vector for the v th mode at the j_h nodal reference frame.

 J(k) = .... ,)_,,,(k)(k)] • , the modal slope displacement influence

vector for the jth node due to all the modes for the k th body. Note that

5_(jk) = M(k)_(k).

• 7_3, the modal translational displacement vector for the r th mode at the j_h

nodal reference frame

 s(k) = "",%.,(/,)( )] • , the modal translational displacement in-

fluence vector for the jth node due to all the modes for the U h body. Note

that 6t(jk) = 7J(k)r/(k) and 5,,(jk) = 7J(k)fl(k).

w;(k)

ris(k)

(a,i(k) )
= E T46, the modal spatial displacement vector for the r th mode

at the jtkh nodal reference frame

= [II{(k), .-., II,_,.(k)j (k)] • T46×'_"(k), the modal spatial influence vector for

the jfh node. The spatial deformation of node jk is given by u(jk) = 1-IS(k)7/(k).



II(k) = col{IP(k)} C T46'_'(k)xn'_(k), the modal matrix for the U h body. The r th

column of II(k) is denoted IIr(k) C 7"46n'(k) and is the mode shape function for

the r th assumed mode for the k th body. The deformation field for the U a body

is given by u(k)= H(k)r/(k), while fi(k) = II(k)_(k).

Mm(k) C T4X'(k)Gc(k), the modal mass matrix for the k ta body.

I(m(k) C T4X'(k}xX'(k), the modal stiffness matrix for the k ta body.

Mu!tibody Data:

N number of bodies in the serial flexible multibody system

_V" = _v=l _7'(k), the overall dofs in the serial chain obtained by disregarding the

hinge constraints

n,.(k) the number of dofs for the k th hinge

H(k) = n_(k) + n,.(k), the number of deformation plus hinge dofs for the U h body

A/" = _=1A/'(k), the overall deformation plus hinge dofs for the serial chain

dk denotes the node on the k th body to which the U h hinge is attached

tk denotes the node on the k th body to which the (k - 1) th hinge is attached

Ok the reference frame for the k th hinge on the k th body. This frame is fixed to

node dk.

O + the reference frame for the k th hinge on the (k+ 1) th body. This frame is fixed

to node tk+l.

O(k) E 7"4nr(k), the vector of configuration variables for the k th hinge

fl(k) E T4nr(k), the vector of generalized speeds for the k th hinge

av(k) )
= E T46, the relative spatial velocity for the k th hinge defined as

the spatial velocity of frame Ok with respect to frame O +

H*(k) E 7"46×n'(k), the joint map matrix for the k ta hinge such that Av(k ) = H*(k)fl(k).

\

= T/(k) ] ff T4;C(a), the vector of (deformation plus hinge) generalized con-_(k)

0(k) )
figuration variables for the k th body
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x(k)

v(k)

v(ok)

v(o+_)

v_(yk)

_,(jk)

Vm(k)

am(k)

am(k)

b,,,(k)

f,,,(k)

f_(jk)

f(k)

T(k)

H.r( k )

= (r_(k))fl(k) E Ti_C(k)' thevect°r °f (def°rmati°n plus hinge) generalized

motion variables (or generalized speeds) for the k th body

= v(J:k) (co(k) )
= (E "R6, the spatial velocity of the k th body reference

v(k)
frame .T'k, with co(k) and v(k) denoting the angular and linear velocities re-

spectively of frame .T'k

E 7_6, the spatial velocity of frame Ok

E "Rfi, the spatial velocity of frame O +

(E "R.6, the spatial velocity of the jth node on the k th body.

(E T_6, the spatial acceleration of the jth node on the k th body.

O(k) / (E T/_(k}, the modal spatial velocity of the k th body

v(k) J
= _/m(k) E 7"__(k), the modal spatial acceleration of the k th body

(E "R_(k}, the modal Coriolis and centrifugal accelerations for the k th body

(E _(k) the modal gyroscopic forces for the k th body

E _:_(k), the modal spatial force of interaction between the k th and

(k + 1) th bodies

E 7_6, the spatial force at node jk

E R6 the effective spatial force at frame .Tk

E 7_)¢(k), the generalized force for the k th body

= H(k)¢(Ok, k) E R,_T(k)×6, the joint map matrix referred to frame .Tk for the

k th hinge

I -[11d(/¢)]" ) 7_(k)×:_(k)
= E , the (deformation plus hinge) modal joint

0 H.r(k)

map matrix for the k th body

7



.a(k)

_(k + 1,k/

e(k + 1,k)

= ( [w(k)]" )¢(k,tk)
tk and frame _k

E 7__(k)×s, relates spatial forces and velocities between node

= [0, ¢(tk+l, k)] E _sxX'(k), relates spatial forces and velocities between node

t_+l and frame .Y'k

0 [II'(k + 1)]'¢(tk+l,k) ) TgSe(k+,)×X, Ck)
= .,4(k + 1)B(k + 1,k) = G , the

0 ¢(k + 1,k)

interbody transformation operator which relates modal spatial forces and ve-

locities between the k th and (k + 1) th bodies

C(k,k-1)

B(k)

.M

C

0

= ¢(tk, k- 1) E TO._'_'(k)×6

0

= [¢(k, lk),¢(k,2k),...,¢(k, ns(k))] E R _×sn'(k), relates the spatial velocity

of frame .T'k to the spatial velocities of all the nodes on the k th body when the

body is regarded as being rigid

E TO."¢×_, the multibody system mass matrix

E R X, the vector of Coriolis, centrifugal and elastic forces for the multibody

system

3. Equations of Motion for Flexible Serial Chains

In this section we develop the equations of motion for a serial flexible multibody system

consisting of N flexible bodies. Recursive relationships between the modal spatial velocities,

accelerations and forces are developed. Spatial operators are introduced to express these

relationships in a compact form, and obtain the Newton-Euler Operator factorization of the

mass matrix for the multibody system.

It is assumed that each flexible body has a lumped mass model with a a rigid body

being located at each node. The number of nodes on the k th body is denoted ns(k). The

jth node on the k th body is referred to as the jtkh node. Each body has associated with it



a body reference frame, denoted .T'k for the k th body. The deformation of the nodes on the

body is described with respect to this body reference frame, while the rigid body motion of

the k th body is characterized by the motion of frame .Tk.

The 6-dimensional spatial deformation (slope plus translational) of node jk (with

respect to frame .T'k) is denoted u(jk) 6 7_6. The overall deformation field for the k th body is

defined as the vector u(k) = col{u(jk)} E _6,,,(k). The vector from frame 9rk to the reference

frame on node jk is denoted l(k, jk) E _3.

The spatial inertia of the jth node is defined as

M,(jk) =

\

,7(jk) m(jk)_(jk) I E _6×6

--m(jk )_(jk ) m(jk )I )
(3.1)

where ff(jk), P(jk,) and m(jk) are the inertia tensor about the node reference frame, the

vector from the node reference frame to its center of mass, and the mass, respectively, for

the jth node on the k th body. The structural mass matrix for the k th body Ms(k) is the block

diagonal matrix

Ms(k) = diag{Ms(jk)} • _6,_,(k)×s,,(k) (3.2)

The structural stiffness matrix is denoted Ks(k) • ,_6ns(k)x6ns(k)

As shown in Figure 1, the bodies in the serial chain are numbered in increasing

order from tip to base. We use the terminology inboard (outboard) to denote the direction

along the serial chain towards (away from) the base body. The k th body is attachecl on

the inboard side to the (k + 1) th body via the U h hinge, and on the outboard side to the

(k- 1) th body via the (k- 1) *h hinge. On the U h body, the node to which the outboard

hinge (the (k- 1) th hinge) is attached is referred to as node tk, while the node to which the

inboard hinge (the U h hinge) is attached is denoted node dk. Thus the k th hinge couples

together nodes dk and tk+l. Attached to each of these nodes are the U h hinge reference frames

denoted Ok and O + , respectively. The number of dofs for the k th hinge is denoted nr(k). The

vector of configuration variables for the U h hinge is denoted O(k) • g,.(k), while its vector

of generalized speeds is denoted fl(k) • TC_'(k). In general, when there are nonholonomic

hinge constraints, the dimensionality of fl(k) may be less than that of O(k). For notational

convenience, and without any loss in generality, we assume here that the dimensions of the

vectors O(k) and _(k) are equal. In most situations fl(k) is simply t_. tlowever there are

many cases where the use of quasicoordinates simplifies the dynamical equations of motion

and an alternative choice for/3(k) may be preferable. The relative spatial velocity Av(k)

across the hinge is given by H'(k)fl(k), where H*(k) denotes the joint map matrix for the

k th hinge.

9



We assume that there exists a set of n,,,(k) assumed modes for the k th body, and let

IIJ(k) E 746 denote the modal spatial displacement vector at the jtkh node for the r th mode.

We also define the modal spatial displacement influence vector IIJ(k) C T4sx'_m(k) for the j_h

node and the modal matrix. II(k) E 746,_,(k)×,,,(k) for the k th body as follows:

Jw(k) = and n(k)=col{W(k)}

The r th column of II('k) is denoted H_(k) and defines the mode shape for the r th assumed

mode for the k th body. With rl(k ) E 74rim(k) denoting the vector of modal deformation

variables for the k th body, the spatial deformation of node jk and the spatial deformation

field u(k) for the k th body are given by

u(jk) = FIJ(k)rl(k) and u(k) = II(k)r/(k) (3.3)

In the multibody context, it is often convenient to choose the k th body reference frame

.fk as fixed to node dk at the inboard hinge. For this choice, the assumed modes are referred

to as cantilever modes, and for which

IIf(k)=O and r=l...nm(k) (3.4)

As a consequence, node dk exhibits zero deformation (u(dk) = 0). Alternative choices of

modes, which are often preferred for control analysis and design, are the free-free modes. For

this case, the reference frame .T'k is not fixed to any node, but is rather assumed to be fixed

to the undeformed body, so that all nodes exhibit nonzero deformation. We assume here

that when free-free assumed modes are used, only the deformation modes, and none of the

rigid body modes, have been included in the mode set. The dynamics model and algorithms

developed here handle both types of modes' cases, with some additional computational

simplifications arising from Eq. (3.4) when cantilever modes are used. For a related discussion

regarding the choice of reference frame and modal representations for a flexible body see

reference [4].

The vector of generalized configuration variables _9(k) and generalized speeds x(k) for

the k th body are defined as

where Af(k) _ nm(k) + nT(k). The overall vectors of generalized configuration variables

10



and generalized speeds X for the serial multibody system are defined as

Oacol O(k E7"4 X and X=col x(k ER a; (3.6)

where 3/" a N= _k=l Af(k). The number of overall dofs for the multibody system is N'. The

state of the multibody system is defined by the pair of vectors {v_, X}- For a given system

state {v_, X}, the equations of motion define the relationship between the vector of generalized

accelerations _( and the vector of generalized forces T E T4ac for the system. The inverse

dynamics problem consists of computing the vector of generalized forces T for a prescribed

set of generalized accelerations ;_. The forward dynamics problem is the converse one and

consists of computing the set of generalized accelerations 3_resulting from a set of generalized

forces T. The equations of motion for the system are developed in the remainder of this

section. In Section 4, a recursive Newton-Euler inverse dynamics algorithm is developed,

while Section 5 and Section 7 describe two alternative forward dynamics algorithms.

3.1 Recursive Propagation of Velocities

In this section, recursive relationships as well as operator expressions for the modal spatial

velocities of the bodies in the serial chain are developed.

Let V(k) denote the spatial velocity of the k th body reference frame _'k, i.e.,

V(k)= (w(k))cT_6v(k)

where w(k) and v(k) denote the angular and linear velocities respectively of _k- The spatial

velocity V_(tk+l) C 7_6 of node tk+l (on the inboard of the k th hinge) is related to the spatial

velocity V(k + 1) of the (k + 1) th body reference frame Jrk+l, and the modal deformation

variable rates r}(k + 1) as follows:

V_(tk+,) = ¢*(k + 1,tk+l)V(k + 1) + _(tk+,)

= ¢*(k + 1,tk+_)V(k + 1) + Fi'(k + 1)_(k + 1)

The spatial transformation operator ¢(x,y) C 7"46×6 above is defined to be

¢(x,y) = ( OI "l(x,Y)i )

(a.7)

(a.8)

11



where l(x, y) C R 3 denotes the vector between the points x and y. Note that the following

important (group) property holds:

¢(x,y)¢(y,z) = ¢(z,z)

for arbitrary points x, y and z. As in Eq. (3.7), and all through this publication, the index

k will be used to refer to both the k th body as well as to the k th body reference frame 9rk

with the specific usage being evident from the context. Thus V(k) may be read as V(.T'k),

and ¢(k, tk) as ¢(_k, tk).

The spatial velocity V(O +) of frame O + on the inboard side of the k th hinge is related

to V_(tk+l) via

v(ot) = ¢*(tk+,,O_)_(tk+,) (3.9)

The relative spatial velocity Av(k) across the k th hinge is given by H*(k)fl(k), and so the

spatial velocity V(Ok) of frame Ok on the outboard side of the k th hinge is

V(Ok) = V(O +) + H*(k)fl(k) (3.10)

The spatial velocity V(k) of the k th body reference frame is given by

v(k) = ¢*(Ok,k)V(Ok)- a(dk) = ¢'(O_,k)V(O_) - n_(k)_(k) (3.11)

Putting together Eq. (3.7), Eq. (3.9), Eq. (3.10) and Eq. (3.11), it follows that

V(k) = ¢'(k + 1, k)V(k + 1) + ¢*(tk+l,]g)Yit(]_ 71- 1)_(k + 1)

+¢*(Ok, k)H*(k)fl(k)- II_(k)_(k) (3.12)

Thus with _(k) _ nm(k)+6, and using Eq. (3.12), the modal spatial velocity Vm(k) e _?7(k)

for the k th body is given by

/ \

_= [ ;l(k) ] = O*(k + 1, k)V,.,,(k + 1) + 7-'l*(k)x(k ) • 7g:W(k) (3.13)vm(k)
v(k) )

where the interbody transformation operator _(., .) and the modal joint map matrix 7-{(k) are

12



defined as

where

Note that

where

A
¢(k + 1,k) =

0 [IIt(k + 1)]*¢(tk+l,k)0 ¢(k + 1,k)

_(k) _= (0I -[nqk)]'H_(k))
E R X(k)x:F(k)

H_-(k) a= H(k)¢(Ok,k) E TC 'r(k)x6

¢(k + 1,k)= A(k + 1)B(k + 1, k)

A(k) A ( [n'(k)]" ) r_(_×_ =
= e and B(k+ l,k) zx [0,

¢(k,tk)

The modal joint map matrix "H(k) can be partitioned as

7l(k)=(7"tl(k) )7-lr(k)
E T/H(k)x_(k)

where

T/s(k ) _ [I, _[nd(k)l.] _ T_-m(k)×_(_)and _r(k) =_[0,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

H(k)¢(Ok, k)] C 7C _(k)×y(k)

(3.19)
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With _" = N kEk=l _'(), define the spatial operator 8, as

0 0 0 0 0

¢(2,1) 0 ... 0 0

£_, _ 0 ¢(3,2) 0 0 E 7¢X'×3g

i i " "

0 0 _(N,N- 1) 0

(3.20)

Noting that &t is nilpotent (i.e. g_ = 0), we define the spatial operator _ as

(l _ ____A [I-- E¢] -1 = 1+ _¢¢ "-[- ''' + _g-1 =

I 0

(I)(2,1) 1

(I)(N, 1) (I)(N, 2)

0

0
E lg-xzx_

I

(3.21)

where

O(i,j)_=¢(i,i-1) ... ¢(j+l,j) for i>j

Also define the spatial operator"/-/_ diag{_(k)} E _v×X'. Using these spatial operators,

and defining Vm _ col{V=(k)} E R:_, from Eq. (3.13) it follows that the spatial operator

expression for Vm is given by

Vm = ¢*N*X (3.22)

3.2 Modal Mass Matrix for a Single Body

In this section we derive an expression for the modal mass matrix of the k th body• With

V,(jk) E _6 denoting the spatial velocity of node jk, and V,(k) zx col{V_(jk)} E R. 6n'(k) the

vector of all nodal spatial velocities for the k th body, it follows (as in Eq. (3.7)) that

= B'(k)V(k) + = In(k), B'(k)]V,.(k) (a.2a)

14



where

B(k) [¢(< e (3.24)

Since M,(k) is the structural mass matrix of the k th body, the kinetic energy of the k th body

is given by

2 V](k)M,(k)V_(k) = 1V*(k)Mm(k)V=(k)

where

Mm(k) B*(k)]=

( M_](k) Mff(k)
M_l(k) M_(k)

Corresponding to the generalized speeds vector x(k), M_(k) as defined above is the modal

mass matrix of the k th body. In the block partitioning in Eq. (3.25), the superscripts f

and r denote the flezible and rigid blocks respectively. Thus M_f(k) represents the flex/flex

coupling block, while M_(k) the flex/rigid coupling block of M_(k). We will use this

notational convention all through this publication. Note that M(_(k) is precisely the rigid

body spatial inertia of the k th body. Indeed, Mm(k) reduces to the rigid body spatial inertia

when the body flexibility is ignored, i.e., no modes are used, since in this case rim(k) = 0

(and so II(k)is null).

Since the vector l(k,jk) from .T'k to node jk depends on the deformation of the node,

the operator B(k) is also deformation dependent. From Eq. (3.25) it follows that unlike the

block Y_Y(k), which is deformation independent, both the blocks M_(k) and M:_(k) are

deformation dependent. The detailed expression for the modal mass matrix can be defined

using modal integrals which are computed as a part of the finite element structural analysis

of the flexible bodies. Such an expression for the modal mass matrix of the k th body is given

in Appendix B in Eq. (B.8). Often the deformation dependent parts of the modal mass

matrix are ignored, and free-free eigen-modes are used for the assumed modes II(k). When

this is the case, MY_(k) is zero and M_f(k) is block diagonal.
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3.3 Recursive Propagation of Accelerations

Differentiating the velocity recursion equation, Eq. (3.1_, we obtain the following recursive

expression for the modal spatial acceleration am(k) E "R]¢(k) for the k th body:

_m(k) _ Pm(k)= = _*(k -4- 1,k)am(k + 1) + "H*(k);_(k) + am(k) (3.26)

where a(k) = l_(k), and the Coriolis and centrifugal acceleration term am(k) e 7_77(k) is

given by

am(k) = d¢*(k + 1,k)vm( k + 1) + d'Ttt_k)'/4'(x(k)dt
(3.27)

The detailed expressions for am(k) can be found in Eq. (B.11) in Appendix B. Defining

a,_ = col{am(k)} C _:V and _,_ = col{am(k)} e _, Eq. (3.26)can be reexpressed using

spatial operators in the form

_m= v'(w2 + am) (3.2S)

The vector of spatial accelerations of all the nodes for the k th body, %(k) _ col{%(jk)}

C 7"46n°(k), is obtained by differentiating Eq. (3.23):

_,(k) = P,(k) = [rI(k), B'(k)]_(k) + a(k) (3.29)

where

a(k) a= col{a(jk)} = d[II(k), B'(k)]vm(k ) e T_6n°(k)dt
(3.30)

3.4 Recursive Propagation of Forces

We now develop the equations of motion for the k th body. Let f(k - 1) C 7_6 denote the

effective spatial force of interaction, referred to frame Fk-1, between the k th and

(k- 1) th bodies across the (k - 1) th hinge. Recall that the (k- 1) th hinge is between node tk

on the k th body and node dk-1 on the (k - 1) t_ body. With f_(jk) C 7"46 denoting the spatial

force at a node jk, the force balance equation for node tk is given by

f_(tk) = ¢(tk, k - 1)f(k - 1) + M_(tk)a_(tk) + b(tk) + fK(tk) (3.31)

#

i
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For all nodesother than node tk on the k *h body, the force balance equation is of the form

f.(jk) = M.(jk)as(jk) + b(jk) + fK(jk) (3.32)

In the above, fK(k) = K,(k)u(k) C R 6''(k) denotes the vector of spatial elastic strain forces

for the nodes on the k th body, while b(jk) C Tt 6 denotes the spatial gyroscopic force for node

jk and is given by

b(jk) = ( (o(jk)fl(jk)w(jk) ) e Ti e
m(jk )&(jk )&(jk )p(jk )

where w(jk) C Tt 3 denotes the angular velocity of node jk-

equations and defining

(

C(k,k- 1) zx

0

(3.33)

Collecting together the above

• T_6_'(})×6 and b(k) _= col{b(jk)} • T_6_'(}) (3.34)¢(tk,k-- 1)

0

it follows from Eq. (3.31) and Eq. (3.32) that

f,(k) = C(k,k- 1)f(k- 1) + M,(k)c_,(k) + b(k) + K,(k)u(k) (3.35)

where fs(k) _ col{f.(jk)} • "R6"°(k). Noting that

f(k) = B(k)f,(k) (3.36)

and using the principle of virtual work, it follows from Eq. (a.2a)that the modal spatial

forces fro(k) • Tt _{k) for the k 'h body are given by

= f,(k) = (3.37)

B(k) f(k)

17



ri.(k) )
Premultiplying Eq. (3.35) by and using Eq. (3.25), Eq. (3.29), and Eq. (3.37)

B(k)
leads to the following recnrsive relationship for the modal spatial forces:

fro(k)
= (II*(k)C(k,k-1))B(k)C(k, k 1)

= ( [nt(k)]* )¢(k,t_)

f(k- 1) + Mm(k)am(k) + b,_(k) + K,,_(k)O(k)

¢(tk, k - l)f(k - 1) + Mm(k)am(k) + bin(k) + Km(k)O(k)

= ¢b(k,k - 1)fm(k- 1) + Mm(k)a_(k) + bin(k) + Km(k)v_(k) (3.3s)

Here we have defined

[b(k) + Ms(k)a(k)] • 7__(k) (3.39)

and the modal stiffness matrix

Km(k) ZX(II*(k)K,(k)II(k ) 0) 7_57(k) ×77(k)
= • (3.40)

0 0

The expression for Kin(k) in Eq. (3.40) uses the fact that the columns of B*(k) are indeed the

deformation dependent rigid body modes for the k th body and hence they do not contribute

to its elastic strain energy. Indeed, when a deformation dependent structural stiffness matrix

Ks(k) is used, we have that

I,'/k)B'(_) = 0 (3.41)

However the common practice (and also followed here) Of using a constant, deformation-

independent structural stiffness matrix leads to the anomalous situation wherein Eq. (3.41)
does not hold exactly. In view of this, without any loss in accuracy we ignore theseanomalous

extra terms and drop them from the left-hand side of Eq. (3.41).

The velocity-dependent bias term bin(k) is formed using modal integrals generated

by standard finite-element programs, and a detailed expression for it is given in Eq. (B.50)

in Appendix B. From Eq. (3.38), the operator expression for the modal spatial forces

18



fm _ col{ fm (k) } C T_Fy for all the bodies in the chain is given by

fm= ¢(Mmam +bm + KmO) (3.42)

where

From the principle of virtual work, the generalized forces vector T C 7_N" for the multibody

system is given by the expression

T = 7"/fro (3.43)

3.5 Operator Expression for the System Mass Matrix

Collecting together the operator expressions in Eq. (3.22), Eq. (3.28), Eq. (3.42) and Eq. (3.43),

we obtain the following:

Vm = ¢*_/*X

Olin = eP*(7"t'_ + am)

fm= ¢(Mm_m + bm+ Kin0) = ¢Mm¢*_'2 + ¢(Mm¢*am + bm+ K_0)

T = _fm = _¢Mm¢'_*_ + _¢(M_¢*am + bin)

= M2+c

(3.44)

where

M _ 7-/¢Mm(I,*'H* C T_ 'v×X and C zx Tlep(MmeP.am +bm + KmO) C 7¢:¢ (3.45)

Here Ad is the system mass matrix for the serial chain and the expression _¢M,_(I)*'H* is

referred to as the Newton-Euler Operator Factorization of the mass matrix. The term C is

the vector of Coriolis, centrifugal, and elastic forces for the system.

A noteworthy fact about the operator expressions for jM and 12 is that they are iden-

tical in form to the corresponding expressions for rigid multibody systems (see references

[1, 5]). Indeed, the similarity is more than superficial, and the key properties of the spatial

operators that are used in the analysis and algorithm development for rigid multibody sys-

tems also hold for the spatial operators defined here for flexible multibody systems. Apart

from the pedagogical importance, a significant advantage of this is that a large part of the
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analysisand algorithms for rigid multibody systems can be easily carried over and applied

to flexible multibody systems. This is precisely the approach we adopt here.

4. Inverse Dynamics Algorithm

This section describes a recursive Newton-Euler inverse dynamics algorithm for computing

the generalized forces T, for a given set of generalized accelerations _: and system state

{0,X}. The inverse dynamics algorithm also forms a part of forward dynamics algorithms

such as those based upon composite body inertias or the conjugate gradient method [6].

Collecting together the recursive equations in Eq. (3.13), Eq. (3.26), Eq. (3.38) and

Eq. (3.43) we obtain the following recursive Newton-Euler inverse dynamics algorithm:

Vm(N + 1) = 0,

for k =

ym(k)

am(k) =

end loop

c_(N + 1) = 0

N-..1

= _*(k + 1,k)Vm(k + 1) + 7ff*(k)x(k)

(I)*(k + 1, k)c_m(k + 1) + 7-(*(k)_(k) + am(k)

(4.1)

Yr.(0)=0

fork = 1...N

fin(k) = ¢(k,k - 1)f..,(k - 1) + M,,,(k)_._(k) + b,,,(k) + K,,,(k)O(k)

T(k) = "H(k)f,,(k)

end loop

The structure of this algorithm closely resembles the recursive Newton-Euler inverse dynam-

ics algorithm for rigid multibody systems [7, 1]. It assumes without any loss in generality

that the base body is stationary and also that the tip force is zero. Base mobility is handled

by attaching an additional 6-dof hinge between the mobile base and an inertial frame. In

case there is a non-zero tip force, f,,,(0) should be initialized to the value of the tip force

in the algorithm. By taking advantage of the special structure of (I)(k + 1, k) and "H(k) in

Eq. (3.14) and Eq. (3.15), the Newton-Euler recursions in Eq. (4:1) Can be fi_rther simplified.

Using the superscripts f and r as before to denote the flexible and rigid components, we
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havethe following partitioning:

, fro(k)=

Based upon this partitioning, the simplified inverse dynamics algorithm is as follows:

Vm(N+I)=O,

fork = N..-1

V_(k) = ,_(k)

v:(k) =

am(N+ 1) = 0

¢'(tk+t,k)A'(k + 1)Vm(k + 1) + H_(k)fl(k)- IId(k)il(k)

end loop

= q(k)

= ¢*(tk+,,k).A'(k + 1)am(k+ 1) + H_(k)fl(k) - II_(k)q(k) + arm(k)

fro(o)=o

fork = 1--.N

f_(k)

T(k)

= A(k)¢(tk, k- 1)f,_(k - 1) + Mm(k)a..(k) + bm(k) + Km(k)O(k)

Tr(k) HT(k)f_(k)

end loop

(4.2)

Flexible multibody systems have actuators typically only at the hinges. Thus for the

k th body, only the subset of the generalized forces vector T(k) corresponding to the hinge

actuator forces T_(k) can be set, while the remaining generalized forces TY(k) are zero. Thus

in contrast with rigid multibody systems, flexible multibody systems are under-actuated sys-

tems [8], since the number of available actuators is less than the number of motion dofs in

the system. For such under-actuated systems, the inverse dynamics computations for the

generalized force T are meaningful only when the prescribed generalized accelerations _ form

a consistent data set. For a consistent set of generalized accelerations, the inverse dynamics
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computations will lead to a generalized force vector T such that Tf(.) = O.

5. Composite Body Forward Dynamics Algorithm

The forward dynamics problem for a multibody system consists of computing the generalized

accelerations ;_ for a given set of generalized forces T and state of the system {0,X}. The

composite body forward dynamics algorithm consists of the following steps: (a) computing

the system mass matrix .hi, (b) computing the bias vector C, and (c) numerically solving

the following linear matrix equation for _:

M2=T-C (5.1)

Later in Section 6 we describe the recursive articulated body forward dynamics algorithm

that does not require the explicit computation of either 3,4 or C.

It is evident from Eq. (5.1) that the components of the vector C are the generalized

forces for the system when the generalized accelerations 2_ are all zero. Thus C can be

computed using the inverse dynamics algorithm in Eq. (4.2). An efficient composite-body-

based recursive algorithm for the computation of the mass matrix .hd is described in this

section. This algorithm is based upon the following lemma which describes a decomposition

of the mass matrix into block diagonal, block upper triangular and block lower triangular

components.

Lemma 5.1: Define the composite body inertias R(k) C 7_xr(k)×:V(k) recursively for all

the bodies in the serial chain as follows:

R(o)=o

fork =

R(k)

" " "N

= _(k,k- 1)R(k - 1)qS*(k,k - 1) + Mm(k)

(5.2)

end loop

Also define R _ diag{R(k)} E R_'×77. Then we have the following spatial operator dec0m-

position where _ zx _ _ I:

• MmqS* = R + (FR + R(F* (5.3)

22



Proof: See Appendix A. |

Physically, R(k) is the modal mass matrix of the composite body formed from all

the bodies outboard of the k th hinge by freezing all their (deformation plus hinge) dofs. It

follows from Eq. (3.45) and Lemma 5.1 that

M = 7-t(I)M,,(I)*_* = 7-tRY* + 7-/_R7/* + _R_*_* (5.4)

Note that the three terms on the right of Eq. (5.4) are block diagonal, block lower triangular

and block upper triangular respectively. The algorithm for computing the mass matrix

3`1 computes these terms recursively. The main recursion proceeds from tip to base, and

computes the blocks along the diagonal of 3,t. As each such diagonal element is computed,

a new recursion to compute the off-diagonal elements is spawned. Its structure is similar

to that of the composite body algorithm for computing the mass matrix of rigid multibody

systems [6, 9], and is as follows:

R(0) =0

fork = 1-..N

R(k) = @(k,k- 1)R(k- 1)qS*(k,k- 1) + Mm(k)

= A(k)¢(tk, k - 1)R_(k- 1)¢*(tk, k - 1).A'(k) + Mm(k)

x(k) =

.M,(k,k) =

forj = (k+l)-..N

X(j) = (_(j,j- 1)X(j- 1) = .A(j)¢(tj,j- 1)XT(j- 1)

3`1(j,k) = 3`1*(k,j)= 7-l(j)X(j)

end loop

end loop

(5.5)
The structure of the above algorithm for computing the mass matrix closely resembles the

composite rigid body algorithm for computing the mass matrix of rigid multibody systems

[6, 9]. Using the sparsity of both _](k) and 7-/T(k), additional computational simplification

of the steps in the above algorithm is easy to implement.
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6. Factorization and Inversion of the Mass Matrix

An operator factorization of the system mass matrix .£4, denoted the Innovations Operator

Factorization, is derived in this section. This factorization is an alternative to the Newton-

Euler factorization in Eq. (3.45) and, in contrast with the latter, the factors in the Innovations

factorization are square and invertible. Operator expressions for the inverse of these factors

are developed and these immediately lead to an operator expression for the inverse of the

mass matrix. Using further operator identities, we obtain an operator expression for the

generalized accelerations :_ in terms of the applied generalized forces T. The recursive

implementation of this expression leads to the recursive articulated body forward dynamics

algorithm described in Section 7. The operator factorization and inversion results here

closely resemble the corresponding results for rigid multibody systems (see [1]).

Given below is a recursive algorithm which defines some required articulated body

quantities:

for k

P(k)

D(k)

a(k)

K(k+l,k)

T(k)

P+(k)

_(k + 1,k)

end loop

= ¢P(k,k - 1)P+(k - 1)O*(k,k- 1) + Mm(k) e _:F(k)x_(k)

= _(k)P(k)W(k) e 7__(k)x_(_)

= P(k)_*(k)D-l(k) e T_;V(k)×ar(k)

= _(k + 1,k)a(k) e 7¢_(_)×_(k)

= 7(k)P(k) • n :F(k)x_(k)

= v(k + 1,k)_(k)• n_(_)×_(k)

(6.1)

= ==

The operator P • 7¢_'×:V is defined as the block diagonal matrix with the k th diagonal

element being P(k). The quantities defined in Eq. (6.1) form the component elements of the

following spatial operators:

D = _/PT-/* = diag D(k • T¢_¢x_¢

a =zx Pn*D-' = diag{G(k)} • T/:V×j¢

Ii _= &G • n _×z
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"_ _= I - GH = diag{_(k)} C 7__xX/'

(6.2)

The only nonzero block elements of K and g, are the elements' K(k+ 1, k)'s and @(k+ 1, k)'s

respectively along the first sub-diagonal.

As in the case for _;¢, E, is nilpotent, so we can define

I 0

_,(2, 1) ;r

:

qJ(N, 1) _(N, 2)

0

0
E T__Tx_"

I

(6.3)

where

• (i,j) zx _(i,i-1) ... _(j+l,j) for i>j

The structure of the operators g, and q is identical to that of the operators L'¢ and _5

respectively except that the component elements are now q(i,j) rather than eP(i,j). Also,

the elements of • have the same semigroup properties as the elements of the operator £5

and as a consequence, high-level operator expressions involving them can be directly mapped

into recursive algorithms, and the explicit computation of the elements of the operator • is

not required.

The Innovations Operator Factorization of the mass matrix is defined in the following lemma.

Lemma 6.1:

.M = [I + HCK]D[I + HCK]* (6.4)

Proof: See Appendix A. I

Note that the factor [I + Hq_K] C T_Hx_¢ is square, block lower triangular and non-

singular, while D is a block diagonal matrix. This factorization may be regarded as a block

LDL* decomposition of 3,4. The following lemma gives the closed form operator expression

for the inverse of the factor [I + HqSK].
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Lemma 6.2:

[I+ H¢K]-' = [I- H_K] (6.5)

Proof: See Appendix A. |

It follows from Lemmas 6.1 and 6.2 that the operator expression for the inverse of the mass

matrix is given by:

Lemma 6.3:

3d-' = [I- _ K]*D-'[I- _ K] (6.6)

II

Once again, note that the factor [I- 7-g_K] is square, block lower triangular and

nonsingular and so Lemma 6.3 may be regarded as providing a block LDL* decomposition

of 3A-'.

7. Articulated Body Forward Dynamics Algorithm

We first use the operator expression for the mass matrix inverse developed in Section 6 to

obtain an operator expression for the generalized accelerations _. This expression directly

leads to a recursive algorithm for the forward dynamics of the system. The structure of

this algorithm is completely identical in form to the articulated body algorithm for serial

rigid multibody systems. The computational cost of this algorithm is further reduced by

separately processing the flexible and hinge dofs at each step in the recursion, and this forms

the articulated body forward dynamics algorithm for serial flexible multibody systems.

The following lemma describes the operator expression for the generalized accelera-

tions _,"in terms of the generalized forces T.

Lemma 7.1:

u,:crD-'[r-._ u_{::r + *'am+ b_+ 1:mO}]-K*_*_[i- (7.1)

Proof: See Appendix A. II
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As in the case of rigid multibody systems [1, 3], the direct recursive implementation

of Eq. (7.1) leads to the following recursive forward dynamics algorithm:

z+(0)=0

fork = 1...n

z(k) = ¢(k,k - 1)z+(k- 1) + P(k)am(k) + bin(k) + gm(k)_(k)

_(k) : T(k)- _(k)z(k)

v(k) = D-l(k)_(k)

z+(k) = z(k) + a(k)_(k)

end loop

(7.2)

c_m(n + 1) = 0

fork = n...1

a+(k) = ¢*(k + 1, k)am(k + 1)

_(k) = _(k)- a'(k)_+_(k)
am(k) = a+(k) -t- 7-{*(k);_.(k) + am(k)

end loop

(7.3)

All the dofs for each body as characterized by its joint map matrix 7-/*(.) are processed to-

gether at each recursion step in this algorithm. However, by taking advantage of the sparsity

and special structure of the joint map matrix, additional reduction in computational cost is

obtained by processing the flexible dofs and the hinge dofs separately. These simplifications

are described in the following sections.

7.1 Simplified Algorithm for the Articulated Body Quantities

\Ve describe intuitively the basis for the separation of the modal and hinge dofs for the body.

First we recall the velocity recursion equation in Eq. (3.13)

Vm(k) = _*(k + 1,k)Ym(k + 1) + ?l'(k)x(k) (7.4)
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and the partitioned form of _(k) in Eq. (3.15)

 ts(k)
=

 T(k) ) (7.5)

Introducing a dummy variable k', we can rewrite Eq. (7.4) as

vm(k') = ¢*(k+ 1,k')Vm(k+ 1)+

V (k) = + (7.6)

where

_5(k+ 1,U) _ qS(k + 1,k) and rb(k',k) zx I

Conceptually, each flexible body is now associated with two bodies. The first one has the

same kinematical and mass/inertia properties as the real body and is associated with the

flexible dols. The second body is a fictitious body and it is massless and has zero extent. It

is associated with the hinge dots. The serial chain now contains twice the number of bodies

as the original one, with half the new bodies being fictitious ones. The new _* operator will

have the same number of columns but twice the number of rows as the original 7if* operator.

The new _ operator will have twice the number of rows as well as columns as the original one.

Going through the same analysis as described in the previous sections, we once again obtain

the same operator expression as Eq. (7.1). This expression also leads to a recursive forward

dynamics algorithm as in Eq. (7.3). However each sweep in the algorithm will contain twice

as many steps as the original algorithm. However each step will be processing only a smaller

number of dofs leading to a reduction in the overall cost. Note that a new set of articulated

body quantities also needs to be defined using an algorithm whose structure is similar to

that of the algorithm in Eq. (6.1).

For low-spin multibody systems, an additional source of computational simplification

is possible. Given the inherent linearization that results from using modes for modeling body

deformation, there is typically little loss in model fidelity for such systems when the defor-

mation and deformation rate dependent terms in M and C are dropped from the dynamical

equations of motion [10]. Such models have been dubbed ruthlessly linearized models. The

ruthlessly linearized models are considerably less complex, and their use results in a sub-

stantial reduction in the computational complexity of the dynamical algorithms. For these

models, the modal mass matrices for the component bodies are constant in the body frame.

In this case, given matrices A, B and C, the following matrix identity

[A + BCB*] -1 = A -1 - A-1B[C -1 + B*A-1B]-IB*A -_ (7.7)
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canbe usedto simplify the formation of D -a in Eq. (6.1). As a result of this simplification,

the computational complexity of each recursion step for the articulated body inertias becomes

a quadratic rather than a cubic function of the number of modes.

Separating the flexible and hinge dofs for each body, and using the simplifications

from Eq. (7.7) for a ruthlessly linearized model, a simplified recursive algorithm for the com-

putation of the articulated body quantities is described below. When a ruthlessly linearized

model is not desired the only change required in the algorithm below is that instead of com-

puting D-_l(k) indirectly, it must be computed by directly inverting the matrix Dj(k). The

following matrices can be used only for the ruthless model and need to be precomputed just

once prior to the dynamical simulation:

fork =

A(k) =

¢(k) =

T(k) =

n(k) =

end loop

°" °N

[7-ll(k)M,-,,(k)'H*l(k)] -1 e T¢H×X

_t1(k).a(k)e n x×6

A(k)¢(k)e n xX6

¢'(k)T(k) e _ _X6

(7.s)
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The remainder of the algorithm for computing the articulated body quantities is asfollows:

for k

P+(0) =0

= 1...N

r(k) =

P(k) =

DI(k ) =

Dyl(k) ---

aS(k) =

_s(k) =

p,(k) =

B(k,k- 1)P+(k - 1)B*(k,k- 1) • g6x6

A(k)F(k)A*(k) + Mm(k) • 7__(k)x_'(k)

A(k)- T(k)[p-'(k) + n(k)l-'(k)T'(k) • _.m(k)×n_(k)

P(k)7t*l(k)D-f'(k ) • T4F(k)×"=(k)

I - Gl(k)TO(k ) • 7E:V(k)×:V(k)

_1(k)P(k) • 7_7(k)×_7(k)

Dr(k)

at(k)

_r(k)

P+(k)

¢(k+l,k)

end loop

= P_(k)7_:(k)Djl(k) • 7_;F(k)×"d k)

= I- ar(k)_T(k) • _(k)×_(k)

= _(k)P_(k) • 7_F(k)×_'(k)

= ¢(k + 1,k)_(k) e _(k)×_(k)

(7.9)

The sparsity of 13(k + 1, k), 7-O(k ) and _r(k) leads to still further simplification of the above

algorithm. Using the symbol "x" to indicate "don't care" blocks, the structure in block

partitioned form of some of the quantities in Eq. (7.9) is given below:

F(k) = ¢(tk, k- 1)P+(k - 1)¢*(tk, k- 1), (P+(k) is defined below)

(x)G t(k) = , where

g(k)
g(k) = #(k)Dil(k) • "_6×nm(k)

and p(k) _ [P"I(k), P'"(k)]'H'l(k ) • 7_6x_'_(k)
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(xx)Pr(k) = , where

x PR(k)
PR(k)= e-(k) - g(k).*(k) • Z¢6×6

Dr(k) = Hs(k)Pn(k)HTr(k) • 7_=r(k)xnr(k)

at(k) (x)= , where

aR(k)
Gn(k) _= Pn(k)H_-(k)D_'(k) • T¢6×"r(k)

vr(k) (,x)= , where

o 7_(k)
"gR(k) = I - GR(k)H.r(k) • 7"4.6x6

P÷(k) (xx)= , where

× P+(k)

p,_(k) =_.(k)P.(k) • n _×°

Using the structure described above, the final simplified algorithm for computing the artic-

31



ulated body quantities is asfollows:

P_+(o)= o

fork = 1..-N

F(k) = ¢(tk, k-1)P+(k -1)¢*(tk,k-1)

P(k) = A(k)F(k)A*(k) + Mm(k)

Dl(k ) = 7-O(k)P(k)7-l*1(k )

Di_(k) = A(k)- T(k)[r-'(k) + _(k)]-_(k)T'(k)

#(k) = [PrY(k), P_r(k)]7-l*l(k)

g(k) = i_(k)D-]l(k)

PR(k) = Pr_(k) - g(k)#*(k)

DR(k) = H_(k)PR(k)H;_(k)

aR(k) = PR(k)Y;_(k)Df_(k)

7R(k) = I- GR(k)g:r(k)

p.+(k) = _R(k)PR(k)

end loop

(7.10)

7.2 Simplified Articulated Body Forward Dynamics Algorithm

The simplified recursive articulated body forward dynamics algorithm for a serial flexible

multibody system follows directly from the recursive implementation of the expression in

Eq. (7.1) for the multibody system with fictitious bodies described in Section 7.1. It consists

of the following steps: (a) computation of the articulated body quantities using Eq. (7.8)

and Eq. (7.10), (b) a base-to-tip recursion as in Eq. (4.2) for computing the modal spatial

velocities Vm(k), and the bias terms am(k) and bin(k) for all the bodies, and (c) a tip-to-base
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recursionfollowedby a base-to-tiprecursionfor the joint accelerations)_ as described below:

fork -

z(k)

z_(0) =0

1-..N

= (z:(k)z.(k) ) /= ._(k)¢(t_,k- 1)z_+(k-1)+
P-(k)

+b,_(k) + K,,,(k)O(k) e 7"¢_(k)

T:(k) - z_(k)+ [nd(k)]*z.(k)e _"-'(_)

OT'(k)el(k) 6 7"t'_m(k)
(7.11)

z_,(k) = z.(k) + a(k)_:(k)_ n o

_,,(k) = TR(k)- H_-(k)z,,(k)e n-._)

-R(k)= D_(k)¢R(k)e n-,(k)

z?_(k) = zR(k)+ G,,(k)_.(k) c n 6

end loop

_m(lV+l) =0

fork = N...1

a_(k) = ¢'(tk+l,k)M'(k + 1)am(k+ 1) e 7_6

__ * +3(k)= .,,(k)CR(k),_,_(k)e n-_(_

,_R(k) = ,_+(_:)+ H_(k)3(_:)+ a,.R(_:)e n _

_(_) = .:(k)- g'(k)_R(k) _ n-,-(k)

end loop

Simplifications arising from the sparsity of 7-/(k), along the lines described in Section 7.1,

have been incorporated in the above algorithm. In contrast with the composite body forward
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dynamics algorithm described in Section 5, this algorithm does not require the explicit

computation of either M or (7. The structure of this articulated body algorithm closely

resembles the recursive articulated body forward dynamics algorithm for rigid multibody

systems described in references [11, 1].

8. Computational Cost

This section discusses the computational complexity of the composite body and the articu-

lated body forward dynamics algorithms.

Flexible multibody systems typically involve both rigid and flexible bodies and, in

addition, different sets of modes are used to model the flexibility of each body. As a con-

sequence, where possible, we describe the contribution of a typical (non-extremal) flexible

body, denoted the k th body, to the overall computational cost. Note that the computational

cost for extremal bodies as well as for rigid bodies will typically be lower than that for a

non-extremal flexible body. Summing up this cost for all the bodies in the system will give

a figure close to the true computational cost for the algorithm. Without any loss in gener-

ality, we have assumed here that all the hinges are single dof rotary joints and that free-free

assumed modes are being used.

All costs given below are based on the use of the ruthlessly linearized dynamics model

of the flexible body [10, 12] wherein all deformation and deformation rate dependent terms

are dropped from Ad and C. It has been pointed out in recent literature [13, 10] that the use

of modes for modeling taody flexibility leads to "premature linearization" of the dynamics,

in the sense that while the dynamics model will contain deformation dependent terms, the

geometric stiffening terms will be missing. Indeed, these missing geometric stiffening terms

are typically the dominant first-order (deformation) dependent terms. When the body

spin rates are high, it is necessary to take additional steps to include the stiffness terms

to obtain a "consistently" linearized model with the proper degree of fidelity. However for

systems with low spin rate, the contribution of the first order terms to the dynamics model is

negligible. Dropping the deformation r/(k) and deformation rate _ dependent terms leads to

the "ruthlessly" linearized dynamics model and significant reductions in the computational

complexity of the algorithms. In the ruthlessly linearized model, Eq. (B.8), Eq. (B.1 l) and

Eq. (B.50) are approximated as follows:

M (k) M°(k), am(k)
0

[ , and bin(k) _ b°(k) (8.1)

a°mR(k)]

Note that with this approximation, Mm(k) is constant in the body fl'ame, while am(k) and

b,,(k) are independent of rl(k) and _(k). A large number of flexible multibody systems
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are indeed low spin systems for which the ruthlessly linearized model is adequate. The

computational costs described below are for such a system and are based on the use of a

ruthlessly linearized model.

8.1 Computational Cost of the Composite Body Forward Dy-

namics Algorithm

The composite body forward dynamics algorithm described in Section 5 is based on solving

the linear matrix equation

Mic= T-e

The computational cost of this forward dynamics algorithm is given below:

1. Cost of computing R(k) for the k th body using the algorithm in Eq. (5.5):

products = 48nm(k) + 90

additions = nm(k ) + nm(k) + 116

2. Contribution of the k th body to the cost of computing 3,4 (excluding cost of R(k)'s)

using the algorithm in Eq. (5.5):

products = k[12n_(k) + 34nm(k) + 131

additions = k[lln_(k) + 24nm(k) + 131

3. Setting the generalized accelerations _ = 0, the vector C can be obtained by using the

inverse dynamics algorithm described in Eq. (4.2) for computing the generalized forces

T. The contribution of the U h body to the computational cost for C(k) is

products = 2n_(k) + 54nm(k) + 206

additions = 2n2m(k) + 5Ohm(k) + 143

4. The cost of computing T - C is

products = 0
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additions = A/

5. The cost of solving the linear equation in Eq. (5.1) for the accelerations ;_ is

products

additions

3 2 2
= _X 3 + _¢5 - _5

1 3 A/'2 7= i/+ - i/

The overall complexity of the composite body forward dynamics algorithm is O(.Af3).

8.2 Computational Cost of the Articulated Body Forward Dy-

namics Algorithm

The articulated body forward dynamics algorithm is based on the recursions described in

Eq. (7.8), Eq. (7.10), Eq. (7.11) and Eq. (7.12). Since the computations in Eq. (7.8) can be

carried out prior to the dynamics simulation, the cost of this recursion is not included in the

cost of the overall forward dynamics algorithm described below:

1. The algorithm for the computation of the articulated body quantities is given in

Eq. (7.10). The step involving the computation of D-l(k) can be carried out ei-

ther by an explicit inversion of D(k) with O(n_(k)) cost, or by the indirect procedure

described in Eq. (7.10) with O(n_(k)) cost. The first method is more efficient than

the second one for n,.,,(k) < 7.

• Cost of Eq. (7.10) for the k th body based on the explicit inversion of D(k) (used

when nm(k) < 7):

___ 764products = n_(k) + n_(k) + --_-nm(k) + 180

__ 548additions = n3(k) + n_(k) + ---_-nm(k) + 164

• Cost of Eq. (7.10) for the k th body based on the indirect computation of D-a(k)

(used when nm(k) > 8):

products = 12n_(k) + 255nm(k) + 572

additions = 13n_(k) + 182n_(k) + 445
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Number of Bodies

N

Number of Modes nm

5 10 15

3 5223m + 4195a 11432m + 9677a 18587rn + 16287a

6 12591m + 10075a 27611m +23315a 44846m + 39225a

9 19591m+ 15955a 43790m + 36953a 71105m +62163a

Table 1: Computational cost for the articulated body for-

ward dynamics algorithm

2. The cost for the tip-to-base recursion sweep in Eq. (7.11) for the k th body is:

products = n_(k) + 25nm(k) + 49

additions = n_(k) + 24nm(k) + 50

3. The cost for the base-to-tip recursion sweep in Eq. (7.12) for the k _h body is:

products = 18rim(k) +52

additions = 19nm(k) + 42

The overall complexity of this algorithm is O(Nn_), where nm is an upper bound on the

number of modes per body in the system. Thus it is to be expected that the articulated

body algorithm will be more efficient than the composite body algorithm as the number

of bodies increases. Indeed a comparison of the computational costs of the two forward

dynamics algorithms reveals that the articulated body algorithm is the more efficient even

when a small number of assumed modes is used.

Table 1 describes the computational cost of the articulated body forward dynamics

algorithm for a different number of bodies N and number of modes nm for a serial chain

system. In the table, rn and a denote floating point multiplications and additions respectively.
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o Extensions to General Topology Flexible Multi-

body Systems

For a rigid multibody system, reference [5] describes the extensions to the dynamics for-

mulation and algorithms that are required as the topology of the system goes from a serial

chain topology, to a tree topology and finally to a closed-chain topology system. The key

to this progression is that the operator description of the system dynamics does not change

despite the increase in the topological complexity of the system. Indeed, as seen here, the

operator description of the dynamics remains the same even when the multibody system

contains flexible rather than rigid component bodies. Thus, using the approach in [5] for

rigid multibody systems, the dynamics formulation and algorithms for flexible multibody

systems with serial topology can be extended in a straightforward manner to systems with

tree or closed-chain topology. Based on these observations, extending the serial chain dy-

namics algorithms described in this publication to tree topology flexible multibody systems

requires the following steps:

1. For any outward sweep involving a base to tip(s) recursion, at each body, the outward

recursion must be continued along each outgoing branch emanating from the current

body.

2. For an inward sweep involving a tip(s) to base recursion, at each body, the recursion

must be continued inwards only after summing up contributions from each of the

incoming branches at the body.

A closed-chain topology flexible multibody system can be regarded as a tree topology

system with additional closure constraints. As described in reference [5], the dynamics

algorithm for closed-chain systems consists of recursions involving the dynamics of the tree

topology system, and in addition the computation of the closure constraint forces. The

computation of the constraint forces requires the effective inertia of the tree topology system

reflected to the points of closure. The algorithm for flexible multibody systems for computing

these inertias is identical in form to the recursive algorithm described in [5].

10. Conclusions

This publication uses the spatial operator algebra methodology to develop a new dynamics

formulation and spatially recursive algorithms for flexible multibody systems. A key feature

of the formulation is that the operator description of the flexible system dynamics is identical

in form to the corresponding operator description of the dynamics of rigid multibody systems.

A significant advantage of this unifying approach is that it allows ideas and techniques for
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rigid multibody systemsto be easily applied to flexible multibody systems.The algorithms
usestandardfinite-element and assumedmodesmodelsfor the individual body deformation.

The Newton-Euler Operator Factorization of the mass matrix, _4 = T/OMmO*7-/*,

forms the basis for recursive algorithms such as those for the inverse dynamics, the com-

putation of the mass matrix, and the composite body forward dynamics algorithm for the

flexible multibody system. Subsequently, the articulated body forward dynamics algorithm

is developed, which, in contrast to the composite body forward dynamics algorithm, does

not require the explicit computation of the mass matrix. The key sequence of steps in-

volved in the development of the articulated body forward dynamics algorithm is: (a)

the development of an alternative Innovations Operator Factorization of the mass matrix,

.M = [I + T/OI(]D[I + T/OK]*, (b) formation of the inverse of the factor [I + 7"_OK] -1 --

[I - 7-(kOK], and (c) the formation of the operator expression for the mass matrix inverse,

.M -a = [I - 7-[ff)K]'D-a[I - TI_K]. While the major focus in this publication is on the

dynamics of flexible multibody systems with serial topology, the extension of the algorithms

developed here to tree and closed chain topology systems is straightforward.

Based on the discussion in reference [3] for rigid multibody systems, forward dynamics

algorithms such as the conjugate gradient and triangularization algorithms can be extended

to flexible multibody systems in a straightforward manner from the operator description

of the dynamics presented here. While the computational cost of the algorithms depends

on factors such as the topology and the amount of flexibility in the multibody system, in

general, it appears that in contrast with the rigid multibody case, the articulated body

forward dynamics algorithm is the more efficient algorithm for flexible multibody systems

containing even a small number of flexible bodies. The variety of algorithms described

here permits a user to choose the algorithm which is optimal for the multibody system at

hand. The availability of a number of algorithms is even more important for real-time

applications, where implementation on parallel processors or custom computing hardware is

often necessary to maximize speed.
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Appendix A: Proofs of the Lemmas

At the operator level, the proofs of the lemmas in this publication are completely analogous

to those for rigid multibody systems [1, 3].

Proof of Lemma 5.1" Using operators, we can rewrite Eq. (5.2) in the form

=

i

Mm = R - £¢R£_

4O

(A.1)



From Eq. (3.21) it follows that _E¢ = _'¢¢ = ¢ - I = _.

left and right by • and ¢" respectively leads to

CMm¢* = ¢R¢* - CEcR£;_* = (_ + I)n(_ + I)* -

Multiplying Eq. (A.1) from the

l

Proof of Lemma 6.1: It is easy to verify that 7P_* = -_P. As a consequence, the recursion

for P(.) in Eq. (6.1) can be rewritten in the form

Aim = P-E, PE_ = P-£,P,_ = P-E+PE:t-4- KDK*

Pre- and post-multiplying the above by • and _* respectively then leads to

¢Mm_* = P + _P + P_* + ¢KDK*_*

Hence,

M

(A.2)

= 7-lOM,,,O'7-l" = 7-I[P + _P + P_* + ePKDK*¢*]$t*

= D + TIOKD + DK*¢*7-I* + _OKDK*¢*_* = [I + _ePK]D[I + 7"t¢K]"

I

Proof of Lemma 6.2: Using a standard matrix identity we have that

[I + H_K]-' = I- TI¢[I + KTI¢]-'I(

Note that

02-t = I-E, = (I- E_) + _GH = • -1 + KT-I

from which it follows that

q2-1¢ = I + KH_

Using this with Eq. (A.3) it follows that

[I + _¢I(1-' = I- ?-/¢[+-'¢1-'-K : I- 7-/+Ii

(A.3)

(A.4)

1
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Proof of Lemrna 7.1: From Eq. (3.44)and Eq. (3.45), the expressionfor the generalized
accelerations_ is given by

y¢ -- M-1(T_C)

= [I- 7-l@I'(]*D-l[I- nt_K][T- 7"[¢b[M,_*a,,., + br,, + Kin0]]

From Eq. (A.4) we have that

(A.5)

[I - 7-/qK]_0 = 7-/q[tP-' - K_]¢ = N_

Thus Eq. (A.5) can be written as

: [I- nk_KI*D-'[T- 7-[kO[KT + Mine*am + bm + I(_tgl]

From Eq. (A.2) it follows that

(A.6)

(A.r)

Mm = P- $,P$_ =v _Mmq)* = qP + P(_* (A.8)

and so Eq. (A.7) simplifies to

ic --- [I- n_l(l*O-' IT- 7_OII(T + Pa,. + b., + h'm_l - 7"{,t)_*am I (n.9)

From Eq. (A.4) we have that

[I- "HqI(]*D-lnP_ * = [I - 7-l_PK]*I(_'¢ * = K*qJ*[g)-* - K'H]*¢* = I(*_* (A.10)

Using this in Eq. (A.9) leads to the result. |

Appendix B: Expressions for Mm(k), am(k) and bin(k)

The modal spatial displacement influence vector IIJ(k) for node jk has the structure:

W(k) (,_J(k) )
= e T_6×"'(k) (B.1)

_J(k)

The components of the vectors M(k) C T_3×'_'(k) and @(k) C T¢3×nm(k) are the modal slope

displacement influence vector and the modal translational displacement influence vector re-
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spectively for node jk. They define the contribution of the various modes to the slope (or

differential change in orientation) and translational deformation for the j_h node on the

k th body. Define

5_(jk) _= AJ(k)_(k) e 7_3, 5,,(jk) _= 7J(k)_(k) e _3, and 5,(jk) _= "/J(k)_(k) E T_3 (B.2)

Note that

l(k, jk) = lo(jk) + 5_(jk)

where lo(jk) denotes the undeformed vector from frame .Tk to node jk. Recall from Eq. (3.1)

that

/ \

[ 3"(jk) rn(jk)_(jk) ] E R 6×6M.(jk)

--m(jk)_(jk) m(jk)I )
(B.3)

B.1 Modal Integrals for the Individual Bodies

Defined below are a set of modal integrals for the k th body which simplify the computation

of the modal mass matrix Aim(k) and the bias vector bin(k). These modal integrals can be

computed as a part of the finite-element structural analysis of the individual bodies.

n.(k)

re(k) _= _ m(jk)
j=lk

¢o
n,(k)

_= [l/re(k)] _ m(jk)[p(jk) + lo(k,jk)] E T_3
j=lk

n.(k)

_= [1/m(k)] _2 m(j_)-_¢(k) • n _
j=lk

Ek(r)
,,,(k)

__, m(jk)[TJ(k) -/3(jk)A_(k)] E T¢3
j=lk

r2() "
n,(k)

ff(jk)M(k) + m(jk)[lo(k,jk) + _5(jk)lTJ(k) - m(jk)[o(k,jk)p(jk)_(k) e n 3
j----lk

m(jk)_d(k)[7_(k) - iS(jk)A_(k)] e T/3
j=lk
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a_(_,_)

jo k A

_,k(r 8) A2_

r --

KS() A7" --

K_( ) 1,F_ 8 -'-

R_( ) i,r -'-

R_(q,r,s) A

W_(r,_) _=

_o(k)

[1{(k)]*J(Jk)1{(k) + m(jk)[A{(k)]'p(jk)TJ(k ) + m(jk)[,_(k)]'p(jk)TJ(k) +
j=lk

m(Jk)[7[(k)]*7_(k) E 7_'

_.(k)

ff(jk) - m(jk)[[o(k,jk)lo(k,jk) + P(j_)[o(k,jk) + lo(k,jk)_(jk)] e T_3×3
j=l_

n.(k)

- E m(JJ,)5[(k)[lo(k, Jk) + fi(jk)] e 7_3×3
j=lk

,,,(k)

E m(Jk)5[(k)5[(k) e 7_z×3
j=lk

[m(Jk)P(Jk)_{(k)]X[o(k,jk) - J(jk)A¢(k) e T¢z×3
j=lk

,,.(1,)

[m(Jk)P(Jk)M(k)]×_/_(k) E 7_z×3
j=lt:

,.(k)

2"[o(k, Jk)[m(jk)P(Jk)A¢(k)] x - ,.7(jk)A¢(k) + A¢(k)J(jk) e T_z×3
j=lk

.,(k)

2[S_(r)]*- _ [,_{(k),.7"(jk) + fl(jj,),_{(k)]
j=lk

_°(k)

E 2")i_(kl[m(jk)P(Jk))_{(k)] x = 2[S_(r,s)]* E U 3×3
j=lk

ff(jk)M(k) C Tt 3
j=Ik

,.(k)

[_¢(k)J(J k) - m(J_)[o(k, Jk)A¢(k)p(jk)]A_(k) e R 3
j=lk

,,(k)

E
j=l_

-m(J_,)z_q(k)AJ,.(k)p(j_)_{(k) e n 3

_(_)

E
j----l_

A{(k)m(j_)p(j_)7_(k) _ n z
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w_(r,_) _=

Lk(r,s)

T,_( ) _r,s

T2(_,_) _=

T2(q,_,_) _-

Note that

-.(k)

A_(k)J(jk)A{(k) e R 3
j=Ik

,.,(k)

-[1�re(k)] _ m(jk)_(k)p(jk)A;(k) e 7@
J=lk

,,.(k)

[m(i_)_(k)_(j_)+ J(j_)i{(k)]_{(k) e U_
j=lk

n,(k)

[m(jk)P(Jk)z_J(k) -- AJ(k)J(jk)]AJ(k) e T_3
j=lk

.,(k)

[A_(k)]*[m(jk)_(k)p(jk) + J(jk)AJ(k)]Ai(k) E T£_
j=Ik

(B.4)

Also define,

a'_(,-,_)= c%,,.) and ff_(r.s)= J_(s,r)

p(k)
,,.,(k)

=_ po_+ _ p,(_),(_) e _
$-----1

Fk(_) =
,_m(k)

Fo%)+ _ F_(_,_)_(_)• Ze3
,_=1

N_(_) [J,%) + _ J_(r,_).(_)]" • n _×3
$----1

s(k) s_+ _ [y,%) + {s,_(_)}']_(_)+
r=l

ZX n..(k)
= s,%) + _ s2(_,_),(_) • _._

$----1

A
Kk(_) =

-,.(k)

_ (_,_),(_) •

_(_,_) +
n,,,(I,)

E R_(q,r,s)_(q) • R 3
q-----l

,_m(k) ,,._(k)

E E s_(_,_),(_),(_) • n _
r=l s=l

(B.S)
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B.2 Modal Mass Matrix

We have from Eq. (3.25) that the modal mass matrix of the k th body is given by

Mm(k) M.(k)[n(k),
B'(k)] = (

E T¢_(k)x_(k)

n'(k)M_(k)n(k)

B(k)M.(k)n(k) n*(k)M,(k)B'(k) )B(k)M,(k)B*(k)

(B.6)

Define the matrices:

p_ _ [p_(i), ...p,%m(k))] e T6_"_(_)

Fok _ [Fok(1),..-Fo_(nm(k))]• 7_3Xnm(k)

Fk =_ [Fk(1), ..-Fk(nm(k))] • 7¢3x"-'(k)

Ek _ [Ek(1), ...Ek(nm(k))] • n 3×rim(k) (B.7)

Also define the matrix G k • 7¢ '_''(k)×'_'(k) so that its (r, s) th element is given by the modal

integral Gk(r, s).

Using these matrices, and Eq. (B.6), it is easy to establish that

M_I(k)=G k, M,_S(k)= , and
E k

Hence, in block partitioned form

y(k) ._(k)p(k) )M_r(k) = -m(k)p(k) m(k)I

Mm(k)

G k IF k]" [Ek]"

Fk y(k) m(k)_(k)

-m(k)_(k)E k m(k)i
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G k [Ek]"

_ m(k)_o_

M°(k)

E k m(k)i

+

0

0

M_(k)

+

0

0

0

0

_,_m(k) v.,.,(k) ]

.=1 _,=, S_(r, sl_(rl_(s)

0

0

0

0

(B.8)

The superscript i = 0, 1,2 in M_(k) denotes the order of dependency of the terms on the

deformation variables.
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B.3 Expression for a..(k)

In this section we derive explicit expressions for the Coriolis and centrifugal acceleration

term a,_(k). Since

4(x,y)= o l(x,y)
0 0

it follows from Eq. (3.14) and Eq. (B.1) that

4(k + 1,k)
0 [Flt(k + 1)]*¢(tk+l,k) + [[It(k + 1)]*¢(tk+_,k) /

)0 _(k + 1,k)

I O [At(k + 1)]"

= 0 0

0 0

[At(k + l)]*[(tk+,, k) + ['_t(k + 1)]" + [At(k + 1)]*,_(tk+x, k)

l(k + 1,k)

0

Recalling that the spatial velocity of frame 9vk is

V(k)= (w(k))v(k)

where w(k) and v(k) denote the angular and linear velocity respectively of fl'k we have that

+s(k) _(k)Ts(k)
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And thus

_'(k+l,k)Vm(k+l)

0

&(k + 1)5,.,(tk+l)

--i(tk+l,k)&(k + 1)5.,(tk+l) + &(k + 1)5.(tk+l)

+5.,(tk+l)i(tk+l,k) +&(k + 1)i(k + 1,k)

The vector above has been partitioned so that the term on the top corresponds to modal

accelerations, the term in the middle to the angular acceleration and the term at the bottom

to the linear acceleration of the body. Also

i(k + 1,jk+l) = _(k + 1)l(k + 1,jk+a) + 'Sv(jk+,)

and

= &(tk+,)l(tk+_,k) + a,,(Ic) - 6.(dk) + 2x.,(k)l(Ok, k)

= [&(k + 1)+5_(tk+l)]l(tk+,,k)+ A.(k)-5.(dk)+ [X_(k)l(Ok, k)

where

Thus

i(k + 1, k)

Av(k) ( A_(k) )
= = H*(k)fl(k)

/,,.(k)

i(k + 1,t_+,) + i(t_+,,k)

gJ(k+ 1)/(k + 1,k) + 5,,(tk+_)+ $,o(tk+,)l(tk+,,k)+ A.(k)

-_(dk) + £,.,(k)t(Ok,k)

(B.9)
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Also

and

(o o)

\

c4ok) o |
H*(k)

)o c_(ok)

= _(Ok)t(Ok,k)-_v(&)

Thus we have that

( 0

7_'(k)x(k) a,(ok)a_(k) - a,(k)_(dk)

_(Ok)av(k)- _(k),%(d,,)+ k_(k)i(ok,k)l l(O_,k)_(Ok)_(k )

From Eq. (3.27) and the above expressions it follows that

where

_mR(k) =

am(k) = d¢*(k + 1,k)vm( k , dT-/*(k) ,.,
dt + 1)-t- _- XUc) =

(B.IO)

&(k + l)6._(tk+,) + &(k)A_(k) - &(Ok)6_o(dk)

&(k + 1) [&(k + 1)/(k + 1,k)+ 26v(tk+,)] + [&(tk+,)+ &(Ok)] [v(k)- v(O+)]

+[&(k + 1) + ga(tk+,)]5_,(tk+,)l(tk, k - 1)

-[2&(_) - _(ak)] e_(ak)

5O



_(k)A_(k) ]
5;(k + 1)&(k + 1)/o(k + 1,k)+ [5;(k + 1)+ Co(k)l[v(k)- v(O+)]

J

o°_i,(k)

+

+

_(k + 1)&(tk+,)- _(k)&(&)

_(k + 1)[_(k+ i)[_,(t_+,)- _,(d_)]+ 2<(t_+,)]

+[_( t_+,) - L(d_)][v(k)- _(G+)1

+2&(k + 1)6_,(tk+,)lo(tk+,,k)- 2dx,.,(k)G(dk)

_kR(k)

0

2&(k + 1)(_,_(tk+,)6t(tk+a) + _(tk+,)_,(tk+,)lo(tk, k- 1) + 6_,(dk)_(dk)

_ _(k)
n,l_t

( o )
6,o(tk+,)_,(lk+,)_t(tk, k-- 1)

• S

(B.11)

In the above, a°n(k) denotes the deformation independent part of the Coriolis acceleration,

while a_n(k), a_R(k ) and a_n(k ) denote the parts whose dependency on the deformation is

up to first, second and third order respectively.

B.4 Expression for b,n(k)

We have from Eq. (3.30) that

a(jk) : d[W(k), O*(k,jk)lvm(k ) = fiJ(k)il(k ) + (b'(k,jk)V(k)
dt
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Since,

i(k,jk) = _(k)l(k,jk) + 6v(jk)

it follows that

a(jk) =

Also from Eq. (3.33) we have that

g.,(k)_,o(jk) )

........................................

&(k)[(z(k)I(k, jk) + 2gv(jk)]

&(jj,),.7(jk)w(jk) j

b(jk) = .........................................

m(jk )5_(jk )G.'(jk )p(jk )

Thus,

b(jk ) + Ms(jk )a(jk )

(
&(jk)3"(jk)w(jk) + ff(j_)£,(k)_,o(jk) + m(jk)_(jk)d.,(k)[_(k)I(k,jk) + 2G(jk)]

........................................

m(jk){ - [_(jk)&(k)_(jk) + _,(jk)_,o(jk)P(jk) + _,_(jk)&(k)p(jk)

+&(k)[&(k){l(k,jk) + p(jk)} + _,,,(jk)P(jk)+ 2_v(jk)] }

(B.12)
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From Eq. (3.39)we write

/

= | n'(k)b_(k)

B(k)
[b(k)+ M,(k)_(k)]

b_

b_

(B.13)

We develop expressions for bkn(r), b_ and b_ in Eq. (B.13) below. From Eq. (B:12) and

Eq. (B.13) we have that

b,_(,)
,,(k)

-w'(k)_j(k),Y(jk)w(k) - w*(k)_J(k),7(jk)5_(jk)
j=lk

-_(3k) _,(k)J(3k)_(k)

• ,-j • . d • • - .-_,o(s_),_,(klJ(sk)_L(s_)-[_(k)] .Y(s,,)_(s,d_(k)

+w*(k)[m(jk)p(jk)A_(k)l× [ - [(k,jk)w(k) + 2G(jk)]

+m(jk)[')'[ *" " - "(k)l POk)&O_)_(k)

-m(jk)w'(k)SJ(k)[- {[(k,jk) + _(jk)}w(k) + 25"(jk)]

+m(jk)[7_(k)]*{5_(jk)5,o(jk)P(jk) + 5,_(jk)w(k)p(jk) + &(k)5,o(jk)p(jk)}

,_,(k)

= E--w'(k)_(k)ff(jk)w(k)
j=lk

-w'(k)[m(jk)iS(jk)_{(k)]× [(k, jk)w(k)

+w*(k)m(jj,)Zd(k){[(k,jk ) + p(jk)}w(k)

+2w*(k)[m(jk)iS(jk)_{(k)l ×_.(jk)

-[)_{(k)]'/7(jk)5_(jk)w(k)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
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• m - _j+_0_) Y0_)_(k)_(k)

+ m(jk )5,_(jk )* ='/Jr( k )f'(jk )'5,_(jk )

' i • _j

[%(k)]_0k)_(k)P(Sk)+m(jk) j *- " " "

+m(jk)[%(k)]_(k)_0k)P0k)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

Using the modal integrals defined in Section B.1, the above terms can be expressed in the

following manner:

1[B.17] + B.22

1[B.17] + B.19 + B.21

B.14 + B.15

B.16

B.23 + B.24

B.20 + B.25

B.18 + B.20 + B.25 + B.26

,_m(k)

-w*(k) __, T_(s,r)fl(s)

,_m(k)

s=l

[T2(_,_)+ W1%,_)+ %%, _)],)(_)

= -_'(k)S%)_(k)

= -w*(k)Nk(r)w(k) (B.27)

"am(k) "tim (k )

q----1 s=l

B.26

T2(q,_,_),i(q),i(_)

-2_*(_:)
,_m(k)

E
$----1

Using these, it follows that

,_,,(k) rim(k)

b_ = -w*(k)[Sk(r) + Nk(r)]w(jk) + E E
q:l s=l

Tka(q,r,s)f?(q)fl(s)

n_(k)

-_'(k)
j=s

[T_(,,,')+ T_(_,_)+ w_(_,_)+ w2(,, _)+ 2p_(,, _)];_(_)

-w*(k)[Sk(r) + Nk(r)]w(jk) -w'(k)

rim(k) n,,,(k) nm(_:)

j----s q=l s=l
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(B.28)

where

Ok(r,_) _ r_(_,r)+ T_(_,_1+ W1%,_1+ W_(s,r)+ 2F((_,_1

Once again from Eq. (B.12) and Eq. (n.13) we have that

(B.29)

,,(k)

b_ = __. Co(jk),J(jk)w(jk) +.](jk)&(k)_.,(jk) + m(jk)_(jk)&(k)[_(k)l(k,jk) + 2_v(jk)]
j----lk

+m(jk)[(jk){ -- _(jk)&(k)6_(jk) + &(k)[&(k){l(k,jk) + p(jk)} + 2_v(jk)]

+_,_(jk)_(jk)P(jk) + _(jk)(o(k)p(jk) + &(k)_,o(jk)P(jk)}

,*dk)

= E _(k)[ff(jk)- m(jk)(f_(jk)l(k,jk) + i(jk)}(k,jk)+ [(jk)[(k, jk))] _(k) (S.30)
j----lk

-2m(jk) [l'(jk) + }(jk)]_v(jk)w(k) (n.31)

--,](jk)'_(jk)w(_:) (n.a2)

+'_(jk),7(k)w(k) (B.a3)

+ i(jk )m(jk )P(jk )_o(jk )_O(k ) (B.34)

+_( k )3" (jk )G(jk ) (B.35)

+_(jk),7(jk)G(jk) (B.36)

+[(jk )m(Jk )_(Jk )_(Jk )P(Jk ) (B.37)

+ m(jk )l(jk )_,_(jk )&( k )p(jk ) (B.38)

+m(jk )[(jk )Jz( ]_)_(jk )p(jk ) (B.3O)

Once again, using modal integrals, the above terms can be reexpressed in the following

manner:

B.30

B.31

= _o'(k):r(k)_(k)

= 2 ___ Nk(r)_(r) w(k)
r=l
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B.32 + B.33 + B.34 + B.38 + B.39

B.35

B.36 + B.37

This results in the following expression

rim(k)

I(_(_)_(_)_(k)
r=l

,_m(k)

_(k) _ R_(rl_(r)
r=|

,,,,(k) rim(k)

_ R%, _1_(_)_(_1
r----1 s=l

(B.40)

_ : _(k)J(k)_(k) +
,_.,(k)

E [2Nk(r) + Kk(r)] _(r)_(k)
r=l

rim(k)

+&(k) _ n_(rl_(r)+
r----1

,_m(k)n,,(k)

r=l s=l

(B.41)

Using Eq. (B.12) and Eq. (B.13) it also follows that

no(k)

b_ = _ --m(jk)_(jk)&(k)5,_(jk) + m(jkl&(k)[&(k){l(k,j_) + p(jk)} + 25v(Jkl]
j=lk

+m(jk)5_(jk)_(jk)P(jk) + m(jk)_(jk)w(k)p(jk) + m(jk)&(k)5_(jk)p(jk)

n,(k)

= Y_--m(jk)f_(jk)&(k)5,o(jk)
j----Ik

+m(jk)&(k)&(k){l(k,jk) + p(jk)}

+m(jk )5,_(jk )5,o(jk )p(jk )

+ 2m(jk )&( k )5_(j_: )

+m(jk )5_(jk )&( k )p(jk )

+ m(jk )&( k )5_(jk )p(jk )

(B.42) i

(B.43)

(B.44)

(B.45) _-

(B.46)

(B.47)

Using the modal integrals we have that

B.43 =

B.44 =

m(k)_(k)_(k)p(k)

re(k) _ _ L(r,s)il(r)f](s)
r=l s=l
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.,,,(k)
B.42 + B.45 + B.46 + B.47 = 2&(k) _ Ek(rl_(r)

r----I

(B.48)

and thus

b_
n,,(k)

m(kl;,(kl_(klp(k)+ 2;.(k) _ Ek(_),i(_)+ re(k)
r----1

n,,(k) ,_,,(k)

r=l s=l

(B.49)

Putting together Eq. (B.28), Eq. (B.41) and Eq. (B.49) we have that

bin(k)

-w*(k) [S_(1) + Jlk(1)]w(k)

-_.(k) [s,%_(k))+ j?(_m(k))]_(k)

+

........................................

_,(kl_(kl_(klpo(k)

bo(k)

-w"(k) _;:(k, [Oa(1,s)¢l(s) + {S_(1,s)+ ff_(1, s)}_(s)]

z:;,(_)[.(_){T,_(r)+EJ,_(.)I'},(.)-(_)+{'I_i_(r)l"+',"(.)}_(.)-(_)
+_(k)R,%)¢(_)]

b_(J,)
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+

+

E_=_ k) E'_ (a) T k ( q, 1, s )_( q)_( s )

L.=I 3 (q, nm(k),s)¢(q)_(s)

ETz_(_)z._:__)[_,(k)j_(_,_)_(k),_(_),_(_)+ y,t(_,_)_(k),_(_),(_)

+R_(_,_)_(_)_(_)]

re(k)ET:,(_)E2:,(_)L(_,_),_(_),_(_)

bL(k)

0

0

_:(k) E,_:_k) E._:(k) R_(q,r,s)rl(q)_(r)_l(s )

0

bL(k)

(B.50)
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