R

NO2-16573

A MISSION EXECUTOR FOR AN AUTONOMOUS UNDERWATER
VEHICLE

Yuh-jeng Lee and Paul Wilkinson

Computer Science Department
Naval Postgraduate School
Monterey CA 93943

Abstract. The Naval Postgraduate School has been conducting research into the design and testing of
an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software
architecture and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a
Mission Executor is being constructed using CLIPS version 5.0. The Mission Executor is an expert system
designed to oversee progress from the AUV launch point to a goal area and back to the origin. It is expected
that the Executor will make informed decisions about the mission, taking into account the navigational path,
the vehicle subsystems heaith and the sea environment, as well as the specific mission profile which is
downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles,
waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are
required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language
(COOL) embedded in CLIPS 5.0. Additionally, truth maintenance is applied to the knowledge base to keep
configurations updated.

AUTONOMOUS UNDERWATER VEHICLE RESEARCH

The development of autonomous vehicles has been an ambition for decades. Automated weapons
such as the Tomahawk missile now have a proven record of achievement in hazardous conditions.
The MAZLAT/AAI Pioneer, a remotely-piloted vehicle (while not fully autonomous), similarly
has a capable record in high-risk environments, as evidenced by the Gulf War. Several marine
autonomous and remotely-piloted vehicles are already in use for such diverse functions as
underwater cable inspection, hydrography, and mine-hunting. The practical advantage of low-risk
to humans coupled with the potential ability to operate at over-the-horizon distances from the
control platform make the autonomous underwater vehicle a highly desirable project. While there
are several operational autonomous underwater vehicle testbeds in the United States, until
recently most underwater vehicles have been tele-operated or merely data autonomous while
receiving power via an umbilical cable.

Many software architectures have been proposed and are currently being tested for a fully
autonomous underwater vehicle. One of the well-known is MIT’s Sea Sprite Vehicle which
adapted the layered control architecture proposed by Brooks (Bellingham 1990, Brooks 1986).
The KB/EAVE (Knowledge-Based Experimental Autonomous Vehicle) AUV program of the
University of New Hampshire’s Marine Systems Engineering Lab essentially uses a subsumption
architecture (as generally described by Brooks). High level and low level tasks are divided in
hardware. The software uses the "focus of attention" approach to keep upper-level reasoning
foremost while low-level behaviors occur (Blidberg 1990). International Submarine Engineering

58

of Canada also uses a layered control architecture with behaviors classified as reflexive, logical,
and trained. These require reasoning on several levels, with planned and learned responses,
encoded in a scripting language instead of a traditional Al language (Zheng 1990).

The Naval Postgraduate School has been conducting research into the design and testing
of an Autonomous Underwater Vehicle. Both high-level and low-level software have gone
through several versions of development. Currently, the software is destined to reside on a
GESPAC MPU30HF processor board using the OS-9 operating system on a Motorola 68030
central processing unit. From a software architecture standpoint, the AUV software can best be
designed in a hierarchical structure and viewed at different levels of abstraction for different
purposes, for example, mission planning, mission execution, world modeling, collision avoidance,
and vehicle control. This software has to perform both numeric computing and symbolic
reasoning. Most of the computations also involve real-time constraints and time-dependent
representations of the states of the AUV and the environment. In addition, many tasks are
knowledge intensive and require domain specific information. For example, the collision
avoidance routine needs to interpret sensor input, react to uncharted obstacles, replan a new
vehicle path or mission based on available choices, and so on.

The NPS AUV II software is partitioned into several main modules, including an off-line
mission planner, mission executor, guidance system , autopilot system, navigation system, sonar
data processor, on-board mission replanner, and vehicle system monitor (Healy et al. 1990).
Each of the modules contains submodules performing more specific tasks. For example the
autopilot system includes routines for digital-analog data conversion, for hydrodynamic surfaces
control, and for main motor control; the guidance system includes a local path planner for
creating postures form waypoints and the tracking controller for providing desired postures to the
autopilot (Cloutier 1990, Lee et al. 1991). Figure 1 shows the dataflow diagram of the AUV II
baseline system.

DESIGN OF SKIPPER

The high-level design of the AUV II is the result of an incremental development which began
in 1988 with AUV I Initially, vehicle control was essentially lower-level closed-loop.
Evolutionary changes in subsequent software designs resulted in the need for a high-level control
module to coordinate the functionalities of various subsystems. The Mission Executor, SKIPPER,
attempts to do this while integrating decisions based on input from three worlds: the vehicle’s
internal systems, the environment, and the mission. The design of Mission Executor essentially
consists of a rule base and an object base. The major equipments aboard the submarine are
modeled as objects to be monitored. Further, each obstacle encountered by the submarine sonar,
whether planned for or not, is modeled as an object. Decisions on courses of action to take are
modeled as objects for the purpose of easy retrieval via hyperlinks (this will be more self-evident
shortly). All of these are linked together in the SKIPPER’s Display, a blackboard subset of all
of these. The SKIPPER'’s Display is a composite of the most vital information and consists only
in the current decisions, obstacles which are still active (those in a 180-degree arc about the bow
of the submarine), and the current state of the system monitors. This intelligent database is
frequently updated and queried by the rule base.

While the vehicle’s different states are updated and monitored by querying objects (and
firing attached daemons), the heuristics for the three worlds (internal, environmental and mission)

58

09

OPERATOR

REPLAN
REQUEST
MISSION
REQUIREMENTS (PLAN/REPLAN MISSION'L0G
KNOWN MISSION
OBSTACLES
= 1 DECISIONS
ENVIRONMENTAL
DATABASE OBSTACLE
AVOID ALERT
OBSTACLES
NEW SYSTEMS
OBSTACLES 8 REFERENCE STATUS
EMERGENCY POSTURES
POSTURE
: (6]
ovomy Qrmace
OBSTACLE
CURRENT poiiivi
POSTURE GUIDANCE
POSITION NAVIGATE = STATUS
UPDATE
SONAR 6 3 !
DATA TRACK DATA
COMMANDED
MISSION
v POSTURES
RANGE
DATA INERTIAL
DATA
CONTROL
an SIGNALS DEVELOP
VEH 1 CONTROL
SONARS SYSTEMS SIGNALS
CONTROL (AUTOPLLOT),
Y POSITIONS 4
STATUS

Figure 1. AUV System Dataflow Diagram

are contained in the rule base, which is partitioned into divisions of vehicle maneuvering rules,
system monitor rules, navigation rules, environmental hazard rules and specialized mission rules.
Input to the Mission Executor consists in both the internal vehicle configuration and mission
plans (designed as vehicle postures of nineteen variables at the various waypoints). Output from
the Mission Executor consists of final reference postures passed directly to the lower level
Guidance system. Lower level Guidance reacts by controlling the autopilot at the next level.
Figure 2 shows this decision process.

Input mission postures are first given to a Mission Interpreter which places a posture into
the proper object format and designates the high-level classification of the configuration as transit
or specialized mission. It further determines a lower level of configuration as a turn, ascent, dive
or surfacing based on the succeeding posture. Navigation rules determine whether the next
waypoint will be made on time. Obstacles or elapsed time may determine that a new or updated
waypoint be constructed. The Navigator Module (external to the Mission Executor) is invoked
by SKIPPER for this purpose. In the event that an obstacle or obstacles force a detour in the
path execution of the AUV, an Obstacle Avoidance DecisionMaker invokes the replanner (also
external to the Mission Executor) to plan a new route to the goal mission area. The new route
is evaluated for both proximity to the old route and ability of the AUV to reach the destination
and carry out the mission with available battery power.

Measures of uncertainty are used for initial sonar obstacle determinations which SKIPPER
receives from the Obstacle Avoidance Decision Maker. As the classification improves, certainty
of the obstacle’s location better fixes the progress of the transit or mission. It also allows for
determination of whether the obstacle(s) in question requires avoidance maneuvers.

IMPLEMENTATION IN CLIPS 5.0

The decision to build a Mission Executor in CLIPS was made in the fall of 1990 based on the
rapid prototyping capability of CLIPS. Its LISP-like rules, relative compactness and low-cost are
attractive features for a control system designed to fit in a compact real-time testbed. Further
strengthening the argument for CLIPS is an evaluation by William Mettrey of Bell-Northern
Research which compared CLIPS against other rule-based tools. CLIPS outperformed three of
the other four tools (all commercial) (Mettrey 1991). Balanced with its low-cost, it was clearly
the winner.

Initial development actually focussed on modeling the internal world of vehicle systems.
The model of this internal world turned out much like the model Giarratano used for his Joe’s
Object Oriented Database (JOD) (Giarratano 1991a). The implementation is somewhat different.
This is not meant to be a user-interfaced advisory system. Using low salience , a monitor-health-
continuously rule checks the state of thirteen instances of various equipment objects (nearly as
a background function). The equipment objects all share the common attributes that they are
being monitored for their respective high/low redline thresholds and high/low guardline
thresholds. The system monitor class is further broken down into a sonar class (there are four
sonars on the testbed), a control system class, an onboard computer class, a navigation
instruments class with instances of dead-reckoning analyzer (DRA) and Global Positioning
Satellite (GPS) receiver, and an environmental sensors class [figure 3]. Through queries and
daemons, the changing object states cause pattern matches in the system monitor rules.

Decision-making, while contained in the rule base, is preserved in the object base by the

61

29

Obstacle Data

AUV Status

Mission Plans

Navigation
Dat

Action

Rule Base
Manuevering
Rules
Navigation System
Rules Monitor
Rules
Environmental| Specialized
Hazard Mission
Rules Rules

Figure 2. SKIPPER’s Decision Structure

Postures
to

Guidance

€9

Power
Source

Control
System

System
Monitor

Sonar

Onbd
Computer

Nav
Instrument

Environ
Sensors

| (e

OO

Figure 3. System Monitor Objects

decision-objects. This is because some decisions may require knowledge of previous decisions.
This is particularly true for the high-level mission decisions. The design of the decision objects
incorporates slots for high-level mission decisions, lower-level manuever decisions, navigation
decisions, system-monitor decisions, and special-mission decisions. In addition, provision is made
for time-stamping the decision. Literally any decision-change will cause a new decision-object
to be created, as a record must be maintained of all decisions. The instance current is copied to
another unnamed instance using deffunction calls, as shown in the following example:

(deffunction copy-old-instance (?instance)

(send (symbol-to-instance-name ?instance) put-mission_decision
(send [current] get-mission_decision))

(send (symbol-to-instance-name ?instance) put-maneuver-decision
(send [current] get-maneuver_decision))

(send (symbol-to-instance-name ?instance) put-sysmonitor_decision
(send [current] get-sysmonitor-decision))

(send (symbol-to-instance-name ?instance) put-navigation_decision
(send [current] get-navigation-decision))

(send (symbol-to-instance-name ?instance) put-special-mission-decision
(send [current] get-special-mission-decision))

(send (symbol-to-instance-name ?instance) put-justification
(send [current] get-justification))

(send (symbol-to-instance-name ?instance) put-decision_time)
(send [current] get-decision_time)))

(defclass DECISION (is-a USER)
(slot mission_decision (multiple))
(slot maneuver_decision)

(slot sysmonitor_decision)
(slot navigation_decision)

(slot special_mission_decision)
(slot justification)

(slot decision_time))

(deffunction maneuver-decision-change-obstacles (?change ?justification)
(bind ?7name (gensym*))
(make-instance ?name of DECISION)
(copy-old-instance ?name)
(send [current] put-maneuver-decision ?change)
(send [current] put-justification ?justification)
(send [current] put-decision_time (time)))

Certain physical changes to the vehicle’s environmental or internal world may improve the state

64

of the vehicle somewhat. Yet, the mission-world must dominate behavior. If a mission decision
was previously made to continue_with_restrictions or abort_mission, improvement in the other
two worlds may or may not justify improvement to continue unrestricted. To prevent a collision
of defrules, another basis must be used, such as the justification for the continue with restrictions
state. Retrieval of the justification for the previous mission status may involve searching back
over several state changes. This should not involve a lengthy amount of traversal. This is more
easily done with hyperlinks between objects or a simple query rather than a linked-list. The
following example of a post-casualty vehicle recovery rule highlights this. While the left-hand
side (LHS) conditions indicate that the mission may be fully recoverable, the right-hand side
query hunts for the existence of the only possible justification for full recovery. This further
requires a call to a deffunction to determine if the mission is physically recoverable in terms of
mission parameters mission-critical power and distance/time-to-go (called from the navigation
module external to the Mission Executor).

(deffunction recovery-mission-evaluation (?location)
(if (or (< (send [battery] get-power_status) ?*mission-critical-power*)
(> (navigator-update-from ?location) ?*recovery-time*)) then
(send [current] put-mission-decision Abort_Mission)
(send [current] put-justification mission-deviation-nonrecoverable)
else
(send [current] put-mission-decision Continue_Unrestricted)
(send [current] put-justification mission-deviation-recoverable)))

(defrule vehicle-recovery-state
(mission_status Continue_with_Restrictions)
(system-monitors normal)
(location ?location)
(or (redundant_system_online ?system)

(normally-operating ?system))

=>

(do-for-instance ((?ins DECISION)) (eq mission-deviation
(send ?ins get-justification))

(recovery-mission-evaluation ?location)))

Certain high-level behaviors, such as the overall mission decision are modeled using the
Artificial Neural Paradigm implementation suggested by Giarratano (Giarratano 1991). This
application of salience is useful in differentiating between a high-level, less frequent macro-action
and a lower-level frequently performed action. The philosophy for using salience in this manner
is that a situation (pattern match) which may cause a mission abort usually requires immediate
or timely reaction and certainly takes precedence over a routine action such as a normal turn or
depth change in a deep-water open-ocean environment. The emergency-action rule must be
guaranteed firing before other semantically lower-priority rules on the agenda. This (however
loosely) heuristically models a submarine commander’s “situational awareness” in an emergency

65

99

/

.

(defrule emergency -evasive-maneuver

(declare (salience 1000))

(obstacle-proximity ?direction danger-close)
(maneuver-available maneuver)
(system-monitors ?status)

(not (previous_mission_decision abort-mission))

=>

(assert (emergency-guidance ?maneuver))
(assert (mission-decision alter-track))
(Replanner get-new-route ?position))

(defrule battery-power-guardline
(declare (salience ?*sysmonitor-salience*))
(mission-percentage ?percent&:(< ?percent 70))
(battery 7number at-guardline)
=>
(bind ?*sysmonitor-salience* (+ ?*sys-monitor

salience 100))

(assert (mission-status critical)))

J

Figure 4. Setting Precedence with Salience in SKIPPER

[figure 4].

Salience is also used in some background functions such as the sequencing of the mission
timer and the loop which causes the slots of the respective system monitors to be queried on a
nearly continuous basis. Still, it is used sparingly. SKIPPER still retains a strong declarative
nature. The rest of the rule base pattern-matches on the objects are of normal undeclared
salience. :

CONCLUSION

Successful software for an AUV must incorporate techniques from artificial intelligence, real-time
processing, environmental sensing, and vehicle maneuverability into a compact integrated
package. This is due to an AUV’s lack of human control during mission execution and the
inability for human intervention in the event of unforeseen problems. In addition, many tasks are
knowledge-intensive and require domain-specific information. Therefore, the ability to include
autonomous intelligent decision-making on an AUV is essential for its satisfactory performance.
With the accumulated experience in submarine operation, we believe. many of the onboard
problem-solving and reasoning can be adequately modeled using a rule-based system. The
Mission Executor is designed to (1) monitor relevant vehicle variables, component parameters,
and environment data; (2) ensure the progress of pre-planned mission execution; and (3) in the
event of unplanned interruptions during a mission, be able to diagnose the problematic situations
and enable the vehicle to adapt to the unexpected environment by manipulating and changing
vehicle and mission parameters.

A prototype for the Mission Executor has been completed and will be incorporated in the
testbed as dependent modules are finished. The design is one that is extensible. Further, its
object-oriented nature allows for incremental construction and testing of modules in relative
isolation. The specific mission modules are areas for more fine-grained research. Because of
the specialized nature of each of the mission modules, they are excellent areas for application of
object-oriented tools like CLIPS 5. 0.

ACKNOWLEDGMENT

This paper was prepared in conjunction with research funded by the Naval Postgraduate School.

REFERENCES

Bellingham, J. G., T. R. Consi, R. M. Beaton and W. Hall (1990). Keeping Layered Control
Simple, Proceedings of IEEE Symposium on Autonomous Underwater Vehicle
Technology, Washington, DC, June 1990,

Blidberg, D. R., S. Chappell, J. Jalbert, R. Turner, G. Sedor, P. Eaton (1990). The EAVE AUV
Program at the Marine Systems Engineering Laboratory, Proceedings of the IARP
Workshop on Mobile Robots for Subsea Environments, Monterey, California, October,
1990.

Brooks, R. A.(1986). A Layered Intelligent Control System for a Mobile Robot, in Gangeras and

67

Girald (eds), Robotics Research, MIT Press, Boston.

Cloutier, M. J. (1990). Guidance and Control System for an Autonomous Vehicle, M.S. Thesis,
Naval Postgraduate School, June 1990.

Giarratano, J. C. (1991). CLIPS User's Guide Volume 1: Rules, CLIPS Version 5.0, NASA-
Lyndon B. Johnson Space Center Information Systems Directorate Software Technology
Branch, January 1991.

Giarratano, J. C. (1991a). CLIPS User’s Guide Volume 2: CLIPS Object Oriented Language,
NASA-Lyndon B. Johnson Space Center Information Systems Directorate Software
Technology Branch, April 1991.

Healy, A. J. , R. B. McGhee, R. Cristi, F. A. Papoulias, S. H. Kwak, Y. Kanayama and Y. Lee
(1990). Proceedings of the IARP Workshop on Mobile Robots for Subsea
Environments, Monterey, California, October, 1990.

Lee, Y., Lugi and R. B. McGhee (1991). Automating the Construction of Real-Time Software
for an Autonomous Underwater Vehicle through Prototyping, Proceedings of the 7th
International Symposium on Unmanned Untethered Submersible Technology, Durham,
New Hampshire, 23-25 September 1991.

Mettrey, W. (1991). A Comparative Evaluation of Expert System Tools. IEEE Computer, Vol.
24, No. 2, February 1991, pp. 19-31.

Zheng, X., E. Jackson, and M. Kao (1990). Object-Oriented Software Architecture for Mission-
Configurable Robots, Proceedings of the IARP Workshop on Mobile Robots for Subsea
Environments, Monterey, California, October, 1990.

68

