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Abstract. Realistic production systems require an integrated combination of forward and backward rea-
soning to reflect appropriately the processes of natural human expert reasoning. A control mechanism that
consists solely of forward reasoning is not an effective way to promptly focus the system's attention as cal-
culation proceeds. Very often expert system programmers will attempt to compensate for this lack by using
data to enforce the desired goal-directed control structure. This approach is inherently flawed in that it is
attempting to use data to fulfil the role of control. This paper will describe our implementation of backward
chaining in CLIPS, and show how this has shortened and simplified various CLIPS programs. This work
was done at the Aerospace Corporation, and has general applicability.

1. DESIGN CONSIDERATIONS

The Aerospace Corporation has been using expert system technology since the mid-1980s, begin-
ning with a system to diagnose anomalies in the attitude control system of the DSCS III satellite.
These experiments showed the value of expert system technology in Air Force programs, and
identified key special requirements.

The Portable Inference Engine (PEE) project (Le and Homeier 1988) was intended to pro-
duce a single language and environment for Air Force expert systems to be written and run across
a wide variety of hardware bases. CLIPS was identified as meeting most of these requirements.

Singular among these is real-time response (Laffey et al. 1988), which we interpret in the
context of expert systems as time efficiency. The Rete net algorithm is known to possess optimal
efficiency for matching many patterns to many objects (Forgy 1982). It is based on the assump-
tion of a slowly changing state. Air Force requirements involve high rates of data to be processed
in real time. Thus the state is changing rapidly, perhaps completely in a short time. This condition
does not satisfy the stated assumptions of the Rete net, and thus adaptations of the algorithm are
needed.

Typically, 90% of the execution of an expert system is spent in matching (Gupta 1985).
Our approach to improving the speed of matching is to reduce the number of rules being consid-
ered for matching at any one time. Most real expert systems do not have a flat structure, where all
rules are expected to be ready to fire at any point (Winston 1984). Rather, in many cases, there is
effectively a current focus of attention, where a few rules are doing the work for the moment, and
the rest of the expert system is essentially waiting around for its turn to contribute to the task.
Although that waiting sounds passive, it is truly active, since the left-hand-sides of those rules are
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participating in the Rete net matching process, and all facts that apply are being pushed as far as
possible into the net.

These effects are exacerbated in an environment where the fact database is changing rap-
idly. Here the inflow of new facts create a large number of mostly unimportant rule activations
and deactivations, when relevant facts are removed in favor of more recent data. Limiting the
Rete net activity to those rules that are appropriate to the current focus of attention brings signifi-
cant savings in avoiding unneeded matching.

Human experts often employ a combination of forward and backward reasoning (Geogeff
and Bonollo 1983). A control mechanism that consists solely of forward reasoning does not effec-
tively model this process. In response to this, in many cases expert system programmers have
built a goal-directed structure into their programs by adding a clause at the beginning of each rule
to select the context of the goal for which the rule applies. These clauses then match facts that the
programmer asserts manually to invoke the goal. This reduces the set of applicable rules and
effectively provides backward reasoning. However, this approach is clumsy, and adds extra over-
head for the programmer, who has to perform housekeeping to ensure the timely removal of goal
facts, and settle auxiliary issues like conflicts between two concurrent goals. Also, this practice is
only a convention, not supported or checked by the expert system language.

We saw these problems arising from the attempt to use data to fulfil the role of control.
What is really needed is a new control structure, that manages the goals cleanly and properly with
a minimum of effort.

2. APPROACH

We propose the module as a collection of rules that participate together in a "focus of attention."
These rules are strongly linked, in that they can be considered a small expert system dedicated to
solving a single subgoal of the original total problem. There are strong arguments to be made in
favor of modules from the points of view of generality, security, software engineering, and simple
clarity.

Backward chaining has been generally recognized as an important inferencing capability.
While a system may be constructed using only forward or backward chaining, an integration of
the two provides an increase in effective computational power, allowing more natural and direct
reasoning, and may reduce the length of inference chains. The module system establishes the
module as the unit of control for backward chaining, while establishing forward chaining within
the module (see Figure 1). The two work symbiotically; it is forward chaining that invokes new
goals or returns from them, while the backward chaining controls which rules can be used for for-
ward chaining. This synergy produces expressive and deductive power.

Modules give protection to the expert system. While a module is active, only rules within
the module can fire; no rule contained within another module can fire, even if its left-hand-side is
satisfied. This helps to prevent an error in expert system programs, where due to an unforeseen
combination of interactions between rules during execution an unexpected rule becomes satisfied
and fires, which had no relevance to the focus of attention at the time. This problem occurs while
maintaining or enlarging a rule base, because of the difficulty in foreseeing all possible interac-
tions between hundreds or thousands of rules. The module concept provides "bulkheads" to con-
tain the flow of control within a module, similar to the independently scalable compartments
aboard a submarine.

Modules also support reliability and good software engineering. It is important to con-
struct large systems in pieces, where each piece has a distinct and well-described objective or
function, and where the different pieces fit together with simple and clear interfaces. The flat
structure of traditional rulebases of hundreds or thousands of independent rules, all at the same
level and all interacting, is a software engineering nightmare. The concept of either exhaustively
testing or actually forming a mathematical proof of correctness of such a system is clearly beyond
question, due to its size and complexity. However, with a set of rules broken up into modules,
conceivably each module could be verified independently, since it would contain only a handful
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Backward Chaining
(Among goals)

Forward Chaining
(Within a goal)

LEGEND:

D Goal Rule

Calling a new goal

Figure 1. Forward and Backward Chaining in ECLIPS

of rules by comparison, and then the results could be combined for a verification of the entire
expert system.

Finally, modules clarify expert systems. Replacing the "goal" clauses in the front of rules
by a single module header joining all such related rules made the rules shorter and the rule base
shorter. Each rule now simply lists the conditions under which it should fire, given the context that
the task at hand is the particular subgoal of this module. Data is no longer being used for control,
rather, a simple control mechanism provides that function. Having a module construct to group a
set of related rules that together accomplish a single purpose clarifies the whole intent of the
expert system, and standardizes the meaning of "the current context." The creation of subgoals is
nested like subroutine calls; the module header clearly describes the interface for each "call."
Thinking of a module as a subtask that is accomplished out of view and then returns clarifies the
thinking of the expert system writer; he can work on rules to solve one goal at a time, without
being concerned with the implementation of how other subgoals are achieved.
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3. INFORMAL SYNTAX & SEMANTICS

A module is a collection of rules. There is at most one module active at any one time. Only rules
in the currently active module, or rules which are global to all modules, may fire. At the beginning
of execution, after a reset, no module is active. A rule can activate a module by executing a "goal"
statement. When a module is activated, the formerly active module is suspended until the newly
activated module returns. Activations of modules are nested, similar to subroutine calls, and may
be recursive. A module activation may return by executing a "return" statement. It will also return
if there are no rules which may currently be fired. There is no return value; all results must be
transmitted through the fact database. A module declaration may also include formal parameters.
Each invocation of the module must present a corresponding list of actual parameters, which
become accessible within the rules of the module via the formal parameter names. The lifetime of
these bindings is the lifetime of the module activation. Activations of modules are also called
"goals"; this terminology is intuitive, but introduces possible ambiguity between these activations
and the goal statements that invoke them; the ambiguity is resolved by context.

ECLIPS is presently implemented using CLIPS version 4.1. The following discussion
illustrates the module syntax and defines the extensions to CLIPS implemented in ECLIPS. We
assume a familiarity with expert systems in general and with CLIPS in particular (CLIPS 1987).

3.1. Module Syntax

An ECLIPS program in a file may contain module definitions as well as rules and initial fact defi-
nitions. Syntax:

(defmodule <module name> ( <list of formal parameters> )[ "comment" ]
<rule definition> ... )

Each module contains one or more rule definitions. The formal parameters are variable names, as
in this example:

(defmodule move (?obj ?place) "Move the object ?obj to be at ?place." ... )

These variables are defined throughout the text of the module, and may be used on the left or
right-hand-sides of rules, for example,

(defrule move-object-to-place ""
(monkey ~?place ? ?obj)

=>>
(goal walk-to ?place))

3.2. New Right-Hand-Side Statements

Modules are invoked as goals by using the "goal" statement on the right-hand side of a rule:

(goal <module name> <pacameter value> ... )

for example,

(goal at ladder a5-7)

The actual parameter values are listed successively after the name of the module. A goal is ended
and closed when a "return" statement is executed on the right-hand side of a rule:

(return)

A goal is also ended and closed when the agenda becomes empty; that is, when no rules of that
activation of that module or global rules are ready to fire. When a goal is ended, the suspended
goal most recently invoked is resumed.
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3.3. New User Commands

The user can display the set of modules that are currently defined with the "modules" command:

(modules)

The user can display a particular module with the "ppmodule" command:

(ppmodule <module name>)

During a run, the user can display the current stack of goals, with their actual parameter values,
with the "goal-stack" command:

(goal-stack)

Also during a run, the user can trace the activation and deactivation of goals with the "watch
goals" command:

(watch goals)

"Watch all" now turns on "watch goals" as well as rules, facts, and activations. "Unwatch" also
handles the "goals" option.

3.4. New Debugging Commands

The user can trace the development of the Rete join net with the "watch drives" command. Every
node in the join net that has a binding driven into it is displayed. This adds considerably to the
volume of output

(watch drives)

"Unwatch" also handles the "drives" option. To print out the entire Rete join net at a time, the user
can give the "show-jn" command:

(show-jn)

This also generates a considerable amount of output.
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...*************************
/ /

;;* chest unlocking rules *

(defmodule unlock (?chest) "To unlock ?chest."

(defrule hold-chest-to-put-on-floor ""
(object ?chest ? light ~floor ? ?)
(monkey ? ? ~?chest>
=>
(goal holds ?chest))

(defrule put-chegt-on-floor ""
?fl <- (monkey ?place ?on ?chest)
?f2 <- (object ?chest held light held ?contains ?key)
=>>
(printout "Monkey throws " ?chest " off " ?on " onto floor." crlf)
(retract ?fl ?f2)
(assert (monkey ?place ?on blank))
(assert (object ?chest ?place light floor ?contains ?key)))

(defrule get-key-to-unlock ""
(object ?chest ?place ? floor ? ?key)
(monkey ? ? ~?key)
=>
(goal holds ?key))

(defrule move-to-chest-with-key ""
(monkey ?mplace ? ?key)
(object ?chest ?cplaceS~?mplace ? floor ? ?key)
->
(goal walk-to ?cplace))

(defrule unlock-chest-with-key ""
?fl <- (object ?chest ?place ?weight ?on ?obj-in ?key)
(monkey ?place ?on ?key)
=>
(printout "Monkey opens chest with " ?key " revealing " ?obj-in crlf)
(retract ?fl)
(assert (object ?chest ?place ?weight ?on nil ?key))
(assert (object ?obj-in ?place light ?chest nil nil))
(return))

Figure 2. An example module

4. EXAMPLE

The example in Figure 2, taken from the monkey-and-bananas problem, shows a module called
"unlock", whose purpose is to accomplish the goal of unlocking a chest; the particular chest to
unlock is indicated by the formal parameter ?chest. This module represents the rules that accom-
plish this subgoal of the overall goal of the monkey to eat the bananas. There are five rules in this
module, three of which invoke further subgoals as part of solving this one, and two which are able
to take immediate action. Only one rule has an explicit return statement. This is an example of a
well-coded module, with rules which cooperate in solving a single, well-defined task.
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Compare these rules with the corresponding normal CLIPS counterparts:

(defrule hold-chest-to-put-on-floor ""
(object ?chest ? light -floor ? ?)
(monkey ? ? ~?chest)
=>
(goal holds ?chest))

versus
(defrule hold-chest-to-put-on-floor ""
(goal-is-to active unlock ?chest)
(object ?chest ? light -floor ? ?)
(monkey ? ? ~?chest)
(not (goal-is-to active holds ?chest))
=>
(assert (goal-is-to active holds ?chest»)

The ECLIPS code for the "unlock" module is shorter by 5 lines, over 12%, and the lines
are shorter and less complex. In particular, note the CLIPS need for special code to prevent goal
duplication. This section is typical of the entire monkey-and-bananas example.

5. IMPLEMENTATION

The fundamental idea in the implementation is inspired by the example above, but different. The
example shows an attempt to implement backward chaining in normal CLIPS using data for con-
trol. In ECLIPS, every rule within a module is compiled into the Rete net with an additional
clause at its front, describing the module for which this rule is active. For example, the first rule in
the example above would be compiled not as

(defrule hold-chest-to-put-on-floor ""
(object ?chest ? light -floor ? ?)
(monkey ? ? ~?chest>
=>
(goal holds ?chest))

but as
(defrule hold-chest-to-put-on-floor "w

(goal unlock ?chest)
(object ?chest ? light -floor ? ?)
(monkey ? ? ~?chest)
->
(goal holds ?chest»

The new clause consists of the standard word "goal", then the name of the module, then
the formal argument names. (The word "goal" is not reserved in ECLIPS, but should not be used
by the ECLIPS programmer as the first word in facts, to avoid confusion with the module imple-
mentation.) This clause is prepared while parsing the module header line; it is stored in the inter-
nal CLIPS structures for a clause. Then while parsing each rule within the module, the goal clause
structure is copied and prepended to the structure being prepared to represent the list of clauses on
the left-hand-side of the rule. The goal clause will match a fact of the correct form, for example

(goal unlock red-chest)
The "goal" statement, which appears on the right-hand-side of a rule, has the semantics of

activating a module. This is implemented by creating a "goal" fact of the form shown above and
adding it to the fact database. The new goal fact is automatically driven into the Rete net, and is
combined in the usual method with facts that satisfy other clauses of the rules in the module to
create activations which are put on the agenda in the normal way. These "goal" facts are removed
from the fact database by returning from a module, either by an explicit return statement or by
having no further rules to fire.
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This method of implementation means that the Rete net does most of the work of manag-
ing the applicability of rules. While applicable facts do get accumulated at the upper leaves of the
Rete net, none of them can merge with superior clauses until the first clause, the "goal" clause, is
matched. When that happens, then all the potential subordinate matches and activations are free to
occur.

A data structure is maintained in ECLIPS, called the "goal-stack," which is a stack of the
goal facts that have been introduced and not yet removed; it is thus a statement of the modules
that have been entered, each with their actual parameter values. The fact on top of the goal-stack
describes the currently active module.

When a new module is activated and the prior one is suspended, that suspension is not
accomplished by removing the associated goal fact, as might be imagined, but rather through a
modification of the conflict resolution strategy employed by CLIPS. CLIPS maintains an agenda
which is a list of activations of rules that are ready to fire. The agenda is kept ordered by priority,
and within each level of priority, the agenda is ordered by recency, with newest first. As new rule
activations are generated, they are added to the appropriate place in this agenda, so that the
desired order is preserved. Every expert system must have some policy for deciding which activa-
tion of the available set will be chosen to fire. This is called "conflict resolution." The conflict res-
olution policy implemented in CLIPS simply chooses the first activation in the agenda, i.e. the
most recent of the highest priority. However, in ECLIPS, the conflict resolution is modified to
choose the first activation in the agenda from the current module, or which is from a global rule,
not contained within any module. Thus there may be more recent or higher priority activations
which are passed over if they belong to a module which is not the currently active one. Activa-
tions therefore are continuing to occur for rules in suspended modules; however, none can fire
until those modules become the current module.

It is important to allow these activations from suspended modules, and to leave these acti-
vations on the agenda, even though they are "inert" as long as the current module is active. Other-
wise, we would lose the property of reflexivity, which assures that if a rule fires, then it will not
fire again on the same data that matched its left-hand-side. Reflexivity is accomplished in the
CLIPS implementation by simply putting activations onto the agenda when they are generated,
and removing them when the activation is actually fired, or when any of their fact support is
removed. As long as the facts do not change, the rule is only activated once, and once it is fired, it
is off the agenda. This information, whether the rule has fired, would be lost if the goal fact for the
rule's module were retracted and later re-asserted when the module ended its period of suspen-
sion; we would not know which rules had already fired.

Unlike the attempted CLIPS implementation of backward chaining, these "goal" facts are
not visible during normal "(facts)" queries. This is accomplished by giving them negative ID
numbers, similar to the "not" facts that are generated to help implement negative clauses, such as

(not (object ladder ?place ????))

Facts with negative ID numbers are not printed by the "(facts)" command; therefore these
goal facts do not clutter up the user's view of the fact database with control-related constructs.

Modules may invoke themselves recursively, either directly or through intermediate mod-
ules; this is accomplished automatically in the implementation described above. New goal facts
do not interfere with the presence of older ones, even for the same module and with the same
actual parameters. The goal stack enables the recursion by keeping track of which goal is current.
The Rete net keeps track of which rules are ready to fire and for which module activations. Every
rule activation on the agenda keeps a list of the facts which satisfied its left-hand-side; for rules
within modules, this includes the goal fact which satisfied the rule's goal clause.

When the search of the agenda cannot find an activation to fire, normal CLIPS will end;
ECLIPS however will pop the goal-stack, removing the goal fact associated with the last goal, and
re-search the agenda. Removing a goal fact will automatically cause all rule activations from that
activation of a module to be removed from the agenda. The goal stack will continue to be popped
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until either an appropriate activation is found or the goal-stack is empty, at which time ECLIPS
will end.

The activation and return from goals are particularly interesting events to an ECLIPS
expert system programmer, and so the "(trace goals)" utility was added to keep track of this
changing context. In addition, at any point the user can give the "(goal-stack)" command to print
out the entire stack of module activations, with the current module on top of the stack.

During the study of CLIPS, it was necessary to understand its data structures in detail, par-
ticularly the Rete net. Some utilities, "(show-jn)" and "(watch drives)" were built to provide visi-
bility to the Rete net and its changes during computation, and these have been retained as
generally useful learning tools for those who wish to study a real-life implementation of the Rete
net algorithm.

6. COMPARISONS BETWEEN CLIPS AND ECLIPS

Here we compare CLIPS and ECLIPS in size and time. Two of the original examples distributed
with CLIPS were receded in ECLIPS. "mab" is a version of the traditional monkey-and-bananas
problem, and "wine" is an expert system to choose an appropriate wine for dinner.

6.1. Size Comparisons

mab

wine

CLIPS lines

235

419

ECLIPS lines

211

346

% reduction

10%

17%

Table 1. Size Comparisons

Some of the savings in the wine example were the result of eliminating 6 rules which only
controlled the sequencing between phases of the wine selection process; the module structure
allowed a less cumbersome coding.

6.2. Time Comparisons

Here are the results, in seconds, of 100 iterations on a SPARCstation 1, with i/o dependencies
reduced by directing output to /dev/null:

mab

wine

CLIPS

28.1

12.13

ECLIPS

26.8

11.06

% reduction

4.6%

9.0 %

Table 2. Time Comparisons

The question arises, what is the time efficiency cost of the new features that ECLIPS pro-
vides? ECLIPS is completely backwards compatible with CLIPS, so a normal CLIPS program
will run exactly the same under ECLIPS; but how much of a performance penalty will it suffer for
the additional parsing, new statements and commands, goal stack maintenance, and additional
agenda processing? The answer is that it is very difficult to measure any appreciable difference at
all! It appears to be about 0.25%; in any case, it is well within the normal variance between runs.
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7. FUTURE WORK

As mentioned, this implementation was built on CLIPS version 4.1. CLIPS has undergone many
subsequent changes (version 5.0 is being released) but still does not support true backward chain-
ing. We hope to port the ECLIPS modifications to CLIPS version 5.0, and make this capability
available to interested parties.

There were several ideas presented in the prior paper (Le and Homeier 1988) that were not
included in the implementation, for reasons of time. We described a capability for the user to
specify the conflict resolution strategy, enabling the use of dynamic prioritization or other applica-
tion-specific control strategies. These may support the creation of rule bases more directly match-
ing the expert's control knowledge of how to apply his rules. We also intended originally to allow
a set of modules to be activated at one time, instead of just one. This would allow, for example,
the dynamic "widening" or "narrowing" of the search for the explanation of an anomaly to
include more or fewer subsystems of a satellite.

We also considered having the activation of a module immediately cause a suspension of
the execution of the RHS of the rule being fired, and then after the module activation returned, the
RHS would be resumed at the next statement Instead, the current implementation merely changes
the currently active module, which has its effect upon the next selection of a rule to fire. In addi-
tion, we considered extensions where modules returned either a flag indicating success or failure,
or an arbitrary value computed as the result of the subgoal.

8. SUMMARY AND CONCLUSION

ECLIPS provides backward chaining in the CLIPS environment in a clean and simple manner, yet
it shortens program code, generalizes the inferencing, increases clarity, provides security, supports
good software engineering, and runs faster. There is no significant penalty for using ECLIPS in
place of CLIPS.

We believe that the module concept is applicable to the majority of all domains, whenever
the size of the rule base grows beyond a certain size. We hope that the ideas in ECLIPS contribute
to the practical work of the CLIPS community and beyond, enabling the creation of more effec-
tive expert systems in all domains.
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