N92-16601

IMPROVING NAVFAC'S TOTAL QUALITY MANAGEMENT OF CONSTRUCTION DRAWINGS WITH CLIPS

by .

Albert Antelman AIA

Shore Facilities Department Naval Civil Engineering Laboratory Port Hueneme, CA 93043

ABSTRACT This paper describes a diagnostic expert system to improve the quality of Naval Facilities Engineering Command (NAVFAC) construction drawings and specification. CLIPS and CAD layering standards are used in an expert system to check and coordinate construction drawings and specifications to eliminate errors and omissions.

INTRODUCTION

Designing and constructing naval shore facilities for the United States Navy is a complex process. The quality of construction documents is a major factor in this process. The review and coordination of construction drawings and specifications is one of the critical tasks performed by NAVFAC architects and engineers. Defective drawings and specifications can lead to change orders, time delays, and litigation.

Experience has shown that more than half of the errors and omissions found in construction drawings and specifications result from inadequate coordination between architectural and engineering disciplines (Nigro, 1984). A recent study by the U.S. Army Corps of Engineers found that more than 95 percent of all review comments addressed coordination issues (Kirby, 1989).

In response to the problem, NAVFAC implemented a quality assurance program in April of 1986. An interdisciplinary coordination review checklist was developed to check for in-consistencies, interferences, errors and omissions, both technically and graphically, that may exist in or between disciplines. A recent survey by Charles Markert, NAVFAC's Deputy Assistant Commander for Engineering and Design found that NAVFAC has discovered significant benefits from conducting interdisciplinary coordination checks at the final design stage of projects (DCQI, 1990).

The NAVFAC interdisciplinary coordination checklist contains over 500 review items. The checklist, when used conscientiously, can eliminate many of the design deficiencies which have occurred in past construction projects. Current procedures calls for each checklist item to be analyzed for applicability to the project's drawing and specification content. This is accomplished by manually reviewing the drawings and specifications with the checklist. If an item is found not applicable, the letters "NA" will be inserted adjacent to the checklist item. The remaining checklist items are used to perform the interdisciplinary coordination review.

THE PROBLEM

The development and application of quality control coordination checklists is a step in the right direction, but does not provide a production oriented solution to the problem. Often checklists contain several hundred items which may not be applicable to the drawing and specification content. Typically, due to quantity and nonapplicability, checklist items are often ignored during the review process. The process of editing, comparing, and coordinating checklist items with the drawings and specifications is time consuming considering it is not unusual for project drawings to exceed 50 sheets. Checklist editing also assumes a level of experience the reviewer may not possess and may well result in the non-prioritizing of the issues being checked.

The majority of NAVFAC's construction drawings are produced using manual drawing procedures, but this is rapidly changing. NAVFAC as well as architectural/engineering firms under contract to NAVFAC have made heavy investments in computer-aided design (CAD) hardware and software. Receiving construction drawings delivered in a CAD format is becoming common. Despite the self-coordinating aspects of CAD drawings, coordination and omission errors can still arise. No matter what process (manual drafting, systems drafting or CAD) is used to produce a set of construction drawings, all drawings need to be checked (Duggar, 1984).

OBJECTIVE

The objective of this project is to produce an easy-to-use, automated, expert system, capable of quickly analyzing project data (drawing and specification content), recognize potential coordination issues, establish review priorities and provide quality control guidance specific to the project being reviewed. The expert system must function as an intelligent assistant which provides the user with knowledge (advice) based on expert experience and lessons learned from past projects with similar drawing content.

SOLUTION

The solution to the problem of automating the quality review of construction drawings and specifications is to develop a rule-based diagnostic expert system capable of reading the drawing contents of CAD drawing database files. The C Language Integrated Production System (CLIPS) was selected as the expert system shell and AutoCad software running in conjunction with the CadPLUS Total Architectural/Engineering software was selected to produce the CAD drawings.

The CAD Data Base

The CadPLUS Total Architectural/Engineering System is a powerful facility design tool developed by the Naval Civil Engineering Laboratory and CadPLUS Products Company of Albuquerque, NM under a Cooperative Research and Development Agreement. The

software runs in conjunction with AutoCad and implements the CAD Layering Guidelines published by the American Institute of Architects (AIA).

In order to insure reusability of CAD drawings during a facility's life cycle, NAVFAC has adopted a standard approach for the use of CAD layers. Layering is "the basic method most CAD systems use to group information for display, editing, and plotting purposes" (Schley, 1990a). NAVFAC along with the American Institute of Architects, the American Consulting Engineers Council, the American Society of Civil Engineers, International Facility Management Association, United States Army Corp of Engineers and the Department of Veterans Affairs sponsored the development of a standard approach for the use and naming of CAD layers.

It was not the intention of the CAD Layering Guidelines to attempt to use layers to carry "drawing intelligence" (Schley, 1990a), however the CAD Layering Guideline's structure and format, see Figures 1 through 5, provide a detailed description of a project's drawing content. Drawing content is the key to determining the applicability of interdisciplinary coordination checklist items.

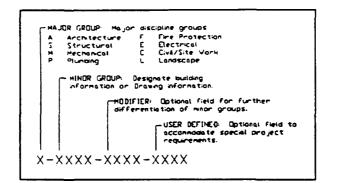


Figure 1. AIA layer name format (Schley, 1990b)

AACHITECTURE S		STAUCI	STRUCTURAL		MECHANICAL		CIVE/SITE	
A-VALL	VALL	s-care	COLUMN GRID		THE STATON	C-PROP 1	PROPERTY LINE &	
A-000#	29000	1-FNDN	FULMOATION	#-C>(#	PRETAB CHIMMET		SURVEY BENCHMARKS	
A-GLAZ	ZVDDVS	5-5-68	SLAB	н-Снра	SIA GIZZIPAGO	C-10P0	PROPOSED CONTOUR	
	FLOOR INFO	S-AB.T	ANCHOR SOLT		CHITRL & UNSTR		LINCS & ELEV	
	COULPHENT	1.00.1	COLUMN	H-BUST	DUST & FUNC	C-BLDG	PROPOSED BLOG	
	FURNITURE		BEARDIG/SHEAR		COLLECTION		FOOTPRINE	
	CEILING NOT	1.1.4	VALL	1-069	ENERGY HINGT	C-PKNG	PARCING LOTS	
	ROOT	5	ETZIDL VZMAJE	2-FXHS	EXHAUST SYSTEM	C-ROAD	20ADS	
	SH1/HORDER		SHT BORDER/TITLE	I-DEL	FUEL SYS PIPING	C-STRW	STORM DRAINAGE	
	FLOOR PLAN		FOLINDATION PLAN	H-BVAC	HVAC STSTER		SITE COMMUNICATIONS	
	LG SCALE PLAN		FRANDIG PLAN		HOT VATER	COVATE	SPESTOC VALLE	
	REFLICETED				KATDIG SYSTEM	C-5100	HTDRANTS	
	CETLING FLAN		COLUMN PLAN	H-CVTR	CHILLES VATER	C-BCAS	HAT GAS HANNOLCS	
	RODE PLAN	1 duy	SECTIONS		STATO		HETERS & TANKS	
	COUP PLAN		DETARLS	1.00	COICAL GAS STS	C-122-2	SANITARY SEVER	
	CLEVATIONS		SCHEDULES		PROTECT 22220PP	C-0484	SHT BORDER/TITLE	
ATLLLY		2-2040	SCHEDUCES		REFRIG SYSTEM		SITE PLAN	
	SECTIONS				SPECIAL COULP	C-000	SITE CLEC SYS PLAN	
A-DETL	DETAILS				STEAN SYSTER		SITE UTILITY PLAN	
A-SCHD	SCHEDULES	ELECT	NCAL	H-SILP	SHT BORDER/FITLE	C-PUIL	GRADING PLAN	
		6-6176.	LIGHTING			C-PORP		
PLUME	NG.	[-P0v#	POWCR		PIPENG PLAN	C-PPAV	PAVING PLAN	
	ACIS ALKALDE	C-CTRL	CLEC CONTOL		DUCT PLAN	CHELEV	ELEVATIONS	
			SYSTEM		CENST DUCT PLAN		SECTIONS	
	CONCINC HOT &	C-C200	GROUND SYSTEM		HVAC PLAN	C-DCTL	DETAILS	
	COMESTIC MOT S		AUXILIARY SYS	H-PSTH	STEAM PIPING	C-SCHD	SOCIULES	
	CELS VATER SYS		LICHTNING		PL AM			
P-SANK	SANITARY DRADNAGE		PROTECTION SYS	H-PV(H	CHILLED WATER			
P-51210	STORM DRAINAGE	1-1100	FIRE ALARH SYS		PIPING PLAN		ROTECTION	
	PLUNSING HISC		BARA CHENT	#-ELEV	CLEVATIONS		C62 5757D4	
	EQUIPHENT		SOUND/PA SYSTOKS	H-SECT	20017328	F-MAL N	HALDN	
P~F121	PLUMBING FIXTURES		TV ANTENNA STS	H-MCTL	BETAILS	F-SPIN	FIRE SPRINKLER	
	SHT BURBER/TITLE		CLOSES CRT TV	H-SCH8	22.4.0 DALES	-	STSTEN	
	PLUNSING PLAN	L-LLIV	NURSE CALL STS			r - 8907	FIRE PROTECTION	
P-PDRA	STORN DRAINAGE	E-HURS	HUNSE CALL SIS				SYSTEM	
P-PSAN	SANETARY DRAININGE		SECURITY SYSTEM	LAND	CAPE	C De 80	SHT BORDER/TITLE	
	PLUNSING RISER		SHT BORDER/TITLE		PLANTING & LAND-	1-0194	SPERMILER PLAN	
	DIACRAM	C-P.(I	LIGHTING PLAN	CC-	SCAPE INTERIALS	1.0110	SPRINGLER RISER	
PERV	ELEVATIONS		POVCE PLM	1 - 1007	INCATION SYSTEM		BIACRAM	
	SECTIONS	E-9009	COMUNICATION		URRIGATION SYSTON	C. 0000	FIRE PROTECTION	
	DETAILS		STSTEN PLAN		SITE INPROVEMENTS		EQUIPMENT PLAN	
	SCHEDULES		ELEC FOOT PLAN	L=311L	SHT BORDER/TTTLE	5.0 FV	ELEVATIONS	
			LCCEND		SITC PLAN		SECTIONS	
			ONE LINE DIAGRAM		PLANTING PLAN	C. NOT	DETAILS	
		Č-#15#	RISER BIAGRAM	L-HELA			SCHEDULES	
		6-0.CV	ELEVATIONS	L-PERR	DRIGATION DRAVING	F + SCHO	201403662	
		C-SC(1	SECTIONS	-PVLK	VALKS/PAVING PLAN			
		(-0CN	DETAILS	- L LL V	ELEVATEDIS			
		C-SCHD			SECTIONS			
				L-DETL				
				L-20HB	SCHEDLES			

Figure 2. Typical building and drawing layers without modifiers (Schley, 1990b).

	odifiers listed below may be used with
ony building	iformation layers.
======[DEN	IDENTIFICATION TAG
PATT	CROSS-HATCHING AND POCHE
8- 88#8-£L£∨	VERTICAL SURFACES (3D DRAWINGS)
s-sss-EXS1	EXISTING TO REMAIN
DEMO	EXISTING TO BE DEMOLISHED OR REMOVED
N- 44 EE-NEVY	NEV OR PROPOSED VORK (REMODELING PROJECTS
EXAMPLE	
A-VALL-EXST	USED TO DESIGNATE WALLS TO REMAIN

Figure 3. Building information layer (Schley, 1990c).

```
The layer modifiers listed below may be used with
any drawing iformation layers.
               NOTES, CALL-OUTS AND KEY NOTES
-----NOTE
   ###-TEXT
               GENERAL NOTES AND SPECIFICATIONS
               SYMBOLS, BUBBLES, AND TARGETS
  ####~SYMB
               DIMENSIONS
   ###-DIMS
               CROSS-HATCHING AND POCHE
  SHENG-PATT
               TITLE BLOCK. SHEET NAME AND NUMBER
   ###-TTLB
               NONPLOT INFORMATION AND CONSTRUCTION LINES
   SHH-NPLT
L-H###-PLOT
               PLOTTING TARGETS AND WINDOWS
```

Figure 4. Drawing information layer modifiers (Schley, 1990c).

```
Modifiers may be added to layer names for further
differentiation. For example, ceiling information (A-OLNG)
may be categorized as:
A-CLNG-GRID CEILING GRID
A-CLNG-OPEN CEILING AND ROOF PENETRATIONS
A-CLNG-TEES MAIN TEES
A-CLNG-SUSP SUSPENDED ELEMENTS
A-CLNG-PATT CEILING PATTERNS
```

Figure 5. Typical ceiling modifiers (Schley, 1990c).

4

. :

CLIPS Expert System Shell

CLIPS is a forward chaining rule-based expert system shell, "designed at NASA/Johnson Space Center with the specific purpose of providing high portability, low cost and easy integration with external systems" (Giarratano 1989a). The three major components of the CLIPS expert system shown in Figure 6 are:

- 1. Fact-list: global memory for data
- 2. Knowledge-base: contains all the rules
- 3. Inference engine: controls overall execution

"In order to solve a problem, the CLIPS program must have data or information with which it can reason. A chunk of information in CLIPS is called a fact" (Giarratano 1989b). The programs fact-list is a product of the CAD drawing database. A LISP program within the CAD system is used to generate an ASCII file (layer.dat) listing all layers present within the CAD graphic database. The CLIPS load-facts function is used to input the facts into the program. The following are examples of facts :

Fact List	Description			
(a-wall-new)	Architectural wall, new			
(a-prof)	Roof Plan			
(s-psfr)	Structural Framing Plan			
(p-strm-rfdr)	Roof Drain			
(e-prof)	Electrical Roof Plan			

A rule is the method that CLIPS uses to represent knowledge. An example of a possible rule for checking drawing coordination is:

IF the project drawings contain a Roof Plan and Roof Framing Plan. **THEN** coordinate the Roof Plan with the Roof Framing Plan and verify direction of roof slope.

The rule expressed in CLIPS format would appear as:

(defrule coordinate-roof-plan-and-roof-framing-plan
 (a-prof)
 (s-psfr)
 =>
 (fprintout t "Coordinate the Roof Plan with the Roof Framing
 Plan" crlf)
 (fprintout t "Verify direction of the roof slope."
 crlf))

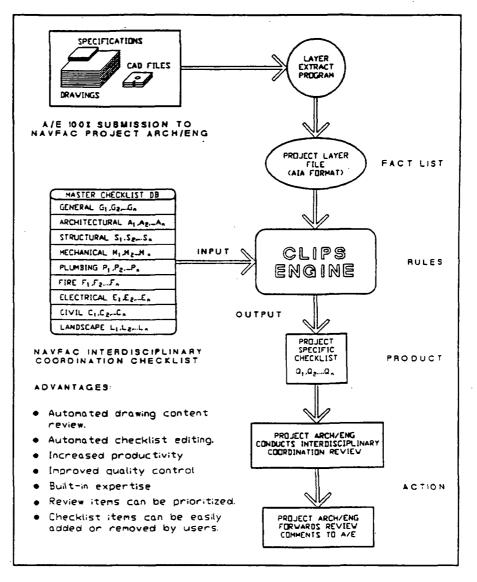


Figure 6. Prototype work model.

The knowledge-base rules are a product of the existing NAVFAC interdisciplinary coordination checklist and REDICHECK. REDICHECK, which was developed by LCDR William T. Nigro, CEC, USN (Ret) is a structured coordination review system that is also implemented by using a manual checklist.

The CLIPS inference engine makes inferences by deciding if a rule is satisfied by the facts. For example, if a project under review contained a Roof Plan (layer a-prof) and a Framing Plan (layer s-psfr), then pattern matching would occur in the previously defined defrule and the knowledge-base would consider the review comment as applicable. In this application, the CLIPS knowledge-base consists of rules that when activated by matching facts, outputs a project-specific quality control coordination checklist.

The rules required to generate a project-specific checklist are embedded in the CLIPS program. In order to reduce the size of the program, the master checklist items are stored outside the program and accessed by the CLIPS read function.

CLIPS also has a feature to control the execution of rules called salience. Salience values are used to order the rules in terms of increasing priority and will activate rules to assemble a prioritized project specific checklist.

FUTURE WORK

To date, much progress has been made in understanding the problem domain and developing the knowledge-base. Future development plans include:

- 1. Development of a menu driven interface.
- 2. Development of rules that identify omissions, duplications, and inconsistencies between reference/identification symbols (detail bubbles, door reference symbols, equipment numbers, etc.) and details, sections, and schedules.
- 3. Development of rules that identify omissions, duplication, and inconsistencies between labels/keynotes and project specifications.
- 4. Development of an interface between the CAD geometric data base and the CLIPS knowledge-base.

CONCLUSIONS

At a recent Naval Sea Systems Command conference, Admiral Frank B. Kelso, II, Chief of Naval Operations commented that we have "to learn to do things more efficiently; with better quality than we had in the past." In this application, CLIPS provides NAVFAC with a powerful tool to improve the total quality management of the construction document review process.

ACKNOWLEDGMENTS

The author acknowledges the advice and assistance of Dr. Jens Pohl, CAD Research Unit. School of Architecture and Environmental Design, California Polytechnic State University, San Luis Obispo, California.

REFERENCES

- DCQI, (1990). Design & Construction Quality Institute Newsletter, Spring 1990, Washington D.C., pg 1.
- Duggar III, J.F. (1984). Checking and Coordinating Architectural and Engineering Working Drawings, McGraw-Hill Book Company, New York, pg. 4.

- Giarratano, J. (1989a). Expert Systems, Principles and Programming, PWS-KENT Publishing Company, Boston, pg. 373-374.
- Giarratano, J. (1989b). Expert Systems, Principles and Programming, PWS-KENT Publishing Company, Boston, pg. 379.
- Kirby, J. G. (1989). Constructibility and Design Reviews: Analysis and Recommendations for Improvement, USACERL Technical Report P-89/15, US Army Corps of Engineers, Construction Engineering Research Laboratory, pg. 25.
- Nigro, W.T. LCDR (1984). REDICHECK: A System of Interdisciplinary Coordination, DPIC Communique, Vol. 11, No. 6, Montery, pg. 3.
- Schley, M. K. (ed) (1990a). CAD Layer Guidelines: Recommended Designations for Architecture, Engineering, and Facility Management Computer-Aided Design, The American Institute of Architects, Washington D.C., pg. 11.
- Schley, M. K. (ed) (1990b). CAD Layer Guidelines: Recommended Designations for Architecture, Engineering, and Facility Management Computer-Aided Design, The American Institute of Architects, Washington D.C., pg. 13 and 16-20.
- Schley, M. K. (ed) (1990c). CAD Layer Guidelines: Recommended Designations for Architecture, Engineering, and Facility Management Computer-Aided Design, The American Institute of Architects, Washington D.C., pg. 21 and 23.