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Simulation of an Electric Arc Using a Nonlinear Active Load
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Chapter 1
INTRODUCTION

1.1 BACKGROUND

In recent years arcjet thrusters have found increased use in aerospace applications.
Originally developed in the 1950s and 1960's, the arcjet thruster can be described as a
device in which an arc is created in the presence of a propellant, with the resultant hot
gases expanded through a nozzle creating a thrust in the opposite direction. The cutaway
view of an arcjet thruster is shown in Fig. 1.1. The thruster has been described in detail

elsewhere [1].
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Fig. 1.1 Cutaway view of an arcjet thruster (Source: [4])
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Because of lack of sufficient space electric power (such as solar panels) and
forseeable near term applications, work on the thruster was temporarily abandoned in the
1960’s. However, new space mission requirements along with major advances in power
electronics technology over the last two decades have caused a dramatic revival of interest
in the arcjet thruster [2]. The primary interest in arcjet thrusters stems from the fact that
they are up to two times more efficient than present chemical engines and resistojet
technologies [3]. The resultant savings can be used to realize: 1) increased satellite
lifetime, 2) larger satellite payloads, 3) use of a smaller rocket booster, or any
combination of these [3]. Currently, thrusters of various power levels are being
researched primarily for prime propulsion and North-South/East-West stationkeeping of

geosynchronous satellites [1, 2, 4, & 5].

The standard output of a satellite solar panel is approximately 30 Qolts DC, while
the arcjet thruster requires an operating voltage greater than or equal to 100 volts DC, and
an operating current of approximately 10 amps DC. It is therefore obvious that a DC to
DC converter will be required by this system. The coﬁverter will also serve to limit the
following: 1) arcjet voltage fluctuations caused by variations in the solar panel output
voltage (voltage regulation); 2) solar panel output voltage fluctuations caused by
variations in the arcjet voltage (inputioutput isolation). Further details conceming

converter design can be found elsewhere (2, 4].

It has been shown that the arcjet thruster has a static volt-ampere (I-V)
characteristic which exhibits a decrease in voltage with increasing current (negative
resistance slope) over the practical operating range [4]. The static volt-ampere

characteristics of an arcjet thruster for various gas flow rates is shown in Fig. 1.2.

Once the required converter has been assembled, it must be tested to see if it will

perform as desired. By connecting resistors to the converter output, resistive load test can
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Fig. 1.2 Static Vol Ampere characteristics for various flow rates (Source: [4])

be performed to determine load and line current regulation, load transient response, output
ripple and power efficiency [2, 5]. The resistive load tests provide helpful information
needed to evaluate converter perfo;'mance. 'HO\.VCVCI, they provide no indication as to
whether the converter will be stable when connected to a load device which has the

negative resistance I-V characteristic shown in Fig. 1.2.

One of two methods can be used to indicate whether the converter will be stable
when operating with a negative resistance load. The converter can be tested either by

using the actual load device, or by using a device which simulates the I-V characteristics



of the actual load. _

Using the actual load device for converter testing has several drawbacks. First of
all, the converter designer may not have access to the necessary equipment required for
arcjet thruster operation, such as a vacuum chamber, fuel (or propellant), or even the
thruster itself. Acquisition of the necessary fixtures and equipment would be time
consuming as well as expensive. It might be possible to test the converter at a facility
which has access to the required equipment, but this to can be costly and time consuming
as, the nearest facility could be hundreds of miles away. Test complexity can also
present a problem as the designer must become familiar with the necessary procedures
required when operating a thruster, such as vacuum chamber operation, proper fuel
mixtures and flow rates, and arc‘establishment criteria.

By using an electronic load which simulates the I-V characteristics of an arcjet

thruster, all of the problems mentioned above can be eliminated.

1.2 OBJECTIVE

This study considers the development of an electronic load (hereafter referred to
as a simulator) which has an I-V load characteristic similar to that of the arcjet thruster,
shown in Fig. 1.2. The simulator was constructed in the laboratory using relatively
inexpensive power electronics components. To avoid unnecessary labwork in future
applications, care was taken so that the simulator adequately resembled the load and was
free of internal instabilities. After construction and successful operation, the simulator
was then used to provide an experimental demonstration of the stability of various arcjet

supply arrangements.




To evaluate simulator performance, the éimulator was tested with an actual current
rhode controlled (CMC) converter designed for a 1 kilowatt arcjet thruster. Upon
successful operation with the simulator, the converter was then tested on an actual arcjet
thruster at the NASA Lewis Research Center in Cleveland, Ohio, after which, the static

and dynamic load responses of the simulator and thruster testing were compared.

In addition, methods of varying the simulator dynamic impedance so that it could
- be made to more closely resemble that of an arcjet thruster, were also explored. Finé.lly,
possible simulator applications with other arc producing devices (such as in welding)

were investigated.



Chapter 2
SIMULATOR DEVELOPMENT

21 CIRCUIT DEVELOPMENT |
2.1.1 Introduction

Upon further examination of Fig. 1.2, it can be seen that the static I-V load
characteristic of an arcjet thruster is similar to that of a constant-power (IV=k, where k is
a constant) curve. The dynamic impedance data from [4] also suggest that the arcjet has a
load ‘characteristic similar .to IV=k for frequencies up to about 60 kHz. Therefore, if the
simulator is constructed in such a way that it produces a constant-power I-V load
characteristic, it will then have an I-V load charcteristic similar to that of an arcjet
thruster. This leads to the development of the two-loop feedback system shdwn in Fig.
2.1.

Examination of Fig. 1.2 reveals that the large signal, steady state operation of an
arcjet can be described by the function:
v=f, ()
Since for large signal, steady state operation the compensation capacitor (C,) of
Fig. 2.1 will block current flow through its path, the multiplier output voltage (v,) must
equal the reference voltage (v,,). Thus,

Vs =V,

- where for the particular multiplier used (MC1494L) it can be shown that v, of Fig. 2.1 is

given by:

v, =k, + ki + kv + kok qkypicv = V,er (2.1a)
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Fig. 2.1 Initial cicuit design

Rearrangement of (2.1a) yields:

v _—k =k, i
V={ﬁ&i)== reks*jkfjal

Originally k, k, and k; were set to zero, such that the large signal, steady state operation

where k= kqk -k, (2.1b)

of Fig. 2.1 would be determined from,

— (D)= e
v = f(i) ki (2.2a)
or,
vV
iv=k where k=—% (2.2b)
kr
as desired.

The circuit in Fig. 2.1 can be subdivided into the following three parts: 1) the
power multiplier, 2) the PI compensator, and 3) the final stage.

2.1.2 The Power Multiplier

The purpose of the power multiplier is to produce a constant power I-V




characteristic at the terminals of the final stage by multiplying a sense of the final stage
voltage by a sense of the final stage current, and providing this signal as an input to the PI

compensator.

2.1.3 The PI Compensator
The purpose of the PI compensator is to provide enough gain such that sufficient
simulator bandwidth is achieved, while at the same time providing a means of

compensation to aid in stabilizing this two-loop-feedback system.

/

2.1.4 The Final Stage ‘ ’

The desired I-V characteristics should be produced at the terminals of the final
stage when they are connected to an appropriate arcjet power supply. Almost all of the
power dissipated by the simulator (1 kW for this design) will be dissipated by the final
stage. Therefore, it will be necessary to parallel several transistors when constructing the
final stage transistor (Q1) of Fig. 2.1, in order to keep from exceeding specified device
ratings on current, power, and operating temperature. The emitter resistance (R) is used
to ensure that the final stage transistor current divides equally among each of the

paralleled transistors.

The dissipative resistance (Rp) is used to reduce the amount of power dissipation
in the final stage transistor by an amount equal to i >-R » thereby allowing the use of fewer

transistors and a smaller heat sink. For this design i will be approximately 10 A.

Therefore, a relatively low value of R, will provide sufficient power reduction in the final

stage transistor. It should be noted that the final stage can be incrementally approximated

by a current-dependent voltage source in series with R, (see Fig. 2.2). From simple

voltage division it can be seen that:
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Fig. 2.2 Approximate final stage midband incremental circuit
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S
where R, .- Tépresents the internal impedance of the arcjet power supply connected at
- the final stage terminals. Therefore, as long as R, <<Rg, zcp then 'V, . zA-i,. for all
Rgource- Thus, the low value of Ry, also aids in producing a simulator terminal response

that is independent of the impedance of the arcjet power supply.

The final stage transistor was constructed from Insulated Gate Bipolar Transistors
(IGBT’s). Reasons for choosing IGBT’s include simplicity of gate drive, low thermal

resistance per unit cost, and high power handling capabilities. Gate resistors (R;) were

connected to the gates of each IGBT to prévent parasitic oscillations in the paralleled

transistors, as described in [6].

As will be seen shortly, the feedback resistance (R) transforms the final stage into

a transresistance amplifier, converting it to the current-dependent voltage source

mentioned above. The resistance R, was added to form the current drive for the

transresistance amplifier.
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2.2 THE FINAL CIRCUIT

The final working version of the simulator is shown in Fig. 2.3. Each R, was

chosen to be 4.7 Q to ensure equal current division among the 16 IGBT’s and to provide a
sufficient current sense signal to the current sense amplifier (0P-é7). The input voltage
range of the multiplier (MC1494L) is £10 V. As a result the voltage divider and the
OP-27 are arranged such that the simulator output voltage and current c?m go as high as
200 V and 20 A, respectively, before the multiplier inputs are overloaded. As described
in [7], the pbwer multiplier was assembled and its offsets adjusted to zero (thereby setting

kl,k2 and k; of (2.1) to zero), such that its output voltage (v,) would be given by:

v,=— kM-Vx-Vy

where k,, (the multiplier gain) is determined from:
2R,

R.R I,

(from [7] I, = 0.5 mA)

Substituting R, =120 K2, R =30 KQ, R =62 KQ, and /;=0.5 mA gives:

k, = 0.258

This value of k,, will ensure a multiplier output voltage (v,) within the output voltage

range of 10 V.

At midband, the feedback resistance (Rf) transforms the final stage into a

transresistance amplifier, converting it into the current-dependent voltage source
mentioned in section 2.1.4. This can be deduced from a two port network, midband
analysis upon the small signal equivalent circuit of the final stage, as shown in Fig. 2.4,

where again R, .- represents the internal impedance of the arcjet power supply

connected at the final stage terminals. For the reduced circuit of Fig. 2.4(b) it can be

1 4
easily shown that the impedances (Z,) and (Z,), and the gain _z£ are given by:
‘ - 1
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17 ' (2.4)

R IR, (2.5)

== (2.6)

where:

R, =Rj +Rgoypce

A=- (gm _ %I}Rf‘ IR,_XRfl ’R,) 2.7)

1
B=-=- (2.8)
Rf

Since R,>>R), and usually g, >> R;', R,>> R, then (2.7) can be approximated as:
A=-g R R, 2.9)

If the final stage component values are adjusted such that A-B >> 1, then (2.6) can

be reduced to:
eal_o_g (2.10)
i B .
. . vcomp . . .
Substituting T for i| gives:
v R
P (2.11)
Vcomp R 1

Thus, by using R, to transform the final stage into a transresistance amplifier, the transfer

function of the final stage can be made relatively independent of uncontrollable

parameters which change with output loading (specifically g, and R, pcp). This will

_ help to produce a simulator behavior which is independent of the arcjet supply converter’s

internal impedance, and aid in stabilizing this two-loop feedback system.

From (2.8) and (2.9), it can be seen that lower values of Rf will result in higher

values of A-B (thus increasing the validity of (2.11)). But from (2.11) it can be seen that
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. lower values of R, will also reduce the magnitude of the final stage transfer function. This

can be compensated for by reducing R, by the same percentage as R, , thereby keeping the

vcomp

transfer function magnitude constant. Since i, = R
1

, and the current i, is supplied by an

LM318 op amp, the minimum value of R, will be determined by the output current
capabilities of the LM318. For this design-, R, was set to 470 2, the minimum allowable
value which did not exceed the output current capabilities of the LM318. R, was in turn

set to 39 kQ, which was high enough to provide sufficient gain for the amplifier, but still

low enough to ensure that A-f >> 1.

R,, was chosen to be 4 Q in order to relieve the power dissipation of the final stage

transistor by approximately 40%, at an operating point correspbnding to a simulator
-voltage of 100 V and current of 10 A, which is the expected operating point of an actual
1 kW arcjet thruster. It was also found that a gate resistance of 120 Q was sufficient to

prevent parasitic oscillations in the paralled transistors.

The compensator values were chosen by examining the open loop gain of the

simulator. Referring to Fig. 2.1, the gain of the compensator is,
14sR-C, v, 512
sR,C, 2.12)

A, (8)=—

comp

and, with k, k, and k, of (2.1a) equal to zero, the multiplier output volatge is given by:
v,=f(i,v)=kpiv where kp =k, k:k,
However, for the circuit arrangement of Fig. 2.3, the multiplier output voltage (v,) will be

negative. Therefore, for the final working version of the simulator, the multiplier output
voltage is given by:

v, =f(i,v) =—kpi-v

Replacing v, by the sum of its DC and incremental parts, and k-i-v by its Taylor series
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expansion about the operating point, yields:

va=Va+3a=f{I,V}+%§

°+§€ v+ HO.T. (2.13)
op

Noting that V, =f { , V}, and assuming small incremental values so that the higher order

1
op

terms (H.O.T.) of (2.13) can be neglected, yields the approximate incremental multiplier
output voltage:

V=~ (k1-1.$’+ k,-v-i") (2.14)

To find the gain of the final stage the transistor must first be replaced with its
small signal equivalent circuit.

Recalling that the transistor actually consists of 16
paralleled IGBT’s results in the transistor small signal equivalent circuit of Fig. 2.5(a).

Coc
I

Using PSpice [8] to examine the AC steady state transfer function reveals that the circuit
Rg

. Coe == ==C¢ce

16 IGBT s o %v§£> - .
ng.ve.i

[ ]

Re
16
‘o
l Rg Coc

o
[g]
o
L3
—}

~16Cce

(b Simplified equivalent circuit
TCee

(2}
11
Al
L1
o
|

(o) Small signa!l eqgivalent circuit of
16 paralled IGBT s

Fig. 2.5 Simplification of transistor small signal equivalent circuit
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of Fig. 2.5(b) is identical to that of Fig. 2.5(a), as expected. Using the result of Fig. 2.5,

_the small signal equivalent circuit of the final stage can be drawn as shown in Fig. 2.6.

R, TE 16Cgc [ R,

Ry
@, AN~ AN > I} ‘ D
by + l L
16C
Veonmp vg 16Cge el }R SOuRCE |

—€
16

P

—0

Fig. 2.6 Final stage small signal equivalent circuit

The hand analysis of this circuit is somewhat complex. However, as shown in
Fig. 2.7, a PSpice [8] simulation of Fig. 2.6 shows that if has a dominant-pole frequency
response for all values of Rg, s ranging from zero to infinity. (For this simulation final
circuit values of R, R; R, and R, were used while values for Ce, Cye, € and g, were
estimated from the IGBT data sheet.) Therefore, neglecting the effects of higher order
poles and zeroes, a simplified circuit having a transfer function which very closely
resembles that of Fig. 2.6 can be obtained. This circuit is shown in Fig. 2.8, where from

hand analysis it can be shown that the midband gain (4,,.;) and dominant high frequency

pole (w,,) are given by:
-8R R, v,
Ania = R+R-(1+g R) Veomp (2.15)
0y = L 2.16)

R
— 1t Y. .
(R" | (1 +g,-R,)}C (1+&eR)
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o— | |

Fig. 2.8 Simplified circuit having a transfer function closely resembling that of Fig. 2.6

Usually g,-R, >> 1 and (2.15) can be approximated as:

R..R .
A w0 2.17)

mid =" R +g-R R,

and when R, is large enough such that g,-R; -R; >> R,(2.17) reduces to:

R
Amz_if (2.18)

which is the same result obtained in (2.11).
Since Figs. 2.6 and 2.8 produce similar transfer functions, g, can be found by
setting |Amid| of (2.15) equal to the A, of Fig. 2.7(a) for Ryypcy =0 (R, =Rp).

Therefore:
_ AR+ Rf)
5= Ry R, —A,sRR))

= 3.31 mhos (2.19)

Similarily, C can be found by setting ®, of (2.16) equal to 2-m:f, of Fig. 2.7(a) for

Rsource =0, giving:
1

C= =922.5 pF (2.20)

R
(R,I I a +81-RL))(2 nf, (1 +8,R,))

Using these values of g, and C along with the final circuit values of R, R and R),,

a PSpice [8] frequency response analysis of Fig. 2.8 yields the Bode plots of Fig. 2.9.
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Comparing Fig. 2.9 with Fig. 2.7 it can indeed be seen that the transfer functions of Figs.
2.6 and 2.8 closely resemble each other. Therefore, referring to (2.15) and (2.16), the
gain of the final stage can be closely approximated as:

1
A)=A,

(2.21)
1+
%

where as given in (2.15) A,,; (and therefore Afs(s)) is a negative number.

The loop gain of the simulator can now be found by breaking the simulator circuit
at a specific point, as shown in Fig. 2.10, and calculating the ratio of the output voltage to
the input voltage at this point.

-

Va Qconp Véonp
-+ Ky A comp (S— —= Apgl(s)

Rsource

<>

Fig, 2.10 Circuit used to calculate the simulator loop gain

From Fig. 2.10:

Ve =V ooy Ag(S) (2.22)
A A Reoyrer A Rsource
pp. _SOWRCE _1 4 (5)——SOURCE (2.23)
‘RD +Roopree . ™ 7 Rp+Rgpuper
A Rsource
A V,w,,,p'Af,(s)’
R,+R
¥V p + Ksource (2.24)

RSOURCE RSOURCE
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Vo =v.A_(s) (2.25)

comp a " “comp

Plugging (2.14) into (2.25) gives:

Y oomp == (k,-I-C + k,-v-?) A romp(5) (2.26)
and substitution of (2.23) and (2.24) into (2;\26) gives:
A oA )Y ke VeV o Ar(8)Y A (s) (2.27)
Vg = = (ke cmp A = e ) Aom® 2
where,
' Rsovrce
Y=——"7T77" (2.28)
Ry + Rgource
Now, the loop ga/i\n can be found from:
v : VA (s)Y
LG = AP (k‘l"I.Afl'(s).Y - kT ( ) ).Acomp(s) (2-29)
V,comp RSOURCE

Substitution of (2.28) into (2.29) and simplifying yiélds:

k'r'(l 'Rsowecz -V)

LG=- f,(s)-Ammp(s){ (2.30)

Rp + Rsource
From (2.30) it can be seen that the loop gain becomes positive when IR, pr < V.

Therefofe, the following condition must be satisfied for stability:

LV
Reoues > T (231)

The result of (2.31) is entirely expected when a load device (such as the simulator)
having the I-V characteristics of a constant power (i-v‘=k) curve is connected to the

output of an arcjet power supply having an internal impedance of R,z as shown in

Fig. 2.11.
RSOURCE
. — ] ¥
v, —~T— | LOAD | v=FLi]

Fig. 2.11 Arcjet power supply having an internal impedance of Rgy pcr and its load
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The incremental circuit of Fig. 2.11 is shown in Fig, 2.12 where /z\represents the

dynamic-impedance of the load which can be found from:
A .
Pava|t| o4O (2.32)
i |di v di v :

Note from (2.32) that 2 is also equivalent to the slope of the tangent to the I-V curve at the

operating point (L,V).

RSOURCE

N>

Fig. 2.12 Incremental circuit of Fig. 2.11

For stability the net resistance of Fig. 2.12 must be positive. Therefore R¢, prp
must be greater than the magnitude of z, or:

Reoprce> 121 (2.33)

Substitution of (2.32) into (2.33) yields:
l:d[(i)

di :|1,V

which for the case of a constant power load (v =f(i)= %J reduces to (2.31).

Rsource > (2.34)

Returning to the simulator loop gain derivation, the substitution of (2.12) and

(2.21) into (2.30) gives:

1+ s-Ra-Ca) {k—r'(l Rsource = V)J (2.35)

1
LG:AMIJ. ¢
1 4-5 ( sRy-C,

H

Rp+ Rsource
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Therefore, to increase system bandwidth the zero of the compensator was chosen
such that it would cancel the pole of the final stage. In addition the R,-C, product was
made as small as possible to further increase the bandwidth. This product Awas chosen
such that the unity-gain crossover frequency of (2.35) would provide maximum
bandwidth without interference from higher order poles and zeroes of the IGBT’s, op
amps, and the multiplier. R, must also be large enough such that the output current
capabilities of the LM318 are not exceeded, and small enough such that the LM318’s

offset currents do not interfere with simulator operation. For this design R, was therefore
chosen to be 22 kQ. Then C, was chosen to be 100 pF in order to provide sufficient

system bandwidth.

To choose R, first note from (2.16) that f;, can vary from approximately 5 kHz
(Rsource = =) to approximately 30 kHz (R¢, pcr = 0). Therefore, to cancel the final stage

pole, the compensator zero should be placed somewhere in this range. As seen in Fig.

2.13, the worst case scenario occurs when C)H <E%(T' In this case, the gain falls off

significantly between ®, and ——=-, and the bandwidth is significantly reduced. In

RC

addition, if the O dB crossover should occur on the -40 dB/decade slope, the phase margin
would be extremely small resulting in a conditionally stable system. To achieve desired
simulator performance it is important that the simulator be free of unintended internal
instabilities. Otherwise, possible internal instabilities of the simulator may be falsely
interpreted as converter instabilities and much time may be wasted before the actual cause
is determined and corrected. If the simulator is free of internal instabilities there will be
no doubt as to the cause of any system (the converter and simulator) instabilities.

Therefore, to minimize the scenario of Fig. 2.13, ——= R C was placed closer to the lower

range of f; (=10 kHz). This results in a value of R, = 150 k2.
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Fig. 2.13 Worst case scenario of zero placement

It should be noted that the reference voltage (v, of Fig. 2.3 was supplied by a
different method than that suggested in the initial circuit design of Fig. 2.1. Both
methods, however, produce the same large signal, steady state operation equation, given

by:

Thus, by adjusting the power potentiometer of Fig. 2.3 (changing v, it is possible to

shift the I-V curve from one level to another.

23 SIMULATORI-V CHARACTERISTICS

Both the simulator and thruster have bifurcated I-V characteristics. The complete
simulator I-V characteristic is shown in Fig. 2.14. Initially the final stage transistor will
be in the off state and no current will flow in the simulator. This corresponds to an

~ operating point along I-V charcteristic #1 in Fig. 2.14, and is a simulation of the
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} 1GBT 'S NOT SATURATED
} 1GBT 'S SATURATED

Fig. 2.14 Complete simulator I-V characteristic

thruster-off condition. The startup circuit in Fig. 2.3 was added to provide a convenient
means of starting the simulator. When the startup button is pressed the final stage
transistor turns on and the operating point jumps from I-V characteristic #l. to a point
along I-V characteristic #2 in Fig. 2.14, thereby providing a simulation of the thruster-on
condition.  Instabilities of the combined arcjet supply-converter and simulator
encountered during simulator operation will cause a jump from I-V characteristic #2 back

to I-V characteristic #1, just as with the actual arcjet thruster.

For high enough simulator currents the IGBT’s will saturate causing the collector

to emitter voltage (v,,) to become nearly zero. As a result, I-V characteristic #2 of Fig.
2.14 will shift from curve (a) to curve (b), which will have a slope of = R;. Data for high

current operation of the arcjet is not available. However, it is expected that for high

currents the I-V characteristic of arc producing devices (such as the arcjet) will have a
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positive slope, as shown in Fig. 2.15 for the case of TIG welding of aluminum [10). This
topic will be discussed further in Chapter 5. For now it is simply noted that the positively

sloped portion of the I-V characteristic corresponds to current values too high for normal

arcjet operation.
vV
A'w
TIG welding of
25 ] aluminium / }4mm
-4
2mm
& 20 \ — =
° / 8
g 15 = : =1 4mm &
/ h <
N\ e |
10 P - - .
. —
0 50 150 250 350 ) (Af
’ ' Welding current

Fig. 2.15 I-V characteristics for the TIG welding of aluminum for two different arc
lengths and gases (Source: [10])

24 STABILITY REQUIREMENTS FOR VARIOUS ARCJET POWER SUPPLY
ARRANGEMENTS

As previously mentioned, the I-V characteristics of the arcjet and of the simulator
are bifurcated. This bifurcated I-V characteristic is shown again in Fig. 2.16 as the bold
line curves i=0 and i-v=k. The load lines of an arcjet power supply having an internal
resistance of Ry, pcp are also shoﬁ in Fig. 2.16 for two different values of arcjet supply
" output voltage. As shown for load line #1 of Fig. 2.16, if the arcjet supply output voltage
is high endugh, the load line of the arcjet power supply will intersect the simulator I-V
characteristic at three points (points (a), (b) and (c) in Fig. 2.16). Point (c) is a stable
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SIMULATOR VOLTAGE

SIMULATOR CURRENT

Fig. 2.16 Simulator I-V characteristic and arcjet supply load lines

operating point. -It corresponds to the condition where the simulator is in its off sﬁte, thus
conducting zero current and héving a voltage equivalent to the arcjet power supply open
circuit output voltage. The stability of points (a) and (b) can be determined by applying
the stability condition of (2.34) to the respective points in Fig. 2.16.

From Fig. 2.16, note that the magnitude of the slope of the tangent to the i-v=k
curve at point (a) (IQ | at point (a)) is greater than the magnitude of the slope of the load

line (Rgy pcx)- Thus, (2.34) is not satisfied and this intersection point is unstable.

However, the magnitude of the slope of the tangent to the same curve at point (b) (12 | at

point (b)) is less than the magnitude of the slope of the load line (R, o). Thus, (2.34)
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is satisfied and intersection point (b) is a stable operating point.

Therefore, for load line #1 of Fig. 2.16, (b) and (c) are both stable operating
points. Which of these operating poinis the simulator will reach depends on the dynamics
which occur after the startup button of Fig. 2.3 is pressed. Repeated testing has shown
that these dynamics result in simulator operation at point (b) as long as the arcjei power
supply voltage is sufficiently large such that its load line intersects the constant power

curve.

As shown for load line #2 of Fig. 2.16, if the arcjet power supply voltage is not
sufficiently large then the load line will intersect only with the curve i=0 at point (d). It

has already been stated that this will be a stable operating point.

Thus for an arcjet power supply having an internal impedance Rgoypcy » it has
been determined that for stable operation along the I-V curve, the slope of the load line
must be steeper than the slope of the tangent to the I-V curve, at some point on the curve.

This is the same as the result stated in (2.34).

The theoretical discussion of Fig. 2.16 can be demonstrated experimentally by
using the test set-up shown in Fig. 2.17, where the power supply was adjusted such that
the load line was close to separating from the power curve, and the peak square wave
voltage was made sufficiently large to caﬁsé the load line to separate from the power
curve when the square wave reached its negative value. By setting the Tektronix 11401
Digitizing Oscilloscope up for single trigger mode [9] and closing the switch of Fig. 2.17

the simulator voltage and current waveforms of Fig. 2.18 were obtained.

During time interval ¢, of Fig. 2.18, the load line corresponds to load line #1 of
Fig. 2.16 and the simulator reaches its stable operating point at point (b). At the end of ¢,

the risihg square wave voltage causes the arcjet power supply voltage to increase thereby
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Fig, 2.17 Experimental set-up used to demonstrate the effect of shifting load lines
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shifting the load line further away from the origin. Thus, the stable operating point will
move down the I-V curve to the right resulting in a lower simulator voltage and a higher
simulator current, as shown for time interval ¢, of Fig. 2.18. At the end of ¢, the falling
square wave voltage causes the arcjet power supply voltage to decrease thereby shifting
the load line to a positibn corresponding to load line #2 of Fig. 2.16, which is closer to the
origin. Thus, the operating poirit moves back up the I-V curve to the left until the load
line separates from the I-V curve, after which it follows the load line until it reaches its
final position at point (d) in Fig. 2.11. Note that for time interval ¢, of Fig. 2.18, the
current is not equal to zero. This is because of the finite time needed to charge the

compensation capacitor (C,) to its final value (= 8 ms).

From Fig. 2.16 it can also be seen that larger values of Ry, e Will result in more

stable operéting points since transient disturbances of the arcjet power supply would then

be less likely to separate the load line from the I-V curve.

For more general cases the internal impedance (Z(s)) of the arcjet power supply
will include some capacitance and inductance along with the resistance R, .. For this

more general case the incremental circuit of the arcjet power supply and arcjet is shown in

Fig. 2.19, where Cdm represents a transient disturbance voltage.

Z(s) R
il

<>
NN
N)
"
'
o)

dist

Fig. 2.19 Incremental circuit of the arcjet and arcjet power supply having a more general
internal impedance of Z(s) o
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A

The transfer function (CV_J of Fig. 2.19 is given by:
dist
T= v _ z __ T
T Vae 2+ -1+ Z(s)

Therefore, if the response to the disturbance voltage (3) is to die out the poles of T must
be in the left-half plane. Thus, for the more general case the stability requirement can be
stated as:

the zeros of {-r,+ Z(s)} must be in the left-half plane.

Since the static I-V curves of the arcjet shown in Fig. 1.2 resemble that of Fig.

2.16, the above discussion on simulator stability also applies for arcjet operation.



Chapter 3
SIMULATOR DYNAMIC IMPEDANCE

3.1 INTRODUCTION
If the simulator is to perform as desired, its static and dynamic impedances should
resemble those of an arcjet thruster as described in Hamley’s paper, "Arcjet Load

Characteristics" [4].

3.2 STATIC IMPEDANCE

The test set-up of Fig. 3.1 was used to obtain the static iinpedance data of the
simulator. This was accomplished by adjusting the power supply voltage in order to
obtain simulator current and voltage data for simulator currents ranging from 6 A to 15 A,

at three different settings of v .

As discussed in Chapter 2, R,_.  of Fig. 3.1 must be made large enough to ensure

series
that the power supply load line does not separate from the simulator power curve before

the static impedance data have been recorded down to 6 A. Also note that for Fig. 3.1:

VPS=Rseri¢:'I +V
RSGFIQS I
Power + NN +
Supply Vg Vv Simulator
(0-500V) - | -

Fig. 3.1 Experimental set-up used to obtain static impedance data of the simulator

32
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“Thus, in order to record static impedance data up to I=15 A, R__ .., must be small enough

series

such that the voltage determined by R,_,.-15 plus the simulator voltage at I=15 A and the

present setting of v, (V,s'), does not exceed the output voltage capabilities of the power

supply (500 V for this case). In other words, R_,,,, must also satisfy:
Vps—Vis  500-Vis

series < 15 = 15

R

By setting R to 18.3 Q the simulator volt-ampere curves of Fig. 3.2, for several

series

settings of V,er » WeTE obtained. For the purpose of comparison, a 1 kW constant power

curve (shown in dotted lines) is also shown in Fig. 3.2. |

Examination of Fig. 3.2 reveals that the curved portion of the simulator I-V
characteristic does not actually follow a constant power curve as expected from the design
discussion of Chapter 2. The only possible explanations for this are that either an error

was made when zeroing the multiplier offsets (k; k, and k) of (2.1) or that some offset

drift occurred between the time the offsets were adjusted to zero and the time the static
impedance measurement was made. In either case, the fact that the simulator I-V curves
are not constant power curves is because the offset coefficients (k, k, and k,) of (2.1) are
not all equal to zero. No steps were taken to correct this because the goal here is not to
produce simulator I-V characteristics that are constant power curves, but to produce
simulator I-V characteristics which are similar to those of the arcjet shown in Fig. 1.2.
Comparing Fig. 1.2 with Fig. 3.2 it can be seen that this goal has been adequately
accomplished. Also note that the resultant multiplier offset has actually rotated the I-V
curves of Fig. 3.2 such that they resemble those of an arcjet more closely than those of a

constant power curve would.

The effect of changing theA power potentiometer setting (Changing v, of Fig. 2.3,

is demonstrated in Fig. 3.2 as a shifting of the I-V curve towards or away from the origin.
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Fig. 3.2 Experimental simulator static Volt/ Ampere characteristics for various settings of
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In addition, the effect of IGBT saturation is also demonstrated as a change from the I-V

curve to a straight line having a positive slope of = R,,.

3.3 DYNAMIC IMPEDANCE

In his paper [4], Hamley has shown that the dynamic impedance of an actual arcjet
thruster has a negative real component and no imaginary componeﬁt for frequencies
ranging from 100 Hz up to approximately 50 kHz. Hamley’s results can be seen in Fig.
3.3 where the arcjet’s upper cutoff frequency (UCF), defined here as the frequency at
which the phase differs from its low frequency value by 45 degrees, appears to be
approximately 40-50kHz.

The theoretical simulator dynamic impedance can be found by applying a current
- test source to the simulator final stage, as shown in Fig. 3.4. From Fig. 3.4 it is clear that
A

the dynamic impedance ( z =-‘{s ) can be found from,

V-
~ Ve _A
%, =1 3.1)
where from Chapter 2, '
Do = VoA ooy $)Agls) = - (k.,-I-C + k.,-V.?) X G2

whe_re,

(3.3)

1+sR:C, )\ A
X=App(s)Agls)=- . )

s'R,-C, s

H

and as in (2.15) and (2.16),
_ - gl'Rf ‘R,
mid = R +R(1+gR)

A

1
R
(Rll I—f——)-(c-(l +g,R)))

0.)H=

(1+g,R)

‘ A
Plugging (3.2) into (3.1) and solving for the dynamic impedance (—Yx) , yields:

i
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Fig. 3.3(a) Dynamic impedance magnitude vs. frequency for varoius flow rates (I=10 A)
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Fig. 3.3(b) Dynamic impedance phase angle vs. frequency at various flow rates (I=10 A)

Fig. 3.3 Arcjet dynamic impedance data (Source: [4])
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Fig. 3.4 Circuit used to derive the simulator theoretical dynamic impedance

A b Rp=kpVX)
T 0+ kdX)

Substituting for X from (3.3) gives:

Ry sV 1+sRC\ [ A4
+k-V .
b S'Rz'Ca 1+ _._S_
A H
z= | 1+sRC\( A Y
S'R2°Ca 1+ i
Wy

\

(3.4)

(3.5)

If, as discussed in Chapter 2, the compensator zero is made to cancel with the final

stage pole, then the dynamic impedance reduces to:

kp VA,
R,+————
D" sR,C,
kpl-Ayy
sR,C,

A
Z
1

Rearrangement of (3.6) yields

(3.6)
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k,-v-A,.,,,-r]

RD-(S + R
\— b where 7=
$— k.,-I-Am.d-‘r R2-C

a

3.7

A
=

where as shown in (2.15) A__, is a negative number. (3.7) can also be written as:

s
A (V)@
z—(-l)- e (3.8)
1+—
P

where:
: Amid'KT' V'T

W, = RD

Z

and ©,= |Am, d-k.,-l-‘rl

For low frequencies (3.7) and (3.8) reduce to,
2=- = (3.9)
z I .

which as discussed in Chapter 2, is the expected value of dynamic impedance for a load

device which has a constant power I-V characteristic. Thus, for low frequencies the

theoretical dynamic impedance of the simulator consist of a negative real component, in

agreement with that of an actual arcjet thruster.

Using the HP Dynémic Signal Analyzer (model 3562A) in -its synthesis mode
[11], plots of the imaginary and real parts of (3.7) vs. frequency were obtained for
simulated load currents of 6, 10 and 14 A. The upper cutoff frequency (UCF) was also
calculated for each of these operating points and is noted in the upper right corner of each
plot (note that the measurement range of the HP 3562A is limited to: 64 uHz - 100kHz).
The results, shown in Figs. 3.5, 3.6 and 3.7, are consi-stent‘with those obtained from an

actual arcjet thruster as given by Hamley’s paper and shown in Fig. 3.3 [4].

Finally, using the experimental setup shown in Fig. 3.8 and operating along static
I-V characteristic #1 of Fig. 3.2, plots of the imaginary and real parts vs. frequency of the

actual simulator dynamic impedance for simulator load currents of 6, 10 and 14 A were
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Fig. 3.5 Real and imaginary components of (3.7) vs. frequency for I=6 A and V=148 V
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Fig. 3.8 Experimental set-up used to obtain the dynamic impedance of the simulator

obtained. In addition, the simulator upper cutoff frequency for each of these operating

points was measured and noted. These results are shown in Figs. 3.9, 3.10 and 3.11.

As previously noted the low frequency simulator dynamic impedance, at a given
operating point, is also equivalent to the slope of the tangent to the static I-V curve at that
operating point. Thus, comparing the low frequency real part values of Figs. 3.9-3.11
with the slopes of the tangents at points (a), (b), and (c) of Fig. 3.2, shows close
agreement between corresponding low frequency dynamic impedance values (the that

the low frequency dynamic impedance values of Fig. 3.5-3.7 and 3.9-3.11 are given by Y,

in the upper left hand comer of each plot). Differences can be attributed to the limited

number of sampling points used to construct the static I-V curve, and to the limited degree
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of accuracy used to construct the tangent at each operating point.

As shown in Table 3.1, there is a slight difference between the theoretical and
experimental low frequency dynamic impedance values at each operating point. The
reason for this difference is that the theoretical low frequency dynamic impedance value
is given by (3.9), which as alreédy mentioned is equivalent to the slope of the tangent to a
constant power curve at the operating point (I,V). Whereas, the experimental low
frequency dynamic impedance value is given by the slope of the tangent to static I-V
curve #1 of Fig. 3.2, at the operating point (I,V).. And as discussed in section 3.2, I-V
curve #1 of Fig. 3.2 is actually rotated from that of a constant power curve in such a
manner that it produces a smaller tangential slope magnitude at a given operating point

than a constant power curve would, which verifies the results shown in Table 3.1.

Low Frequency Dynamic Impedance Values
Operating I=6 A I=10 A I=14A
Point V=148 V V=102 V V=78 V
Theoretical -24.67 Q -10.20 Q -5.57Q
Experimental | -18.56 -8.73 Q -4.97 Q

Table 3.1 Comparison of theoretical and experimental simulator dynamic impedances

Overall, the experimental results shown in Figs. 3.9-3.11 are consistent with the
synthesis analysis (theoretical results), of Figs. 3.5 - 3.7, and Hamley’s results [4]. Thus
it can be said that the static and dynamic impedances of the simulator closely resemble
those of an actual arcjet thruster. Note that the simulator upper cutoff frequency
(=60kHz) agrees closely with that of the arcjet thruster (=40-50kHz) for an output current
of 10A. The synthesis plots show a higher upper cutoff frequency (=100kHz) because the
synthesis analysis does not take into account any of the simulator’s higher order poles and

Zeroes.



Chapter 4
SIMULATOR PERFORM_ANCE

4.1 INTRODUCTION

The purpose of this chapter is to examine simulator performance. This was
accomplished by comparing the results obtained from testing the simulator with a
currénf—mode-controlled (CMC) converter, with a load-current-regulating outer control
loop designed for 1 kW arcjet applications, with those obtained by testing an arcjet
thruster with the same converter. The thruster testing was performed at the NASA Lewis
Research Center using a NASA 1 kW arcjet thruster. For the test set-up, éhown in Fig.

4.1, the CMC converter was adjusted for a constant DC output current of 10 A. The

—I> _
+
Power CMC Converter Arc Jet
vV or
Supply [IDC =104] Simulator

Fig. 4.1 Experimental set-up used for testing with a CMC converter

CMC converter used for this testing is shown in Fig. 4.2. This converter has been
described in detail elsewhere [12]. The ignition circuit referenced in Fig. 4.2 is shown in
Fig. 4.3. This ignition circuit was developed following the guidelines set forth in [13].
The purpose of the ignition circuit is to provide a‘ high voltage pulse between the anode

and cathode of the arcjet thruster to ignite the arc.
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Fig. 4.3 The ignition circult referenced In Fig 4.2
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4.2 STEADY STATE OUTPUT RIPPLE
The CMC converter of Fig. 4.2 was initially designed to have an output

inductance (L,,,) of 384 uH. However, to ensure a wide enough ignition pulse to ignite

the arc, the converter was also tested with an output inductance of 2 mH. Therefore the

steady state output ripple results will be given for both values of output inductance.

4.2.1 Steady State Output Ripple with Low = 384 pH

The steady state output ripple characteristics of an Arcjet thruster tested with the
CMC converter of Fig. 4.1 (L,,, =384 pH) are shown in Fig. 4.4(a); while those of the
simulator tested with the same converter are shown in Fig. 4.4b). The simulator results
of Fig. 4.4(b) were obtained by adjusting the power potentiometer of the simulator
(shown in Fig. 2.3) so that the converter DC output voltage was equal to that of Fig.

4.4(a), which is approximately 90 V.

Observation .df Fig. 4.4(b) reveals that the simulator is indeed performjng as
expected, producing output ripple characteristics which clearly indicate a negative
simulator dynamic impedance (the change in voltage to the change in current ratio is

negative for a given time period), as expected from the discussion of Chapter 3.

Comparison of Figs. 4.4(a) and (b) reveals similarities to the extent that they both
have a negative dynamic impedance and they both exhibit similar ringing characteristics.
The causes of ringing will be discussed in section 4.2.2. The figures are different to the
extent that they appear to have unequal dynamic impedances, and the ringing is more
damped in the simulator results of Fig. 4.4(b) than it is in the arcjet results of Fig. 4.4(a).
Calculating the dynamic impedance from the change in voltage and current data shown

for each figure, yields:
4
Al

<

A
=

=-3.6Q for Fig.4.4(a)
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Fig. 4.4(a) Arcjet steady state output ripple characteristics for Low = 384 puH
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Fig. 4.4(b) Simulator steady state output ripple characteristics for Lous = 384 pH
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A AV
Sy

=—6.5Q for Fig.4.4b)

Thus, the simulator has a higher value of dynamic impedance than the arcjet. Comparing
the'slopes of the tangents to the I-V curves of Fig. 1.2 with those of Fig. 3.2, for a given
current, shows that this was an expected result.

The circuit responSiblé for the output ringing can be simplified to that of Fig. 4.5,
where L represents the converter stray and/or leakage inductance involved, C,,, represents

the ignition capacitor of the converter, ry represents the dynamic impedance of the

simulator, and R, represents the total losses of the resonant circuit of Fig. 4.5.

Fig. 4.5 Simplified output ringing circuit

If R, < 'rdl (usually the case for Fig. 4.5) and R, is defined as the parallel

combination of r;and R, _, that is,
_ IRy,
4 r;+R,,

and remembering that r, is a negative number, it becomes apparent that higher

magnitudes of r, will give lower values of R, resulting in more damping of the output

ringing. Therefore, the fact that Figs. 4.4(a) and (b) have unequal damping can be
attributed to their unequal dynamic impedances, and as expected the figure with the
higher magnitude of r, (Fig. 4.4(b)) has the greater damping.
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Later (in Chapter 5), it will be shown how to change the dynamic impedance of
the simulator so that it more closely resembles that of the arcjet thruster. For now, it is
simply noted that the simulator and thruster produce similar output ripple characteristics

when tested with a CMC converter having an output inductance of 384 pH.

4.2.2Investigation of Output Ringing

A plot of the CMC converter transformer primary current (when tested with the
simulator) is shown in Fig. 4.6. During the time interval ¢, shown in Fig. 4.6, the
appropriate pair of bridge transistors (Q1 & Q4 or Q2 & Q3) along with the appropriate
rectifier diode (D1 or D2) of Fig. 4.2, are conducting. Therefore, for the time interval ¢,

the incremental converter circuit of Fig. 4.7 is in effect.

Examination of Fig. 4.7 reveals that the ringing during time interval ¢,, of Fig. 4.6,

is caused mainly by the primary to secondary leakage inductance of the transformer,

referred to the secondary, acting in conjunction with the 3000 pF ignition capécitor (C,.)-

A plot of the CMC converter transformer secondary current (when tested with the
simulator) is shown in Fig. 4.8. During the time interval 7, shown in Fig. 4.8, the
appropriate pair of bridge transistors (Q1 & Q3 or Q2 & Q4) ahd both rectifier diodes (D1
& D2) of Fig. 4.2, are conducting. Therefore, for the time interval ¢,, the incremental

converter circuit of Fig. 4.9 is in effect.

Examination of Fig. 4.9 reveals that both the transformer primary and secondary

windings are directly shorted. Therefore the ringing during time interval z,, of Fig. 4.8, is

caused mainly by the secondary to secondary leakage inductance plus the stray inductance
of the secondary circuit, acting in conjunction with the 3000 pF ignition capacitor (C,,,).

This conclusion is supported by the fact that there is no ringing in the transformer primary
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Fig. 4.6 CMC converter transformer primary current and output voltage ripple
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Fig. 4.7 Incremental converter circuit for time interval z,
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Fig. 4.8 CMC converter transformer secondary current and output voltage ripple

Fig. 4.9 Incremental converter circuit for time interval ¢,
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current of Fig. 4.6 during the time interval ¢,.

The ringing during time interval ¢, has a higher frequency than that of time
interval ¢,. This comes as no surprise since the secondary to secondary leakage inductance
plus the stray inductance of the secondary circuit is expected to be much less than the
primary to secondary leakage inductance of the transformer referred to the secondary, and

the ringing frequency is determined from:

1
@=yLc

4.2.3 Steady State Output Ripple with Loyt =2 mH
The steady state output ripple characteristics of an arcjet thruster tested with the

CMC converter of Fig. 4.2 (L,, =2 mH) are shown in Fig. 4.10(a), whilé those of the

simulator tested with the same converter are shown in Fig. 4.10(b). In this case, the
simulator results were obtained by setting the power potentiometer of the simulator to
obtain a converter DC output voltage equal to that of Fig. 4.10(a), which is approximately

P V.

As expected, the results of Figs. 4.10(a) and (b) are very similar to those of Figs.
4.4(a) and (b). The only difference between the two sets of figures is a smaller ripple
amplitude for Figs.4.10(a) and (b). This is to be expected since the converter output

inductance (L,,) is significantly larger for these two figures than it is for Figs. 4.4(a) and

(b).

All other aspects of Figs. 4.10(a) and (b) are the same as discussed in section 4.2.1
with Figs. 4.4(a) and (b) replaced everywhere by Figs. 4'.-10(a) and (b), respectively.
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4.5 LARGE SIGNAL TRANSIENT RESPONSE WITH Loy =2 mH
The large signal transient response of an arcjet thruster tested with the CMC

converter (L,, =2 mH) is shown in Fig. 4.11(a), while that of the simulator tested with

the same converter is shown in Fig. 4.11(b). These measurements were taken by injecting
a pulse waveform into the control circuit of the converter, as shown in Fig. 4.12. The
pulse magnitude was set to the maximum allowable value which did not cause simulator

or thruster turn-off.

AIt is apparent that the current and voltage waveforms of the arcjet shown in Fig.
4.11(a), closely resemble those of the simulator shown in Fig. 4.11(b). The slight
differences are believed to be caused by the unequal dynamic impedances of the simulator
and arcjet. Finally, as expected for a negative dynamic impedance, the current pulse goes

negative for a corresponding positive pulse in voltage.

'Further examination of Figs. 4.11(a) and (b) reveals evidence of underdamped
ringing‘on the current and voltage pulse waveforms. This underdamped ringing indicates
the presence of a complex conjugate polel pair in the system (the converter and its load) |
transfer function, which is located in the left half s-plane, fairly close to the jw-axis.
Therefore, the bandwidth and phase margin of the system are relatively small, resulting in
a marginally stable system. This occurs because the converter loop gain was originally
compensated by using a resistive load bank in place of the simulator (before the simulator
was designed). This is demonstrated in Fig. 4.13, where the large signal transient
response of a resistive load bank tested with the CMC converter, for the same conditions
as Figs. 4.11(a) and (b), is shown. Examination of this figure reveals that the system 1s
more than adequately compensated for a resistive load.

Thus, to increase system stability, the converter loop gain should be compensated

when the converter is operating with the actual load it was designed for. Hence, another
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Fig. 4.13 Resistive load large signal transient response for L, =2 mH

useful application of the simulator arises in compensating the converter for use with an

actual arcjet thruster.

4.6 LARGE SIGNAL TRANSIENT RESPONSE WITH Lous = 384 nH
" The large signal transient response of the simulator tested with the CMC converter

(L, =384 pH) is shown in Fig. 4.14. Unfortunately, no corresponding data was taken

. with the arcjet thruster.

A comparison of Figs. 4.14 and 4.11(b) reveals that the system is much more
stable with an output inductance of 384 WH than one of 2 mH. It is known that the CMC
-converter loop gain is dependent upon the value of output inductance used [14].

Thérefore, the converter should be compensated for the final value of output inductance
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Fig. 4.14 Simulator large signal transient response for L, = 384 pH

used.

With the exception of more ripple in Fig. 4.14 than in Fig. 4.11(b), the two figures
are similar in all other aspects.

4.7 SIMULATOR EXTINCTION TRANSIENT

The simulator extinction transient was obtained by increasing the magnitude of the
pulse waveform injected into the control circuit of Fig. 4.12 until simulator extinction was
achieved. Using the Tektronix 11401 Digitizing Oscilloscope in the single trigger mode

[9], the output voltage and current waveforms of Fig. 4.15 were recorded.

Fig. 4.15 shows that after the pulse occurs the simulator current and voltage

approach a new equilibrium point. However, the new equilibrium point turns out to be
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Fig. 4.15 Output voltage and current during simulator extinction

unstable and the simulator’s current goes to zero and its voltage to the CMC converters
open circuit value. Thus, the operating point jumps from I-V characteristic #2 to I-V
characteristic #1 of Fig. 2.14. The large spike in the simulator voltage is caused by the

rapid change in the current through L, as the simulator current goes to zero.

Overall, the simulator extinction response seems to accurately predict the arc

extinction response of an actual arcjet thruster.
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Chapter §
SUMMARY FOR PART 1
5.1 DYNAMIC IMPEDANCE ADJUSTMENTS
As suggested in Chapter 4 another issue to be considered is how to make the
dynamic impedance of the simulator adjustable, so that it can be made to more closely
resemble that of an arcjet thruster. As mentioned in Chapter 2, the dynamic
impedance of the simulator is equal td the slope of the tangent to the static -V
charactéristié at a given operating point. Thus, by adjusting the static I-V curves the
simulator dynamic . impedance éan be changed.
A simple way of doing this is by connecting a voltage feedback network to
the positivé terminal of the PI compensator op amp shown in Fig. 2.3. This network is
shown in Fig. 5.1 where previously existing components are shown in dotted lines,

and R1 and RS represent the power potentiometer of Fig. 2.3.

10 rultiplier

i
* Ve
R2=22KQ -,
. 100pF i ¢ .
: .l +
+15V j : 150k6? .V'Ru 200ka
“R1 — to output stage
. oy _ é Rpot
o R3 C
10k Q ref : S v,
RS |
: R4

v -

to stortup clircuilt

Fig. 5.1 Voltage feedback network used to adjust the simulator dynamic impedance
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As stated in Chapter 2, for large signal, steady state operation, the compensation

capacitor (C,) of Fig. 5.1 will block current flow through its path. Thus, the large signal,

steady state operation of Fig. 5.1 will be determined by,

V=V, V-V,
'fR L= ‘R (5.1)
3 2

where v, is given by:
R,
v, =v 3 (5.2)
R, +200-10°+R,.

Recalling from Chapter 2 that v, = - kpi-v (assuming thatk, k, and k, of (2.1) are all zero)

and that R, = R, (see Fig. 2.3), (5.3) can be reduced to:

Vet = 2-v, + kpicv | (5.4)

Substituting (5.2) into (5.4) yields:
2-R,

vref= 3
R, +200-10° +R,

vt hpiv 5.5

Thus, the constant power I-V curves produced by (2.2a) are being altered by the addition
of a term proportional to the simulator voltage (v), hence thé term voltage feedback
network for the circuit of Fig. 5.1. |

By using the existing value of R3 (22 k), setting R4 to 4.7 k2, and adjusting R ,,
to 1 MQ, in Fig. 5.1, static I-V characteristic (c), shown in Fig. 5.2 (where VF = Voltage
Feedback), was obtained. For comparison, tﬁe static I-V characteristic of an arcjet (the
middle curve of Fig. 1.2) and the previous I-V characteristic of the simulator without
voltage feedback (curve #1 of Fig. 3.2) are shown in Fig. 5.2 as curves (a) and (b),
respectively. Using the values of R3 and R4 mentioned above, and reducing R, yields
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IV curve (d) of Fig. 5.2. Reducing R, to zero yields I-V curve (e).

Comparing Fig. 5.2 curves (a); (b) and (e) reveals that indeed the dynamic
impedance of the simulator is being adjusted closer to that of the arcjet. However, curve
(e) needs to be shifted away from the origin in order to achieve similar operating points as
the arcjet curve (a). As discussed 1n Chapter 2 and demonstrated in Chapter 3, this can be
accomplished by adjusting the power potentiometer of Fig. 2.3. Adjusting this
potentiometer for an opefating point of 116.2 V at 10 A (the approximate arcjet voltage of

curve (a.) at 10 A) results in I-V curve (f) of Fig. 5.2.

Comparing curves (a), (b) and (f) of Fig. 5.2 reveals that the simulator dynamic
impedance has been decreased, but is still greater than that of the arcjet. These reductions
have occured as the positive terminal voltage of the LM318, of Fig. 5.1, has been steadily
increased by reducing R, towards zero. Thus, further dynamic impedance reductions
can be made by increasing R4 and again adjusting R, towards zero. Changing R4 to 10
k€2, adjusting R, to zero and adjusting the power potentiometer (R ,,,,,) to its maximum
value (such that R1=0 in Fig. 5.1) yields I-V curve (g) of Fig. 5.2. Examination of this
curve reveals that it has a dynamic impedance very close to that of the arcjef curve (a).
However, curve (g) must be shifted away from the origin to achieve similar operating
points as (a), and the power potenﬁometer (R o) is already set to its maximum value.
However, by changing R3 to 10 kQ the‘rahge of R, can be extended. Thus, by

adjusting R, for an opérating point of 1168 V at 10 A, curve (h) of Fig. 5.2 was

obtained.

Comparing curves (a) and (h) of Fig. 5.2 reveals close agreement between the I-V
characteristics (and therefore the dynamic impedance) of the arcjet and simulator,

especially in the range of 8 - 10.5 A.



Note that by letting,
k, 2R,
R, +200-10° + R,
(5.5) can be rearranged to yield:
o re
v 6+ ki (5.6)
which is the same as (2.1b) (repeated here for convenience) with k, =k, = 0:
—ky = ki
TP ks Bilar 4
v=fJi)= K+ ki (5.7

Thus, the same results achieved by the voltage feedback network of Fig. 5.1 could
also be achieved by manipulating the multiplier offset potentiometers so that &, of (2.1b)
is varied while k, = k, =0. This could be accomplished by varying thé I offset pot of Fig.
2.3.

If in addition to k;, k, and k, are also varied (by varying the P and V offset pots of
Fig. 2.3), the degree .of freedom available in matching the simulator I-V characteristics to
those of the arcjet will increase. However, since this will involve the adjustment of three
potentiometers it is suggested that a curve tracer be employed to give a continuous trace
of the simulator static I-V characteristic as each pot is varied, so that the best

approximation to the desired I-V curve can be rapidly found.

5.2 OTHER APPLICATIONS
One application of interest is in the area of welding power supply testing. As
illustrated in Fig. 2.15, the I-V characteristic of a welding arc is similar to that of the

simulator shown in Fig. 2.14.

Using the techniques of the previous section along with a change in R/, of Fig. 2.3,

the simulator static I-V curve can be made to clo§ely resemble that of a given welding arc.
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In this way the simulator could be used as a load when testing welding power supplies .

Another possible application of interest concerns the simulation of switching
converters in solar power systems testing (such. as the case discussed in.[15]). When a
switching converter is in regulation the current will decrease (increase) for a
corresponding increase (decrease) in voltage such that its output power remains constant.
Thus, while in regulation the switching converter follows a constant power I-V
characteristic. When the switching converter voltage gets sufficiently low the converter
will drop out of regulation and behave as a resistive load. Thus, as given in [15], the I-V

characteristics of a regulated switching converter are as shown in Fig. 5.3.

|
" solar V/4
a
array e /s f
/6 B ioad lines
| A
: L]
| A3 P
|
| 3
[ A 2
l 1
1
¥limit Vhunt VY

Fig. 5.3 I-V characteristics of a regulated switching converter (load lines 1-5)
(Source: [15)

It has already been shown that the simulator can reproduce the constant power
portion of the I-V characteristic shown in Fig. 5.3. By changing the sign of the multiplier
(switching the current sense leads on the emitter resistor) and of the DC voltage applied to

‘the power potentiometer of Fig. 2.3, the straight line portion of the simulator I-V
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characteristic shown in Fig. 2.14 can be made to resemble that of the switching converter

shoWn in Fig. 5.3

By using the techniques of section 5.1 and the appropriate value of R, the
simulator I-V characteristic can be made to closely resemble the input characteristic of a

switching converter having a constant load. Thus, in this way the simulator could be used

to simulate actual switching converters when testing solar power systems.

. In short, the simulator has possible applications in any situation where the load

current increases (decreases) with decreasing (increasing) voltage.

5.3 SIMULATOR LIMITATIONS

As shown in Figs. 3.9-3.11 the simulator upper cutoff frequency is limited to
approximately 40-60 kHz depending on operating point. (Remember that the upper cutoff
frequency has been defined in this study as the frequency at which the phase of the
dynamic impedance varies from its low frequency value by 45 degrees.) The limited
arcjet data obtained from [4] suggests that the arcjet also has an upper cutoff frequency of
approximately 40-60 kHz. Therefore, it appears that the upper cutoff frequency of the
simulator is comparable to that of the arcjet. However more arcjet data should be
obtained before this result is verified. For most applications the simulator upper cutoff
frequency should be large enough to include the source ripple frequency, which for this
case is 40 kHz.

Due to a lack of mathematical equations describing arcjet behavior and a lack of
sufficient arcjet experimental data to compare with simulaior results, the extent to which
the simulator matches the large signal dynamics of an actual arcjet remains relatively

unknown.
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The ignition pulse created by the ignition circuit of Fig. 4.3 will be in the range of
1-2 kV. Therefore, the ignition circuit and simulator were not tested together as such
testing would require very high voltage simulator devices. Thus, the simulator should not

be used for ignition circuit testing.

5.4 CONCLUSION

The simulator as developed herein has been shown to produce I-V characteristics
which closely resemble those of an arcjet thruster, thereby demonstrating its ability to be
used as a load device in determining the stability of converters designed for aréjet
applications. In addition, the simulator has been shown to be a fairly accurate predictor of |
actual arcjet performance. Since the system (the converter and its load) loop gain has
been shown to be dependent on the type of load used, another useful application of the
simulator arises in compensating the converter for use with an actual arcjet thruster. It
has also been shown that the simulator can be constructed in the laboratory using

relatively inexpensive power electronic components.

The stability of various arcjet supply arrangements has been demonstrated by
proving that the internal resistance of the arcjet supply converter must be greater in
magnitude than the dynamic resistance of the simulator to achieve a stable, non-zero

current, operating point.

The static and dynamic impedances of the simulator were shown to agree closely
with results obtained from an actual arcjet thruster. In addition, simulator performance
was determined by testing the simulator with a current mode controlled (CMC) converter
and comparing the results with those of an arcjet tested on the same converter. The data

obtained showed close agreement between simulator and thruster performance.

Methods of varying the simulator dynamic impedance so that it would more
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closely resemble that of an arcjet thruster, or some other device, have also been discussed.
Finally, it has been shown that the simulator may have applications in other areas, such as
in testing power supplies for welding or for the simulation of switching converters in

testing solar power systems.
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PART 11
ARCJET IGNITION CIRCUIT DEVELOPMENT
Chapter 6
INTRODUCTION

Fig. 6.1 shows the 1kW éonvener power circuit which was developed in [12].
The gate drivers, gate drive current booster, current mode controller (CMC), diagonal
to phase-shift conversion logic, and CMC Hall effect current sensor are shown in
Figs. 6.2-6.6, respectively. All of this circuitry was developed as part of the study
describcd in [12], and the circuit details are 'described in that reference. The ignition
circuit is shown in Fig. 6.7, and its theory of operation is described in the next

chapter.
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Chapter 7
THEORY OF OPERATION FOR IGNITION CIRCUIT

This ‘arcjet ignition circuit is shown in Fig. 6.7. This circuit is designed to
operate from the primary input voltage to the arcjet converter, in the range of 20-35
V, and provide a consistent ignition pulse to the arcjet. The converter output
inductor is provided with a closely-coupled extra winding through which energy is
introduced to this inductor to form t.hlev ignition puls@. When an ignition command is
received by the control portion of the circuit, the IGBT is turned on, allowing the
current in the extra inductor wincAli'ng to ramp up to a predetermined set point, at
which time the IGBT is tumed off. This begins an iﬂtérval in which the inductor
primary voltage rises resonantly to the breakdown voltage of the arcjet. Assuming
enough energy is initially stored in the inductor, an initial current is established in
the arcjet correspo'nding to an arc voltage below the open-circuit voltage of the
arcj'c't converter. This permits the current in the inductor to rise to the point at
which the converter current-regulation loop takes control of the converter. The
circuit of Fig. 6.7 is similar to that of [13] in most respects, and was derived from it.

The control portion of the ignition circuit uses a TSC 429 gate-driver to gate
Q1, the IGBT. This gate driver is made self-latching by the addition of Q2. An "off"
state for this latch is assured upon power-up by Q4 and its associated circuitry. An
ignition pulse is manually triggered by the NO/NC push button shown, together with
Q3. An externally-commanded ignition pulse could be coupled in through an opto-
isolator at this point. |

An ignition command sets Ql's latching gate driver, allowing the current in
the extra winding on ‘inductor Lgyy to ramp up at 'a rate determined by the primary
input voltage. This ramping current is sensed by the current transformer and QS5,

and when it reaches its set point the gate driver is reset by Q5. Because a current set
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point is used instead of a fixed inductor-charging time, a consistent amount o
energy is stored in the induct_or regardless of varying supply voltage. Upon tur
off of QIl, the inductor voltage rises sinusoidally, the resonance being determined b:
the 2.22 pF capacitor in parallel with the IGBT and the 3000 pF on the inductor mail
winding. When break over of the arcjet occurs at the angular time "@®" at the natura
resonant frequer'lcf, an initial current equal to the charging-current set point time
cos ® , reflected through the inductor tums ratio, is established in the arcjet. (It i
generally found that cos © is close té one for pract'ical purposes in this design.) It i
then expected that the arcjet supply go.nvertcr will establish an appropriat
operating point for the arcjet before the energy stored in the inductor is dissipated.

The open-circuit voltage produced by the ignition circuit is equal to its se
‘point- current multiplied by the characteristic resistance of the resonant circui
approximately 3.4 kV with a 2-mH output inductor. Should ignition fail to occur, th
diode in anti-parallel with Q1 allows the return of the stored energy to the 1000 ul
suppiy capacitor, and reset of the ignition circuit.

The method used here is to initially ignite the arc with a high voltage puls
and then sustain the steady state arc with a current source. This process can b
explained as follows. The simplified power circuit is shown in Fig. 7.1. S is initiall
closed, and i; ramps up to some value Iy, at which time S is opened. The reflecte
value of Iy is Ip, which is the initial value of iL. The equivalent circuit for this perio
is shown in Fig. 7.2, and waveforms for v, and ip with no arc are shown in'Fig. 73. A
vo increases, the voltage across the arc gap travels along the vertical axis from O to /
in Fig. 7.4 until ignition occurs at vo = V[. As the arc is established, ip begins to flow
and the operating point moves to the vy Vs. ig curve for the arc at some point B. N
attempt is made to model the exact behavior of vo vs. ip during ignition, but v, wil
quickly decrease as the energy stored in L, is dissipated by the arc. Thus th

operating point will move down the vy vs. iy curve as vo decreases. The curren
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regulated converter now has a 100% duty cycle since ip has not yet reached the I, reg
regulation value. After the operating point passes point C, the converter will remain
at 100% duty because ip <Io reg As io continues to increase beyond point C, vo will
continue to decrease as the output operating point moves down the arc curve. The
voltage difference, v -vo,'appeérs across Lo. Io reg represents the regulated current
value that is controlled by the current feedback loop. Because of the delay caused by
the response time of this loop, io proceeds past Io reg at point D and on to Io max
which is the absolute open loop limit fixed by the controller. When io reaches Io max
at point E, the converter begins to operate in the PWM mode to limit ig = Iy max. As the
current control loop begins io respond, the duty cycle will decrease to reduce ig = I
reg. and the steady state operating point will move back to D.

The simplified circuit in Fig. 7.5 provides an explanation as to why a curent
regulated supply should be used instead of a voltage regulated supply. As seen from
Fig. 7.4, at least over part of its operating range, the arc can be approximately
modelled by a nonmlinear R(jo) and va(ié) in series. Therefore vo will drop as io
increases. If voltage regulation is used, the equivalent source resistance, R, is quite
small and R1-Ra(io) < O, which is an unstable condition. If current regulation is used,

R1 is very large and Ry - Ra (io) > 0, which provides stability.
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Chapter 8
EXPERIMENTAL RESULTS

To verify the operation of the converter and ignition circuits, a series of
tests were performed at tﬁc NASA Lewis Research Center where the power supply was
operated with an arcjet load.

Fig. 8.1 shows the open circuit ignition pulse without the 100 V. output and
with Lo = 2mH. Fig. 8.2 shows the pulse under the same conditions but with the arcjet.
An expanded view is shown in Fig: 8.3.

.Fig. 8.4 shows vo and ip at ignition with the peak current limit set at about
40A. Fig, 8.5 shows these same waveforms but with an expanded voltage scale. This
_ peak value of 40A. was judged to be excessive and raised some concemn about damage
to the arcjet nozzle. Therefore, the peak current limiter setting was lowered, and
Figs. 8.6 and 8.7 show the results for peak limits of about 12.5A. and 21 A,
respectively.  Fig. 8.8 shows the steady state ripple in vy and ig, while Fig. 8.9 shows
the response of vy and ig to a step change in the current reference voltage.

In an effort to save weight, it would be advantageous to reduce the size of the
output filter choke, but there is some concern that ignition may not occur if the
choke is too small. This concem is based on the .fact that a sméller chokc.will sustain
the ignition pulse for a shorter period of time. To investigate the .behavio'r with a
smaller choke, a series of tests were performed using a 384 puH choke in place of the
original value of'ZmH. The resulting waveforms are shown in Figs. 8.10-8.12. Fig.
8.10 shows that the ignition pulse is now in excess of 4kV, and ignition occurs in
about 1.25 ps. Fig. 8.2 indicates that with the 2 mH choke ignition occurred at about
1.5 kV and within about 3.75 us. Both chokes appeared to be satisfactory since the arc
was ignited numerous times with each choké, and no fgnition failures were observed.

~ Fig. 8.11 shows the output voltage and current ripple. The output voltage and current
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after ignition with I limit - 25 A. peak are shown in Fig. 8.12. The peak values of vo
and ip in Fig. 8.12 are considerably lower than those in Fig. 8.10 since the limited
sampling rate of the digital storage oscilloscope -apparently missed the peak values

when used on the longer time scale.
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Chapter 9 _
SUMMARY FOR PART II
It appears that the arcjet power supply functions properly and no operating
problems were observed. Every attempted ignition was successful, and the confrol
circuit appears to be immune from EMI and instability problems. Of'vcourse, further
optimization is always possible, and there are certain areas of investigation that
might lea‘d to reductions inv cost and/or weight. One of those may be a further

reduction in the output filter choke, since values below 384 pH were not tested.
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