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application to the robustness of the Space Shuttle's flight control 
system. and it is funher described in [Ill-[14]. Thls method 
determines the srochasric robusrness of a linear time-invariant 
system by the probability distributions of closed-loop eigenvalues. 
given the statistics of the variable parameters in the plant's dynamic 
model. The orobabiliw that all of these eieenvalues lie in the own -~ m - ~  -~ 

Absnact-A simple numerical procedure for estimating the stochcL(tic left-half piane is scalar measure of robustness. 
roburncur of a linear time-invariant system is described. .Monte Carlo 
evalualion of the system's eigenvalues allows the probabilify of Lrrtabil- 

With the advent of graphics workstations. the stochastic robust- 
iry m d  the relaled stochrrtric root 1 0 ~ " ~  to be estimatd. This analysis ness of a system is easily computed by Monte carlo simulation. and 
approach trrats not only Gaussian parameter uncenainties but eon. results can be displayed pictorially, providing insight into otherwise 
Gaussian c-. includinn uncertain-but-bound4 variatious. Confidenfe hidden robustness propenies of the system. The method is computa- 
interrds tor the scairr probability of insubiity add- computatioud t i o d y  simple. requiring only matrix manipulation and eigenvdue 
issues inherent in Monte Carto simulation. Trivial extensions of the computation, and it is inherently nonconservative. given a large 
procedure admit consideration of  alteraate discriminants; thus. the enouch samde svace. Furthermore. the analvsis of stochastic ro- 
probabilities that stipulated degrees of instability will be exceeded or bustness is 'a ldgical ad,una to parameter-;pace control design 
that closed-loop rools will leave desirable regions can d s o  be estimated. [15]-[18]. ~ ~ ~ i l ~  of the approach and an example are 
Results are particularly amenable to graphical presentation. given in the sequel. 

Control system robustness is defined as the ability to maintain 
satisfactory stab~lity or performance characterist~cs in the presence 
of all conceivable svstem oarameter variations. While assured ro- - ~ 

bustness may be &wed H an alternative to gain adaptation or 
scheduling to accommodate known parameter variations. more often 
it is seen as protection against uncertainties in plant specification. 
Consequently, a statistical description of control system robustness 
is consistent with what may be known about the structure and 
parameters of the plant's dynamic model. 

Guaranteeing robustness has long been a design objective of 
control system analysis. although in most instances. insensitivity to 
parameter variations has been treated as a deterministic problem 
(see [I] for a comprehensive presentation of both classical and 
modem robust control). Stability (gain and phase) margins are 
useful concepts for designing robust single-inputisingle-outpur sys- 
tems, addressing disturbance rejection and other performance goals. 
and they are amenable to the manual graphical procedures that 
preceded the widespread use of computers. With the help of com- 
puters, singular-value analysis has extended the frequency-domain 
approach to multiinput/multioutput systems (e.g.. [2], [3]): how- 
ever, guaranteed stability-bound estimates ofren are unduly conser- 
vative. and the relationship to parameter variations in the physical 
system is weak. Structured singular-value analysis [4] reduces this 
conservatism somewhat. and alternate treatments of structured pa- 
rameter variations have been proposed (e.g., [5]-[7]), although 
these approaches remain deterministic. Reference [8] uses the term 
"stochastic robustness" to describe a stability bound based on 
Lyapunov methods and parameter perturbations that are modeled as 
stochastic sequences. This is a deterministic stability bound ex- 
pressed in terms of the norm of a vector of noise variances. 
Elements of "stochastic stability" [9] have application to robustness 
but have yet to be presented in that context. 

The notion of probabiliry of insrabiliry, which is central to the 
analysis of stochastic robustness. was introduced in [lo], with 
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Consider a linear time-invariant (LTI) system subject to LTI 
control 

~ ( t )  = F ( p ) x ( r )  + G ( p ) u ( r )  ( 1 )  

x(t),  u( t ) ,  y(r), and p are state, control. output. and parameter 
vectors of dimension n,  m. q. and r ,  respectively. accompanied by 
conformable dynamic, control. and output matrices F ,  G, and H, 
which may be arbitrary functions of p. u,(t) is a command input 
vector. and, for simplicity. the hem x n) control gain matrix C is 
assumed to be known without error. The n eigenvalues, A, = q + 
j w , ,  i = 1 to n, of the matrix [ F ( p )  - G(p)CH(p)] detemune 
closed-loop stability and can be determined as the roots of the 
determinant equation 

I $1, - [F( P) - G( P)CH( PI] I = 0 (4) 

where s is a complex operator and I, is the ( n  x n) identity 
matrix. While the explicit relationship between parameters and 
eigenvalues is complicated. estimating the probability of instability 
of the closed-loop system from repeated eigenvalue calculation is a 
straightfonvard task. Putting aside the mathematical intricacies, note 
that the probability of stability plus the probability of instability is 
one. Since stability requires all the roots to be in the open left-half s 
plane, while instabiity results from even a single right-half s plane 
root, we may write 

0 
Pr (instability) P = 1 - /- _ pr(c) do 

where a is an n-vector of the real pans of the system's eigenvalues 
( A  = a + jw). pr(u) is the joint probability density function of u a 
(unknown analytically). and the integral that defines the probability 
of stability is evaluated over the space of individual components of 
0. Denoting the probability density function of p as pr(p). (4) is 
evaluated /times with each element of p,, j = 1 to J ,  specified by 
a random-number generator whose individual ourputs are shaped by 
pr(p). This Monre Carlo evaluation of the probability of stability 
becomes increasingly precise as J becomes large. Then 



. % I .  1 is the number of cases for uhich all elements of o are less 
than or equal to zero. that 1s. ior u h ~ c h  a,,, 5 0. uhere a,,, is h e  
maximum real eigenvalue component In o. An lmponant fearure of 
this definition IS hat  it  does not depend on the eigenvalues and 
elgenvecrors reninlng fixed strucrures. As parameters change. com- 
plex roots ma); coalesce to become real roots (or the reverse,. and 
modes may exchange relative frequencies. The only maner for 
concern 1s whether or not ail real pans of the e~genvalues remaln in 
the left-half s plane. For J < co, the probability of instability 
resulting from Monre Carlo evaluation is an estimate. denoted F. 

Histograms and cumulative distribut~ons for van ing degrees of 
stabdiry are readily given by the Monte Carlo estimate of 
12,  pr(a) do., where Z represents a maximum real eigenvalue 
component. and - m < I: 6 a. This histogram is a plot of N[(Z 
- A )  < a,, 5 I]/ J versus I:: A is an increment in I, N[.] is 
the number of cases whose maximum real eigenvalue components 
lie in the increment, and J is the total number of evaluations. The 
histogram esltlmares the stabiiiry probabiiiry densiry function, 
pr(I:), whch is obtained in the limit for a continuous distnbution of 
Z as A - 0 and J - co. The curnularive probability disrribution 
of srrpbiiiry. Pr(Z). is simdarly estimated and presented as N(o- 
5 I)/ / versus 1. the exact distnbution being achieved in the lirmt 
as  J - m. Consequently 

There is. of course. no limitation on admissible specifications for 
the multlvaniate pr (p) ;  it may be Gaussian or non-Gaussian. as 
appropriate. Rayleigh, correlated, and any other well-posed distri- 
butions are .admiss~ble. the principal challenge being to properly 
shape (and correlate) the ourputs of the random-number generator. 
In pracilce, system parameter uncertainties are most likely to be 
bounded. as typical qualiry control procedures eliminate out-of- 
tolerance devices. and there are physical limitations on component 
m e ,  weight, shape. etc. The uniform distribution is particularly 
interesting. a s  it readily models bounded uncertainry. and it is the 
default distribution of most algorithms for random-number genera- 
tion. Given binary distributions for each parameter. in which the 
elements of p take maximum or minimum values with equal 
probability. the Monre Carlo evaluation reduces to 2' deterministic 
evaluations. the result is exact. and the ~robabilitv associated with 
each possiblt: value of p is 112'. simiiHrly, the distribution for r 
parameters, each of which rakes w values (i.e.. for quantized 
uniform dist:ributions). can be obtained from w r  evaluations; the 
probability of acquiring each value of p is 1/ w r .  

When has stochasric robustness been achieved? The answer is 
problem-depzndent. p r (p )  should be chosen to reflect physical 
K i s s  of parameter uncertainty. In some applications involving 
bounded parameters, it will be possible to choose C such that 
9 = 0, and that is a desirable goal; however, if admissible parame- 
ter variations; are unbounded, if C is constrained, or if the rank of 
CH is less than n .  the minimum 3 may be greater than zero. C 
then must Ix: chosen to satisfy performance goals and one of two 
robusmess criteria: minimum 3. or 3 small enough to meet a 
reliability specification (e.g., one chance of instability in some 
larger number of realizations). One may object that the parameter 
distributions must be known or estimated for stochastic robusmess 
analysis. However. if robustness estimates are strongly dependent 
on the srati!irics, then it is incumbent on the designer to lcnow 
something about the statistics. Otherwise, the final control system 
may be either unduly conservative (ar the expense of performance) 
or insuficieatly robust in the face of real-world uncena~nties. 

(b) 
Fig. 1. Stochastic root loci of a wcood-order syslcm with Gaussian damp 
ing rauo and n a M  frequency. lo = 0.707. w ,  = 1; MOOO Monte Carlo 
evaluations. The root density pr (A) is given in UNU of roas/uNt length 
along the real axis and roocs/unit area in the complex plane. (a) Scaner plor. 
(b) Oblique three-dimensional representation. 

Suppose that the damping ratio (t) and natural frquency (w, )  are 
nominally 0.707 and 1. respxtively, and that each may be a 
Gaussiandisuibutcd random variable with standard deviation of 
0.2. Root loci for individual parameter variations would follow 
classical configurations of root locus constiuction, with the heaviest 
density of roots in the vicinities of the nominal roots. If both { and 
w, are uncertain and uncomlated (i.e.. p = [f wnlT), the possible 
root locations bacome "clouds" surrounding the nominal values 
[Fig. I(a)]. Understaadig of robustness issues can be gained by 
plotting the density of the mots in a third dimension above the root 
1- plot [Fig. I@)]. This can be hone by simply dividing the s 
plane into subspaces (or "bins") and counting the nurnkr of roots 
in each bin as a sampled estimate of the root (density p. The result 
is a multivariate histogram. with a and w serving as independent 
variables. Complex root bins are elemental areas, for which p, is 
defined in units of rootslunit area. Real root bins are confined to the 
real axis; hence, p, measures roofs/unit length. The density of 
roots depicts the likelihood that eigenvalues vary from their nominal 
values, including branches on the real axis and in the right-half s 
plane for large enough variations of { and w,. n 
50 000 Monte Carlo evaluations. and numerical n 

II. S~ocmsnc ROOT LOCUS applied to m f  for sampling effects. An example i f  the his- 
togram and cumulative dismbution is given in Fig. 2. The probabil- While it is not necessary to plot the eigenvalues of (4) to ity-of-instability estimate (I: = on the dismbution, is 

determnne or ponray stochastic robustness. stochast~c root loci 8 x 
provide insight regarding the effects of parameter uncertainty on When considering instability, distinnion be msde baween 
sysrem stability. Consider. for example, a classical second-order the number of cnrer with right-half roots the nurnkr of 
sysrem with characteristic equation roots in the right-half plane. For example, a third-order system can 

s' + Z{w,s + w i  = 0 .  (8) be unstable , .ith 1. ?, or 3 roots in the right-half plane, yet N 
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Fig. 2. (a) Histogram and (b) cumulative disvlbutlon for the second-order 
system w ~ t h  Gauss~an damplng rauo and natural frequency. 

would be incremented by one in each case. A high-order system 
with real roots could be unstable w~th one or more roots In the same 
nght-half plane bin. Again, N would be incremented by one, 
although the bin's p depends upon the number of roots ~t contains. 

Because it is an estimate. $' must have associated with it some 
notion of accuracy or relationship to the true- underlying probability 
of instability 2. Confidence intervals relate 3 to ? by bounding the 
(unknown) true value with defined certainty. A confidence statement 
for 3 is 

where (L .  U) is the interval estimate (lower and upper bounds). 
1 - a is the confidence coefficient, and P lies within ( L ,  U) with 
100(1 - a)% confidence. Appropriate selection of the confidence 
coefficient and the number of evaluations determines the interval 
width. 

The method used to compute cordidence intervals depends on the 
underlying probability distribution of the variable in question. The 
probability of instability is a binomial variable, with the outcome 
of a trial taking one of two possible values (stable or unstable) for 
each Monte Carlo evaluation. P therefore has a binomial probability 
density and cumulative distribution given by 

F I ~  3 Number of evaluations requlred for glven confidence interval 
w~dths and confidence cocffic~ent 1 - a = 0 95 Interval wtdrh i s  given as 
percent of ? For 2 > 0 5. the curves are symmemc. w ~ r h  the number of 
evaiuauons glven by that for 1 - 2 

relationships between simulation parameters and the required num- 
ber of evaluations is avoided. Nevertheless. ir offers a ngorous 
theory by which to calculate exact confidence intervals. The number 
of evaluations required for a specified confidence inrervd cm be 
related to a single variable, P, and this relationship is valid for my 
simulation parameters or application. 

Fig. 3 presents the number of evaluations required for swified 
interval widths and a 92% confidence coefficient, given as  a prcent- 
age of p.  An estimate ? based on a small number of eCvaluanons can 
be used as the abscissa of Fig. 3 to forecast the told numkr  of 
evaluations required for the desired interval width. A. larger confi- 
dence coefficient shifts the curves of Fig. 3 to higher numkrs of 
evaluations. 

where x is the number of occurrences of instabili~ in J evalua- 
tions. and ( J .  x )  is the binomial coefficient. J ! , / x ! (  J - x)!. The 
binomial rest is applied to determine exact confidence intervals for 
binomial variables. The lower and upper confidence bounds are 
derived from the cumulative distribution and satisfy (191 

X 
Q 

P r ( X 5 x )  = ( J .  j ) ~ / ( l  - u)'-J = - 
~ " 0  2 

(13) 

where 1 - a is the required confidence coefficient and X -  is the 
acrual number of unstable cases after J evaluations ( X = J?) .  

The validity of the Monte Carlo analysis depends on a number of 
simulation parameters: the number of eigenvalues computed. the 
number of varying parameters. and their probab~lity distributions. 
However, by applying the binomial test, the derivation of explicit 

.4n example of the application of stochastic robustness i s  b a e d  on 
the longirudinal dynamics and control of an opn-lmgunrsrablc 
aircraft. The Forward-Swept-Wing Demonstrator's a e r o d y d c  
center is forward of its center of gravity, rrsulting in :;&tic insnbil- 
ity. Its stability matrix, control-effect merix, and open-lmp eigen- 
values are 

The state components represent forward velocity, angle of attack. 
pitch rate, and pitch angle. The principal control surfaces are the 
canard control surface and the thrust setting. Possible uncenainties 
in aerodynamic and thrust effects as well as sepa:rate dynamic 
pressure ( p  and V )  effects lead to a 12-element par- <meter vector 
(the remaining terms are kinematic, due to gravity, idenricdly zero, 
or otherwise negligible) 

Although velocity ( V )  and air-density ( p )  are essenridly deaereraiis- 
tic. including them as parameters gives the ability to look at flight 
condition perturbations around thf nominal value and reduces come- 
lation of the remaining parameter. . p and V are modelid as urnifom 
parameters. giving an indication of stochastic robu:;mess over a 



Fig. 4 .  Stochastic roof lcci for the Forward-Swept-Wing Demonstrator 
Aircrafr w i h  Gaussian parameters. Cases (a). (b). and (c). The root density 
pr (k) is given in uniu of roou/urut length along Ihe rral axis and roots/unit 
area in h e  complex plane. 

TABLE I 
PARAMETERS FOR FORWARD-SWEPT-WING DEMONSTUTOR AIRCRAFT EXAMPLE 

range of flight conditions. In terms of the elements p, F, and G are 

Linear-quadratic controllers are designed according to three spec- 
ificataom: (a) Q = diag (1, 1. 1.0). R = diag (1, 1); @) Q = diag 

( 1 ,  1, 1. 0), R = diag (1000, 1000); a d  (c) the control gain matrix 
of Case @) is multiplied by an arbitrary factor ( 5 )  to restore the 
closed-loop bandwidth to that of Case (a). The resulting control gain 
matrices and corresponding nomtnal closed-Imp eigenvalues are 
given in Table I. These three cases have not been chosen to satisfy 
any particular performance criteria, but merely to demonstrate the 
impact of differing generalized design criteria on stochastic robust- 
ness. Funhermorr, the designs arc not meant to reflect acceptable 
control laws, as the high gains were purposely chosen to magnify 
robustness problems and to illustrate the application of stochastic 
robustness. 

For illustration, p and V are 30% uniform parameters, and the 
remaining elements of p are subject to independent 30% s 
deviation Gaussian uncenainties. Fig. 4 shows the stochastic root 
loci for each case, based on 25 0(X1 Monte Carlo evaluations. In 
each case, the eigenvalue oear is I d  a(T& by the 
paramaer changes, and its peak the disaibution. In Cases 
(a) and (c), rhe eigenvalue farthest to the left (not s h o w  in Fig. 4) 
has an enc rrnous variance along the real axis. Inuraction bf mots 



Numba of Evliluutonr 

Fig. 5 .  95 % confidence inurvais (a = 0.05) based on rAe binomial test for 
the Forward-Swept-Wing Demonsmtor Aircraft with Gaussian parameters. 
Caws (a). 0). and (c). Sohd line reprcwnu 3 esumau. and dashed lines 
glve confidence ~ntervais. 

around the origin causes instability. The corresponding probability- 
of-instability estimates and 95 % confidence intervals are (a) 0.0724 
(0.0692.0.0756), (b) 0.0205 (0.0187.0.0222). and (c) 0.0076 
(0.0065.0.0086). Robustness improves from Case (a) to (b) as 
control usage is restrained by high control weighting, and the ad hoc 
robustness recovery techmque used in Case (c) gives additional 
improvement. Fig. 5 shows 95% confidence intervals and the 2 
hstory with the number of evaluations. While confidence intervals 
for Cases (b) and (c) initially overlap, 25 000 evaluations are more 
than sufficient to rank the three cases in order of robustness. 

For uniformly distributed parameters in [0.7p. 1 . 3 ~ 1 ,  h e  exient 
of the parameter and eigenvalue distributions decreases subsuntially 
(Fig. 6). A comparison of Figs. 4 and 6 gives a better indication of 
the effects of Gaussian "truls" on the eigenvalue probability densi- 
ties. P and confidence intentals for 25000 evaluations are (a) 
3 .6E4 (1.25E4.5.95E4) and (b) and (c) zero (0, 1.48E-1). For 
12-parameter binary distributions, 4096 evaluations produce exact 
results. 3 for each case is (a) 0.1 191 and (b) and (c) zero. 

Stochastic stability robustness is given as a function of the control 
design parameter v ,  where the LQR control weighting matrix 
R = v l ,  (Fig. 7). Under the specified limits of parameter uncer- 
tainty, the distinction in stability and robustness versus design 
parameter statistics is apparent. Note that the qualitative result that 
10 < v < 10' provides the most robust designs is independent of 
the assumed probability distribution. In particular, the fact that the 
minimum-controlsnergy case ( v  + O )  represents the least robust 
design would not be obvious using standard robustness analysis 
techniques such as unstructured-singular-value analysis. While the 
exact relationship between parameter uncertainty and eigenvalue 
location is complicated, the increase in P beyond lo5 is attributed to 
the shift in the closed-loop eigenvalues towards the imaginary axis. 
For example, at v = lo8 the closed-loop eigenvalues are - 5.15, - 
3.35, - 0.0104 2 0.057j; the first two are almost identical to those 
of Case (b), while the complex pair is closer to the imaginary axis. 
The kind of results presented in Fig. 7 offer controller design insight 
and show nonobvious robustness characteristics. 

Stochastic robustness offen a rigorous yet straightfonvard alterna- 
tive to current metrics for control system robustness that is simple to 
compute and is unfettered by normally difficult problem statemenu, 
such as non-Gaussian statistics. products of parameter variations, 
and structured uncenainty. The approach answers the question, 
"How likely is the closed-loop system to fail, given limits of 
parameter uncertainty?" It makes g m d  use of modern computa- 
t~onal and graphic tools. and it is easily related to practical design 
considerations. .The principal difficulty in applying this method to 
controlled systems is that it is computationally intensive; however. 
requirements are well within the capabilities of existing computers. 
The principal advantage of the approach is that it is easily imple- 
mented, and results have direct g on engineering objectives. 

( - 10 .~  

(C) 
Fig. 6. Stcchsstic met loci for the Fornard-Swept-Wing DEmnsuator 
Aircraff with uniformly disaibuted parameters. Cases (a). (b), ;nrad (cf. The 
root density pr (X) is given in units of rcms/unit length along &be he axis 
and rclorr/unit area in the complex 

bus w l I r c o l r o l l a a , I r c o t r o , I r c c a I c a c l ~ m o l ~  
c%s (1) 

Fig. 7. Robability-of-instability 
(R = v l z )  for forward-swept wlrg arcrafr example. 
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