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Stochastic Robustness of Linear Time-Invariant
Control Systems

Robert F. Stengel and Laura R. Ray

Abstract— A simple numerical procedure for estimating the srochastic
robustness of a linear time-invariant system is described. Monte Carlo
evaluation of the system's eigenvalues allows the probability of instabil-
iry and the related stochasric root locus to be estimated. This analysis
approach treats not only Gaussian parameter uncertainties but non-
Gaussian cases, including uncertain-but-bounded varistions. Confidence
intervals for the scalar probability of instability address computational
issues inherent in Monte Carlo simulation. Trivial extensions of the
procedure admit conmsideration of altermate discriminants; thus, the
probabilities that stipulated degrees of instability will be exceeded or
that closed-loop roots will leave desirable regions can also be estimated.
Results are particularly amenable to graphical presentation.

[. INTRODUCTION

Control system robustness is defined as the ability to maintain
satisfactory stability or performance characteristics in the presence
of all conceivable system parameter variations. While assured ro-
bustness may be viewed as an alternative to gain adaptation or
scheduling to accommodate known parameter variations, more often
it is seen as protection against uncertainties in plant specification.
Consequently, a statistical description of control system robustness
is consistent with what may be known about the structure and
parameters of the plant’s dynamic model.

Guaranteeing robustness has long been a design objective of
control system analysis. although in most instances. insensitivity to
parameter variations has been treated as a deterministic problem
(see [1] for a comprehensive presentation of both classical and
modern robust control). Stability (gain and phase) margins are
useful concepts for designing robust single-input/single-output sys-
tems, addressing disturbance rejection and other performance goals,
and they are amenable to the manual graphical procedures that
preceded the widespread use of computers. With the help of com-
puters, singular-value analysis has extended the frequency-domain
approach to multiinput/multioutput systems (e.g., [2], [3]); how-
ever, guaranteed stability-bound estimates often are unduly conser-
vative, and the relationship to parameter variations in the physical
system is weak. Structured singular-value analysis [4] reduces this
conservatism somewhat. and alternate treatments of structured pa-
rameter variations have been proposed (e.g., [5]-[7]), although
these approaches remain deterministic. Reference [8] uses the term
‘*stochastic robustness’’ to describe a stability bound based on
Lyapunov methods and parameter perturbations that are modeled as
stochastic sequences. This is a deterministic stability bound ex-
pressed in terms of the norm of a vector of noise variances.
Elements of **stochastic stability'* [9] have application to robustness
but have yet to be presented in that context.

The notion of probability of instability, which is central to the
analysis of stochastic robustness. was introduced in [10], with
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application to the robustness of the Space Shunle's flight control
system. and it is further described in [11]-{14]. This method
determines the stochastic robustness of a linear time-invariant
system by the probability distributions of closed-loop eigenvalues,
given the statistics of the variable parameters in the plant’s dynamic
model. The probability that all of these eigenvalues lie in the open
left-half s plane is the scalar measure of robustness.

With the advent of graphics workstations. the stochastic robust-
ness of a system is easily computed by Monte Carlo simulation. and
results can be displayed pictorially, providing insight into otherwise
hidden robustness properties of the system. The method is computa-
tionally simple, requiring only matrix manipulation and eigenvalue
computation, and it is inherently nonconservative, given a large
enough sample space. Furthermore. the analysis of stochastic ro-
bustness is a logical adjunct to parameter-space control design
methods [15]-[18]. Details of the approach and an example are
given in the sequel.

I. PROBABILITY OF INSTABILITY
Consider a linear time-invariant (LTI) system subject to LTI

control
’ £(1) = F(p)x(1) + G(p)ul1) (1)
»(1) = H(p) (1) 2)
u(t) = ug() - CH(p)x(1) (3)

x(t), u(t), y(r), and p are state, control. output, and parameter
vectors of dimension n, m, g, and r, respectively, accompanied by
conformable dynamic, control, and output matrices F, G, and H,
which may be arbitrary functions of p. u(t) is a command input
vector, and, for simplicity, the (m X n) control gain matrix C is
assumed to be known without error. The 7 eigenvalues, \; = o, +
Jw;, i =110 n, of the matrix [ F(p) — G(p)CH(p)] determine
closed-loop stability and can be determined as the roots of the
determinant equation

IsI, - [F(p) - G(p)CH(p)]| =0 (4)

where 5 is a complex operator and I, is the (7 X n) identity
matrix. While the explicit relationship between parameters and
eigenvalues is complicated. estimating the probability of instability
of the closed-loop system from repeated eigenvalue calculation is a
straightforward task. Putting aside the mathematical intricacies, note
that the probability of stability plus the probability of instability is
one. Since stability requires all the roots to be in the open left-half s
plane, while instability results from even a single right-half s plane
root, we may write

0
Pr (instability) £ 2 = 1 - / pr(o) do

-

()

where o is an n-vector of the real parts of the system’s eigenvalues
(N = 0 + jw), pr(o) is the joint probability density function of o
(unknown analytically), and the integral that defines the probability
of stability is evaluated over the space of individual components of
0. Denoting the probability density function of p as pr(p), (4) is
evaluated J times with each element of p,, j = 1to J, specified by
a random-number generator whose individual outputs are shaped by
pr(p). This Monte Carlo evaiuation of the probability of stability
becomes increasingly precise as J becomes large. Then

/0 N(OMSO)'

(6)

pr(o) do = lim
@ J—==
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N1 1s the number of cases for which all elements of ¢ are less
than or equal to zero. that 1s. for which o, < 0. where o_,, is the
maximum real eigenvalue component in ¢. An impornant fearure of
this definition 1s that it does not depend on the eigenvalues and
eigenvectors retaining fixed structures. As parameters change. com-
plex roots may coalesce to become real roots (or the reverse). and
modes may exchange relauve frequencies. The only marner for
concern is whether or not all real parts of the eigenvalues remain in
the left-half s plane. For J < o, the probability of instability
resulting from Monte Carlo evaluation is an estimate. denoted P.

Histograms and cumulative distributions for varying degrees of
stability are readily given by the Monte Carlo esumate of
2o prio) do, where I represents a maximum real eigenvalue
component, and ~ ¢ < T < c. This histogram is a plot of N[(Z
- 4) < oy, < I]/J versus I: A is an increment in I, N[-]is
the number of cases whose maximum real eigenvalue components
lie in the increment, and J is the total number of evaluations. The
histogram estimates the stability probability density function,
pr(X). which is obtained in the limit for a continuous distribution of
T as A= 0and J— . The cumulative probability distribution
of stability, Pr(L), is similarly estimated and presented as N(g,,,
< I)/J versus I. the exact distribution being achieved in the limit
as J — . Consequenty

?2=1-Pr(0). (7)

There is. of course. no limitation on admissible specifications for
the multivariate pr(p); it may be Gaussian or non-Gaussian. as
appropriate. Rayleigh, correlated, and any other well-posed distri-
butions are admissible. the principal challenge being to properly
shape (and correlate) the outputs of the random-number generator.
In practice, system parameter uncertainties are most likely to be
bounded. as typical quality control procedures eliminate out-of-
tolerance devices. and there are physical limitations on component
size, weight, shape. etc. The uniform distribution is particularly
interesting. as it readily models bounded uncertainty. and it is the
default distribution of most algorithms for random-number genera-
tion. Given binary distributions for each parameter. in which the
elements of p take maximum or minimum values with equal
probability. the Monte Carlo evaluation reduces to 2" deterministic
evaluations. the result is exact, and the probability associated with
each possible value of p is 1/2". Similarly, the distribution for r
parameters, each of which takes w values (i.e.. for quantized
uniform distributions). can be obtained from w’ evaluatons; the
probability of acquiring each value of p is 1/ w".

When has stochastic robustness been achieved? The answer is
problem-dependent. pr( p) should be chosen to refliect physical
limits of parameter uncertainty. In some applications involving
bounded parameters, it will be possible to choose C such that
® = 0, and that is a desirable goal; however, if admissible parame-
ter variations are unbounded, if C is constrained, or if the rank of
CH is less than n, the minimum P may be greater than zero. C
then must be chosen to satisfy performance goals and one of two
robustness criteria; minimum P, or P small enough to meet a
reliability specification (e.g., one chance of instability in some
larger number of realizations). One may object that the parameter
distributions must be known or estimated for stochastic robustness
analysis. However. if robustness estimates are strongly dependent
on the statistics, then it is incumbent on the designer to know
something about the statistics. Otherwise, the final control system
may be either unduly conservative (at the expense of performance)
or insufficiently robust in the face of real-world uncertainties.

I. StochasTiCc Root Locus

While it is not necessary to plot the eigenvalues of (4) to
determine or portray stochastic robustness. stochastic root loci
provide insight regarding the effects of parameter uncertainty on
system stability. Consider, for example, a classical second-order
system with characteristic equation

ST+ 2fw,s + W) = 0. (8)
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Fig. 1. Stochastic root loci of a second-order system with Gaussian damp-
ing ratio and natural frequency. {o = 0.707, w,y = 1; 50000 Monte Carlo
evaluations. The root density pr (A) is given in units of roots/unit length
along the real axis and roots /unit area in the compiex piane. (a) Scater plot.
(b) Oblique three-dimensional representation.

Suppose that the damping ratio ({) and natural frequency (w,) are
nominally 0.707 and 1, respectively, and that each may be a
Gaussian-distributed random variable with standard deviation of
0.2. Root loci for individual parameter variations would follow
classical configurations of root locus construction, with the heaviest
density of roots in the vicinities of the nominal roots. If both { and
w, are uncertain and uncorrelated (i.e., p = [{ w,]”), the possible
root locations become ‘‘clouds’ surrounding the nominal values
[Fig. 1(a)]. Understanding of robustness issues can be gained by
plotting the density of the roots in a third dimension above the root
locus plot [Fig. 1(b)]. This can be done by simply dividing the s
plane into subspaces (or ‘‘bins’") and counting the number of roots
in each bin as a sampled estimate of the root density p. The result
is a multivariate histogram, with ¢ and o serving as independent
variables. Complex root bins are elemental areas, for which g4 is
defined in units of roots/unit area. Real root bins are confined to the
real axis; hence, p, measures roots/unit length. The density of
roots depicts the likelihood that eigenvalues vary from their nominal
values, including branches on the real axis and in the right-half s
plane for large enough variations of { and w,. Fig. 1 is based on
50 000 Monte Carlo evaluations, and numerical smoothing has been
applied 10 account for sampling effects. An example of the his-
togram and cumulative distribution is given in Fig. 2. The probabil-
ity-of-insgability estimate (X = 0 on the cumulative distribution) is
8 x 107°.

When considering instability, distinction must be made between
the number of cases with right-half plane roots and the number of
roots in the right-half plane. For example, a third-order system can
be unstable .-ith 1, 2, or 3 roots in the right-half plane, yet N
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(a} Histogram and (b} cumulative distribution for the second-order
system with Gaussian damping rato and natural frequency.

Fig. 2.

would be incremented by one in each case. A high-order system
with real roots could be unstable with one or more roots in the same
right-half plane bin. Again, N would be incremented by one,
although the bin's p depends upon the number of roots it contains.

1. CONFIDENCE INTERVALS

Because it is an estimate. ® must have associated with it some
notion of accuracy or relationship to the true underlying probability
of instability ?. Confidence intervais relate P to P by bounding the
(unknown) true value with defined certainty. A confidence statement
for P is

P(L<P<U)=1-a 9
where (L. U) is the interval estimate (lower and upper bounds),
1 — « is the confidence coefficient, and P lies within (L, U) with
100(1 -~ a)% confidence. Appropriate selection of the confidence
coefficient and the number of evaluations determines the interval
width.

The method used to compute confidence intervals depends on the
underlying probability distribution of the variable in question. The
probability of instability is a binomial variable, with the outcome
of a trial taking one of two possible values (stable or unstable) for
each Monte Carlo evaluation. P therefore has a binomial probability
density and cumulative distribution given by

pr(x) = (J, x)2*(1 - )7~ (10)

Pr(Xsx) = 3 (J,/)®/(1 - 2)"~’ (11)

jsx

where x is the number of occurrences of instability in J evalua-
tions, and (J/, x) is the binomial coefficient. J!/x'(J — x)!. The
binomiai test is applied to determine exact confidence intervals for
binomial variables. The lower and upper confidence bounds are
derived from the cumulative distribution and satisfy {19]

x-1
T A=) ==
J=0

PriX=sx-1)=

(12)

R

Pr(X=x)= i(./.j)U’(l-—U)J-’=<—;- (13)

=0

where 1 — o is the required confidence coefficient and X _is the
acrual number of unstable cases afier J evaluations (X = JP).
The validity of the Monte Carlo analysis depends on a number of
simulation parameters: the number of eigenvalues computed, the
number of varying parameters, and their probability distributions.
However, by applying the binomial test, the derivation of explicit
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Fig. 3. Number of evaluations required for given confidence interval

widths and confidence coefficient 1 — a = 0.95. Interval width is given as
percent of 2. For ® > 0.5. the curves are symmetric. with the number of
evaluauons given by that for 1 —~ 2.

relationships between simulation parameters and the required num-
ber of evaluations is avoided. Nevertheless, it offers a rigorous
theory by which to calculate exact confidence intervals. The number
of evaluations required for a specified confidence interval can be
related to a single variable, P, and this relationship is valid for any
simulation parameters or application.

Fig. 3 presents the number of evaluations required for specified
interval widths and 2 95% confidence coefficient, given as a percent-
age of . An estimate P based on a small number of evaluations can
be used as the abscissa of Fig. 3 to forecast the total number of
evaluations required for the desired interval width. A larger confi-
dence coefficient shifts the curves of Fig. 3 to higher numbers of
evaluations.

IV. STOCHASTIC ROBUSTNESS EXAMPLE

An example of the application of stochastic robustness is based on
the longitudinal dynamics and control of an open-loop-unsiable
aircraft. The Forward-Swept-Wing Demonstrator's aerodynamic
center is forward of its center of gravity, resulting in static instabil-
ity. Its stability matrix, control-effect matrix, and open-loop eigen-
values are

-0.02 -03 =04 =322
_|-00001 -12 0
F=
0 8. -06 0 (14)
0 0 i 0
-4 3.
1o 0
G=102 -02 (15)
0 0

A.s = ~=0.1 £0.057/, - 5.15, 3.35. (16)
The state components represent forward velocity, angle of attack.
pitch rate, and pitch angle. The principal control surfaces are the
canard control surface and the thrust setting. Possible uncertainties
in aerodynamic and thrust effects as well as separate dynamic
pressure (p and V) effects lead to a 12-element parameter vector
(the remaining terms are kinematic, due to gravity, identically zero,
or otherwise negligible)

(n

Although velocity (V) and air-density ( p) are essentially determinis-
tic. including them as parameters gives the ability to look at flight
condition perturbations around the nominal value and reduces corre-
lation of the remaining parameter. . p and V are modeled as uniform
parameters, giving an indication of stochastic robustness over a

p= [p Vinfuliufnfofvngn8u80E8n)-
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Fig. 4.
Aircraft with Gaussian parameters, Cases (a), (b), and (c). The root density
pr (N is given in units of roots /unit iength along the real axis and roots/unit
area in the complex pilane.

pria)

Stochastic root loci for the Forward-Swept-Wing Demonstrator

TABLE 1
PARAMETERS FOR FORWARD-SWEPT-WING DEMONSTRATOR AIRCRAFT ExamMpPLE

_J0.1714 13026  33.165  0.364 o o - _ - - -

Case (a) C = [0.984 ~11387 -2.963 _1_133] Q = diag(1,1,1,00 R = diag(1.1) = ~35.0, - 5.14, -~ 3.32, - 0.0183
_ 00270  82.659  20.927 =-0.0638 o - - - - _ .

Case (b) C‘[o.om oy R _1.902] Q = diag(1,1,1,0) R = 1000diag(l,1) A= —-5.15, - 3.36, — 1.09, — 0.0186
_[o01349 413204 104633 -0.3191 o _ 344 -

Case () € [0.0535 -313.112 -81.015 -9.509 ] A= -3221 - 515, - 3.44, - 0.01

range of flight conditions. In terms of the elements p, F, and G are

-2g2M pV:f\:
— 3 T e
-45 pVfn '
- — - 1 0
F= vi 2 . (18)
Dsz: )
== om0
L 0 0 1 0
P2 gn  &n
_F 0 0
‘G T2 | &n &3: (19)
0 0

Linear-quadratic controllers are designed according to three spec-
ifications: (a) @ = diag (1, 1,1,0), R = diag (1, 1); (b) @ = diag

OF PO

(1,1,1,0), R = diag (1000, 1000); and (c) the control gain matrix
of Case (b) is multiplied by an arbitrary factor (5) to restore the
closed-loop bandwidth to that of Case (a). The resulting control gain
matrices and corresponding nominal closed-loop eigenvalues are
given in Table 1. These three cases have not been chosen to satisfy
any particular performance criteria, but merely to demonstrate the
impact of differing generalized design criteria on stochastic robust-
ness. Furthermore, the designs are not meant to reflect acceptable
control laws, as the high gains were purposely chosen 10 magnify
robustness problems and to illustrate the application of stochastic
robustness.

For illustration, p and V are =30% uniform parameters, and the
remaining elements of p are subject to independent 30% standard
deviation Gaussian uncertainties. Fig. 4 shows the stochastic root
loci for each case, based on 25000 Monte Carlo evaluations. In
each case, the eigenvalue near the origin is least affected by the
parameter changes, and its peak dominates the distribution. In Cases
(a) and (c), the eigenvalue farthest to the left (not shown in Fig. 4)
has an enc rmous variance along the real axis. Interaction - f roots
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Fig. 5. 95% confidence intervals (e = 0.05) based on the binomial test for
the Forward-Swept-Wing Demonstrator Aircraft with Gaussian parameters,
Cases (a), (b), and (c). Solid line represents P estimate, and dashed lines
give confidence intervals.

around the origin causes instability. The corresponding probability-
of-instability estimates and 95% confidence intervals are (a) 0.0724
(0.0692,0.0756), (b) 0.0205 (0.0187,0.0222), and (¢c) 0.0076
(0.0065, 0.0086). Robustness improves from Case (a) to (b) as
control usage is restrained by high control weighting, and the ad hoc
robustness recovery technique used in Case (c) gives additional
improvement. Fig. 5 shows 95% confidence intervals and the P
history with the number of evaluations. While confidence intervals
for Cases (b) and (c) initially overlap, 25000 evaluations are more
than sufficient to rank the three cases in order of robustness.

For uniformly distributed parameters in [0.7p, 1.3p], the extent
of the parameter and eigenvalue distributions decreases substantially
(Fig. 6). A comparison of Figs. 4 and 6 gives a better indication of
the effects of Gaussian *"tails"” on the eigenvalue probability densi-
ties. ? and confidence intervals for 25000 evaluations are (a)
3.6E4 (1.25E4,5.95E4) and (b) and (c) zero (0, 1.48E-4). For
12-parameter binary distributions, 4096 evaluations produce exact
resuits. P for each case is (a) 0.1191 and (b) and (c) zero.

Stochastic stability robustness is given as a function of the control
design parameter v, where the LQR control weighting matrix
R = vI, (Fig. 7). Under the specified limits of parameter uncer-
tainty, the distinction in stability and robustness versus design
parameter statistics is apparent. Note that the qualitative result that
10 < » < 10° provides the most robust designs is independent of
the assumed probability distribution. In particular, the fact that the
minimum-control-energy case (v — o) represents the least robust
design would not be obvious using standard robustness analysis
techniques such as unstructured-singular-value analysis. While the
exact relationship between parameter uncertainty and eigenvalue
location is complicated, the increase in 2 beyond 10° is artributed to
the shift in the closed-loop eigenvalues towards the imaginary axis.
For exampie, at » = 108 the closed-loop eigenvalues are —5.15, —
3.35, — 0.0104 + 0.057/; the first two are almost identical to those
of Case (b), while the complex pair is closer to the imaginary axis.
The kind of results presented in Fig. 7 offer controller design insight
and show nonobvious robustness characteristics.

V. CONCLUSION |

Stochastic robustness offers a rigorous yet straightforward alterna-
tive to current metrics for control system robustness that is simple to
compute and is unfettered by normally difficult problem statements,
such as non-Gaussian statistics, products of parameter variations,
and structured uncertainty. The approach answers the question,
““How likely is the closed-loop system to fail, given limits of
parameter uncertainty?’’ It makes good use of modern computa-
tional and graphic tools. and it is easily related to practical design
considerations. ‘The principal difficulty in applying this method to
controlled systems is that it is computationally intensive; however,
requirements are well within the capabilities of existing computers.
The principal advantage of the approach is that it is easily imple-
mented, and results have direct bearing on engineering objectives.

pr{d)

(b} pr(h)

Fig. 6. Stochastic root loci for the Forward-Swept-Wing Demonstrator
Aircraft with uniformly distributed parameters, Cases (2), (b), and (c). The
root density pr () is given in units of roots/unit length along the real axis
and roots/unit area in the complex plane.
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