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1 Introduction

Open region scattering problems a.e frequently modelled using an integral
equation formulation[l] and solved using the method of moments. For an
inhomogeneous dielectric scatterer, the integral equation must be discretized
over the entire volume of the object. Since this leads to a full matrix system,
the integral equation technique proves to be expensive in terms of storage
and solution time. Differential equation methods, such as finite elements,
have therefore been tried as an alternative solution approach. Although
these techniques give rise to matrix systems that are considerably larger than
those generated using the integral equation formulation, the finite element
matrices are highly sparse leading to smaller storage and lower solution time.
These methods, however, can only solve bounded field problems whereas
most electromagnetic problems are open boundary-infinite domain types. To
solve for unbounded field problems, the finite element mesh needs to be
truncated artificially at some distance from the scatterer. A wide variety of
methods like ballooning, harmonic series expansions and infinitesimal scaling
have been developed to accomplish this. However, all of the above methods
are 'global' techniques which produce fully populated submatrices that are
computationally expensive and spoil the sparse, banded structure of the finite
element system.

The most promising method of mesh termination developed so far has
been the application of an absorbing boundary condition (ABC) on an artifi-
cial outer boundary to minimise the non-physical reflections from the bound-
ary. The essence of the method is to force the field components at the mesh
termination plane to satisfy the differential equation (absorbing boundary
condition) for an outward travelling wave. The degree of accuracy of the fi-
nite approximation to the differential equation determines the quality of the
mesh termination. Stability considerations limit the degree of approxima-
tion. The advantage of the ABCs over global methods is that they are local
boundary conditions and hence retain the sparse structure of the finite ele-
ment formulation. Moreover, the additional computational effort when using
ABCs is small when compared to a bounded field problem. One disadvan-
tage, however, is that ABCs are approximate and do not model the exterior
field exactly. The local boundary conditions should also give rise to inac-
curacies when travelling waves are excited on the scatterer and substantial
global coupling exists between widely separated parts of the scatterer.

In this report, we consider a FE-ABC solution of the scattering by arbi-
trary three-dimensional structures. The computational domain is discretized
using edge-based tetrahedral elements. In contrast to the node-based ele-
ments, edge elements can treat geometries with sharp edges, are divergence-
less and easily satisfy the field continuity condition across dielectric interfaces
[1]. They do, however, lead to a higher unknown count but this is balanced
by the greater sparsity of the resulting finite element matrix. Thus the com-
putation time required to solve such a system iteratively with a given degree
of accuracy is less than the traditional node-based approach [2].
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The purpose of this report is to examine the derivation and performance
of the ABCs when applied to two and three dimensional problems and to dis-
cuss the specifics of our FE-ABC implementation. The two dimensional ones
investigated here are the well-known Bayliss-Turkel[3] and Engquist-Majda[4]
absorbing boundary conditions. The three dimensional ABCs presented here
are those derived by Mittra[5] and Kanellopoulos and Webb[6]. All the ABCs
discussed here are derived from the Wilcox expansion and can only be ap-
plied on a spherical outer boundary. Some results are then presented which
demonstrate that remarkably accurate solutions can be obtained by enforc-
ing the ABC a small fraction of a wavelength from the scatterer. This is in
contrast to our experience with two-dimensional applications and is probably
due to the faster (1/r rather than 1/\A") decay of the propagating fields.

2 Derivation of the ABCs

2.1 Two-dimensional ABCs

Absorbing boundary conditions for two-dimensional problems have been ex-
tensively studied over the years. The most notable ABC to come out of this
research has been the one proposed by Bayliss, Gunzburger and Turkel[3]
who employed an asymptotic analysis to derive a series of local operators.
Using the pseudo-differential operator theory, Engquist and Majda[4] have
generated a set of different operators for minimisation of the reflections from
the mesh termination boundary. However, since the Engquist-Majda ABCs
are not as accurate as the Bayliss-Gunzburger-Turkel(BGT) ABCs, only the
BGT operators will be discussed here.

Consider a perfectly conducting cylindrical scatterer, shown in Figure 1,
whose cross-section is defined by the contour IV Let the exterior region of
the scatterer lie in the domain fi. For a TM-polarized incident wave, we need
to solve the wave equation

V2u + Pu = 0 (1)

in fi. The wave function if is proportional to the 2-component of the scattered
electric field and satisfies the boundary condition

u{ + u = 0 on TI (2)

where ul is the incident wave function.
Following Wilcox, an asymptotic expression for u can be written as fol-

lows:



Defining up as the derivative of u with respect to />, we have from (3)

(4)

Therefore, from (4), we obtain

1
up + jku = O

Thus if we neglect terms of the order O(p~3/2) and smaller, we obtain up +
jku = 0, which is equivalent to the Sommerfeld radiation condition for the
wave function u in two dimensions. It is shown next that a higher-order
boundary operator B\ can be obtained that yield terms of the order O(p~5/2)
when applied to u. The operator B\ is given by

It is readily found that, for a given /9, BI introduces a higher order error
in p~l than does the Sommerfeld radiation condition such that terms of the
order 0(/9~5/2) and smaller are neglected. Continuing along similar lines, the
next higher order operator B% can be derived by first defining v = B\u, and
then showing that

The second-order absorbing boundary operator B% is thus given by

In fact, it is shown in [3] that a generalised operator Bm can be constructed
by repeating the above procedure such that

D TT [ ^ , •; , ^P — 3/2]
B™ = 11 fl~ + •? ~* (')

and

F ! 1Bmu = O\

Since the error between the exact field and the approximated value decreases
as we employ higher order boundary conditions, the mesh termination bound-
ary can be brought closer to the scatterer resulting in a smaller number of
unknowns. However, the higher order conditions make the system of equa-
tions progressively more ill-conditioned and the choice of the order of the



ABC is often limited by this constraint. The second order ABC is usually
employed in practice.

An alternate derivation [5] of the boundary operators can also be carried
out by imposing the requirement that u(p, <j>) in (3) satisfy the wave equation
and then deriving a recursion relationship in terms of the angular derivatives.
The second order ABC thus reduces to

1 1 1 1 1 \ / 1

(8)

Higher order boundary operators in the above formulation involve higher
order angular derivatives and are thus simple to implement numerically.

2.2 Three dimensional ABCs

Three dimensional absorbing boundary conditions can be classified into two
categories: scalar ABCs and vector ABCs. Most of these boundary con-
ditions are untested till date; it is, therefore, difficult to comment on the
performance of these boundary operators. However, in tests carried out us-
ing the vector ABC derived in [6], reliable results have been obtained on
placing the mesh truncation boundary a fraction of a wavelength distant
from the scatterer.

The first section presents a scalar ABC proposed in [5] and the second
section is devoted to the formulation of vector ABCs derived in [5] and [6].

2.2.1 Scalar ABC

Let u(r,0,(j)) satisfy the scalar wave equation (1) and be expressed asymp-
totically as

n=0

It can then be shown that the coefficients in the series expansion, an, satisfy
the following recursion relationship

-1jknan = n(n — l)an_x + -Dan-i (10)

where D is Beltrami's operator and is given by

Differentiating (9) with respect to r and incorporating the the recursion
relationship repeatedly in the resulting expression yields

ur = -jk{a(r)u + P(r)Du] (12)

up to and including terms of order r~4. In (12),

2(kr)*a(r)



2.2.2 Vector ABC

As for the scalar case, we begin with the Wilcox representation of the electric
field which has an expansion of

T n=0 T

where r, 0, <j) are spherical coordinates. From (13), we get

(H)

where Ant = f x An is the transverse component of An and, for a vector F,
DiF is given by

„-,L/\r =
sinO [

+ilir-»" »r<\*~+ r'-^l* d»)

Using the recursion relation

-2jknA.nt = n(n - l)An_i,t

where

D4An =

_ __0 n ~ ~~ ~ n ~
d sirfQ n sin^e 88
2 8 A: 1 , 2cos08A*

* nsine 8<j) sirfe n sirfO d<f>

and D is Beltrami's operator defined in (11), we can derive the representation
correct to r~4. Applying the recursion relation in ( 14) yields the desired
relationship for the vector ABC:

VxE = a(r)E + /?(r)I>4E (16)

where

a(r) = j J L _ i + 1 \ rxl

rv ' 2jkr*( l- l / jkr)

An alternate derivation of the three-dimensional vector ABC is given in [6]
which has a higher order of accuracy and is easier to implement than the



previous one. The basic building block is the differential operator LN, denned
as

LN(u] = rx V x u - jfc + yu, TV = 0,1,2, ... (17)

where f is a unit vector in the radial direction. It can be shown that for
TV > 0 and n > 0,

where (7 is e~jfcr and the subscripts < and r denote the transverse and radial
components of a vector, respectively. In both cases, LN has the effect of
multiplying by 1/r while leaving the transverse dependence unchanged.

The operators BN, TV = 1,2,... can now be defined such that

where

Since A0r is zero, it can be seen that the RHS of (20) vanishes for n =
0, 1, . . . , TV — 1, i.e., BN annihilates the first TV terms of the vector expansion
(13). Thus, BN = 0 is an approximate absorbing boundary condition on
the surface 5 of a sphere of radius r. After a certain amount of algebra
and making use of the fact that E satisfies the vector wave equation, the
operators B\ and By can be written as

= rx V x E - aEt + (s - l)Vt£r (21)

- l)V t(V - EO + (2 - s}aVtET (22)

where a = jk and 0 = l/(2jk + 2/r). The operator B2 can be incorporated
into a weighted residual formulation for s = 1 but leads to an unsymmetric
matrix problem. However, for 5 = 2, the functional yields a sparse, sym-
metric matrix. Thus, the second order boundary operator can be expressed
as

B2(E) = -(r x V x E) + P2(E)
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where

P2(E) = oEt + 0V x [r(V x E)r] + (s - 1)/?V,(V • Et) + (2 - s)a/3VtET(23)

which can be easily incorporated into the surface integral of the electric field
functional.

3 Formulation

3.1 Two-dimensional case

The scattered field must satisfy the wave equation (1) within the domain
of interest. The first step in the finite element formulation is to multiply
(1) with a test function v and integrate the product over the entire problem
domain. This gives

+ k*vu dS = 0 (24)/

where u consists of a set of known basis functions weighted by its correspond-
ing unknown coefficients. The second step involves transferring the derivative
from the basis function u to the testing function v via Green's identity as
follows

u = - f V u - V v d S + f v^dl (25)
Jn -/Fi+rz on

Substituting the above identity into (24), we arrive at the weak form of the
Helmholtz equation

w • Vv - k2uv) dS = I v^dl (26)
' Jr!+r2 dn

where FI and F2 describe the boundary of the solution domain as shown in
Figure 1. The absorbing boundary condition for two dimensions is to be
applied at the contour boundary (F2) and must be expressed in terms of the
normal derivative of the wave function. For a Galerkin formulation of (26),
we replace the testing function v with the basis function u.

3.2 Three-dimensional case

For simplicity, we consider the problem of 3-D scattering by a conducting
body. To solve this problem using the finite element method, it is necessary
to enclose the scatterer within a fictitious surface denoted by S. Since the
ABCs are derived only for spherical surfaces, the fictitious outer surface in
our case is usually a sphere. The scattered field, denoted by E, satisfies
the Helmholtz vector equation interior to S and the absorbing boundary
condition at 5. The equivalent variational problem for this is given by

SF(E) = 0



where F denotes the functional given by [6]

F(E) = I [(V x E) • (V x E) - Jb2E • E] dV

rfS (27)

in which V denotes the volume enclosed by S. To discretize this functional,
the volume V is subdivided into a number of small tetrahedra, each occupying
the volume Ve (e = 1,2, • • • ,Af), where M denotes the total number of
elements. Within each element, the electric field is expressed as

Ee = £ E?W; = {We}T{Ee} = {Ee}T{We} (28)
3=1

where Wj are the edge-based vector basis functions given in [2], E? denote the
expansion coefficients of the basis, m represents the number of edges in the
element and the superscript stands for the element number. On substituting
(28) into (27), we obtain

M M,
F = ^{E'}T[Ae]{Ee} + ^{E*}T[B°]{ES} (29)

e=l »=1

where Ma denotes the number of triangular surface elements on S. Also, the
elements of the matrices [Ae] and [Bs] are given by

^= [(V x W,e) . (V x Wp - fc*W?.

• Wj, + /?(V x W?)r • (V x W*)r -
Sg

where Ve denotes the volume of the eth tetrahedron and S3 denotes the
surface area of the sth triangular surface element on S. On assembling all
M elements, (29) can also be written as

F = {E}T[K}{E}

where [K] is a TV x TV sparse, symmetric matrix with N being the total
number of edges in the geometry and {£^} i saJVxl column vector denoting
the edge fields. The system of equations is then obtained by applying the
Rayleigh-Ritz procedure which amounts to differentiating F with respect to
each edge field and then setting the differential to zero. This yields

(K]{E} = {0} (30)

Upon imposing the boundary condition at the surface of the scatterer which
states that the total tangential electric field vanishes at the conducting sur-
face, we obtain the final system whose solution yields the field components
over the entire domain. In our implementation, only the non-zero elements
of the [K] matrix were stored and the resultant system was solved using the
biconjugate gradient algorithm.
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4 Results

Finite element codes have been extensively tested using two-dimensional ab-
sorbing boundary conditions and have been known to perform quite well for
circular mesh termination boundaries. In figure 2(a), we consider a cylindri-
cal problem[7] to compare the BGT and Engquist-Majda ABCs. This prob-
lem is interesting since strong resonant phenomena are observed for small
bodies. It consists of a conducting cylinder with a radius of one free-space
wavelength covered by a half free-space wavelength thick dielectric with a rel-
ative permittivity of 2 and a relative permeability of 2. Figure 2(b) shows the
comparison of the bistatic pattern (0,-nc = 180°) of two solutions of the BGT
ABCs, with the outer boundary at a distance of 1.5A and .5 A away from the
scatterer. As expected, the 1.5A distant boundary produces better results
than the .5A distant one. Figure 2(c) plots the performance of the Engquist-
Majda ABCs for the same geometry and angle of incidence. The BGT ABC
with its outer boundary a mere .5A away outperforms the Engquist-Majda
ABC when its outer boundary is 2.5A distant from the scatterer.

Figure 3(a) analyses two conducting wedges, 5A0 long, with the area be-
tween them filled with a dielectric having er = 2 and /xr = 2. The incident
angle of the incoming plane wave is 0°. Again, the results obtained using the
BGT absorbing boundary condition in figure 3(b) matches the data obtained
from a hybrid finite element / boundary element analysis. Figure 3(c) shows
the corresponding results obtained with the Engquist-Majda ABCs.

In figure 4, we present the backscatter data from a 0.3A x 0.3A plate.
The Sommerfeld radiation condition was employed at the mesh termination
boundary placed 0.3A away from the edge. The comparison with a standard
integral equation code is seen to be excellent. The backscatter pattern of
the same plate is shown in figure 5 with a conformal outer boundary. The
zero thickness plate lying at z — 0 on the x — y plane was enclosed within
a boundary resembling a cut-off sphere. This was achieved by making a
plane cut at z = ±.3A of a .45A radius sphere and setting r in (23) to oo
over the planar surfaces. Storage was reduced by about 10% on using the
conformal outer boundary but the reduction should be more striking for
larger geometries.

Figure 6 compares the measured bistatic cross-section (0,- = 180°, fa =
90°) of a metallic cube having an edge length of 0.755A with the correspond-
ing pattern computed by the three-dimensional FE-ABC code. The second-
order vector ABC was employed at the mesh truncation boundary which was
placed only 0.1 A from the edge of the cube. About 33000 unknowns were
used for the discretization of the computational domain and the [A] matrix
contained a total of 264000 distinct non-zerr ,-ntries. The storage require-
ment of this matrix is consequently much smaller than the 2000 unknown
system generated by the boundary integral approach which has 4 million
non-zero entries.

Figure 7 presents backscatter data for a cylinder of radius 0.3A and height
0.6A. The data from the three-dimensional finite element code again compare



well with that obtained from a moment method-body of revolution code. The
mesh was terminated at a distance of 0.3A from the edge of the scatterer and
the system consisted of about 33000 unknowns and converged to the solution
in about 350 iterations when using the Sommerfeld radiation condition. Each
iteration took approximately 0.3 seconds on a Cray YMP and on the average
it was found that for JV > 25000, the number of iterations required was of
the order of N/ 100.

Figure 8 shows the backscatter pattern on enclosing the pec cylinder
in figure 7 with a conformal cylindrical boundary capped at the ends by a
spherical surface. The storage was reduced by about 20% but the computed
values are off by about IdB for most incidence angles. The poor results
are probably due to the fact that the ABCs were derived only for spherical
surfaces and therefore fail on cylindrical boundaries.

The above results point out that the mesh truncation boundary could
be placed a few tenths of a wavelength away from the scatterer to obtain
reliable results. This is probably because in three dimensions, the scattered
fields decrease as 1/r whereas in two dimensions, the rate of decrease is
proportional to
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Incident Wave

Figure 1: Geometry of p.e.c scatterer enclosed in an outer circular boundary
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Figure 2: (a)Cylinder geometry (b)Bistatic pattern using BGT absorbing
boundary conditions (c)Bistatic pattern using Engquist-Majda absorbing
boundary conditions
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boundary conditions



Backscatter pattern of a .3Xx.3X plate
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Figure 4: Backscatter pattern of plate using Sommerfeld radiation condition
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Backscatter pattern of a ,3Xx.3X plate
2nd order ABC; cut-off sphere
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Figure 5: Backscatter pattern of the plate in figure 4 enclosed by a conformal
outer boundary and using the 2nd order absorbing boundary condition.



Bistatic pattern of a .755 A metallic cube
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Figure 6: Bistatic pattern (0; = 180°) of a metallic cube having an edge
length of 0.755A using the 2nd order vector absorbing boundary condition.



Backscatter pattern of a metallic cylinder
base radius=.3X heighfc=.6A
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Figure 7: Backscatter pattern of a metallic cylinder of radius 0.3A and height
0.6A using the Sommerfeld radiation condition. The axis of the cylinder
coincides with the z-axis of the coordinate system.
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