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ABSTRACT

Many different failure criteria have been suggested for mixed-mode

delamination toughness, but few sets of mixed-mode data exist that are consistent

over the full mode I opening to mode II shear load range. The mixed-mode bending

(MMB) test was used to measure the delamination toughness of a brittle epoxy

composite, a state-of-the-art toughened epoxy composite, and a tough thermoplastic

composite over the full mixed-mode range. To gain insight into the different failure

responses of the different materials, the delamination fracture surfaces were also

examined. An evaluation of several failure criteria which have been reported in the

literature was performed, and the range of responses modeled by each criterion was

analyzed. A new bilinear failure criterion was developed based on a change in the

failure mechanism observed from the delamination surfaces. The different criteria

were compared to the failure response of the three materials tested. The responses

of the two epoxies were best modeled with the new bilinear failure criterion. The

failure response of the tough thermoplastic composite could be modeled well with

the bilinear criterion but could also be modeled with the more simple linear failure

criterion. Since the materials differed in their mixed-mode failure response, mixed-

mode delamination testing will be needed to characterize a composite material. This

paper provides a critical evaluation of the mixed-mode failure criteria and should

provide general guidance for selecting an appropriate criterion for other materials.



INTRODUCTION

Delamination is a primary failure mode of laminated composite materials.

Delamination toughness under mode I opening load and mode II shear load can be

measured with the double cantilever beam (DCB) test and the end notch flexure

(ENF) test, respectively. In structures however, delaminations are not just loaded in

pure mode I or pure mode II but grow under a mixture of mode I and mode II

loading. Several types of tests have been used to measure mixed-mode delamination

fracture toughness. In the past, several different kinds of test specimens were

needed to measure delamination fracture toughness over the full range of mode I and

mode II combinations 1. Unfortunately it was unclear what effect the different test

configurations had on the measured failure response. Recently however, the mixed-

mode bending (MMB) test 2, which simply combines the DCB and ENF loadings, was

developed to measure mixed-mode delamination toughness and then redesigned3 to

avoid geometric nonlinearities encountered when testing tough composites. The

MMB test allows almost any combination of mode I and mode II loading to be tested

with the same test specimen configuration. Therefore, inconsistencies present in

previous mixed-mode toughness data sets can be avoided.

Many different mixed-mode failure criteria have been suggested for

predicting delamination growth, but these criteria were often based on inconsistent

sets of toughness data. It is important that accurate mixed-mode failure criteria be

developed so that the extension of delaminations in structures can be predicted.

Once delamination can be predicted accurately, fewer component and full scale tests

will be required to ensure the safety of composite structures. The purpose of this

paper is to evaluate mixed-mode failure criteria by comparing them to consistent sets

of mixed-mode toughness data obtained using the MMB test.
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The redesigned mixed-mode bending (MMB) test was used to measure the

delamination toughness of a brittle epoxy composite, a state-of-the-ann toughened

epoxy composite, and a tough thermoplastic composite over the full mixed-mode

range. The fracture surfaces of the composites were examined to gain insight into

the failure responses of the different materials. Next, an evaluation of delamination

failure criteria which have been reported in the literature was performed, and the

range of material responses modeled by each criterion was evaluated. In addition, a

new bilinear failure criterion was introduced. The failure response of the three

materials were compared to the different mixed-mode failure criteria, and the best

criterion for each material was selected.

TOUGHNESS TESTING

The redesigned MMB test apparatus was used to measure the mixed-mode

delamination toughness of three different composite materials. This test is capable

of testing over virtually the entire mixed-mode range with consistent test conditions.

Consistent sets of data with which to compare proposed failure criteria therefore

were obtained.

The materials used in this study were chosen to represent a wide range of

toughness properties. AS4/3501-6 is a commonly used brittle epoxy composite.

IM7/977-2 is a state-of-the-art toughened epoxy composite. It consists of a high

strength IM7 fiber and an epoxy matrix which has been toughened with a

thermoplastic additive. The AS4/PEEK (polyether-ether-ketone) is a tough

graphite/thermoplastic composite and therefore radically different from the

thermoset epoxies. The elastic properties of these three materials are listed in Table

1. These properties were used in the calculation of fracture toughness. Because the

toughness calculation is very sensitive to the longitudinal modulus E11, it was
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measured using a 3-point bend test with a 3 inch span length. Ell was measured in

bending because for composite materials a flexuraUy measured modulus has been

shown to differ significantly from an axially measured modulus, 4 and the MMB test

is a bending type of test. The toughness calculation is not as sensitive to the

transverse modulus E22 and shear modulus G13. Therefore, these properties were

obtained from the literature3,5, 6.

The materials were made into 24 ply unidirectional panels. The panels were

cut into test specimen which were 6 in. long, 1 in. wide, b, and nominally 0.12 in.

thick, 2h. Each specimen contained a 0.5 mil thick insert at the midplane of the

specimen to act as a delamination starter. A Teflon insert was used in the epoxy

specimens while a Kapton insert was used in the PEEK specimens. Hinges were

bonded to the specimens as shown in Figure I, so that the starter provided a 1 inch

initial delamination length a.

The redesigned MMB test apparatus shown in Figure 1 uses a lever to apply

mode I and mode II loadings to a split beam specimen. The load on the top hinge

tends to pull the delamination open resulting in mode I loading similar to that of the

DCB test. The load at the fulcrum bends the specimen creating a mode II loading

similar to the ENF test. The ratio of the mode I to mode II loading is controlled by

the lever load position, c. The value of c therefore determines the mixed-mode

ratio Gi/Gll. The redesigned apparatus uses a saddle mechanism to hold the loading

rollers just above the specimen mid-plane and on either side of the test specimen.

This configuration has been shown to drastically reduce geometric nonlinearity

errors which can develop when testing tough materials3. The half span length L of

the MMB apparatus was 2 inches.

Each material was tested in at least three mixed-mode ratios (GI/GII) and at

the two pure-mode cases. The three mixed-mode ratios tested were the 4/1, 1/1, and

1/4 cases which corresponded to c values of 3.83 in., 1.66 in., and 1.09 in.,
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respectively. The AS4/3501-6 material was also tested at a 1/20 ratio with a c

value 0.85 in. while the IM7/977-2 material was tested at the 1/2 ratio with a c value

of 1.30 in. The pure mode I toughness was tested using a standard DCB

configuration. The pure mode II toughness was tested using the MMB apparatus

with a c value of 0. This is equivalent to an ENF configuration. All the tests are

consistent since the mixed-mode test is simply a combination of the pure-mode tests.

Five tests at each test configuration were performed on the epoxies while only 3 tests

were performed for the PEEK material.

The specimens were loaded in displacement control at a rate of 0.02 in/min at

the lever loading point. The load-displacement response was recorded, and the

critical load used in Gc calculations was taken as the load where the load-

displacement curve deviated from linearity. The tests on the epoxy specimen

measured the toughness required for delamination to initiate from the insert. The

PEEK specimen which were tested in a previous study 3 were first precracked under

a 4/1 mixed-mode loading to a delamination length a of 1.25 in. and then tested.

Although Murri et. al.7 showed that delamination toughness measured from a

precrack could be significantly different from values measured from an insert, a

study involving a 4/1 type precrack showed good agreement with insert initiation

values.8 The critical applied load Pc for all tests were taken as the load where the

load displacement curve deviates from linear. The PEEK toughnesses presented

here is slightly lower than that given in Reference 3 because that data was calculated

with Pc equal to the maximum applied load. The edge of the specimen was coated

with a white water soluble typewriter correction fluid so that the delamination could

be observed more easily with a 7x magnifying scope. The delamination extension

was observed at approximately the same time as the nonlinearity in the loading

curve. The delamination length, a, was determined by breaking the test specimen

open after the test and measuring the length of the initial delamination. For the
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epoxy specimen this was the length of the insert while for the PEEK specimen, a

was the length to the marking on the fracture surface left by the precrack.

The mixed-mode fracture toughness, G mlcand Gllcm,of the IM7/977-2 and

AS4/PEEK specimen were calculated using the following equations:

2[ h2 jm (36c 2- 24c_____L+ 4L 2)P c a2 + _ + 1 !
Gk:= 64L2bEII 1 _ + 10G,-----_

22[]m (3c2+6cL +3L )Pc "2h2Ell
= a2+ .

G llc 64L2bE I Gl3
11 (1)

1 [ 6E 22 bh 3

where Z,=--ff4_ Etl and I- 12

These equations are based on beam theory and include corrections to account for

shear deformation and deformation due to the rotation of the specimen cross section

at the delamination tip 2.

The fracture toughness calculation of the AS4/3501-6 was more complicated.

The complication arose because the toughness of this material is small compared to

the other two materials resulting in smaller critical applied loads Pc. The critical

loads in some cases were of the same magnitude as the lever weight Pg (Pg=l.85 lb,

Pc=10 lb), and therefore, the lever weight could not be ignored. A derivation of

how the lever weight was included is presented in Appendix A, andthe resulting

equations for mixed-mode fracture toughness are:
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(36c - 24cL + 4L )Pc +

G_=[ (72CCg-24cL -24CGL2+ 8L2)pcPg + 2 2/ a2 + 2a+lk_.___X2 _+ 1_13 j
(36c g- 24CgL + 4L )Pgj 64L2bEll I

m

G lie
I 2 2

(3c2+ 6cL + 3L )Pc +

= (6cc g + 6cL + 6c lea','h2E"1gL + 6L2)pcPg + G13

(3c2 + 6c gL + 3L2)p 64L2bE 111

(2)

The equations in the appendix are written in terms of an applied load Pa and strain

energy release rates, Gl and GII, while Eqs. 2 are written in terms of a critical

load Pc and the fracture toughnesses, Gm and Gm Appendix A also includesIc IIc"

criteria for deciding when the lever weight corrections are needed.

The pure mode I toughness was calculated using Equation 3 for all materials.

pc2 [ 2 2a l h2Ell.]Gic- bEll I a +---ff +-_ + 10Gl-----_

(3)

This equation was used in developing the mixed-mode equations and is consistent

with the mixed-mode equations. The pure mode II toughness Gnc can be calculated

m
from the equations for G lie in Equations 1 or 2 where c is set to 0. Notice that the

m equations give erroneous results at this c value because for c _;0.67, theGic

delamination surfaces do not separate. The contact forces across the delamination

m
surfaces which are not modeled by Equation 1 and 2 cause the true G _ to be 0 but

m values.do not effect the G nc

The delamination fracture surfaces were examined using a scanning electron

microscope (SEM). SEM photomicrographs where taken just beyond the

delamination insert for the epoxy composites and just beyond the precrack marking
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for the PEEK composite. Therefore, the fracture surfaces show the first increment

of delamination growth which correspond to the measured fracture toughnesses.

TOUGHNESS TEST RESULTS

The mixed-mode failure responses of the three composite materials are
m

presented by plotting the mode I component of fracture toughness, G t: vs. the

mode II component, Gm These mixed-mode diagrams are plotted in Figure 2.lie "

The failure response of the two epoxy composites are quite similar in shape, but the

AS4/3501-6 material is more brittle than the IM7/977-2. For both epoxies, the G mIc

values appear to increase as the G mllc

G m approaches Gilt. The risingas llc

is introduced and then slowly decrease to zero

m G mG_c with lIc may be somewhat surprising,

but this phenomenon can also be seen in data presented in References 9 and 10. The

overall shape of the failure response is convex and very similar in shape to the

mixed-mode diagram for a brittle-epoxy composite system studied in Reference 1.

The AS4/PEEK material is even tougher than the iM7/977-2 material at all mixed-

mode ratios except near pure mode II and the shape of the failure response is quit

m m

different. G t: decreases almost linearly with Gi1c which produces a mixed-mode

diagram very similar to those presented in Reference 1 for different tough

composite systems. Since the shape of the failure responses of the different materials

are so different, it is clear that no Single criterion based on just G1c and GIIc will

model all delamination failure. One criteria might be able to model the different

materials if arbitrary parameters can be changed so that the criterion can be fit to

the data. If this does not work then different criteria would have to be used for

different materials.
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SEM photomicrographs show that the fracture surfaces of the different

materials change dramatically with mixed-mode ratio. As discussed earlier, these

photomicrographs were taken just after delamination initiation. Figure 3 shows the

delamination surfaces at different mixed-mode ratios for the AS4/3501-6 composite.

The photomicrographs were taken at a magnification of 1000x. At pure mode I the

fracture surface is very flat indicating a brittle cleavage fracture which would

explain the low mode I fracture toughness. As mode II is added, the fracture

surfaces becomes rougher as seen in the 4/1 ratio case. Troughs have appeared

where fibers have been pulled away from the matrix indicating interfacial failure.

The side of the fracture surface which did not contain a large percentage of fibers is

shown here because the texture of the fractured resin is easier to see in this view.

The increase roughness could explain why the mode I component of fracture

toughness rises as mode II is introduced. At the 1/I ratio, hackles 11have appeared,

and there is little difference between the 1/1 fracture surface and the pure mode II.

The similarity between the 1/1 and pure mode II fracture surfaces indicates a single

failure mode through this region. The difference between these fracture surfaces

and those at the pure mode I and 4/1 casemay indicate a change in the failure

mechanism around the 1/1 ratio.

Figure 4 shows the fracture surfaces of the IM7/977-2 composite at several

mixed-mode ratios. As seen from the figure, the fracture surfaces of IM7/977-2 are

very similar to that of AS4/3501-6. The mode I fracture is cleavage, fiber troughs

appear at the 4/1 ratio, and hackling begins around the 1/1 ratio and continues

through the pure mode II condition. The change in fracture surface between the 4/1

and 1/1 ratio is even more clear for this material than for the AS4/3501-6, and again

may indicate a changing failure mechanism. The similarity in the fracture surfaces

of these materials may explain the similarity between the shapes of the failure

responses of these two materials which can be seen in Figure 2. No indication of the
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increased toughness of IM7/977-2 over AS4/3501-6 was noted by observing the

fracture surfaces.

The fracture surfaces of the Peek composite shown in Figure 5 are noticeably

different from that of the epoxies. All the PEEK fracture surfaces have cusps

caused by the extensive yielding of the matrix. The larger strain to failure created

by the yielding gives this material a larger fracture toughness than the epoxies tested.

The ridges and valleys seen in the figure are due to the fibers which have been

pulled out of the valleys. The ridges form because the larger volume of matrix

material found between the fibers can deform more creating the ridges of cusps.

The primary difference between the fracture surfaces at different mixed-mode ratios

is the orientation of the cusps. The DCB fracture surface has cusps that are

randomly pulled in different directions. In the 1/l fracture surface the cusps tend to

be drawn slightly toward the top of the micrograph due to the mode II action.

Larger amounts of mode II draw the cusps more and more, and in the ENF fracture

surfaces, all the cusps are extensively drawn upward. No indication of hackling or

of changing failure mechanism was observed on the AS4/PEEK fracture surfaces

REVIEW OF MIXED-MODE DELAMINATION CRITERIA

Many attempts have been made at describing the mixed-mode delamination

failure response of composite materials. Failure criterion have been based on stress

or strain near the crack tip, crack opening displacement, stress intensity factor, or

strain energy release rate. Strain energy release rate seems to be a good measure of

a materials resistance to delamination extension and most of the failure criteria that

have been suggested can be written in terms of a critical strain energy release rate or

fracture toughness. Delamination fracture toughness testing under pure mode I

loading and pure mode II loading is well established. Delaminations in structures
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are often subjected to mixed-mode loading so mixed-mode fracture toughness is also

important. Since the mode I and mode II fracture toughness data is readily

available, the mixed-mode failure criteria will be written in temas of the pure'mode

toughnesses, Gic and GIIc, when possible. Although the primary interest here is

delamination, criteria suggested for both delamination and ply cracking will be

presented. In both ply cracking and delamination, a crack is growing in the matrix

in the direction of the fibers. Because the fiber-matrix geometry of both types of

cracks are so similar, one would expect the failure responses to be similar as well.

The mixed-mode failure response of a material can be described by plotting
m

the mode I component of fracture toughness, G lc vs. the mode II component,

G m An accurate failure criterion will match the material response when plotted on
IIc"

this mixed-mode diagram. Since the the material response of different materials can

be quite different, each failure criterion will be evaluated first by looking at the

range of shapes each criterion can model. For comparison each criterion will be

evaluated assuming G[c = 1 and Giic= 3. Some criteria also involve the ratio of

E11/E22. For comparison this ratio will be assumed to be 10. Later criteria will be

fit to measured toughness data.

The simplest criteria assume that either the mode I component 12, the mode II

component 13, or total fracture toughness 14 will stay constant as the mixed-mode

ratio changes, These criteria are respectively:

m
GIc =Glc (4)

G illHc= _3it,:

G_ +G m ( )=G =G =G
llc Tc lc llc

(5)

(6)
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Tb,es:e criteria are plotted on the mixed-mode diagram (Gi vs, Gn) in Figure 6. The

first criterion assumes that only the mode I compone_nt of!oading controls .........

de!amination growth which therefore assumes_ a13 iofi0ite GIIc. q_e _sec_nd.assu_es

thatonly the mode II component of loading is important and therefore an infinite

Gic. 6 more,reasonable critefi.on.wo.u!d be to combine the GI and Gn_ :,:_ _ :-

criteria(Eqs. 4 & 5) by assuming that de!amination growLh would occur if either

EquatJo.n4.or 5 is met. This criterion then models the assumption that the mode I

an d_mode !! failure processes occur independently o.feach.other. The third criterion

assumes that.a de!amination will extend if the total strain energy GTc reaches some

critical valuo, .The fracture toughiiess is assomed not to be. a .function of mixed- :_,_

mode rati_ which means that Glc should equal GI)¢. Sinee.;Glc and GIIc are known

to be quit different for most materials, the GT_ criterion(Eq. 6) was modified to

account for materials with different mode I and mode II toughnesses as seen in the
....."_ i"h.....Ll_h_.t,t,,i-">_ .],_.-4 ];_]_[ G._)t;iii_;'.]:'.) :)(i i:i J/ (iOii_ii-i:_ L_3-JiiGi _;i31-5 .jii-_-.'i:_i_ L--?_ -2-

next criterion.

The fourth criterion simply normalizes each component of fracture toughness

by its pure'mode value as given by 14 ......... _:

G Ic ) + IIc = ! ,r_,i_.,.,..-_:_;,.._:.:c: ;>:_::.a; ?<_(71

The res:u!ti_ngcp_. _ on,I_e,._i_ec!:_od_, fracture toughnes_diagra.m is a .!.'.m.e...,::..

connecting the pure mode I and pure _ode ![ fracture toughnesses as show_ on ,,_,:

Figure 6. This linear criterion(Eq. 7) is perhaps the mixed-mode criterion most

often referred to in literaturel, 10,15,16,17

A fifth criterion is obtained by generalizing the linear criterion(Eq/7) as a

power law function 12 as follows:

i
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By choosing a and 13, a wide range of material responses can be modeled as

shown in Figure 7. When o_=13>1 the failure curve is convex while when o_=13<1

the curve is concave. If 13>o_ then the curve is skewed so that the curve is more

convex near the mode I axis. Besides a=13=1 which reproduces the linear

criterion(Eq. 7) several (c_,13) combinations have been used such as (2,2)18,

(0.5,1) 14, (1,1.5) 19, (1.4,1.8) 20, (.64, .8) 20. An optimum value of o_ and 13 for a

given material can be found by curve fitting through experimental data.

Another criterion was developed by assuming that the total fracture toughness

would be a polynomial function21 of the ratio of mode II to mode I as given by

m (o.m/
+ o + (9)

The polynomial criterion(Eq. 9) can model a wide variety of material responses by

adjusting p and x as ,seen in Figure 8. This criterion can model both concave and

convex failure curves. It is also the first criterion discussed which can allow the

mode I to increase as mode II is introduced as seen when p=l.5. This material

behavior is exhibited by the epoxy composite systems of the present investigation.

However, this criterion is unable to model low mode I to mode II ratios. Either the

Gm gets very large or both Gm and Gm will go to zero as the mixed-mode ratio
lc lc IIc

is decreased. Neither response is realistic, and therefore this criterion is an

inappropriate choice as a general mixed-mode criterion.

Another criterion was developed by assuming the fracture toughness to be a

linear function of the mode I stress intensity factor22 KIc' This criterion has been

written here in terms of G m_c and Gmllc as
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Gm m = -(G -GIc)_/G_c/G (10)Ic + G llc Gllc lie • lc

If Gic=Gnc the Klc criterion(Eq. 10) reduces to the linear criterion(Eq. 7). If

Gic<<Gnc then the Kic criterion(Eq. 10) reduces to the power law criterion(Eq. 8)

where o_=.5 and [3=1. This criteria is completely defined by the Gic and Guc

values and produces a concave failure envelope as seen in Figure 9.

The next criterion was developed by modeling delamination growth through

hackle formation23. The hackle criterion(Eq. 11) was based on a linear function of

l+(Ku_:_) which is a measure of the hackle angle. The criterion is written here in

terms of the pure-mode fracture toughnesses, modulus values, and an arbitrary

constant Z.

m m j O7, /E,,G k-t-G lie---(G hz- X)-I- _ 1+ _,._/G E 22 (11)

The hackle criterion(Eq. 11) is plotted on the mixed-mode diagram in Figure 10. Z

can be chosen to model a variety of material responses, including an increasing G rnIc

m

with Gllc as seen when z=l. However, except for when Z=0 which gives the

GTc criterion(Eq. 6), the hackle criterion(Eq. 11) will always predict an infinite Guc

so this criterion is also an inappropriate choice as a general mixed-mode criterion.

JA second criterion was based on the hackle angle parameter I+(K,/K_) , but

this time it is related as an exponential instead ofa linear functionl0. The

exponential hackle criterion(Eq. 12) can also be written in terms of the pure-mode

toughness values and only one arbitrary constant 7 as follows:

GI c+Gllc=(Glc-Gllc)eY(1-N)+G,lc N= 1* G----_] E2---"_ (12)
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This exponential hackle criterion(Eq. 12) has the advantage that it does model a

finite Gltc as seen in Figure 11. The T constant can be chosen to model a great

variety of material responses. The failure envelope can be concave or convex and it
Ill

m with increasing Glkcan model an increasing G lc

Another mixed-mode criterion was based on an exponential function of the

mixed-mode stress intensity factor ratio 24 Klc/Kllc. The criterion has been written

here in terms of strain energy release rates and the arbitrary constant r I.

G m G m rlJG I_/G tl_
lc + IIc=(GIIc-GIc) e + Gtc (13)

The exponential KIc/KIIc criterion(Eq, 13) is plotted on the mixed-mode diagram in

Figure 12. This criterion can model the same types of responses modeled by the

exponential hackle criterion(Eq. 12), but a strange jog in the failure curve near the

mode I axis is introduced for TI<I.

Critical crack opening displacement (COD) was the basis of yet another

criterion. A delamination is assumed t? extend when the mode I or mode II critical

crack opening displacement is reached. A Dugdale plasticity model was used to

derive the following criterion25:

G,,'-"-_"= _'a/'-ff'u-11_G_, Gk: j (14)

m E_III ( mGlc GIic_2 Glc GIIc

m G

The first equation assumes a critical mode I crack opening displacement while the

second assumes a critical mode II displacement. The delamination is assumed to

extend if either criterion is met. This criterion is plotted on the mixed-mode

diagram in Figure 13. The COD criterion(Eq. 14) is plotted with Ell/E22 equal to

both 10 and 1. The higher ratio corresponds to the ratio of global stiffnesses. Since
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this criterion is based on crack opening displacement, a localized phenomenon, a

local stiffness ratio corresponding to a crack in a isotropic matrix material and

therefore the lower ratio, may be more appropriate. With either stiffness ratio, the

mode I criterion, which produces a concave failure response, is critical for most of

the GutGII values.

Another criterion was developed based on a mode I-mode II interaction

parameter 1¢26.

,/Io.m,c

The arbitrary interaction parameter _c is a measure of how much effect the mode I

and mode II loadings have on each other. As shown in Figure 14, this criterion can

be describe both concave and convex material responses. If _c=0 then the fracture

modes are independent and the criterion is the same as combining the Gic and GIIc

criteria(Eqs. 4 & 5), and if _c=2 the criterion is the same as the linear criterion(Eq.

7). The material responses modeled by this criterion seem to be almost identical to

those modeled by the power law criterion(Eq. 8) when the arbitrary constants of the

power law are equal. Values of _c from 0.26 to 3.1227 have been suggested for

different materials.

The interaction criterion was made more versatile by allowing the interaction

m m m
parameter to be a linear function of G ic/(G lc + Gltc) as given by 28

(G_____)(GG____ _) [ [ m )1 ( m]( m 1

m GI c GI c Gllc =

t °, , ,ic_ _ .,,, m L JL -q-U,,j0 (16)
llc ., ('J It: + G IIc

The iihear interaction criterion(Eq. 16) can model all the responses of the simpler

interaction criterion(Eq. 15), but by adjusting the arbitrary parameter (p, many

more responses can be obtained including an increasing mode I with mode II. 0e,(P)
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values of (3,-4) and (4,-3) were suggested for different materials. The linear

interaction criterion is a rather complicated implicit function of Gic and Giic which

could make this criterion difficult to use.

BILINEAR FAILURE CRITERION

The delamination fracture surfaces indicated that a change in failure

mechanism may take place in the epoxy around the 1/1 ratio. The mixed-mode

fracture toughness data of the epoxy composites also reach a peak at this ratio. If the

failure mechanism does change one might expect different failure criteria to hold in

different regions of the mixed-mode diagram. Shifting from one criterion to

another could easily result in a peak in the toughness response as observed in the

epoxy composite data around the 1/1 mixed-mode ratio. Since the linear

criterion(Eq. 7) is simple and has seen widespread use, a reasonable assumption

would be that the failure response would be linear in each region. The two regions

of both the AS4/3501-6 and IM7/977-2 delamination failure data in Figure 2 do

The resulting bilinear

4, as well as the two

appear rather linear which further supports this assumption.

failure criterion depends on the arbitrary parameters _ and

pure-mode toughnesses.

m m
Glc = _ Gllc+ Glc

!11 m

Gtc= _GII c- _GII c

(17)

and _ are the slopes of the two line segments used in the bilinear criterion(Eq.

17). As shown in Figure 16, this criterion can model concave or convex responses,

and it can model an increasing mode I fracture toughness component with mode II.

If _=_=-GI.ffGH_, then the bilinear criterion(Eq. 17) would reduce to the linear

criterion(Eq. 7)
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CRITERION EVALUATION

The fact that so many radically different mixed-mode criteria have been

suggested and used indicate that there is still much to be understood about this

phenomenon. The true test of a failure criterion is how well it models the response

of the material of interest. In the past, there was no good way to evaluate these

criteria. Little mixed-mode data was available, and that which was available was

often obtained from several different tests and was therefore inconsistent. Consistent

sets of mixed-mode data for three different materials where presented in Figure 2.

These data sets will be used to evaluate the different criteria.

Each criterion that produced a general shape close to that of one of the

material responses was fit to the data. A least squares analysis was performed to

optimize the curve fits. The least squares analysis was conducted by minimizing the

distance between each data point and the failure curve. The shapes of the failure

curves produced by the G_c, Giic, GTc criteria(Eqs. 4, 5, & 6) are not even close to

the material responses observed so no attempt was made to fit these criteria to the

experimental data. Since the shape of the linear criterion(Eq. 7) was only close to

the shape of PEEK data, no attempt was made to use this criterion for either of the

epoxies. The power law criterion(Eq. 8) was fit to each material response even

though it cannot model the increasing

composite data. The increase in G mlc

m m

G to with G Uc observed in the epoxy

was not that large, and failing to model this

increase would at least produce a conservative model for the material. The

polynomial, the Kxc, the hackle, and the COD criteria(Eqs. 9, 10, 11, & 14) were

not able to model a material response similar to that seen in the experimental data.

The exponential hackle, the exponential Klc/Kllc, and the bilinear criteria(Eqs. 12,

13, & 17) were used to model all three material responses. The simple interaction

18



criterion(F_,q. 15) was not fit to the data bccausc it is a specialized case of thc linear

interaction criterion(Eq. 16) which was fit to each set of data.

The results of the least square fit of each criterion to the experimental data is

given in Table 2. The best fit curves for AS4/3501-6, IM7/977-2, and AS4/PEEK

materials response are shown in Figure 17, 18 and 19, respectively. The linear

interaction criterion(Eq. 16) shown by the heavy dashed line and the bilinear

criterion(Eq. 17) shown by the solid line, appear to model the epoxies better than the

other criteria. This is also indicated by the coefficients of variation R 2 given in

Table 2. The closer the coefficient is to 1 the better the model fits the data, and as

seen in the table, the linear interaction and the bilinear criterion(Eqs. 16 & 17)

produced the coefficients closest to 1 for both AS4/3501-6 and IM7/977-2. The

power law criterion(Eq. 8) also had a very low R 2 value for the AS4/3501-6
m m

material, but since the curve does not model the rising GIc with GHc, the other

criteria are believed to be better choices. Both the linear interaction criterion and

the bilinear criterion model the epoxy based composites well and with the same

number of arbitrary constants. The complexity of the linear interaction

criterion(Eq. 16) makes it difficult to work with since it is an implicit function of

m m
G ic and Gllc" The bilinear criterion is based on very simple equations and is

therefore easier to use. For this reason the bilinear is believed to be the best choice

of failure criteria for these materials.

The PEEK composite was modeled fairly well by all the criteria tested as seen

in Figure 19. The coefficients of variation for this material are all about the same,

but they are all noticeably smaller than the coefficients of the other materials because

there are fewer experimental points. The power law criterion(Eq. 8) produced the

smallest coefficient of variation, but the linear criterion(Eq. 7) produced a curve

that was almost as good and with two less independent variables. For this reason, the
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linear model is believed to be the best failure criterion for this material. Since the

bilinear criterion(Eq. 17) contains two extra degrees of freedom, it models the

PEEK material slightly better than the linear criterion(Eq. 7) and might be chosen to

be consistent with the criterion used for the epoxy composites.

Because the response of the epoxy composites was quite different from that of

the PEEK composite, it is clear that no one failure criterion based on just the pure-

mode toughnesses will be able to model all materials. Since delaminations will often

be subjected to mixed-mode loading and because the mixed-mode failure response

cannot be determined from the pure-mode toughnesses, it is important that mixed-

mode toughness testing be included during the characterization of a material. Once

the mixed-mode response of a material has been determined, the shape of the

response can be compared to the different failure criteria presented here. When

choosing the best failure criterion for a given material one should consider which

criterion has been used for similar materials. Hopefully a standard choice of failure

criteria will emerge for different classes of material such as a linear criterion for

thermoplastic composites and a bilinear for epoxy composites. When choosing a

failure criterion, one should also consider the number of arbitrary variables and

whether criterion is in a form which can be easily used. A simpler criterion with

fewer variables is preferred if it models the material as well as a more complicated

one. After the appropriate failure criterion for the material is chosen, a least

squares fit to the experimental data can be performed to optimize any arbitrary

constants of the criterion.

CONCLUDING REMARKS

Many delamination failure criteria which predict a wide variety of mixed-

mode fracture toughness responses have been reported in the literature, but few

consistent sets of mixed-mode data exist with which to compare these criteria. The
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MMB test was used to measure the mixed-mode delamination toughness of three

different classes of material. A common brittle graphite/epoxy composite

(AS4/3501-6), a state of the art toughened graphite/epoxy composite (IM7/977-2),

and a tough graphite/thermoplastic composite (AS4/PEEK) were tested. The MMB

test is a combination of the pure mode I, DCB test and the pure mode II, ENF test,

and can measure fracture toughness at virtually any mixed-mode ratio using a single

test specimen configuration. The toughness data are plotted on the mixed-mode

diagram (Gt vs. GI_). The delamination surfaces were examined and a possible

change in failure mechanism was observed in the epoxy composites.

Criteria which have been suggested by other investigators were reviewed and

the range of material responses modeled by each criterion were explored. A new

bilinear failure criterion was also developed in an attempt to model the possible

change in failure mechanism observed in the epoxy composites. The different

criteria were compared to the failure response of the three materials tested. The

new bilinear failure criterion was considered the best choice for the two

graphite/epoxy composites because it modeled the material responses well and

because it is relatively simple. The AS4/PEEK composite, which did not show signs

of a changing failure mode, was modeled well with either the bilinear or a simpler

linear criterion.

Since the response of the epoxy composites was quite different from that of

the PEEK composite, it is clear that no one failure criterion based on just the pure-

mode toughnesses will be able to model all materials. Because delaminations will

often be subjected to mixed-mode loading and because the mixed-mode failure

response cannot be determined from the pure-mode toughnesses, it is important that

mixed-mode toughness testing be included during the characterization of a material.

Once mixed-mode toughness testing has been conducted the evaluation of the
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different failure criteria provided in this paper should provide general guidance for

selecting an appropriate failure criterion.

•

o

o
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APPENDIX A

LEVER WEIGHT CORRECTION FOR THE MMB TEST

The MMB test uses a lever to apply mode I and mode II loading to the split

beam specimen using only one applied load, Pa- As shown in Figure A1, a gravity

load, Pg, also acts on the lever at a point determined by length Cg, and this load

also contributes to the mode I and mode II loading of the test specimen.

The mode I and mode II loading were given in Reference 2 as

P II = P a(-_-) (ml)

but these equations did not account for the weight of the lever. The weight of the

lever can be thought of as a second applied load which is superimposed on the true

applied loading. The mode I and mode II loadings are therefore given by

PII = Pa(_"_) + Pg\ I_

(A2)

The equations for mode I and mode II strain energy release rate are given by

Equations A3.

Gl- bEll I 7 +_

3P! a2 +

GI!- 64bE 111 Gl3

where (A3)
bh 3

1-
12

Substituting Eq. A2 into Eq. A3 gives an expression for G in terms of the

applied load and lever weight.
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(36c 2- 24cL + 4L )P,, + 2a 1 -]

a2 + ---_- + +
/

GI= (72 ccg - 24cL - 24c gL + 8L2)p aPg + --_ 1-_13J

2 2 64L2bElli(36c 2 - 24cgL + 41, )Pg

[ lLa+l(3c2+ 6cL + 3L )Pa + .2h2Ell

Gll = (6_ g + 0eL + 6c gL + 6L2)PaPg + G13

(3c 2 + 6c gL + 3L2)p 64L2bE 111

Notice that since the load is squared in Eq. A3, a cross term develops in Eq. A4

between the applied load and the weight. These equations that account for the weight

of the lever are equivalent to the equations for G given in Reference 2 if the terms

involving Pg are removed.

Eq. A4 has been developed assuming the delamination faces are not in contact.

When c is small (c_0.67), the delamination faces do not separate and load is

transferred across the faces. PI (Eq. A2) is the load pulling the delamination open

so that a negative P_ is the load pushing the delamination faces together. If P[ is

negative, the faces are in contact so GI will equal zero, but GII can still be found

using Eq. A4.

The errors caused by ignoring the weight of the lever are calculated using Eq.

A5.

(G1) - (G i)
w O

% Error GI= (GI+GII) x 100
o

(6 w- (G
% Error GII = (GI+GII) x 100

O

(A5)

The subscripts w and o indicate that the lever weight was included or -neglected,

respectively. The errors are normalized by total strain energy release rate, GI +

Gn, so that a small nominal error in GI or Gu does not cause a large apparent

error just because that component also happens to be small.
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The error caused by ignoring the lever weight of the MMB apparatus used in

the present study is presented in Figure A2. The errors in GI and GII are plotted

as a function of lever load position for total strain energy release rate values from

0.3 to 3 in-lb/in. The redesigned MMB apparatus used in this study was found to

weigh 1.85 lb. The weight is partly due to the saddle mechanism which moves when

the lever load point is moved. Since the saddle mechanism is moved when the lever

load point is changed, the center of gravity of the lever assembly given by length Cg

also changes. The relationship between c and cg was found for this apparatus to

be Cg= 0.38 + 0.24 c. The c values that produce the mixed-mode ratios used in

this study are also marked on the Figure. For the range of lever lengths tested in

this study, the largest error in GI was at the 4/1 mixed-mode ratio (c=3.83 in.) and

the largest error in Gii was at c= 0.66 in. The error in both GI and GH increases

rapidly as Gj + GII goes below 1 in-lb/in 2, but for G1 + GII above 2 in-lb/in2 the

error is always below + 5% which is negligible for this type of testing.

A simple test was developed to determine when the added complexity of

accounting for the lever weight is necessary. First Eq. A4 was substituted into Eq.

A5. The error calculations were first simplified as shown in Eq. A6 by neglecting

the end foundation (;L=0) and shear correction (G13 =oo) terms found in Eq. A4.

Higher order term involving pg2 were also neglected.

(72cc -24cL -24CgL+8L 2) Pg
%Error G I-= g --xl00

(39c 2- 18eL + 7L 2) Pa

(6cc g + 6eL + 6c gL + 6L 2) Pg (A6)
--xl_

% Error GI! _ (39c 2- 18cL + 7L 2) Pa

Equation A6 is a function of Pa, but the critical value of Pa is usually not know

before testing. Pa was replaced by a function of the total strain energy release rate,

G! + GI!. The expression for total strain energy release rate was obtained from Eqs.
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A4 and simplified by neglecting the correction for lever weight, shear and end

foundation as discussed earlier. Equations for the maximum GI and GII errors

were created using the c values that gave thc worst errors in GI and Gu as seen

in Figure A2. Therefore c=3.84 in. and c=.66 in. were substituted into the GI and

GII error equations, respectively. Since the largest GI error occurs near the pure

mode I condition and the largest Gll error occurs near the pure mode II condition,

Glc and Guc were substituted into the two equations respectively. The resulting

estimates of the maximum errors due to lever weight are

Max % Error G m
Ic

• aP g

m

Max % Error G lie cg ) aPg= 0.43 --L--+ 1 x 100
G llc bE 1i I

(A7)

If the maximum error for both mode I and mode II are below say + 5%,

then the weight of the lever can be ignored. If the error is larger than + 5%, the

additional terms in Eq. A4 involving Pg should be used in calculating G. If the

additi0nal terms are neededai-onemixed-mode ratio, they should be used at all

mixed-mode ratios tested for that material so that the data is consistent.
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Ma_fi_

AS4/3501-6

IM7/977-2

AS4/PEEK (APC2)

Table 1.

Ell (measured)

19.1Msi

20.8 Msi

18.7 Msi

Material Properties

E22 G13

1.4 Msi 0.85 Msi

1.33 Msi 0.694 Msi

1.46 Msi 0.8 Msi

Material

AS4/3501-6

IM7/977-2

AS4/PEEK

Table 2. Least Square curve fit parameters for various criteria

Criterion Glc

.5185

Giic

3.990Power Law(Eq. 8)

R 2

.9956

Exponential Hackle(Eq. 12) .4422 3.713 .9924

Exponential K(Eq. 13) .5172 3.092 .9888

.4740Linear Interaction(Eq. 16)

Bilinear(Eq. 17)

4.050

3.269

8.635Power Law(Eq. 8)

.4548

1.792

.9960

.9956

.9960

Exponential Hackle(Eq. 12) 1.345 8.354 .9962

Exponential K(Eq. 13) 1.730 7.833 .9948

Linear Interaction(Eq. 16) 1.616 8.557 .9974

Bilinear(Eq. 17) 1.619 8.106 .9976
, ,, , .

Linear(Eq. 7) 4.745 7.147 .9787

Power Law(Eq. 8) 4.753 6.649 .9811

Exponential ltackle(Eq. 12) 4.538 6.734 .9797

Exponential K(Eq. 13) 4.509 6.733 1'1=0.4940 .9799

.9803
Linear lnteraction(Eq. 16)

Constants

a= 0.0571

[3= 5.039

y= 0.1964

1"1=1.664

_= 1.279

q_=-4.905

_= 0.2039
4=0.2473

c_= 0.126

[_= 5.447

y= 0.304

11= 1.050

_:= 0.868

9=-2.962

_= 0.2107
4- -0.371

t_= 1.662

13=0.7329

7= 0.8701

K:= 0.8679

q_= 1.058

_= -0.1261
4= -0.7477

I

4.778

4.433Bilinear(Eq. 17)

6.736

6.861 .9801
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