- | 23§42

Redundant Disk Arrays:
Reliable, Parallel Secondary Storage

Garth Alan Gibson

(NASA-CR-189962) REDUNDANT DISK ARRAYS: N92-19288
RELIABLE, PARALLEL SECONDARY STORAGE Ph.D. ’

Thesis (California Univ.) 267 p CSCL 098
Unclas

G3/60 0073849

I/

o Report No. UCB/CSD 91/613
! December 1990
| Computer Science Division (EECS)

University of California, Berkeley
Berkeley, California 94720

Vo™

Redundant Disk Arrays:
Reliable, Parallel Secondary Storage

By
Garth Alan Gibson
B.Math.(Hons.) (University of Waterloo) 1983
M.S. (University of California) 1987
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE A@?é |
in the :
GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

A 29,199]

® & & @ 0 @ 6 06 0 5 000 OSSO OO D ® ® 6 0 0 0 * o o

Y VAR S
L) /Jc*f/ let /7]

(2222113223333 23 3433323132333 3222127

Redundant Disk Arrays:

Reliable, Parallel Secondary Storage

by
Garth Alan Gibson

Abstract

During the past decade, advances in processor and memory technology have given rise to
increases in computational performance that far outstrip increases in the performance of secon-
dary storage technology. Coupled with emerging small-disk technology, disk arrays provide the
cost, volume, and capacity of current disk subsystems but, by leveraging parallelism, many
times their performance. Unfortunately, arrays of small disks may have much higher failure
rates than the single large disks they replace. Redundant Arrays of Inexpensive Disks (RAID)
use simple redundancy schemes to provide high data reliability. This dissertation investigates

the data encoding, performance, and reliability of redundant disk arrays.
Organizing redundant data into a disk array is treated as a coding problem in this disserta-
tion. Among alternatives examined, codes as simple as parity are shown to effectively correct

single, self-identifying disk failures.

'D.A.\Daﬁw

David A. Patterson

The performance advantages of striping data across multiple disks are reviewed in this
dissertation. For large transfers this parallelism reduces response time. Striping data also
automatically distributes independent, small accesses across disks to increase throughput This
dissertation evaluates the performance lost to the maintenance of redundant data. This loss is
negligible for large transfers but can be significant for small writes because of increases in

aggregate disk service time. -

Because disk arrays include redundancy to protect against the high failure rates caused by
large numbers of disk components, it is crucial that disk failures be characterized. This disser-

tation provides evidence that disk lifetimes can be modeled as exponential random variables.

Building on an exponential model for disk lifetimes, this dissertation presents analytic
models for disk-array lifetime, evaluates these against event-driven simulation, and applies
them to an example redundant disk array. These models incorporate the effects of independent
and dependent disk failures (shared support hardware) as well as the effects of on-line spare
disks. For the example redundant disk array, these models show that a 10% overhead for an
N-+1-parity encoding plus a 10% overhead for on-line spares can provide higher reliability than

the 100% overhead of conventional mirrored disks.

Redundant DiskArrays:

Reliable, Parallel Secondary Storage

Copyright © 1991
by

Garth Alan Gibson

Dedicated to my grandparents

lda Maud (Babcock) Stocl_;v

You are my Mnemosyne, my goddess of memory.
Your reminiscences have given me a family mythology:

‘“candies down the pea belt,”’

‘“‘Billy Bounce,’’ and ‘‘United Empire Loyalists."
So much of my identity is based on your retrospections.

Herbert Samuel Albert Stocks

Although I never knew you,
I am forever influenced by your presence

in the warm waters of my favourite place,
the Madawaska. .

Rush Eliza (Warren) Gibson

You left me pearls in these words
Jrom your poem, Time:
*‘There is nothing so precious as time
It is neither yours nor mine
To use it well, we have to learn
For yesterday’s time will never return.”’

Henry Walker Gibson

Abways a smile, always a tease,
always a kind and wise word,
it was always so comfortable to be with you,
even if you did always win at horseshoes.

Acknowledgements

The time I have spent at Berkeley has been richly rewarding primarily because of the
efforts of David Patterson. He has given me guidance, enthusiasm, and wisdom as well as
countless hours of time. The challenges that he laid out for me first attracted me to Berkeley,
his patient council brought me through the darkest days of the development of SPUR, and his
keen intuition provoked my research into I/O systenis. I have benefited immeasurably from his

tutelage.

All three members of my committee, David Patterson, John Ousterhout, and Ronald
Wolff, have contributed generously to the research reported in this dissertation. Althoﬁgh Dave
propelled me through this research, all might have been in vain without John’s insights into sys-
tems and Ron’s patient coaching on modeling. Of course, all three deserve a special note of

thanks for wading through drafts of this dissertation.

This dissertation also benefited substantially from the efforts of two others, Tom Philippi
and Barbara Beach. Their careful proofreading, extensive editorial suggestions, and gentle

humour made my task much more bearable.

Contributing to the contents of Chapter 3 in this dissertation have been many gracious col-
leagues. The basic ideas for arrays of small-diameter disks grew out of work 1 did with David
Patterson and Randy Katz. The extensions to binary, double-erasure correcting codes is from
collaborative work with Richard Karp, Lisa Hellerstein, David Patterson, and Randy Katz.
David Patterson, Randy Katz, and I also contributed to the RAID measurement experiment car-

ried out by Peter Chen with the assistance of Amdahl Corporation. Peter Chen and Ed Lee also

ii

contributed insight into their work on data striping-unit selection and parity placement stra-
tegies, respectively.

Thanks go to Thinking Machines Corporation for making available to me tlx disk failure
data reported in Chapter 4. Rick Epstein, Sue Maxwell, and Raymond Mak were instrumental in
making this possible. Thanks also go to Sue Maxwell and Joseph Yarmus for reading and
improving a draft of this chaper. |

The contents of Chapter § grew out of research from Martin Schulze's Masters report and
his shbsequent work with David Patterson, Randy Katz, and myself. In developing the models

in this chapter, I relied heavily on the experience and insight of Ronald Wolff.

On a broader note, there have been many people who contributed to my understanding of
the material in this dissertation. Early in my research I was fortunate to encounter the vision of
Michael Stonebraker, Dieter Gawlick (then with Amdahl, now with DEC), and Jim Gray (then
with Tandem, now with DEC). As you will see in Chapter 3, Jim has made a significant and
provocative contribution to my understanding of disk array performance. I have also greatly
benefited from the expert advice of Mike Mitoma, Jim Brady, and Jai Menon of IBM Almaden
Research Center, Dave Gordon of Armray Technology, Dave Anderson of Imprimis (now

Seagate), and David Tweten of NASA/NAS at Ames.

Here at Berkeley, my research developed in parallel with the RAID project. Many of its
members, notably Randy Katz, David Patterson, Ken Lutz, Peter Chen, Ed Lee, Ann Cher-
venak, Rich Drewes, Ethan Miller, and Martin Schulze, contributed to my understanding of disk
arrays. Their efforts in the construction of a pfototype. called RAID-], were important to our
collective education.

Together with the RAID group, Berkeley's POSTGRES and Sprite research groups
formed the XPRS research environment which combined database, operating systems, and I/O
systems research into a wide learning experience for me. Michael Stonebmker,- Margo Seltzer,

and Mark Sullivan, members of POSTGRES, had a great influence on my thinking.

iv

I have been involved and enriched by the Sprite project since it began. Sprite, as an
experimental operating system, has provided me with an powerful simulation engine though its
transparent procéss migration and its large number of high-performance worksta;ions. Sprite is
the result of the efforts of John Ousterhout, Brent Welch, Mike Nelson, Fred Douglas, Andrew
Cherenson, Mendel Rosenblum, Mary Baker, John Hartman, Ken Shirriff, Mike Kupfer, Bob
Bruce, and Adam de Boor. Fred and Adam, in particular, are responsible for the massive

amount of simulation Sprite transparently provided for me.

Although this research does not include any material directly pertaining to my eardier
involvement with the SPUR multiprocessor workstation project, this project and its members
were instrumental to my approach to systems research. Thanks to David Patterson, Randy Katz,
David Hodges, George Taylor, Mark Hill, David Wood, Susan Eggers, Deog-Kyoon Jeong,
Shing Kong, Corinna Lee, Joan Pendleton, Scott Ritchie, Walter Beach, Dacbum Lee, Douglas

Johnson, and Ken Lutz.

I think that an important, and often overlooked source of education in graduate school is
the interaction between junior and senior students. For me, Mark Hill, Tony DeRose, George
Taylor, Susan Eggers, David Wood, Gregg Foster, and Prabhakar Ragde were notable peer
mentors. As I have tried to pass on this fine tradition to Peter Chen, Ed Lee, and Ann Cher-

venak, I have learned anew how educating collaboration with bright new minds can be.

Special thanks go to those who have helped me enjoy life during the preparation of this
dissertation. Henry Moreton and the Mystery! gang gave me a weekly excuse for diversion, and
Ania and Tina Upstill and their parents Steve and Krys were my family away from home.
Although distant, my family at home are the root of the strength and conviction that gets me

through trying times. Their love for me and confidence in me shield me from all dangers.

My final thanks go to Barbara Beach. Barbara was the one who, many years ago, sug-
gested that I pursue a PhD degree. It was she, more than most, who suffered as I followed

through on this suggestion. And it is she, more than any other, that I seek to please and impress

with each goal | attain.

My next goal, especially intended to begin to repay all that I owe her, is to be as suppor-

tive of the dissertation that she is now writing as she has been of this one.

Table of Contents

CHAPTER 1: Introduction 1
1.1: Overview of the Dissertation 3
1.2: A Personal Note 5
CHAPTER 2: The Importance of Input/Output 9
2.1: Revisiting an Old Problem 10
2.1.1: Memory Hierarchies 10
2.1.2: The Access Gap Problem | 12
2.1.3: Overlapping 1O with Computation 14
2.1.4: Lowering 1/O Response Time 15
2.1.5: Lowering Memory Miss Ratios 20
2.2: Rapidly Growing Processor Performance 22
2.3: New Opportunities in Secondary Storage Technologies 24
24: Replacing Magnetic Disks with DRAM: How Soon? 26
2.5: Summary 29
CHAPTER 3: Redundant Disk Arrays 31
3.1: The Emergence of Disk Arrays ‘ 32
3.2: Disk Arrays As a Threat To Data Reliability -39
3.2.1: Avoiding Catastrophic Failures with Prediction - 41

3.2.2: Protecting Data Reliability with Off-Line Redundancy 43

vii

3.3: On-Line Redundancy: Encoding Data into Disk Arrays
3.3.1: Single-Erasure-Correcting Encodings

3.3.1.1: Mirmoring

3.3.1.2: N+1 Parity

3.3.1.2.1: Byte-Interleaved Striping

3.3.1.2.2: Block-Interleaved Striping

3.3.1.2.3: Non-Striped

3.32: Multiple-Erasure-Correcting Encodings

3.32.1: Binary Symbol Codes

3.3.2.1.1: Examples: Hamming and Two-Dimensional Parity Codes
3.3.2.1.2: Optimal, Double-Erasure-Correcting Binary Codes
332.2: Non-Binary Symbol Codes |
3.3.3: Encoding Summary

3.4: Performance of Redundant Disk Arrays

3.4.1: Benefits of Data Striping

3.4.1.1: Striping for Parallel Transfer

3.4.1.2: Striping for Disk Load Balancing

3.4.1.3: Extra Positioning Operations

3.4.1.3.1: Synchronizing Disk Spindles

3.4.1.3.2: Shornening Positioning Distances

3.4.1.4: Interaction Between Striping Unit and Workload
3.4.1.5: Selecting a Best Striping Unit

34.2: Performance Lost to Maintaining Redundancy

3.4.2.1: Fundamental Differences For Single-Exﬁsuxe Correction
3.4.2.2: Experimental Validation

3.4.2.3: Optimizations for Small Write Accesses

viii

47
47
49
50
51
53

66
67

68 -

69
70
72
73
73
76
78
79
80

- 82

3.4.2.3.1: Caching and Hints

3.42.3.2: Floating Parity

3.4.2.3.3: Log-Structured File System
3.4.2.4: Double-Erasure-Correcting Codes

3.5: Summary

CHAPTER 4: Characterizing Disk Lifetimes
4.1: Characterizing Catastrophic Disk Failures
4.2: In Search of Public Data on Lifetime Distributions
4.3: Improving Disk Mean Lifetimes
44: A Sample of Lifetime Data
44.1: Empirical Reliability
4.4.2: Exponential Model
4.4.3: Weibull Model
44.4: Sensitivity

4.5: Summary

CHAPTER 5: Reliability Modeling
5.1: Reliability Metric
5.2: Related Work
5.3: Tools and Methods
5.4: Independent Disk Failures
5.4.1: Markov Model for a Single Parity Group

5.4.1.1: Approximations and Simplifications

5.4.2: Multiple Parity Groups
5.4.3; Calibrating Consistency with Simulation

5.4.4: Implications for the Design of Disk Arrays

ix

82
83

85
86

88
89
93
96
98

102

104

106

110

112

115
118
121
124
126
126
128
130
131

133

5.5: Dependent Disk Failures

5.5.1: Markov Model for Orthogonal Disk Array

5.5.2: Estimating Mean Array Lifetime

5.5.3: Separating Disk Repair into Replacement Delivery and Recovery
5.5.4: Implications for the Design of Disk Arrays '
5.6: Independent Disk Failures with On-line Spam§

5.6.1: Estimating Mean Array Lifetime

5.6.2: Implications for the Design of Disk Arrays

5.7: Dependent Disk Failures with On-line Spares

5.7.1: Modeling Mean Array Lifetime

5.7.2: Infinite Spares Bound

5.7.3: One String of On-Line Spare Disks _

5.7.4: Two Strings of On-Line Spare Disks

5.7.5: Implications for the Design of Disk Arrays

5.7.5.1: Higher Overhead for Redundancy May Not Improve Reliability
5.7.5.2: Higher Reliébility Through Faster Disk Recovery

5.7.5.3: Higher Armray Reliability Thmx_xgh Higher String Reliability
5.7.5.4: Partially Populated Spare Strings and Low Reorder Thresholds
5.8: Summary and Conclusions

5.8.1: Summary of Reliability Models for Redundant Disk Arrays
5.8.2: Design of A Strawman Redundant Disk Array

5.8.3: Conclusions

CHAPTER 6: Conclusions

136
139
142
148
150
152
152
158
161
164
167
169
174
176
177
179
181
182
186
186
190
192

194

Bibliography

APPENDIX A: Reliability Simulation

Al
A2:
A3:
A4

AS:

Introducing RELI

Parity Group Organization in a Set of Strings

Modeling Repair, Recovery, and Spare Pool Replénishmg
Verifying RELI

Terminating RELI

APPENDIX B: Effect on Reliability of Error in MTTDL

APPENDIX C: Goodness-of-Fit Testing

APPENDIX D: Comparison Data for.Chapter 5

219
220
221
222

223

223

227

Table of Figures

1.1:
2.1:
3.1
32:

3.3

7 34:
3.5:
3.6:
3.7
3.8:
3.9:

*‘RAID the First’’ Prototype

Extrapolations for the Ratio of DRAM to Disk Price per Bit
Disk Array Configuration Flexibility

Striped Disks with N+1 Parity

Striped Disks with Block-Interleaving and Distributed Parity
Non-Striped Disks with Distributed Parity

Larger Redundant Disk Array;s Have Lower keliability
Double-Erasure-Correcting Code Examples

Contrasting Binary and Non-Binary Codes by Example
Disk Array Performance with 1 KB Striping Unit

Disk Array Performance with 32 KB Striping Unit

3.10: Fundamental Redundant Disk Array Performance Comparison

3.11: N+1-Parity Performance Measurements

4.1:
4.2:
4.3:
44:
4.5:
5.1
S5.2:
5.3:

The Bathtub Lifetime Distribution

Examples of Exponential, Weibull, and Gamma Lifetime Distributions
Product-Limit Estimates for Reliability

Graphical Estimation of Exponential Reliability

Graphical Estimation of Weibull Reliability

Exponential Reliability versus Ratio of Time to Mean Lifetime
Exponential 1-, 3-, and 10-Year Reliabilities versus Mean Lifetime

Data Loss Model for Independent Disk Failures in a Single Parity Group

xii

26
37
48
52
53
55
57

74
76
79
81

91
103
105
107
119
120
126

54:
55:
5.6:
5.7:
58
59:

5.10:
S.11:
5.12:
5.13:
5.14:
5.15:
5.16:
5.17:
5.18:
5.19:
5.20:
5.21:
5.22:
5.23:
5.24:
5.25:
5.26:
5.27:
5.28:
5.29:

Single Parity Group Reliability versus Approximations

Reliability Example for Multiple Parity Groups

Error in Estimated MTTDL Relative to Simulation

Estimated versus Simulated Reliability

Reliability versus Redundancy Overhead

Strawman Reliability versus Repair Time
Example of Support Hardware Shared by Multiple Disks
Orthogonal Organization of Parity and Support Hardware Groups
Markov Model for an Orthogonal Disk Array
Reliability for Strawman with an Orthogonal Organization
Exponential Estimate versus Markov Solution for Reliability
Submodels for Data Loss in Orthogonal Disk Arrays
Orthogonal Estimated MTTDL versus Markov Solution
Simplified Orthogonal MTTDL Estimate versus Markov Solution
Simulated Orthogonal MTTDL versus Markov Solution |
Simulated 1-, 3-, and 10-year Reliability
Partitioning Disk Repair into Replacement and Recovery
Repair Durations in Orthogonal Strawman
Example of Spare-Pool Depletion and Data Loss
Simulatation versus Estimatation with Spares
Evaluating Benefits of a Small Pool of Spare Disks
Pool Size, Reorder Threshold, versus Disk Delivery Time
Two Failed and Spared Disks Example
String Failed and Spared Example
Simulated versus Exponential 1-, 3-, and 10-year Reliabilities

Effect of Spares on Mean Lifetime

xiii

129
130
132
132
134
134
136
138
138
140
141
142
144
145
147
147
149
150
153
157
158
159
161
162
163
165

5.30:
531
5.32:
5.33:
5.34:
5.35:
5.36:
5.37:
5.38:
5.39:
5.40:

Generic Model for MTTDL
Submodels for Orthogonal Disk Arrays with Infinite Spares
Submodel for Orthogonal Array with One String of Spares
Detailed Submodel for Orthogonal Array with One String of Spares
MTTDL with One String of Spares

Submodel for Orthogonal Array with Two Strings of Spares
MTTDL with Two Strings of Spares

N+1 Parity versus Mirrored Reliability

Disk Recovery Time versus On-line Spares

Diminishing Effect of More Reliable Strings on Array Reliability

Partially Populated Spare Strings and Low Reorder Thresholds

B.1: Effect of 10% Error in Estimated MTTDL on Reliability

xiv

167

169
171
173
174
175
178
180
182
183

223

Table of Tables

11
3.1
3.2:
33.
34:
4.1
42:
4.3:
44:
4.5:
5.1:
5.2:
C.1
C.2:
D.1:
D.2:
D.3:
D4:
D.JS:

Comparison of a Strawman Redundant Disk Array to an IBM 3390
1987 Magnetic Disk Technology Comparison

1990 Magnetic Disk Technology Comparison

1990 Magnetic Disk Cost and Price

Check-Disk Overhead Limits for a Non-Binary Hamming Code
Lifetime Data Sample One

Lifetime Data Sample Two '
Exponential Lifetime Distribution Maximum Likelihood Estimates
Weibull Lifetime Distribution Maximum Likelihood Estimates
Parameter Estimates for Altemative Data Extensions

Comparison of Strawman Disk Array to IBM 3390

Summary of Reliability Estimates for Strawman Disk Array
Goodness-of-Fit Tests on Each Set of Simulated Lifetimes
Goodness-of-Fit Tests on All Simulated Lifetimes in Each Section
Raw Data for Figures 5.6 and 5.6 in Section 5.4
Raw Data for Figures 5.18 and 5.19 in Section 5.5
Raw Data for Figure 5.23 in Section 5.6

Raw Data for Figures 5.34 and 5.36 in Section 5.7

Raw Data for Figure 5.40 in Section 5.7

33

35
62

100
105
109
111
117

190

227

Table of Equations

CHAPTER 1

(DCIKAEAEN
(K EREV K

Introduction

=

“‘[Memory is] the treasury and guardian of all things."”’
- Cicero

In the electronic world of digital information, Cicero’s insight is quite literally true; the
memory of a computer system is responsible for containing and protecting all information.
Among the many things this responsibility implies is that computer memory must be r_eadily
accessible and solidly depéndable. This dissertation is concemed with the accessibility and
dependability of the outermost recesses of on-line memory: secondary storage. This is the
bulwark upon which memory’s performance and reliability ultimately depends. Although
today’s secondary storage systems are the results of years of extraordinary research efforts,
society’s accelerating dependence on increasely high-performance and cost-effective computers
precludes a single optimal design. It is my thesis that the burgebning demand for reliable,

high-performance secondary storage can and will be met by redundant disk arrays.

A disk array is a collection of physically small magnetic disks that is packaged as a single
unit but operates in parallel. Disk arrays capitalize oh the availability of small-diameter disks
from a price-competitive market to provide the cost, volume, and capacity of current disk sys-
tems but many times their performance. Unfortunately, relative to current disk systems, the

larger number of components in disk arrays leads to higher rates of failure. To tolerate failures,

. IBM Redundant
Metric 3390 Disk Array
Disk Units 1 70+7+7
Formatted User Data Capacity (MB) 22,700 22,400
Number of Useful Actuators 12 T
Avg. Access Time (msec) 19.7 19.8
Max. Read 1/0s/sec/Box - 609 3,889
Max. Write I/Os/sec/Box 609 2972
Max. Transfer Rate (MB/sec) 15 130
Disk Power Consumption (W) 2,900 1,000
Volume for Disks (cubic feet) 97 11
Mean Time To Data Loss (1,000 hours) 50-250 6,600
Component Disk Costs ($1,000) ? 67
Customer Price ($1,000) 156-260 ?

Table 1.1: Comparison of a Strawman Redundant Disk Array to an IBM 3390. A *‘straw-
man’’ redundan; disk array constructed with 84 IBM 0661 model 370 (3'4-inch) disks has many
advantages over IBM’s top-end disk product, the IBM 3390. This disk array configuration is

-developed in Chapter 5 as a running example. It has. the user capacity of 70 disks; its overhead
is 7 disks (10%) for redundant data and 7 disks (10%) for on-line spares. Because parity data is
distributed among 77 of the disks and because user data is not stored on spare disks, only 77
disks contribute 1o its performance. For the maximum 1/0 accesses per second calculation, the
transfer unit is a single sector. For the maximum transfer rate calculation, the transfer unit is a
track from every disk that contains user data (77 disks). Most metrics apply to disk components
only and may be degraded when controller and host effects are included. The IBM 3390 mean
time to failure is not publicly known but can be expected to be better than IBM’s previous top-
end product, which is reported to have had a mean time to failure of 53,000 hours [Balanson88].
To compare costs, I show the price a disk array manufacturer would pay for comparable 3/:-
inch disks from Seagate and the price range that IBM’s best customers pay for a maximally
configured IBM 3390 and half of an IBM 3990 (disk controller). This table is constructed from
the data and results in Tables 3.2,3.3,5.1, and 5.2 and Figure 3.10.

redundant disk arrays devote a fraction of their capacity to an encoding of their information.
This redundant information enables the contents of a failed disk to be recovered from the con-
tents of non-failed disks. This dissertation will highlight the simplest and least expensive
encoding for this redundancy, known as N+ parity. In addition to compensating for the higher
failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be

built much more cost-effectively than is now achieved in conventional duplicated disks.

Disk arrays that combine redundancy with the parallelism of many small-diameter disks
are ofien called Redundant Arrays of Inexpensive Disks (RAID) [Patterson88]. - This combina-

tion promises improvements to both the performance and the reliability of secondary storage.

For example, Table 1.1 compares IBM’s premier disk product, the IBM 3390, to a redundant
disk array constructed of 84 IBM 0661 3'%-inch disks. The redundant disk array has compar-
able or superior values for each of the metrics given in Table 1.1 and appears likt:.ly to cost less.
I present this table here to demonstrate the potential advantages of redundant disk arrays; I will
explain performance and reliability in detail in the rest of ;his dissertation.

To support my thesis, I make three principal contriButions in this dissertation.
(1) I demonstrate that secondary storage systems must inevitably rely on redundant arrays of

small-diameter disks.

(2) 1 provide a broad understanding of altemative, redundant data encodings and of the rela-

tionship between parallelism, redundancy, and performance in disk arrays.

(3) I make possible the three-way optimization of cost, performance, and reliability by

developing analytic estimates for the reliability of redundant disk arrays.

1.1. Overview of the Dissertation

Collectively, the four principal chapters in this dissertation demonstrate the performance
and reliability advantages of redundant disk arrays. Individually, they explain my motivation
for research into Input/Output architectures, introduce and explore coding and performance in
redundant disk arrays, present a self-contained analysis of disk-failure data, and model the relia-

bility of a redundant disk array with an N+1-parity encoding.

In Chapter 2 I review secondary storage and place emphasis on techniques and technolo-
gies impornant to the performance of computer systems. Beginning with secondary storage’s
role in the memory hierarchy and its access gap problém, I enumerate convgmional approaches
to improving performance. Secondary storage’s problems are growing, as Ivnext_ show, because
processor performance advances at a much faster rate than disk performance. Fortunately, disk

technology is advancing in ways that can be exploited, as the following section shows. Finally,

3

1 look to the time when secondary storage will be entirely solid-state, and magnetic disks will
be obsolete. Because this time appears to be quite distant, however, disk arrays will be needed

for the foreseeable future.

In Chapter 3 I explain redundant disk arrays, their encodings, and their performance. 1
begin with a look at the basic arguments for disk arrays, then tm to the threat to reliability
posed by large numbers of small disks. To cope with this threat, I examine prediction-based
and off-line techniques for improving reliability. Finding these insufficient, I focus on on-line
redundancy ~ a coding problem. Of primary interest here are the inexpensive, single-erasure-
correcting codes based on parity, but I also examine binary and non-binary double-erasure-
correcting codes that may be needed for very large or very highly reliable disk arrays.

Disk array perform_ahce is the topic of ;he rest of Chapter 3. I begin this topic with a dis-
cussion of the performance of a non-redundant disk array, because it is in this context that basic
performance expectations for all disk arrays can be established. The key to exploiting the
inherent parallelism of a non-redundant disk array is data striping, and critical to data striping is
the size of the interleaving unit. After reviewing this important issue, I turn to the performance
consequences involved in maintaining redundant data. Except for random writes of small
amounts of data, these redundancy-maintenance penalties are not large. For small, random
writes, however, 50% to 75% of the total disk array bandwidth can be spent on redundancy
maintenance. Fortunately, related research in file systems offers the possibility of eliminating

small, random writes altogether.

In Chapter 4 I break from disk arrays to examine the disk failures that redundancy is
intended to tolerate. After describing common models for the distribution of disk lifetimes, I
review the meager sources of public data on disk lifetimes I was able to find. Fortunately, I am
next able to present data about a sample of 1350 disks observed over a period of 18 months. I
use this data to explore the fit of exponential and Weibull distributions for disk lifetimes. An

exponential distribution tums out to be plausible, and mean lifetimes vary between 80,000

hours (nine years) and over 300,000 hours (34 years).

In Chapter 5 I examine the reliability of data in disk arrays with detailed models for the
time until data is lost. After characterizing the behavior of the reliability metric, reviewing
related work, and discussing the tools and methods I use in that chapter, I present four models
for single-erasure-correcting redundant disk arrays. The first of these models treats all failures
as independent disk failures, and this simplest of models has a well-known solution. In addition
to presenting this solution, I introduce the approximate modeling techniques used in later sec-
tions. The next model recognizes that the subsystem hardware supporting an array’s disks —
organized into strings — suffers failures affecting multiple disks simultaneously. Redundancy
groups must be organized carefully to avoid data loss when these failures cause multiple disks
to fail dependently. I then construct a model for disk-array lifetime in the presence of these
dependent disk failures. The next two secﬁon§ are devoted to including on-line spare disks into
the prior two models. With on-line spares when there are no dependent failure modes, I am able
to construct a model describing all possible contingencies for spare-pool size and replacement-
disk order policy. With on-line spares and dependent failure modes, I provide a more restrictive
model that estimates ﬁfeﬁﬁm for arrays with zero, one, two, and infinitely many extra strings
containing on-line spare disks and with a replacement policy that orders new disks immediately
after every failure. Throughout this chapter, I illustrate these models by applying them to a
*‘strawman’’ disk array. The result of this ongoing analysis of a particular redundant disk array

is shown above in Table 1.1.

1.2. A Personal Note
Before studying disk arrays I participated in the design and implementation of a shared-
memory multiprocessor workstation [Hill86, Taylor86, Gibson87, Hill87, Jeong90, Wood90a).

This research project, carried out at the University of California at Berkeley, was called Sym-

bolic Processing Using RISC (SPUR), and it involved the development of three VLSI chips, a
processor board containing about 300 MSI chips, and a memory bus protocol. I was responsible
for the design and implementation of the memory bus [Gibson89a] as part of the cache con-
troller VLSI chip design [Wood87). Happily, our five-processor prototype correctly imple-
mented a snooping bus protocol [Eggers89] while co-existing with memory boards and ethemet

ports that did not.

My experience with SPUR taught me many things, not the least of which was the great
increase in complexity induced when requirements call for a complete, functional system rather
than a paper design or even a marginally functional prototype. However, one thing in particular
that SPUR made clear was that a high-performance system based on multiple microprocessors
could be constructed inexpensively, but such a system could not be provided inexpensively with
comparable increases in network and 1/0 bandwirdths.' Fresh from xﬁy efforts with the paﬁ ofa
memory system between the processor cache and main memory, I tumed to the questipn of

high-performance, cost-effective secondary storage.

My research into secondary storage, in collaboration with David Patterson and Randy
Katz, led to our 1987 paper that named, described, and compared different organizations of
Redundant Arrays of Inexpensive Disks (RAID) [Patterson87]. This launched a broader
research project [Katz89a] whose initial goal was a disk-array prototype that was constructed
from off-the-shelf disks, controllers, and a host processor. Imprimis (now Seagate) donated 32
5Va-inch disks and Sun Microsystems donated a Sun 4/280 file server. This prototype, known
as *RAID the First’ or RAID-], is now complete [Lee90, Chervenak90, Chervenak91) and
operates as a file server in Berkeley’s networked environment. Figure 1.1 shows a picture of

RAID-I while it was being tested.

While RAID the First was under development, the RAID research project blossomed
[Gibson89b, Gibson89c, Katz89b, Ousterhout89, Schulze89, ChenS90a, Chen90b, Katz90,

Rosenblum90, Seltzer90a, Seltzer90b, Stonebraker90b, Lee91, Miller91]), and was incorporated

into a multi-dimensional project at Berkeley called XPRS that studied shared-memory mul-
tiprocessor databases operating on top of a general purpose, network-based operating system
that exploits high-performance I/O systems and networks [Stonebraker88]. These other two
component projects are, respectively, POSTGRES [Stonebraker90a], a descendent of INGRES,
and Sprite [Ousterhout88] which originated with the SPUR project.

The RAID project is now dcéigning a second protbtype. Known as ‘‘RAID the Second”’
or RAID-II, this prototype includes the design and implementation of a custom disk-array con-
troller. RAID-II's controller is connected to an UltraNet 100 MB/sec token-ring network by
HIPPI interface boards that were donated by Thinking Machines Corporations. The controlier
contains 64 to 256 MB of buffer memory donated by IBM and accesses up to 120 3'%-inch
disks, also donated by IBM, that are controlled by up to four Array Technology RAID+ SCSI
host bus adapters. RAID-1I is controlled by the Sprite operating system executing on an
attached (multi-) processing system. The central idea in RAID-II is to make supercomputer file
servers with a higher level of performance by providing a high bandwidth path (220 MB/sec)

between disks, network, anc_l file cache.

April 24, 1991.

The research-was fundéd by!NSF grant MIP-8715235, NASA/DARPA grant NAG 2-591, a Com-
puter Measurément'. Group fellowship, and an IBM predoctoral fellowship. Additional funding and/or
equipment came from IBM, Imprimis, Digital Equipment Corp., Sun Microsystems, Thinking Machines
Inc., Armay Technologies, Ultranet Corp., Hewlet-Packard, Intel Scientific, Kodak, NCR, Control Data
Corp., and StorageTek.

Figure 1.1: *“RAID the First’’ Prototype. The first prototype constructed by Berkeley's RAID
project is composed of a Sun 4/280 host processor donated by Sun Microsystems, 28 5'%-inch,
WREN IV disks donated by Imprimis, and four Jaguar disk controllers (employing the SCSI inter-
face protocol). In this picture, the top two (of three) shelves of disks are pulled out from their
chassis allowing an ANCOT SCSI analyzer (resting on top of the top shelf) access to their ca-
bling. Each shelf has two sets of four disks, mounted with their platters spinning perpendicular
to the plane of the floor. One set faces the front of the chassis and one set faces its back. The last
" four disks sit on top of the chassis (invisible in the darkness of this image). Notice that the righi-
most disk on the top shelf is a 3'4-inch, IBM 0661 Lightning. RAID-I's Sprite operating system
includes a special ‘‘RAID driver'’ module that implements N+1-parity redundancy. This
machine is currently being used at Berkeley as a file server in a cluster of Sprite workstations.

e
oo

ORIGINAL PAGE IS
OF POOR QUALITY

CHAPTER 2

SY6YEY 6N

The Importance of Input/Output

I 6YEIENEN S

5

BERERR

Why should I study Input/Output (I/0)? The answer to this question is that /O is an
important and neglected portion of computer design. As Patterson and Hennessy write:
*‘Input/Output has been the orphan of computer architecture’’ [Patterson90 pp 499]. With the
research presented in this dissertation, 1 hope to encourage more computer architects to
‘adopt’ I/O systems into their portfolio of systems deserving design creativity.

The basic problem is that when a computer designer sets out to build a faster computer,
faster is ofien taken 10 mean more instructions per second at peak performance. Faster should,
however, mean more instructions per second for my tasks, and, if possible, for your tasks too.
Where these tasks involve peripheral devices, overall performance will be influenced by 1/O
performance; designers should be engaged in improving 1/O performance in parallel with their

efforts to improve processor performance.
1have chosen to study I/O because

(1) the rates at which processor performance and main memory capacity increase far outpaces

the rate at which I/O performance increases,

(2) alarge class of applications continues to depend on I/O performance, and

(3) technological trends suggest that there is a window of opportunity for archxtecmml inno-

vations for I/O.

I will concentrate on one particular I/O technology in this dissertation, the magnetic disk,
because on-line file data is primarily stored on magnetic disks and because file access is the I/O

event most likely to be critical to performance.

This chapter begins with a review of the memory hierarchy, the longstanding access gap
between main memory performance and magnetic disk performance, and common techniques
for compensating for this access gap. Then I examine the rapid growth in processing power that
aggravates the access gap problem and a similar problem I call the transfer gap. Next I
‘describe the evolution toward small-diameter disk technologies that offer new approaches to
overcome these access and transfer gaps. Finally, because replacing magnetic disks with solid
state memory would be a simple solution to both gaps, I estimate when this might become cost

effective.

2.1. Revisiting an Old Problem
The performance problems associated with delays for the mechanical positioning of a
magnetic disk’s read/write heads are not new. This section reviews the problem and existing

approaches to reducing it.

2.1.1. Memory Hierarchies

It has always been extremely expensive to construct a memory system that satisfies all
memory references without stalling its processor. This observation was first made by computer
pioneers [Burks46], and it led directly to the use of memory hierarchies. Memory hierarchies

work by satisfying most memory references in fast levels of the hierarchy, whereas slower

10

levels of the hierarchy provide more storage capacity at &8 much lower cost per bit. It might
seem that memory hierarchies should not work; if memory accesses are randomly distributed
throughout memory and only a small fraction of memory is supported by fast levels of the
hierarchy, then the average access time should be little shorter than the access time of the
slower levels. But memory accesses are not randomly distributed throughout memory. They
exhibit both temporal locality and spatial locality [Denﬁing70]. Temporal locality means that
recently accessed locations are likely to be rereferenced and spatial locality means that locations
near recently accessed locations are likely targets for new references. Locality is exploited by
maintaining *‘recently-used data’’ in faster levels of the memory hierarchy. This way faster
levels of the hierarchy satisfy a much larger fraction of new references than their relative size

indicates, and average access time is much closer to the time to access the fastest level.

Traditionally, the memory hierarchy is divided into primary, secondary, and tertiary lev-
els based on their increasing access times and decreasing cost per bit. The slowest level, terti-
ary memory, is the least expensive. Usually constructed of magnetic tape, tertiary mémory is
removable and does not lose information when its power is tumed off (non-volatile). Secondary
memory, composed of mainly fixed-head magnetic disks, is the fastest media that is non-
volatile. Because a magnetic disk cannot be removed from its recording mechanism, this on-
line storage medium is not susceptible to human mistreatment or misplacment. Primary
memory, once composed of magnetic cores and now almost universally Dynamic Random
Access semiconductor Memory (DRAM), was traditionally the level of storage first accessed by
every memory reference made by a program. Today, because processor speeds have grown so
quickly relative to DRAM speeds, primary memory has been further divided into on-chip pro-

cessor caches, first and second level off-chip processor caches, and main, or DRAM, memory.

In this study I will use the term 1/O to refer mainly to secondary memory references
because these have the largest impact on computer performance. However, an I/O event is

really a reference to either non-primary memory or any peripheral device. This concept has

11

been blurred because portions of secondary memory are now used to expand a program's virtual
image of primary memory [Denning70] and portions of primary memory are now used to buffer
peripheral data and files [Powell77). Intercomputer network traffic is a form of peripheral 1/O
that is becoming increasingly important to computer performance, particularly for systems that
operate as multiprocessors. Although networking is also the object of substantial research

efforts [Amould89, Computer90), it will not be studied here.

2.1.2. The Access Gap Problem

The access gap has been defined as the ratio between the average access time of magnetic
disk and the average access time of main memory [Pugh71]. The value of this ratio is fre-
quently between 2,500 and 70,000. The magnituc}e 9f this ratio gives only part of the reason
that magnetic disk performance is important to computer system performance. For example, if B
all accesses were satisfied in main memory, the access gap would not matter to overall perfor-
mance. To best assess the importance of magnetic disk performance, I must examine its contri-

bution to the average time it takes to access memory.
Average memory access time is the best metric for the success of a memory hierarchy
architecture [Liptay68]:

L
Average Memory Access Time = ;_“RefFrac () x Hit(l)x HitTime (1) Q.1

where RefFrac(l)= ﬁ(l-Hit (i)) and RefFrac(1)=1.

In this expression, the slowest and cheapest level of the memory hierarchy is level L, and the
fastest is level 1. RefFrac(l) is the fraction of processor references that are not satisfied before
memory level I, Hit(l) is the fraction of references to level / that are satisfied by level /, and
HitTime (1) is the duration of a reference satisfied at level I. If magnetic disk is at level d, then

the contribution of magnetic disk performance to average access time is

RefFrac(d) x Hit(d) x HifTime (d).

To see how the access gap is related to overall performance, I should express magnetic
disk's contribution relative to main memory’s contribution (where main memory is at level

m=d-1);

d-]
[JT(1-Hit(i))) x Hit(d) x HitTime (d) . o
el _ (-=Hit(m)) . HitTime (d)
= Hit(m) tzt(d)xm.(Z.Z)

["ﬁ'(l-ﬂi: ()] X Hit (m) x HitTime (m)

which is the product of the access gap, HitTime (d)/HitTime (m), the success of main memory
at satisfying references to it, (1-Hit (m))/Hit (m), and the success of magnetic disk at satisfying

references to it, Hit (d).

Because this derivation applies to any pair of levels in the hierarchy, there really are a
number of access gaps, HitsTime (I+1VHitTime (1), between successive levels, ! and I+1.
Access gaps at different levels of the memory hierarchy vary widely. For example, between
first level caches, which usually employ Static Random Access Memory (SRAM) technology,
and main memory, which usually employs DRAM technology, access times increase by a factor
ofupto20. AsI mentioned above, the access gap between DRAM main memory and magnetic
disk is often between 2,500 and 70,000. Finally, in those cases where tertiary storage is used as

an on-line archival repository, the access gap between disk and tape is usually 500 to 10,000.

With memory-disk access gaps of four orders of magnitude, the contribution to overall
latency from the disk in the memory hierarchy could be quite large unless the fraction of pro-
cessor references not satisfied by main memory is very small. More specifically, if a disk’s con-
tribution is to be comparable to that of main memory, then main memory’s hit ratio needs to be
between 99.96% and 99.999%. This shows how a large access gap puts substantial pressure on

main memory'’s hit ratio.

13

2.1.3. Overlapping /O with Computation

The pressure on main memory's hit ratios lessens when /O operations overlap with useful
computation. When many programs compete for processing resources, a processor idled by an
1/O operation can save its current state and resume execution of a different program [Codd60).
This multiprogramming approach generally increases the response time of every program, but
because processor resources are idle less frequently, it combletes a large group of programs in
less total time. Multiprogramming's more efficient use of traditionally scarce processor
resources was an important reason for its adoption in almost all general purpose computing

environments.

Unfortunately, scientific supercomputing or single-user workstation workloads frequently
have only one task awaiting execution. In these cases, the only option is to overlap I/O with the
same task’s compﬁtan‘on I;arge scientiﬁc éﬁpcrcomputer pmgﬁm explicidy overlap computa-
tion with asynchronous I/O requests; that is, applications pre-fetch data and deposit them into
privately maintained buffer pools [Cray88]. On-line transaction processing systems havé also

made extensive use of asynchr_onous 1/0 and application buffer pools [Effelsberg84).

There are two ways to automatically overlap a single task’s I/O and computation: read-
ahead and write-behind [Feiertag71]. Read-ahead succeeds if the correct data can be pre-
fetched. Fortunately, many applications process file data sequentially, giving read-ahead wide
applicability. A simple way to achieve moderate levels of read-ahead is to double or quadruple
the size of blocks in a file system [McKusick83). In contrast, write-behind allows a task to con-
tinue without waiting for the completion of each write operation. Since there is no prediction
involved, write-behind has even wider applicability. Unfortunately, because it also reduces the
likelihood that data is secure on a stable storage media, many applications, notably databases,
require mechanisms to bypass wn’te-behind or to force immediate writes [Stonebraker81]. BothA
read-ahead and write-behind combine profitably with the file or disk caching techniques

described in Section 2.1.5.

14

2.1.4. Lowering /O Response Time

The most direct way to battle the problem of access gap is to reduce magnetic disk’s aver-
age access time. In the context of magnetic disks, access time is usually referred to as the iime
until the disk responds to an access, Or its response time. Each transfer’s response time is the
sum of time spent during operating system overhead, disk contention, seek positioning, rota-
tional positioning, and data transfer. In the last three decades, a substantial amount of research
has been devoted to reducing most of these delays. This section reviews the most important

reductions proposed by these efforts.

When accesses contend for a disk, devastating response time penalties result. As disk util-
ization approaches 100%, the average number of requests waiting for service and the average
waiting time that results grow without bound. This is the reason that some systems with high
1/O loads purchase more disks than they need for a given storage capacity [Gray90]. It is also
for this reason that systems with high I/O loads periodically redistribute data to balance these

loads across all disks [Geist82].

The problem of disk contention is aggravated by I/O architectures with shared disk inter-
connects and no buffering at each disk. The problem is that the interconnect must be available
when the disk reaches the requested data or the transfer must be retried. IBM’s I/O architecture,
for example, has this problem. Because they overlap one disk’s positioning delay with
another’s transfer on the shared interconnect, IBM disks signal the interconnect managing dev-
ice, called a storage director, shortly before the disk's read head reaches the requested data
[Aheamm72]. This early warning capability is called Rotational Position Sensing (RPS). If the
storage director does not become free soon after it receives a RPS waming signal, the signaling
disk's reconnection will fail, and it must try again after another rotation. As each disk's utiliza-
tion increases, the probability of contention over shared interconnect rises, and the delays
resulting from each retry after an RPS reconnect miss seriously degrade latency {Buzen86,

Buzen87]. A rule of thumb used for IBM systems in the 1970s was to distribute files or pur-

15

chase new disks until shared interconnect was utilized less than 30% of the time and disks were
utilized less than 40% of the time [Beretvas78). Managers of large IBM systems still follow

these rules [Peters87).

One way to reduce the unnecessary revolutions induced by a busy interconnect is to pro-
vide a small buffer between the disk and the interconnect. As long as the interconnect becomes
available before a disk’s buffer overflows, that disk is not rcqmred 1o retry its transfer. Because
disk-to-host interconnect can easily be made faster than disk transfer rates, buffering at each
disk allows greater use of disks [Houtckamer85]. Although non-IBM systems have incor-
porateﬂ buffering at the disk [Massiglia86 pp 242}, IBM’s policy of backward compatibility
makes per-disk buffering difficult in IBM systems [Cormier83, Houtekamer85). Until IBM can
move its application programs to a higher level of I/O absﬁaction - for example, their current
System Managed Storage (SMS) interface {Gelb89] — they must rely on disk load balancing and

disk caching (discussed in the next section) [Goldstein87] to avoid RPS reconnect-miss delays.

Another way to reduce disk access times is to reorder outstanding disk accesses [Den-
ning67, Toerey72). This method can be highly advantageous when disk queues are deep,
because disk positioning times are a major contributor to disk access times. Deep queues also
mean long contention delays, however, and in systems without buffering at the disk, severe
delays caused by RPS reconnect misses result. Capacity planners use rules of thumb, such as
those given above, specificly to reduce such delays. Because these rules often result in shorter
disk queues [Lynch72], request reordering has little benefit. Request reordering is still pursued
{Bates89, Geist87, Seltzer90a] because under paniculafcircumstances, such as the write-behind

of many files from a large file cache, it can be effective.

One approach to reducing positioning time that works well when queues are shallow relies
on multiple copies of the data. By selecting the copy that is ‘‘closer,’’ both seek [Bitton88) and
rotational [Scheffler73] delays can be reduced. Although most users find the ¢ost of multiple

copies prohibitive, systems that already employ duplication for high reliability can easily

16

exploit these benefits,

When transfer units are about the size of a disk track, rotational positioning delays can be
nearly eliminated by reading data in the order it is observed by the disk head and then recon-
structing it in memory [Salem86]. This approach, called zero latency reads, is particularly
advantageous because per-disk buffers are usually large enough to store at least one track. For
access units that are a fraction, f, of the size of a track, the average rotational latency plus
transfer time is reduced by £2/2 revolutions' by zero latency reads. This reduces rotational

latency plus transfer time by at much as 33% when the access unit is a full track.

Since many user requests involve data that has been dispersed to a variety of locations
_across the disk, overall latency can be improved by merging the many accesses needed to
retrieve this data. The benefit of this merging operation, also called chaining [Buzen75), is the
result of avoiding the software overhead involved in returning to the user task and issuing the
next request. A more powerful method for merging requests is not to split data at all. If disk
capacity allocation is the reason data is split, a variety of allocation schemes exist that will
encourage contiguity: file éystem blocks can be enlarged [McKusick83], users can be required

| to preallocate space [Bohl81], or file systems can employ allocation-Clustering algorithms
[Koch87, McKusick83, Powell77]). Unfortunately, these mechanisms suffer from wasted capa-

city because of fragmentation.

Even if requested data is contiguous on disk, allocation schemes can shorten positioning
time. For example, by locating more frequently accessed data in the center of a disk’s surface it
can be favoured with typically shorter seeks [Staelin0). Similarily, average seek times may be

reduced if a disk’s heads are returned to the center of the disk surface whenever the disk has no

! Without zero latency reads, the average rotational latency plus transfer time is 1/2+f revolutions
because, with probability (1-f'), a transfer rotates an average of (I-f)/2 revolutions and, with probability
f . it rotates an average of (1-f/2) revolutions, to reach the data, and then rotates f revolutions to
transfer it. With zero latency reads, the average rotational latency plus transfer time is 1/2+f —f %/2 be-
cause, with probability (1-f), a transfer rotates an average of (1-f)/2 revolutions and, with probability
f .itrotates exactly 1 revolution because it collects the end of the data first.

17

accesses to perform? [King87].

Another technique for reducing 1/0 response time is to reduce the operéting system'’s
overhead. The basic metric for this overhead is the average number of instructions executed by
the operating system on behalf of a user’s 1/O request, known as the 1/0 path length. Unfor-
tunately, many other techniques for reducing I/O response times, such as file caching and

request reordering, usually increase I/O path lengths.

One cost on which supercomputer applications have focussed is the conversion between
internal (usually binary) and external (usually ASCII) formats [Abu-Sufah86, White84).
Significant savings are possible in this area because about 25% of a Fortran program’s execu-
tion time is spent formatting [Ditzel80, Knuth71], and unformatted I/O can be as much as 130

- times faster than formatted 1/0 in Cray Fortran programs [Cray88).

Offloading format conversion from the central processor is one example of the potential
advantages of peripheral, or 1/0 Processors (10P). 10Ps can be as simple as Direct Memory
Access (DMA) devices that copy data from peripheral devices to memory by *‘stealing’’ proces-
sor cycles [Astrahan57, Serell62], or they can be as complex as processing units with separate
instruction sets and memory [Brown72, Thomton64]). Although many functions offioaded are
best executed on IOPs because of their simplicity and frequency of occurrence, the decision is
not as clear with more complex functions. Peripheral processors that have simple or inaccessi-
ble debugging features are also typically less powerful; code migrated to an IOP is more

difficult to debug and frequently runs more slowly than on the central prbccssor.

Extreme examples of offloading function from the central processor to improve a user's
overall response time can be found in various processor-per-disk-track [Slotnik70] and
processor-per-disk-head [Kannan78) database machines. Although these designs promise sub-

stantial parallelism to decrease overall execution time, they can also generate more work. For

2 This technique works best when there is little locality in the disk workload.

18

example, using the search function in IBM disk controllers to select the disk sector with a
matching key can be slower than a main memory search [Buzen75] because the search function
requires each record be stored in a separate sector, wasting the data capacity of a track with
intersector gaps. A main memory search, in contrast, allows each track to be packed with a few
multiple-record sectors, thus allowing more data to be searched with each disk revolution.
Perhaps most important, however, is the cost of these designs; special-purpose disks are more
expensive and system costs are dominated by disk costs. The success of parallelism in database

machines really depends of the availability of a vast I/O bandwidth [Boral83].

Disk designers have also introduced products with architectural modifications intended to
reduce average access time. Disk transfer time can be sharply decreased by transfering from all
magnetic surfaces in parallel if read/write circuitry, normally one module in a disk, is replicated
for each surface [Bucher80, Kryder89). To reduce average seek times, some disks have two
heads on each surface positioned over different tracks [Massiglia86). This configuration either
restricts the number of tracks each head manages or provides disk scheduling softwarﬁ a choice
of the closer head. Such disk-based architectural chgnges are expensive because they have gen-
erally been restricted to high-performance markets where the number of units sold is low and
cost is high. They are also narrowly focussed changes; if a disk has eight parallel heads, it can

transfer eight times faster, but not more or less.

A more flexible method for increasing architectural parallelism in secondary storage sys-
tems is the disk array [Jilke86). Disk arrays have two powerful advantages: they increase the
ratio of disk heads to user data so that disk contention is reduced [Patterson88], and they stripe
files across multiple disks so that large accesses are serviced in parallel [Kim86, Livny87,
Salem86). Chapter 3 discusses in-depth the advantages of disk arrays and expectations for their

performance.

19

2.1.5. Lowering Memory Miss Ratios

A powerful technique for overcoming the access gap problem by exploiting locality is file
or disk caching [Ousterhout85, Powell77, Smith85). Caching is a well-known and well-used
technique for increasing hit ratios based on the principles of temporal and spatial locality. If the
right, small subset of memory hierarchy level /+1 is kept in memory hierarchy level /, then the
fraction of processor references satisfied at level can be mcxeased This technique is 50 suc-
cessful that most levels of the memory hierarchy now function as caches for slower and larger

levels.

Main memory was first used in earnest as a form of cache for disk storage when program
working space became larger than the available main memory. Although at first some contested
that only a programmer could optimize the moving of program overlays between disk and main
memory, todaymmostrof main meﬁod is dévoted to caching portidns of each task’s virtual
memory automatically [Denning70]. Although virtual memory is a technique that allows pro-
grams to escape the confines of physical memory rather than a technique for caching disk
resident objects, it is an important contributor to VO traffic. Substantial research has been
devoted to the algorithms for selecting which portions of what tasks should be kept in main
memory [Denning80). While it is unlikely that new methods for reducing virtual-memory disk
traffic will be forthcoming, increasing DRAM density and decreasing DRAM cost-per-bit is
leading to larger main memories. Unfortunately, the size of the average program is growing at
50% to 100% per year [Patterson90 pp 16]. Since this rate of growth is comparable to that of
DRAM density, any lowering of page-fault rates is most likely to be the result of decreasing

numbers of users per system.

As the size of main memory increases, designers of operating systems have begun to use
portions of it to cache file data normally stored on disk. Files that are frequently used for
research and engineering workloads tend to be small and short lived [Ousterhout8S, Powell77].

For these files a relatively small portion of main memory can be quite effective for reducing

20

disk traffic, especially when disks are on the other side of a local area network [Lazowska86,
Nelson88). Disk caching serves the same purpose as file caching but maintains the cache at the
disk controller. Although this is a less efficient use of DRAM and can degrade ;;crfonnance by
increasing controller utilization [Buzen82}, it is easier to integrate with existing operating sys-
tems, it increases user confidence that recently written file data will not be corrupted by
software crashes, and it avoids the problem of comis@cy that arises if multiple processors

cache data in main memories they do not share [Grossman85, Smith85].

Disk or file caching in larger and cheaper main memories, unfortunately, will not compen-
sate for the memory-disk access gap experienced by all applications programs. Database sys-
tems, especially on-line transaction processing systems, frequently access customer data from
large databases in essentially random patterns [Garcia-Molina84). For example, because a
customer’s bank balance is not accessed frequently, each transaction requires at least one disk
access [AnonEtAl8S]. In applications like these, response time is directly sensitive to disk per-

formance and contention.

Scientific computing applications can also defeat caching because data objects are often
significantly larger than main memory [Kim87a). In such cases, Kung has shown that to match
an increase in processor speed by a factor of & requires main memory size to increase by
approximately a factor of a? for Gaussian elimination, and by a power of a for Fast Fourier
Transforms (FFT) [Kung86]. Since main memory costs are a major portion of a system's total
cost, it is prohibitively expensive to reduce I/O traffic this way. Additionally, as systems
acquire more and faster processors, many scientific applications simply increase the problem
size [Gustafson89). This increase can lead to huge data objects spread across many processors.
The Dliac I'V was used in such a way, and it spent as much as 40% of its time loading and
unloading data [Feierbach79].

Even in general engineering workloads where caching satisfies most read requests, there is -

still a need for high bandwidth for disk writes. For reasons of security, write-behind caches

21

periodically write all recently written data because software crashes are too frequent to trust
copies in main memory. Recently, effort has gone into designing a new file system, called the
log-structured file system, that optimizes write bandwidth by structuring the file system as an
append-mainly log [Ousterhout89, Rosenblum90]. This approach has the advantage that all

writes should be sequential and large.

2.2. Rapidly Growing Processor Performance
Not only is the access gap problem between memory and disk far from solved, it is getting
worse. Very Large Scale Integration (VLSI) technologies and mulﬁpmcessing are providing

vast increases in processing capabilities per dollar [Bell85, Burger84]. The microprocessor

developers at Intel [Gelsinger89, Moore75, Moore79, Myers86] have increased performance at ”

a rate of 37% per year while holding chip costs nearly constant since they introduced their 8080
chip in 1974. They believe that ‘‘every concept proven useful in mainframe or minicomﬁutexs
has migrated or will migrate onto the microprocessor.” They also expect that multiprocessing,
which has improved minicomputer and mainframe performance by 20% per year, will soon be
used intemally on a microprocessor, and they envision 2000 VAX MIPS on a chip by the year
2000. To achieve this goal, microprocessor performance must grow at about 65% per year dur-
ing the 1990s. And rapid growth in processing power is not confined to microprocessors; Bell
[Bell89] projects that multiprocessor supercomputer performance will grow at about 175% per
year in the early 1990s.

As processor performance grows rapidly, comparable speedups in the execution of pro-
grams should be expected. Alas, if programs spend part of their execution time waiting for disk
accesses to complete, overall speedup can fall far short of expectations. Amdahl [Amdahl67]
noticed this phenomenum in the context of overall speedup in a parallel system.when a portion

of execution was serial. His observation, known as Amdahl’s law, has been generalized to state

that, *‘the perfoﬁnance improvement to be gained from using some faster mode of execution is
limited by the fraction of time the faster mode can be used®’ [PattersonS0 pp 8]. In the context
of 1/O, this means that improving only the processing speed of a system will not proportionally
improve the execution rate of programs that perform I/O.

In contrast to processor performance, the access time for a magnetic disk, which is con-
trolled mechanically, has been decreasing much more ﬁowly. For example, in the last two
decades, IBM increased the seek speed of their main disks by a factor of three, increased their
rotational speed by 20%, and increased their data transfer rate by a factor of five [Harker81,
IBM3380, IBM3390]. In other words, the time to seek from a random cylinder to a random
cylinder, rotate half a revolution, and transfer four kilobyte decreased by 60% in 18 years — only
5% per year! Even if processor performance grows only at 37% per year for 10 years, process-
ing speed should increase by more than a factor of 20, but disk speeds will not even double.

It is interesting to note that the growth of DRAM performance, about 7% per year [Patter-
son90 pp 426}, is only slightly faster than the growth of magnetic disk performancé so the
memory-disk access gap is not widening quickly, and the increasing gap between processor and
disk speeds is actually widening the relatively small gap between cache and memory perfor-
mance much more quickly. System designers have been compensating for this widening
cache-memory access gap with larger caches to further exploit locality, with larger transfer
units to amortize initial access overhead, and with increased memory parallelism to overlap
multiple accesses. The success of these techniques passes the pressure of processor perfor-
mance improvements onto I/O perfoxinance. Consequently, the same techniques need to be
applied to I/O systems. The previous section discusses the application of the first of these tech-
niques — the exploitation of locality with disk and file caching — and Section 2.1.4 discusses
approaches for increasing transfer unit size using read-ahead and write-behind. The final
approach, parallelism internal to the disk system, is one of the goals of disk array research. The

success of this last technique is discussed in Section 3.4.

23

As the performance of the interconnection between processors and main memories is
expanded, it widens the difference between processor-memory bandwidth and memory-disk
bandwidth. I call this difference the memory-disk transfer gap. The transfer gap adversely
affects the performance of applications that issue large 1/O requests, and it hinders the perfor-
mance of optimized designs such as the log-structured file system mentioned in the previous

section.

2.3. New Opportunities in Secondary Storage Technologies

Although disk technology is not improving its performance as quickly as is processor
technology, it has not been stagnant either. The industry of mass data storage is growing at a
‘rate of 30% per year and currently accounts for 20% of computer révenues [Bortz90). During
the past 30 years the storage density of a disk’s surface has increased at an average rate of 22%
per year, and in the last 20 years the rate has increased 1o 26% per year [Frank87). There is no

reason to assume that this growth will not continue:

The fundamental limit for information density in magnetic recording technology, for example, is
at least four orders of magnitude beyond what has been achieved in the commercial devices, and
laboratory demonstration devices indicate that there are no overwhelming obstacles to continued
improvement at high rates for the remainder of the twentieth century [Bortz90].

In fact, IBM recently demonstrated a laboratory disk system with a storage density of over
one Gbit per square inch, 18 times greater than that of their newly introduced top-end 3390
[Wood90b). At a density growth rate of 26% per year, this techmlogy will be ‘‘on time"’ even
if it takes 12 years to reach the market. Because one Gbit per square inch is the projected norm
by the year 2000 [Kryder89), the growth rate of surface density must increase about 30% per
year during the 1990s.

Until recently, magnetic disk technology was driven by the high-performance computer

market and produced expensive, large-diameter (14-inch) disk systems.' The consumer market

for personal computer storage products has changed the industry, however. For now and at
least for the near future, a large consumer demand will continue to create a competitive market

for high-density, small-volume magnetic storage products.

As the market for small-diameter disks developed, at least three trends became clear.
First, small volume is much more important in small-diameter disks than in large-diameter
disks, so aggregate small disks can achieve greater capacity in similar sized boxes [Jilke86).
Second, because small-diameter disks have shorter seek distances and lighter moving parts,
‘“‘tolerance demands on electro-mechanical systems are more easily achieved in small form fac-
tors’’ [Bortz90]. Finally, sensitivity to price in the burgeoning personal computer and consu-

mer electronics markets is streamlining the industry [Hoagland85]:

Magnetic recording data storage thus not only has a level of R&D characteristic of a high technol-
ogy, but also responds to a commodity market, more normally associated with a mature technolo-
gy.

These trends have combined to change the magnetic disk:

(1) thelarge diameter disks (14-inch) are disappearing;

(2) the best price per megabyte is presently found in the 5%-inch diameter disks and is

expected to move to the 3%4-inch diameter disks soon; and
(3) disk reliability, weight, and power consumption have all rapidly improved.

While these changes are auspicious for the personal computer and laptop markets, they
seem ixicongruous when compared with the needs of large systems. Small-diameter disks have
lower capacities and slower data transfer rates. These characteristics would appear to be exactly
the wrong ones to satisfy the trend toward rapidly growing processing performance. However,
many small-diameter disks can be packaged into an array with significantly superior perfor-
mance relative to the large-diameter disks they tepiace [Jilke86, Patterson88]. This crucial

feature of disk arrays is discussed in detail in Chapter 3.

2.4. Replacing Magnetic Disks with DRAM: How Soon?

The ideal and, perhaps, inevitable way to make sure that programs run fast is to make
main memory large enough to store all on-line data. Twenty years ago main men-mry was about
2,000 times as expensive per bit as a magnetic disk [Pugh71]. Today the difference is down to
a factor between 10 and 40. Despite this large decrease in the relative cost of main memory, it
is still too expensive to replace disks with DRAM. With 40% to 60% of all but the least and
most expensive systems’ cost invested in disk storage [Bodega89], replacing disks with DRAM

increases the total cost of a system by a factor between 5 and 25!

The price gap between magnetic disks and DRAM has been rapidly narrowing. Between
1977 and 1986 the price per bit of DRAM decreased by 38% per year [Yeack-Scranton90]

- while disk prices per bit were decreasing by 23% per year [I-Ioagland89]. As Figure 2.1a shows,

if this pricing trend continues for the next few decades then the price-per-bit of DRAM will
cross disk’s price-per-bit in 11 to 17 years (2001 to 2007). When DRAM pricing approaches
disk pricing, their strong performance advantages will be sufficient reason to replace magnetic
disks. From these estimates, the demise of magnetic disk storage should be expected in 11 to

17 years or less.

However, magnetic disks may survive much longer than 17 years. First of all, DRAM
prices did not decrease at 38% per year during 1986 through 1988; in fact, prices rose in what is
now referred to as *‘a temporary excess of demand relative to available supply®’ [Patterson90
pp 55}, or in other quarters as *‘gouging’’ [Yeack-Scranton90). This price increase had the
effect (shown in Figure 2.1a) of stalling the crossover date by about five years. Since the disk
market is relatively diverse and stable, high-stakes intemational battles for the DRAM market
may lead to similar abnommalities in the future, each one delaying the crossover date still
further.

Another obstacle to an early pricing crossover date is that equivalent capécity in the form

of a collection of DRAM chips does not make a secondary storage system. In addition to basic

26

8

8

v v
§ 10 \/ $§ 10 S
D \ D \\
1 1 \
: N\ :
1 1
? < ’
i 1
c ¢
€ \\ ©
g 0.1 \\ g 0.1
r r
B 2
X t 0.
t 0011980 1990 2000 2010 2020 0011980 1950 2000 2010 2020
Year Year

Figures 2.1a and 2.1b: Extrapolations for the Ratio of DRAM to Disk Price per Bit. These
two figures show the ratio between DRAM and disk price-per-bit against the year extrapolated to
2020. In Figure 2.1a on the left is an estimate favoring DRAMs. Using a range on the 1990 ratio
of 10 10 40, it assumes that the rate of improvement for DRAM price-per-bit is 38% per year after
1988 and that the corresponding rate of improvement for disk price-per-bit is 23% per year. With
this model, the date that the price-per-bit of DRAM crosses the price-per-bit of disks is between
2001 and 2007. In Figure 2.1b on the right is an estimate favoring disks. Using a range on the
1990 ratio of 20 to 50, it assumes that the rate of improvement for DRAM price-per-bit slows from
38% to 35% per year in 1995 and that the corresponding rate of improvement for disk price-per-
bit rises from 23% per year to 26% per year in 1984, then to 30% per year in 1990. With this
model, the date that DRAM price-per-bit crosses the price-per-bit of disks is between 2027 and
2040.

enclosure, power, and cooling costs, nepiacing magnetic disks with DRAM should provide the
familiar sense of confidence users experience when they know that their data is stored on a
non-volatile medium. Although the technology to make DRAM as reliable as magnetic disks is
not challenging - built-in battery and magnetic tape backup systems will suffice — the addi-
tional cost will further delay the pricing crossover date. Representatives from the disk industry
estimate that in 1991 DRAM secondary storage will cost at least a factor of 50 more than the
best price for 3%-inch magnetic disks purchased in large volumes. Beginning with this factor
of 50 between DRAM and disk, the earliest crossover date is 2009.

Additionally, some people object to extrapolating the pricing trends from before 1986 into

the 21st century. This objection stems from the fact that prior to 1986, magnetic disk prices

27

were not under any pressure from DRAM. Restricting attention to the portion of the magnetic
disk market that was under heavy pricing pressure, the small-diameter disks demanded in the
personal computer market, disk pricing decreased at 26% per year [Hoagl‘and89]. faster than in
the magnetic disk industry as a whole. This trend has been extrapolated to suggest that prices
per bit will decrease by up to 30% per year in small-diameter disks [Bortz30]. At this rate,
DRAM will take until 2022 to overcome its price-per-bit disadvantage, which now stands at a

factor of 50.

As the DRAM price disadvantage decreases, it will capture an inflating portion of the disk
market. If the magnetic disk market begins to shrink, then the number of disk manufacturers
and the size of their profits should shrink as well, and the technology growth rate would prob-
ably slow. Why then is the demand for disk capacity growing at 40% per year [Hoagland88]?
Today, only 1% of stored information cmploys a magnetic medium; about 95% is still found on
paper [Kryder89]. While DRAM pricing chases disk pricing, both are rapidly decreasing; there-
fore, more and more data is worth storing on-line - a situation that provides lucrative growth

opportunities for the magnetic storage industry as well as the DRAM industry.

Finally, taking a closer look at the technological obstacles that will be encountered by
DRAM and magnetic disk technologies prior to the crossover of their price-per-bit, there may
be reason to expect that this date will slide further into the future. Although there are no major
obstacles to continued disk technology improvements over at least the next decade, DRAM
technology will have to make the transition from optical lithography to ultraviolet and X-ray
lithography [Hodges77, Kryder89, Warlaumont89). Because of this transition, it is likely that
the rate at which DRAMSs will improve in price-per-bit will slow. It has been suggested that X-
ray lithography will be used only in a niche market for high-performance, high-cost integrated
circuits and, because continual reductions in feature s1zc will aggravate reliability problems in
semiconductor materials, that increases in DRAM capacity will soon come from alternative

technologies such as multichip modules [Hodges90]. In this case, the rate of decrease in

28

DRAM price-per-bit will slow and the pricing crossover date may very well be delayed or can-
celled. Figure 2.1b shows the trend in DRAM price-per-bit relative to disk price-per-bit for
cases like these. DRAM’s rate of price-per-bit decrease slows to 35% per year, and the cross-

over date is 2027.

Semiconductor technology may eventually provide secondary storage systems with lower
costs as well as better performance than do magnetic disks, although probably not before 2000
and maybe significantly later. Until that time, exploding processor performance will exacerbate
the already large access and transfer gap problems, placing even greater importance on research

to Input/Output architectures.

2.5. Summary
In this chapter I have addressed the reasons for pursuing research into Input/Output, par-
ticularly into secondary storage on magnetic disks. Certainly, the gap between memofy speeds
and disks speeds has been and continues to be a major problem for computer systems.
Traditional approaches for coping with this gap include multiprogramming, asynchronous
1/0, disk load balancing, rules of thumb that limit utilization, request reordering, contiguous file
'allocation, special-purpose disk devices, and file and disk caching. Because none of these

solves the problem for all important applications, new solutions remain desirable.

In addition, the access gap problem is worsening because the rapid growth of computa-
tional performance induced by VLSI and multiprocessing is not being matched by performance
increases in secondary storage technologies. There is also an emerging transfer gap between
memory bandwidth and disk bandwidth that promises problems for applications that issue large
transfers. The good news, however, is that the trend toward small-diameter magnetic disks pro-
vides a new opportunity for architectural parallelism in the /O system, the disk array. In the

next chapter, I will delve more deeply into the advantages and disadvantages of disk arrays.

29

Finally, altemative technologies, particularly solid-state disks, are mot expected to be

cost-effective replacements for magnetic disks for at least one and probably several decades.

o0

ca e g

CHAPTER 3

(220
(DM

Redundant Disk Arrays

This chapter provides a broad understanding of redundant disk arrays. It focuses on the
factors that make disk arrays an inevitability, the alternative encodings that provide failure pro-
tection for the array's data, and the performance that can be expected from redundant disk
arrays. Much of the material in this chapter reviews previously iaublished research of which I

was an author.

In Section 3.1 of this chapter I explain how disk arrays exploit the emergence of high-
performance, small magnetic disks to provide cost-effective disk parallelism that combats the
access and transfer gap problems. The flexibility of disk-array configurations benefits manufac-
turer and consumer alike. In contrast, I describe in Section 3.2 how parallelism, achieved
through increasing numbers of components, causes overall failure rates to rise. Failure predic-
tion is very useful for anticipating many of these failures, but it cannot guarantee that data will
not be lost. Data backups have traditionally been used for reducing the amount of data lost dur-
ing failure. Backups are becoming unmanageable, however, because of the volume of on-line
storage, the rate that on-line storage changes, and the requirement for minimal interruption of
service during failure recovery. Redundant disk arrays overcome these threats to data reliability

by ensuring that data remains available during and afier component failures.

31

As far as the organization of redundant data in a disk array is concemed, I treat it as a cod-
ing problem in Section 3.3. The redundancy intemnal to a disk corrects non-catastrophic failures
and identifies catastrophic failures, whereas redundancy at the disk-array level corrects catas-
trophic disk failures. Codes as simple as parity, which is not a single error-correcting code, can
provide single-failure protection because of this intemal redundancy and its ability to identify
failed disks. More complex and expensive codes can be used to provide multiple-failure correc-
tion in very large or very reliable disk arrays.

In Section 3.4, I review the performance expectations for redundant disk arrays. Disk
arrays derive their performance advantages by *‘striping’* the data across multiple disks. The
greatest benefit of striping is that it decreases transfer times for large requests. In addition, strip-
ing automatically distributes independent accesses to balance the workload across dxsks
Because each disk access involves substantial overhead, the unit of striping must be carefully
chosen to avoid a mismatch with the array’s workload. Redundant data reduces some of the
performance benefits of data striping, however, because this redundant data must be updated as
user data is updated. Without assistance from file system or application software, the main
penalty to performance is as little as one and as much as three extra accesses that must be per-
formed with every small, random access. In contrast, with a file system that groups small write
accesses into large write accesses, an N+1-parity redundant disk array with block-interleaved
striping can provide nearly all of the performance of its disks as well as inexpensive, high relia-

bility.

3.1. The Emergence of Disk Arrays

The performance of secondary storage systems is not improving fast enough. In Chapter 2
I outline the access and transfer gap problems and discuss classes of important épplications for

which conventional approaches do not overcome these problems. Although magnetic disks

32

. . IBM Fujitsu Conner
Characteristics 3380 M2361A ~ CP3100
Disk Diameter (inches) 14 104 3%
Formatted Data Capacity (MB) - 7,500 600 100
MTTF (1,000 hours) - 35 30
Number of Actuators 4 1 1
Max [/Os/sec/Actator 50 4 40 30
Max I/Os/sec/Box 200 40 30
Transfer Rate (MB/sec) . 3 25 1
Power/Box (W) : 1,650 640 10
Volume (cubic feet) 56 34 0.13

Table 3.1: 1987 Magnetic Disk Technology Comparison. This table compares the relative
price, reliability, performance, capacity, volume, and power specifications for specific examples
from three classes of disks. An IBM 3380 Model AK4 is a large, high-performance disk used ex-
tensively in mainframe compuser systems. A Fujitsu M2361A *‘Super Eagle’ is a disk of inter-
mediate size and performance that is used in minicomputers and workstation file servers. A
Conner Peripherals CP3100 is a small disk used in workstations and personal computers. Most
data is taken from manuals [Conner3100, Fujitsu2361, IBM3380]. The 3380's capacity is based
on a single 47 476-byte sector per track; if a 3380 is formatted with 512 byte sectors to match the
smaller disks, its capacity is reduced to 51% of its listed value. Mean Time To Failure (MTTF) is
not specified for the 3380. Its design goal calls for 98% of 3380 spindles to survive at least seven
years [Mitoma90]. If spindles have exponential lifetimes, then the MTTF of either spindle in a
3380 is about 1,500,000 hours. Section 4.2 reports that 3380 units suffered failures at a rate of
about one in six years [Balanson88]. This data suggests 3380 MTTF was about 50,000 hours.
Maximum 110s per second, per actuator refers to the maximum number of single-sector accesses
per second that can be performed by each actuator, where each access requires a seek from a
random cylinder 10 another random cylinder plus a rotational latency delay to a random location
on the target track. The 3100's volume is based on the shelf dimensions in Berkeley's *‘RAID the
Second’’ prototype: nine disks on a 19-inch by 30-inch shelf with a 3%4-inch shelf pitch. The daia
in this table is derived from [Patterson87] and was collected in 1987.

may eventually be replaced by much faster main memory, this eventuality is decades away, as
is demonstrated in Section 2.4. Until that time, arrays of magnetic disks offer parallelism that
can be exploited for substantial improvements to secondary storage performance. This section
presents the reasons, including but not limited to increasing performance, why secondary
storage systems must inevitably employ disk arrays.

From my perspective, the primary reason for adopting disk arrays into secondary storage
is the parallelism that is achieved by an appropriate distribution of data over many disks. The
large number of disks that enable this parallelism are by no means new to secondary storage.
Traditionally, large collections of disks, sometimes called disk farms, arose to saﬁsfy the need

to store large amounts of data on-line. With capacity as the main reason for building a disk

33

farm, its component disks are generally large and, as a result, expensive. Disk arrays, on the
other hand, are composed of many small-capacity disks, so they deliver the same level of paral-
Ielism at a much lower capacity and cost or provide a much higher level of paﬁllelism at the
same capacity and similar cost.

To exploit the parallelism inherent in either disk farms or disk arrays, data must be distri-
buted appropriately. Traditionally, the distribution of data across a disk farm gives rise to sub-
stantial differences in the utilization of individual disks [Friedman83, Kim87b]. To support a
large throughput for the small, random accesses typical to database applications, data that is fre-
quently accessed should be distributed or balanced over many disks as evenly as is possible. In

disk farms, this is explicitly done by application programs or customers [Gray90, Livny87

.. IBM Seagate IBM IBM
Characteristics 3390 ST41600 0661 WDA-260
Disk Diameter (inches) 10% SY 3% 2%
Formatted Data Capacity (MB) 22,700 1,350 320 63
MTTF (1,000 hours) - 150-250 - 150 45
Number of Actuators - 12 1 1 1
Max. I/Os/sec/Actuator 50 55 45 35

" Max. I/Os/sec/Box 600 55 45 35
Transfer Rate (MB/sec) 42 344 1.6 1.1
Power/Box (W) 2,900 37 12 3
Volume (cubic feet) 97 1.0 0.13 ?

Table 3.2: 1990 Magnetic Disk Technology Comparison. Since the data in Table 3.1 was col-
lected, IBM has introduced the IBM 3390 [IBM3390] as its new, top-end mainframe disk subsys-
tem, the IBM 0661 model 370 ‘‘Lightning’’ [IBM0661] as its high-performance low-end disk sub-
system, and, most recently, the IBM WDA-260 as its portable computer disk. With the 3390, IBM
takes a step toward arrays of smaller disks. With the 0661 and WDA-260, IBM demonstrates that
small disks can be almost as fast and reliable as their larger competitors. The 3390 capacity as-
sumes maximum size sectors; see the note about 3380 capacity in the caption to Table 3.1. Again,
as with the 3380, the 3390 does not have a specified MTTF, but each spindle is designed to sur-
vive seven years with a 98% probability. This suggests that the 3390 MTTF for spindle failures is
designed to be about 500,000 hours; including failures in the electronics can be expected to sub-
stantially reduce (perhaps more than halve) this MTTF. Seagate’s ST41600 *‘Elite"’ is one of the
largest and highest-performing 5'-inch disks [Seaga1€90]. The range of its MTTF distinguishes
an office environment from a computer room environment and the range of its transfer rate distin-
guishes the amount of data stored on the inner tracks from the amount stored on the outer tracks.
Volumes for the 5Y-inch ard 3'4-inch disks are taken from Berkeley's disk array prototypes. The
caption in Table 3.1 describes the 3'/-inch volume calculations. For the volume of the 5'%-inch
disks, Berkeley's prototype disk array, called *‘RAID the First," contains 24 5'-inch disks in a
six-foot high, 19-inch by 30-inch cabinet (one cubic foot per disk).

pp 72), but in disk arrays, it is automatically done by striping data over multiple disks
[Salem86). Striping can also counter the transfer gap problem experienced by workloads that
feature large sequential accesses [Kim87a, Reddy89). This is done in Cray supercomputing
systems by striping data on their swap storage disks [Johnson84). In Section 3.4 I examine

striping’s exploitation of disk parallelism for improving performance in more detail.

A second reason for the inevitability of secondary storage systems built of disk arrays is
the impending demise of large-diameter disks. Section 2.3 describes how the state-of-the-art in
magnetic disk technology has moved from large, high-capacity disks to smaller, lower-capacity
disks. Tables 3.1, 3.2, and 3.3 show particular comparisons of some of the premier products of
each diameter. With IBM’s move to 10%-inch disks in its top-end product, there is no longer
any active development of 14-inch disks. Moreover, the performance of each of the 10%-inch
disks in IBM’s 3390 is inferior to Seagate’s 5%-inch Elite disk. These comparisons are indica-
tive of the overall trend in the disk industry; by most metrics 5%-inch disks are currently the
best, and most disk designers expect that 3%-inch disks will soon be supreme. But if large-

capacity disks are being phased out and if customers’ requirements for on-line storage continues

e
—

Disk Diameter (inches) 10% 8 5% 3% 2%

Disk Unit Cost ($/MB) $1.00 $1.25 $1.60 $4.00
Disk Unit Price ($/MB) $6-810 $1.80 $1.60 $2.50 $8.10

Table 3.3: 1990 Magnetic Disk Cost and Price. This table shows the variation in cost per
megabyte [Mitoma90] and the price per megabyte [Lomas91] of different diameter disks. Cost
numbers include disk electronics and are based on industry wide analyses (they are not necessari-
ly IBM costs). Price numbers for the smaller four diameters are based on first-quarter 1991
discount rates available on large purchases from Seagate. For the price per megabyte of 10-inch
products, the IBM 3390 has a list price of about $10/MB [Mitoma90]. The range I report as-
sumes that IBM's best customers are able to gei1 discount rates as large as 40%. Magnetic disks
achieve a low cost per megabyte because disk platters are inexpensive and, in 1990, contain 50 to
80 megabits per square inch. Although 5Y%-inch and 3'4-inch disks contain much less recording
surface, their prices can remain low because of very high manufacturing volumes. It is estimated
that in 1989, 12 million 3'%-inch disks and 6.9 million 5%-inch disks were shipped, but only 0.6
million 8-inch or larger disks were shipped. The 2'-inch disk costs are high now because this
product has not yet been produced or shipped in sufficient numbers. By 1992, the cost of 2'/s-inch
disks per megabyte should be below two dollars [Mitoma90).

35

to increase as rapidly as it has over the past decade, the number of disks in secondary storage
systems must swell.

Although replacing large disks with many smaller ones is inevitable, mp{dly expanding
disk farms are logistically undesirable. For example, Table 3.2 shows that an IBM 3390 unit
contains 12 separately-accessed volumes with a total storage capacity of up to 22.7 gigabytes.
Seventy-one, 320-megabyte, 3%4-inch IBM 0661 disks are required to replace each IBM 3390;
hence cabling, controllers, and administrative domains are all increased by a factor of six! For-

tunately, disk arrays resolve these problems.

The disk array altemative is suggested by packaging because a single package with the
storage capacity of previous large-diameter disks, but built with smaller capacity and smaller
diameter disks, contains an array of disks [Jilke86, Kim86, Patterson88). By using striping to
make many disks appear as a single, larger disk, a disk array provides the opportunity for access
and data parallelism without intervention by users of arrays or by administrators. The nmber
of cables and controllers can be kept from growing as quickly as the number of disks by con-
necting many disks to the same interconnect and controller. This sharing of cabling and con-
troliers can be problematic, however, because of the delays caused by the RPS reconnect misses
that arise when multiple disks share the same cable and controller. This problem, described in

Section 2.1.4, can be overcome with buffering and intelligence embedded into each disk.

Fortunately, most small-diameter disks connect to their controllers across intelligent inter-
faces, such as the industry standard Small Computer System Interface (SCSI) [ADSSS,
ANSIS86] or Intelligent Peripheral Interface (IPI) [Allan83, ANSI87], or proprietary protocols
such as Digital Equipment Corporation’s Mass Storage Control Protocol (MSCP) [Massi-
glia86). Intelligent interfaces are feasible in inexpensive disks because a significant portion of a
disk’s controller function can be merged into a small number of VLSI chips and embedded in
the disk package at little additional cost. With a dedicated controller and a small amount of

buffering in each disk, the disk-to-computer interconnect can be designed independently from

36

the disk recording and reading process. This allows multiple devices to share a fast intercon-

nect without the delays associated with RPS reconnect misses.

A third reason for the emergence of disk arrays as the preferred architecture for secondary
storage components is the opportunity for manufacturers to spread research and development
costs over a wide product line. Traditionally, & range of price and performance products is
achieved by offering a variety of disk products that are designed separately with different diam-
eters. Figure 3.1 shows how disk arrays can be configured with a variety of different numbers
of component disks to provide a complete family of products all based on the same small-
diameter disk. With disk arrays, a vendor can concentrate design talent on the single, small-
diameter disk that will be used in all products [Mitoma89]. Thus, the required ranges of price
and performance can be provided in much the same way that the design of a single processor
can provide a range of computing power in a family of multiprocessor products. In this way,

, disk arrays reduce the development cost of a secondary storage product and shorten its time to

convential product line
14"

10"

525"
lowend 35" &2 high end

product < ” product

jof]
(=1~

d

f00o0ooonoo0ga00

é
0000000000000
0000000006000000
0000000000000000

Figure 3.1: Disk Array Configuration Flexibility. Instead of funding four research and
developmens efforts to produce a family of disk products with different diameters, a disk array
vendor can focus disk design talent on a single, small-diameter disk and use a variety of disk ar-
ray configurations to provide a product family.

37

market.

The fourth major reason for relying on disk arrays in secondary storage is the opportunity
they provide to achieve high-reliability at low-cost. Conventional systems offer two choices for
the control of reliability; either accept the inherent reliability of a disk or continually maintain a
duplicate of its data on a second disk that can replace the first in the event of its failure. If the
inherent reliability of a disk is not high enough, customers are obliged to double their costs and
take the possibly overdesigned, much higher reliability that comes with duplication. Because
disk arrays contain many more disks operating in conjunction and centrally controlled, a less
expensive ‘“N+1°’ parity encoding for redundancy can be employed to achieve high reliability.
This encoding maintains the parity of N disks on a single parity disk that can be used to recover
the contents of any single disk failure. For disk arrays organized into redundancy groups with
10 data disks, this approach reduces the overhead cost for high reliability from 100% to 10%.
Redundancy in disk arrays is the theme of the rest of this dissertation; its encoding choices, per-
formance expectations, and reliability estimations are covered in detail in later sections and

chapters.

Another advantage of the disk array approach to parallelism in secondary storage is its
physical space efficiency. Because small disks have a large capacity per unit volume, a disk
array can provide a large capacity and a high degree of parallelism in a small box.

For the aforementioned reasons many vendors have products in the disk array market.
They include Array Technology, Auspex, Ciprico, Compaq, Cray, Datamax, IBM, Imprimis,
Intel Scientific, Intellistor, Maximum Strategy, Pacstor, SF2, Storage Concepts, Storage Tech-
nology, and Thinking Machines. Some customers, notably the NASA Ames NAS project and
the Minnesota Supercomputer Center, have developed intemal redundant disk arrays to meet
their I/O needs [Klietz88, Poston88]. Nevertheless, this market is developing slowly, in large
part because incompatibility problems at the application, operating system, wnﬁnﬂer. and disk

interface levels blocks full exploitation of disk arrays. Moreover, customers unfamiliar with the

38

multitude of tradeoffs in the configuration of disk arrays, such as the appropriate redundancy .
versus performance versus cost tradeoff, have contributed to a general ‘‘wait and see’’ attitude.
In the last year, however, market forecasts have improved dramatically [ﬁevlin90]. The
installed base is nearing 4,600 arrays, mainly in local area networks for personal computers, and
is projected to be 10,000, 30,000, 60,000, and 110,000 in 1991, 1992, 1993, and 1994 respec-

tively.

3.2. Disk Arrays As a Threat To Data Reliability

Although the large number of disks employed by a disk array improves performance, it
also threatens data reliability since systems with more parts have more frequent failures. If a
disk array's performance is an order of magnitude larger than that of a single large-diameter
disk because the array employs an order of magnitude more disks, then the rate of failures in an
array may also be an order of magnitude larger than that of a single disk. Some fonn-of com-
pensation for these higher failure rates is required since large increases in disk parallelism are
unlikely to succeed commercially if secondary storage data reliability is adversely affected.
Before examining such compensation schemes, 1 discuss the failure modes of magnetic disks.

Disks fail in a variety of ways [Glover88, Schulze89]. The most frequent failures are indi-
vidual bits read incorrectly off the surface. These transient errors are handied by circuits inter-
nal to each disk using a *‘check sum”’ code computed and stored at the end of each sector. Usu-
ally this code allows some bit errors to be corrected directly, rather than waiting for the much
slower process of rereading.

The frequency of undetected or miscorrected errors is and must be Jow because such
unnoticed errors will wreak havoc in an application. For example, the WREN IV 5%-inch disk
miscorrects less than one sector in 10?! bits transferred [CDC88). While the detecting and

correcting codes associated with each sector of existing disks suffer undetected or miscorrected

39

errors with low probabilities, increasing processing speeds increase the rate at which data stored
on disk is accessed, and this increases the opportunity for bit errors to occur. For this reason,
and because each new generation of disks packs bits closer together, progressively more power-

ful codes are introduced into new disk products.

The frequency of detectable, but uncorrectable, permanent errors is higher than the fre-
quency of undetected or miscorrected errors. Detectable, permanent errors are usually detected
by factory tests. Once identified, the sectors containing these errors are marked so that the disk
will use an alternate sector anytime a user request attempts 10 access a defective sector. From
time to time, these flaws *‘grow’’ during operations leaving the user with a sector of corrupted
data. Most disks allow these bad sectors to be dynamically remapped to other sectors nearby,
but data is still lost. In addition to protecting against data loss on the occurrence of catastrophic
failures of entire disks, redundant data schemes described in Section 3.3 also handle the loss of

individual sectors quite well by recovering their contents from other data and parity disks. .

Data coming from or going to disks can also suffer transient bit losses on datapaths or in
buffers. Parity, or more powerful codes, on each path or buffer can capture most of these prob-
lems. Systematic failures in latches or error-detection/correction hardware, however, are more
serious problems. Higher-level, end-to-end error-detection codes are the best method of han-
dling these problems [Glover88, Massiglia86 pp 148 and 220]. Additionally, by embedding
end-to-end detection codes into user data blocks, there is a second opportunity to detect those
rare but important bit errors that the disk's intemal error-correcting logic either did not detect or
miscorrected. Because of this feature, per-sector and end-to-end codes should be designed to
complement each other’s detection and correction capabilities {Glover88 pp xiii).

Finally, there are complete failures of disk electronics or head-disk-assembly failures,
such as head crashes. Such catastrophic failures are self-identifying, either by intemal failure
detection, end-to-end tests, or device-interface protocol violations. Although m@y catastrophic

failures do not actually destroy data, long repair periods can be as damaging because *‘the

40

greatest fear that an on-line system user has is that ‘the data base is down’ [Dolotta et al.,
1976)"* [Katzman77 pp 450].

In this dissertation, I am mainly concemed with the effects of catastrophic disk failures on

the reliability of data stored in disk arrays.

3.2.1. Avoiding Catastrophic Failures with Prediction

The occurrence of transient and correctable errors during disk operations provides infor-
mation that may be used to diagnose the status of individual disks and to potentially predict
imminent failures. Prediction is a special case of the diagnosis of computer system malfunc-

tions from component-error reports logged in a central file [Billmers84, Tendolkar85].

Lin’s {Lin88] examination of on-line diagnosis for failure prediction delineated two
approaches to automatic diagnosis: specification-based and symptom-based. Specification-
based diagnosis employs an expert system to apply collected information to an abstract model
of the target machine’s structure. This type of diagnosis has not been widely used because of

restricted fault models and extensive leaming times.

Lin focused instead on symptom-based diagnosis because trends in system behavior are
good predictors of system failures [Lin88 pp 6):
Research in trend analysis is based upon two observations. First, most failures are preceded by a
period of deteriorating behavior prior to turning into a permanent failure [Tsao83]. Furthermore,
the occurrence of intermittent faults increase as circuits age [Breuer76). Second, any sufficiently
‘“‘large’ system always has some latent problems [Shebell8S). If any of these cases can be
detected at an early stage through extensive exror logging, wamning can be issued prior to catas-

trophic failure, and service can be started to minimize system unreliability and maximize the
system's effective availability.

Lin presented a set of heuristic rules for predicting the imminent failure of a component
based on logged errors. These rules, called the ‘‘Dispersion Frame Technique,”” look for two
failures in one hour, four failures in 24 hours, or three conditions that indicate increasing rates

of errors [Lin90]. Lin applied these rules to data collected from 20 workstation-years of error

41

logs taken from 13 Sun2 and Sun3 file servers. Without additional kemel instrumentation to
collect detailed error records, the rules had little prediction success. With such additional
instrumentation, however, 15 out of 16 permanent failures would have been predicted with only
five false alarms. Although this data sample is small, it suggests that data reliability may be

enhanced with intelligent error-monitoring software.

To this end, DEC has developed a monitoring andl diagnostic tool, the VAX System
Integrity Monitor PLUS (VAXsimPLUS), initially addressing only magnetic disk failures
[Emlich89]. It is built using the earlier, knowledge-based diagnostic tool SPEAR [Bilimers84]. .
The rules used by VAXsimPLUS are also heuristic and based on daily error-collection statistics.
Depending on the type of error, diagnosis is triggered when a single day’s error count exceeds a
25-day average by more than a given threshold. Once triggered, diagnostic tests are performed
on various components until a failure theory is developed and a faulty field-replaceable unit can
be predicted.

Because DEC is sensitive to its customer’s perceptions of quality and to the cost of field
visits, false prediction and excessive reporting are highly undesirable. Towards these goals,
their diagnostic tools have been quite effective. For example, during seven million disk hours,
VAXsimPLUS identified 150 disk failures and generated only three false alarms (2% of all
triggers were false alarms). Although a faulty component was correctly predicted in 95% of
cases, in those cases where data was at risk only 85% of the predictions were made early

enough to allow a disk copy to be made [Lary89].

Predictive diagnosis is one component in a data reliability strategy rather than a complete
solution on its own [Emlich89]. It is limited because some errors will escalate to failures too
quickly to be predicted and averted, and because even under direction, human intervention to
affect repair is itself prone to error. Moreover, prediction does not provide any guaranteed level
of data reliability. For these reasons, predictive diagnosis must be augmented by more direct,

data-protection mechanisms in a highly reliable secondary storage system.

42

3.2.2. Protecting Data Reliability with Off-Line Redundancy

The primary method of compensating for increased secondary-storage failure rates engen-
dered by increased disk parallelism is to ensure that failure does not destroy data.- Data, such as
program output files, may be entirely re-creatable in specific cases. Although this recovery pro-
cedure can be expensive and pmne to error, it is not uncommon for systems to rely on manual

re-creation of at least the most recently modified data. Fortunately, most computer systems

depend on one or more forms of redundant data storage for longer-term protection.

One form of data redundancy employed in most systems is off-line, or backup copies, of
secondary storage contents. Recording backup copies limits the amount of data exposed to loss
to incremental data changes in the event of a disk failure. Backups are usually made when com-
puters are not in use, and thus the time interval between the capture of backup copies is usually
fixed. Therefore, backups cannot easily compensate for large increases in secondary storage

failure rates.

In fact, backups are becoming less effective and less desirable for several reasons. First,
the opportunities to make a backup copy of secondary storage without affecting user perfor-
mance are decreasing because computer systems are being used more continuously. This
increasing use of computer resources may result from offering 24-hour service to users or from
judiciously scheduling batch computation into time slots that are commonly under utilized
(such as the middle of the night). Each backup can also be expected take longer to capture as
computers become faster and generéte more new data per day. Finally, capturing a backup copy
onto off-line storage oftens involves expensive and error-prone human intervention. Thus, not
only do backups fail to compensate for increases in secondary storage, but the desire to reduce

the dependency on backups encourages secondary storage to become more reliable.

43

3.3. On-Line Redundancy: Encoding Data into Disk Arrays

Since off-line redundancy will not solve these increasing failure rate problems, sutomatic
redundancy is needed within secondary storage. With this class of failure protection, user data
is encoded into a form that occupies more storage capacity but allows data lost during certain

combinations of one or more catastrophic disk failures to be recovered from the surviving disks.

Encoding data to increase the probability that it can be reliably transmitted or stored, usu-
ally called error-correcting or error-control coding, is a well-developed branch of mathemati-
cal theory. There are many good treatments of introductory [Tang69, Arazi88], computer-
specific [Rao89], and comprehensive [Peterson72, MacWilliams77] error-control coding. The
search for codes appropriate to particular transmission channels or storage mediums began in
eamnest with Shannon’s fundamental theorem [Shannon48]. 'ﬁﬁs theorem states that the proba-
bility of erroneously decoding data encoded and transmitted through or stored in a noisy
environment can be made arbitrarily small, provided that the ratio of the amount of user infor-
mation to the size of resulting encoded data is less than the inherent ‘‘capability’’ df the
transmission or storage channel. Because the characteristics of transmission channels and

storage media change with technology, research into appropriate codes is continuous.

Multiple metrics are needed for the selection of a strategy for encoding redundant data
onto the disks of a redundant disk array. The effect on data reliability remains a primary con-
cern because it is the reason for introducing redundancy. In error-correcting code theory, the
basic metric for a code’s reliability is the number and type of ermors that decoding is guaranteed
to correct. When the location of the error can be identified by some mechanism extemal to the
code, then the error is called an erasure, and its correction is generally easier than the correction
of an error whose location is not externally identified. As Section 3.2 explaines, catastrophic
disk failures are self-identifying so the codes employed in redundant disk arrays correct erasures
instead of arbitrary errors. In the next section, 3.3.1, I present alternative organizations for data

redundancy that correct single-disk erasures, and then in Section 3.3.2, I examine double-

44

erasure-correction encodings that may become necessary if large numbers of disks are used or if
users require very high data reliability. In these discussions I will review and follow the con-

straints and terminology of Gibson, Hellerstein, Karp, Katz, and Patterson [Gibson89b).

In addition to a code’s ability to enhance reliability, there are three other metrics that 1

will use to measure the quality of a code:
(1) acode’s affect on user performance during normal operation should be minimized,
(2) its need for additional storage capacity should be minimized, and

(3) its affect on user performance during the recovery of the contents of a failed disk should

also be minimized.

The first of these metrics should be used to insure that during normal operation, when all
disks are fully functional, the performance penalty for maintaining redundant data is minimal.
To this end, all codes should record user data in an unencoded form so that reads suff;r no per-
formance penalty. Because writes must affect redundant data as well as user data, codes should
minimize the number of additional disk accesses required for maintaining redundancy. As a
measure of this cost, the number of additional disks updated when one byte of user data is
changed is called the update penalty of that change and, where different changes induce dif-
ferent update penalties, the maximum update penalty for any data change is the update penalty
of the code.

The second quality metric applies to the additional storage required for redundant data. I
measure the ratio of the amount of additional capacity used to store redundant or *‘check’’ data
to the amount of capacity needed to store unencoded user data, and call this metric the check
disk overhead. Of course, an encoding does not operate on an entire disk at time. Rather it

treats a disk as a sequence of symbols! that are separately encoded. A word in the code or code-

! In the binary codes described in this section, a symbol is a single bit. However, in the non-binary
codes of Section 3.3.2.2, a symbol may be two or more bits.

45

word is the set of symbols, one from each disk, that are related because the check symbols in
this set are determined by the values of the set’s data symbols. In any codeword, certain disks
. contain check symbols and others contain user symbols, s0 I can count the ratio of check disks
to non-check disks. This ratio does not change from codeword to codeword, although the iden-
tity of the disks containing check symbols may change (see Section 3.3.1.2). For this reason, I
measure overhead in terms of check dxsks instead of check symbols or check megabytes. In the
terminology of information and check symbols, blocks of unencoded user data are information
blocks and blocks of redundant data are check blocks. Clearly, codes with low check disk over-

heads are desirable.

My third quality metric is concemned with the impact of failure recovery on user perfor-
mance. Although erasure-correction encodings allow users to access their data while a failed
disk is repaired or replaced and then recovered,? many systems will not use this feature because
it is simpler to halt operation until the correction is complete [[BMAS400]. Some applications,
however, have such high requirements for availability that they will be sensitive to a redundant
array’s performance for user accesses while it is recovering a failed disk. A detailed model of
performance during recovery has been developed for a version of N+1-parity encoded disk
arrays [Muntz90]. For the purposes of comparing encodings of redundant data, I will instead
use a simpler measure: the the minimum number of disks required to recover a single failure,
called a disk's recovery group size. This measure indicates the proportion of the array that is
degraded during a particular correction. The maximum size of a recovery group across all disks
is equal to the size of the code’s recovery group. The size of a disk’s recovery group also indi-
cates the number of disks that are more vulnerable to loss of data caused by subsequent failures
during correction; larger recovery group sizes are likely to reduce data reliability. Chapter 5 is

devoted to estimating reliability as a function of parameters that an array designer manipulates

2 Recovery is the process of rederiving the contents of a disk that has been repaired or replaced;
however, sometimes the term repair includes both of these steps.

such as the recovery group sizes in a single-erasure correcting, redundant disk array.

3.3.1. Single-Erasure-Correcting Encodings

Since the probability of catastrophic disk failure in any short period of time is small, the
probability of a second failure during the repair and ledovery ‘of a first failure is also small.
Hence, the vast majority of repairs will be applied to single failures. The probability of a
second failure is increased, however, if there are many disks in the array or if the first failure
causes the second. These two cases are addressed in Sections 3.3.2 and 5.5 respectively. In this

section, I examine the codes for redundant disk arrays that correct all single-disk failures.

I begin by describing a full duplication code commonly called mirroring. This code has
good