
BUILDING A SOFTWARE Q U m PREDICIION MODEL,

W. W. Agresti, W. M. Evanco, M. C. Smith
4 - t,. ' / . I :

f r f ' D The h m Corporation l j \ J ;

Abstract

Early experiences building a software quality prediction model are
discussed. The overall research objective is to establish a capability to project
a sohware system's quality from an analysis of its design, The tdmica l
approach is to build multivariate models far estimating reliability and
maintainability. Data fnm twentyone Ada subsystems have been analyzed
thus far to test hypotheses about various design structures leading to failure-
prone or unmaintainable systems Current design variables highlight the
interconnectivity and visibility cf compilation units. Other model variables
provide for the effects of reusability and software changes. Reported results
are preliminary because dditional project data is being obtained and new
hypotheses dre being developed and tested Current multivariate regression
models are encouraging, explaining 60-80% of the variation in error density
of the subsystems.

Introduction

A typical shortooming of large-scale software development is the
uncertainty concerning the consequences of design decisions until much Iater
in the development process. Greater capability is needed during the design
activity to assess the design itself for indications that, when implemented, the
resulting system will have particular quality characteristics. This paper
discusses the early experiences in a research project to evaluate the quality of
Ada designs.

The research objec!ive is to test the hypothesis that Ada software
quality factors can be predicted d e g deign ThepFtuucal approach is build

[I , . , (:.\.!<: . 8:
v ,..- - This research was sp011sored by The h R E ~orporadon under the Mission

Oriented tnves tiga tion and Experhen ta tion (MOIE) program - Authors' Address: The h4lTRE Corporatiat, 7525 Colshire Drive, Mdnan,
Virginia 22102

Proceedings of the Weenth Annual Software Engineering Workshop,
National Aeronautics and Space Administration, Goddard Space n'rght Center,

Greenbelt, Maryland, November 1990

multivariate models to estimate reliability and maintainability using
characteristics of the design. The orientation to Ada is due to its prevalence
in rnission-critical systems under development and its ability to serve as a
notation for software design. This role for Ada as a design language has been
recognized as American National Standards Institute (ANSI)/Institute of
Electrical and Electronics Engineers (IEEE) Standard 990-1987.

Previous research has established relationships between design or code
characteristics and quality factors [I, 21. A recent system-lwel dgign
measure, incorporating both control flow and data flow in FORTRAN
systems, shows a strong correlation with reliability (31. The Constructive
QUAlity Model (COQUAMO! is being developed to estimate software quality,
basing its estimate on the observed quality of previous projects [4!.

Qualitv Estimation Models

Building the estimation models depends on having access to three
classes of project data.

- Design, expressed in Ada, from which design characteristics can be
extracted

- Environmental factors that influence the quality of the software but
cannot be deduced from the design artifact itself - for example, level of reuse
or volatility of changes to the software

- Data characterizing what resulted when the design was implemented,
tested, and fielded - for example, reported errors and effort to maintain the
software

The basic form of the estimation models is shown in Figure 3.
Independent, explanatory variables in the models represent architectural
design characteristics. Additional explanatory variables account for the effects
of the organization and its development process. By the error term in the
model, we will learn if we have been successful in explaining the variation in
quality factors by using design characteristics and environmental factors.

Ada Design - Representation

One of the first issues we faced was developing an effective
representation from which we could extract design characteristics. Our
interest was in the static architecture of units in subsystems, not in the
arrangement of statements within a unit. We viewed the subsystem as being
composed of design units and relations as illustrated in Figure 4- Our analysis
of Ada identified several candidates to serve as design units in our structure:
program units, compilation units, and library units. All three units have
participated in our model building, but compilation units have been
particularly useful as a structural unit because they also serve as the unit of
observation for reporting errors and changes.

Our Ada analysis identified fifteen kinds of Ada compilation units
generic package speafication, generic padrage body, and so on as shown in
Figure 5. The compilation units are further divided into library units and
secondary units (see Figure 5) and serve as the design unit nodes in the
graphical Ada design structures in Figure 4. The nodes are related to aw
another by the design relations of context ooupling, sp&cation/body,
parent/subunit, and generic template/i.nstantiation. These &sign units and
design relations comprise our representation of static Ada architecture
Ada design representation is discussed further in [S].

Software Proiect Data

Project data used in the analysis is summarized in Figure 6. The
twenty-one subsystems included 2,143 compilation units. Dedarations are
listed in Figure 6 because they play a key role in the hypotheses we are
examining. One of our underlying themes is that a developer does not
declare objects, types, subprograms, etc unless they are needed. Thus, the
number and distribution of these declaraticns is of interest to us in
characterizing designs.

Our models attempt to explain variation in quality, and Figure 6 shows
our project data exhibits significant variation. The data was obtained from
the National Aeronautics =d Space Administration NASA)/Goddard Space
Flight Center (GSFC) Software Engineering Laboratory (SEL). Reliability is
measured as error density and varies in the range 1.4 - 17.0 erron per
thousand source lines of code for the twezty-onesubsystems. MaintainaEIity
varied aaoss the subsystems as 26 - 89% error cow-tions requiring less h
or equal to one hour to complete.

Hwotheses About Desim - StruW~tre

We are pursuing simple hypotheses about design decision making, &e
resulting design artifact, and the influenoes of design on reliability and
maintainability . Figure 7 o u t h an example of a general hypothesis tha
excessive context coupling contributes to errors. The rationale is that greakr
arc density in the directed graph in Figure 7 increases the likelihood of
introducing an error, because a greater number of relationships must be
understood.

Figure 8 expands on library unit B of Figure 7. We have found that a
liirary unit aggregation - a library unit and its declarative scope - to be a
effective unit of granularity for our analysis of Ada designs. Figure 8 shows a
second level of design decision mairing that occurs inside a library unit
aggregation. We are interested in whether the designer has macie any effcrt
to manage the visibility of the 103 declarations that have been imported inao

unit B. By having 100 of the declarations brought in (via a "with" clause) to
the specification, they are visible throughout the other units in the library
unit aggregation, cascading through the structure. We don't know which of
these declarations are used by each unit, but we want to reaord their visibility
to the other units in the library unit aggregation. The measure of cascaded
imports in Figure 8 takes visibility into account 100 of the imports are visible
to five units (=> 500 cascaded imports) and three of the imports are visible to
two units (=> 6 cascaded imports), for a total of 506 cascaded imports

. .
urunarv Results of Staa-

. .

Figure 9 summarizes the variables that have been introduced into our
models thus far. Context couphg and visibility follow the example in Figure
8, while import origin records the fraction of declarations imported from
within the subsystem. Two environmental factors have been analpxi to
date: volatility captures the relative number of changes that have been made
in the subsystem, and custom code is the percentage of new and extensively
modified code used in the subsystem. Custom code is essentially the opposite
of reuse.

The preliminary model explaining variation in total error density
(Rgure 10) includes the explanatory variables of context coupling, visibility,
and volatility. In this model and other similar regression analyses we have
conducted, the coeffiaents have the expected signs: error densities inaease as
coatext coupling, visibility, and volatility increase.

Because of our interest in architectural design decisions, we conducted
additional regression analyses which concentrated on errors occurring during
system and acceptance testing. Our rationale was that, by eliminating errors
reported during unit testing (and, therefore, more likely to be errors in
implementing a single unit), we were reflecting more strongly the
architectural (inter-unit) relationships. Figure 11 summarizes a model to
estimate errors reported during system and acceptance testing. Again, context
coupling and visibility are included as explanatory variables. Now, however,
custom code is a significant factor in exphhhg the variation in error density-
The explanatory power (as indicated by the coefficient of determination) is
stranger for the model in Figure 11.

Summary

Early results in building estimation models for reliabsity and
maintainability are encouraging. We have developed representations for the
static structure of Ada systems using compilation units and library unit
aggregations, allowing us to test hypotheses about the effects of different
structures on reliability and maintainability . C o n k t coupling measures
cansistently figure strongly in the multivariate regression analyses we have

conducted. Visibility and import origin measures provide further
refinement. The models show strong effects of volatility and custom code on
reliability .

We stress the preliminary nature of the quantitative resub, based as
they are on twenty-one Ada subsystems. We look forward to coatirming to
explore hypotheses with additional data, leading to the development of mom
robust models that can be subpded to validation

We acknowledge the cooperation of Mr. Frank McC;any and Mr. Jar
Valett of the NASA/GSFC SEL in allowing us to use SEL data for this
research.

References

1. T. J. McCabe and C. W. Butler, "Design Complexity hhsurement and
Testing," Communications of the ACM, December 1989, pp. 1415-1425.

2 S. M. Henry and C A Selig, "Predicting S o d o d e Complexity at the
Design Stage," IEEE Software, March 1990, pp. 36-44.

3. D. N. Card and W. W. Agresti, "Measuring Software Design Complexity,"
Journal of Systems and Software, March 1988, pp. 185197.

4. B. Kitchenham, "Measuring SoftwareQuality," Roedings of the-Fi
Annual Software Quality Workshop, Rochester, New York, 1989.

5. W. W. Agresti, W. M Evanco, and M. C. Smith, "An Approach to Software
Quality Prediction from Ada Designs," Fnxeedings of the Second Annual
Software Quality Workshop, Rochester, New York, 1990.

Early Experiences
Building a Software

Quality Prediction Model

Research Project Overview

a Objecitve:

- 7- hypomds that M a aaRwan qusllty tacton can be
predicted durlng deJgn

TecbnicalAp9loach:
- 8ulld fn~lU~arb!8 models to atbnate rdWllW and

maintslna#ilty
- ~ ~ e r t r t l c s o f t h r ~ d . l f g n a p l u n d ~ n ~ ~ n

-!Ww

Basic Form of the Estimation Models

R m .f,Wl ,DC2,-,EF, ,qsuIl l . f , - I + ?

W n O m M l l t y ~ t ~ ~ ~ , W ~ , - ~ ~ ~ ~ ~ - I b ~ ~ b ~ ~ - I + @ ~

wtmm -
DC, : d o s 4 w - m
EF, :envtrwnwnOltrdot-

a , 9 4
:moddpamwms

: e m w m (moxWndvrtltkrr)

Representing Ada Design Structure

ADA DESIGN

DESKiN
UNITS

'QIIBCIIDYCII

"Parts" in Ada Static Structure

15 Compilatton UniS in Ada
8s Ubrary Unib (L) or Secondary Units (S)

Profile of Current Project Data

a Twenty-one subsystemt from NASAIGSFC SEL.
- Interactive, ground support sMwam lor flight dynamics and

t e l e m e v Y w n g Wkabm
- 183 K IWrrcomment, rorrbtsnk #urcr Un8S Of Abs (KSLOC)

- 601 UbraryUlIftS

Exploring Simple Hypotheses
About Design Structure

Inside a Library Unit Aggregation to Show
Imported and Exported Declarations

Model Variables

~ssfgr! Chsraztdatks:

- con',^ rap!lr.g: # lmpofts l d q w t a
- v r ~ ~ b i ~ ~ t y : ~ ~) m p o r t s ~ r ~ m p o r t s

- Impon Qrlsln: ~ l r n r r n d ~ / # ~

a EnvlronmantalF&ctais:

- vom1iny: #&~'~guI#f lbnyunlm

- CLutmCode: % new and extmslvoty modllkd axjo

Preliminary Model-for Reliability:
Total Errors (entot)

Dependent varlabb: TOTERRSL = efrtoll KSLOC

In (TOTERRSL) = .65 + 27 In (XI) + .0!5 In [X2j + 27 h (X3)

(.=I- (-11) (.I 6) (-1

XI P context COUpllng

x P = VISI~ I IR~ R'=.R

X 3 = volatlllty

' S t m n d u d d r v l . t b n d t h . p u M w t w ~

MITE

Preliminary Model for Reliability:
Svstem and Acceotance Testina Erron (errsa)

XI = context coupling

X 2 = vlslblltty

x 3 = customcode

SmnQrd drvlatkm d the prnrntw m . t l r m t ,

Current Research Activity

Contlnue to develop process mod& and rbout dedgn
decblorrmaklng and dedgn ttnrchrms - and their rebtlonshlp to
reltablllty and malntalnablllty

8 Explore classikatlon trees and other alternathre analytlclrl methods

"CaB for Ada Project Data" - to test hypotheses a d dlbrate
mrrlthrarlate models

VIF4VGRAPH MATERIALS

FOR THE

W. AGRESTI PRESENTATION

Early Experiences
Building a Software

Quality Prediction Model

W. W. Agresti, W. M. Evanco, M. C. Smith
MITRE Washington Software Engineering Center

28 November 1990

MITRE

Research Project Overview

Objective:
- Test the hypothesis that Ada software quality factors can be

predicted during design

Technical Approach:

- Build multivariate models to estimate reliability and
maintainability

- Use characteristics of the software design captured in Ada design
language

MITRE

Basic Form of the Estimation Models

Reliability = f (DC , DC , ... , EF ,EF ,...la , a ,...) + e
1 1 2 1 2 1 2 1

Maintainability = f (DC , DC , ... , EF ,EF ,...I b , b ,...) + e
2 1 2 1 2 1 2 2

where -
DC

I
EF

i

: design characteristic variable
: environmental factor variable

a, ' 9 : model parameters

e
I

: error term (unexplained variation)

1 Figure 3 1

Representing Ada Design Structure

ADA DESIGN

DESIGN
UNITS

"PARTS" BIN "CONNECTIONS" BIN

DESIGN
RELATIONS

"Parts" in Ada Static Structure

15 Compilation Units in Ada
as Library units (L) or Secondary Units (S)

Specification Body Subunit Instantiation

MITRE

I

Generic
Package

Package

Generic
Subprogram

Subprogram

Task

L S S L

L S S N/A

L S S L

L L/S S NIA

N/A N/A S N/ A

A

Profile of Current Project Data

Twenty-one subsystems from NASAIGSFC SEL:
- Interactive, ground support software for flight dynamics and

telemetry processing applications

- 183 K non-comment, non-blank source lines of Ada (KSLOC)

- 601 Library Units

- 2,143 Compilation Units

- 29,849 Declarations

Variation in dependent variables:

: ie - Reliability range: 1.4 - 17.0 errorslKSLOC

a - Maintainability range: 26 - 89 % "easy" fixes (requiring 5 I hour)

Exploring Simple Hypotheses -
About Design Structure

1 Example of a general hypothesis: Excessive context coupling
contributes to complexity which, in turn, contributes to errors

Example of context coupling to access the resources of library units:

Notation:

MITRE

Library unit

A imports
20 declarations Example:
from B

with B;
package A is

B exports
20 declarations end A;
to A

Inside a Library Unit Aggregation to Show
lm~orted and Exported Declarations

A Library Unit Aggregation

!I{ 8
* number of declarations

I3

MITRE

Statlc Measures:

imports = 103
exports = 20
cascaded imports = 506

Model Variables

Design Characteristics:

- Context Coupling: # imports I # exports

- Visibility: # cascaded imports I # imports

- Import Origin: # internal imports I # imports

Environmental Factors:

- Volatility: # changes I # library units
- Custom Code: % new and extensively modified code

Preliminary Model for Reliability:
Total Errors (errtot)

0 Dependent variable: TOTERRSL = errtot I KSLOC

In (TOTERRSL) = .65 + 2 7 In (X) + -05 In (X) + -27 In (X)
1 2 3

(.36)* (.11) 6) (=OW

X =: context coupling
1

X P = visibility

X , = volatility

ti * Standard deviation of the parameter estimate

2
adjusted R = .72

MITRE

Preliminary Model for Reliability:
System and Acceptance Testing Errors (errsa)

Dependent variable: SYACERRSL = errse I KSLOC

In (SYACERRSL) = .77 + . I9 In (X) + .07 In (X) + -97 In (X)
I 2 3

X = context coupling
1

X S = visibility

X , = custom code

ti * Standard deviation of the parameter estimate

2
adjusted R = -78

, 4 Ic- e

Current Research Activity

" , ;'
I. ,', !., . .

I I '
, ,

,$, I,\ , Continue to dewelop process models and hypotheses about design
. i. I . . I t

. . 1, :: decision-making and design structures -- and their relationships to
: I

a . I . :;
l : \ reliability and maintainability

' , < ' \

I . . (

I *I I i,,
' \.

Explore classification trees and other alternative analytical methods
. *

: ; \
: 8

I ("Call for Ada Project Dataw -- to test hypotheses and calibrate
1 : multivariate models

MITRE

