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Abstract

Jade is a new distributed file system that provides a uniform way to name and access
files in an internet environment. It makes two important contributions. First, Jade
is a logical system that integrates a heterogeneous collection of existing file systems,
where heterogeneous we mean that the underlying file systems support different file
access protocols. Jade is designed under the restriction that the underlying file systems
may not be modified. Second, rather than providing a global name space, Jade permits
each user to define a private name space. These private name spaces support two novel
features: they allow multiple file systems to be mounted under one directory, and they
allow one logical name space to mount other logical name spaces. A prototype of the
Jade File System has been implemented on Sun workstations running Unix. It consists
of interfaces to the Unix file system, the Sun Network File System, the Andrew File
System, and FTP. This paper motivates Jade's design, highlights several aspects of its
implementation, and illustrates applications that can take advantage of its features.
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1 Introduction

Workstations connected to national internets have access to a rich collection of resources, including
file systems, databases, directory services, supercomputers, and other specialized hardware. An
important factor that limits users' ability to take advantage of these resources is the problem of
naming and accessing these resources in a transparent and uniform way. This paper describes the
Jade file system which addresses this problem in the context of file systems.

Although there are many examples of file systems implemented in distributed
environments[Pope85][Howa88][Nels88][Cabr88][Pike90], it is unlikely that a single file system will
ever be universally accepted in an internet environment. The main limiting factor in providing
such a file system is that the internet spans a collection of autonomous organizations, each of which
administers its own system. It is unrealistic to expect all such organizations to adopt a single file
system. Thus, the key problem that we must contend with is autonomy.

Assuming that the existence of multiple file systems is unavoidable, the problem one must
consider is how to integrate these multiple, autonomous, heterogeneous file systems in a way that
provides a uniform interface to the files. The Jade file system allows users to construct a private file
naming hierarchy out of an existing collection of file systems, and thus access files in a uniform way.
We have built a prototype of Jade that integrates Unix file systems, Sun Network File Systems
(NFS)[Sun86], and Andrew File Systems (AFS)[Howa88], as well as arbitrary file systems accessed
through FTP[USC85].

Jade has two important characteristics. First, it is a logical system that integrates a heteroge-
neous collection of existing file systems. It dose not provide any storage of its own; it only maps
file names onto files that are stored in existing file systems. These underlying file systems may be
heterogeneous in the sense that they support different file access protocols; Jade provides the user
with a completely homogeneous name space. Furthermore, because of autonomy, Jade is designed
under the restriction that the underlying file systems may not be modified in software nor changed
in administration. The underlying file systems treat an instantiation of the Jade File System as a
regular file system user without any special privileges. Second, rather than provide a global name
space, Jade permits each user to define a private name space. A given user has the same view
of heterogeneous, internet-wide file systems, regardless of what machine he or she is using. Jade
name spaces support two novel features: they allow multiple file systems to be mounted under one
directory, and they allow one logical name space to mount other logical name spaces.

The remainder of this paper is organized as follows. Section 2 motivates Jade's design and
contrasts the design with related systems. Section 3 describes the data structures and algorithms
used to implement the name space and Section 4 presents several examples that illustrate how
one takes advantage of Jade's unique features. Finally, Section 5 discusses Jade's performance and
Section 6 offers some conclusions.



2 Client-Based Design

This section motivates Jade's design and compares this design with related systems. The discussion
is from both the user's perspective and in terms of the system structure.

2.1 User's Perspective

Each Jade file system is defined on a per-user basis. The result is a collection of small, per-user
name spaces rather than a large system-wide name space. In Jade, users choose the physical file
systems they want to access, and glue these systems together to form their own private, logical file
systems. A Jade file name, rather than being global, has scope relative to a single logical name
space. That is, every resolution of file names is performed in the context of a specific user's name
space. Figure 1 illustrates an example of a Jade file system associated with the user John, where
the dotted lines denote the partitioning of the logical file system into a set of physical file systems.

A collection of physical file systems are mounted in a user's private name space. We consider a
physical file system to be a service that maps file names to internal handles, and stores or retrieves
file data associated with a given internal handle. Each physical file system is addressed by the
network address of the host where the physical file system is located and the identifier of the
physical file system used by the host. We also assume that each physical file system supports
one or more remote access protocols and represents files as non-typed byte-streams. Note that
the existence of the network is not totally transparent to the user. The user must know where a
physical file system is located to be able to mount it on his or her logical file system. Once a file
system is mounted, however, the user can use the logical file system in a network transparent way.
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Figure 1: Example Private File Hierarchy

Defining the file system on a per-user basis is well justified. First, it increases user mobility in the
sense that users view the same file systems regardless of what workstations they are using, and where



the physical file system is located. Even when users access the network from a single workstation,
network window systems (e.g. X Window and Sun NeWS) encourage them to access more than one
host at one time. The private file system provides the user with a single name space among these
hosts. Second, the activity of accessing files by a single user tends to be isolated from other users,
and focused on a small working set of directories[Floy86][She!86][Cabr88]. Satyanarayanan[Saty89]
has pointed out that in a research or academic environment, most files are read and written by a
single user; when users share a file, it is usually the case that only one of them modifies it. This
implies that file references outside the user's private name space are relatively infrequent.

This per-user name space approach trades the burden on an administrator of maintaining a
global name space for the burden on the user of organizing a private name space. Maintaining a
consistent and coherent global name space in a large distributed system is not a trivial task. In
NFS, for example, if all the hosts mount each other, the number of mount points in the system
is proportional to the square of the number of hosts in the environment, producing a significant
maintenance overhead. This overhead is probably the limiting factor in the scale of the environment.
On the other hand, organizing a private name space is much easier. The scope of the private name
space is both small and relatively static. A default private name space for novice users, which
includes the directory for binaries and user's home directory, can be automatically generated from
user password files (e.g. passwd file in Unix). Expert users can then tailor their own logical file
systems by mounting the desired file systems into their logical name spaces.

As mentioned before, the pathname resolution is performed in the context of a specific user's
name space. When running a program, by default, the name space of the user who invoked the
program (called the invoker) is used to resolve names. However, Jade introduces a new feature,
called SetNameSpace, that allows users to associate a particular name space with a program.
This attached name space is used for name resolution when the program is executed. The function
SetNameSpace is similar to the function setuid provided by Unix, which allows changing the
privilege of the process from the program invoker to the program owner. For example, when running
a text processing application, the application can use its name space, rather than the invokers, to
resolve font file names and source file names. The attached name space can also be a special name
space defined only for this program. For example, a front-end program of a database system can
define its own name space to match internal file organizations.

Like most distributed file systems, Jade supports a mount mechanism for gluing together a set
of file name spaces into a seamless, hierarchically structured, name space. Unlike other systems,
however, one physical file system may be mounted in many Jade file systems, each time in a different
place. Because of the problem of autonomy, all of the information necessary to mount one directory
under another is maintained in the Jade file system; none of the underlying physical file systems
are aware of the fact that they are participating in some user's logical file system. The following
subsections introduce the novel aspects of Jade's mount mechanism.



2.1.1 Mounting Logical Name Spaces

To facilitate file sharing, Jade allows one logical file system to be mounted in another Jade file
system, in the same way that a physical file system can be mounted into a Jade file system. This
allows each user to name files through another user's name space. In John's name space shown in
Figure 1, for example, the directory /mike might refer to a logical name space belonging to another
user Mike. Simply by concatenating the leading path /mike with the names used by Mike, John
can name files using Mike's name space. Moreover, the name space that is mounted by one name
space might mount yet another name space. Unlike the Sun Network File System, the Jade file
system allows users to name files across name space boundaries. Not only does this feature support
file sharing, but it also encourages users to generate auxiliary name spaces for special purposes.
Section 4 presents one application that takes advantage of auxiliary name spaces.

By mounting logical name spaces, Jade file systems are linkedto each other to form a loosely cou-
pled confederation. Figure 2 depicts the relationship between one logical name space and a collection
of other physical and logical name spaces. The relationship among all logical name spaces is, how-
ever, arbitrary and voluntary without central authorities[MichS7], specific configurations[Cher89],
or any kind of naming conventions[Zaya88][Ever90].

Logical Name Space

Other Logical Name Spaces

Figure 2: Relationship Among A Collection of Logical and Physical Name Spaces



2.1.2 Multiple Mounts

Jade enhances the functionality of the mount operation by allowing an ordered list of file systems to
be mounted under a single directory. In John's name space shown in Figure 1, for example, the di-
rectory /bin refers to three physical file systems: /usr/john/bin in the host jag, /usr/john/bin
in the host meg, and the /usr/bin in the host meg; entries of this directory includes those from
these three file systems. This feature, called a multiple mount, has a number of advantages, es-
pecially when compared with auxiliary mechanisms built on the top of the file system. This is
because all directory services (commands) are still applied to directories created by the multiple
mount. For example, the multiple mount is capable of supporting the same functions provided
by the search path or version file mechanism; however, by the standard directory listing command
(e.g., Is in Unix), users can list aD available files under the directory created by the multiple mount.
Multiple mounts are especially useful in software development; they can be used to handle version
control, software-configuration dependencies, and software distribution[Pete91]. Section 4 describes
a version control mechanism built on top of Jade that takes advantage of this feature.

2.2 System Structure

The Jade file system provides a logical layer between file systems and their users. It consists of two
major pieces: a Name Space Manager and a Access Manager. The Name Space Manager provides
a directory service that maps logical file names provided by the user into handles for the files; it is
called when opening files. The Access Manager supports file access, given a file handle.

Jade

Name Space Access Manager

Figure 3: Relationship between Jade and Other File Access Protocols

In Jade, the directory service is completely separated from the file access service, both in
functionality and implementation. The former is provided by the Name Space Manager, and the
latter is supported by the Access Manager. Both the Name Space Manager and the Access Manager,



depend on the underlying file access protocols. For example, a Jade file system might depend on
NFS, AFS, FTP, and the Unix file system (UFS for short) as illustrated in Figure 3. The Name
Space Manager uses the directory capabilities of those protocols (e.g., their ReadDir, Lookup,
and GetAttr operations), while the Access Manager invokes their storage-related operations (e.g.,
their Read, Write, Get and Put operations). The reason behind this separation is based on the
observation that the directory abstraction is different in dissimilar file systems. In fact, most file
system protocols provide a completely different set of operations for directory services.

2.2.1 Access Manager

Jade's Access Manager is similar to the Cache Manager used by the Andrew File System. When
a file is opened, the Access Manager checks the cache for the presence of a valid copy. If such a
copy exists, the cached copy is opened and used. Otherwise, an up-to-date copy is fetched from the
physical file system. Read and write operations on an open file are directed to the cached copy. If
a cached file is modified, it is restored back to the physical file system when the file is closed.

Jade differs from the Cache Manager of the Andrew File System in three respects. First, Jade
does not require a local disk for caching. Instead, it allows the user to choose any one of the
underlying physical file systems as the cache server. Of course, the cache server is usually located
nearby. Notice that the local disk of the workstation is considered as one of the physical file systems
for Jade, and can be chosen as the cache server. The advantage of this refinement is that it allows
use of the Jade file system even without a local disk for caching. Second, Jade does not commit to
one single protocol suite as does Andrew. Instead, the Access Manager behaves as a switch that
selects from among several access protocols. As illustrated in Figure 3, Jade accommodates access
protocols of NFS, AFS, FTP, and UFS. Third, Jade separates the fetch (restore) operation from
the open (close) operation. The fetch and restore operations are defined by the access protocol of
the underlying file system where the file is located. After the file is fetched, however, the access
protocol provided by the cache server is used to open, read, write, seek, and close the cached copy
on the cache server.

As shown in Figure 4, the file object maintained on the logical file system includes two caching
operations (fetch and restore), several access operations (open, read, write, seek, close, and so on),
and two references (to the cached copy and to the original file). Since the design and implementation
of the uniform interface is straightforward, the rest of this paper concentrates on issues of naming.

2.2.2 Name Space Manager

The Name Space Manager implements a skeleton hierarchy. This hierarchy keeps track of the
boundaries between the underlying file systems. It is only a skeleton because most of the directory
nodes within a given subtree are maintained by some physical file system, not by the Name Space
Manager. Only a few directory nodes, called skeleton nodes, are maintained by Jade, Another
way of saying this is that the skeleton hierarchy is superimposed over a collection of existing file
hierarchies; much of the structure of the underlying hierarchies remain visible to the user.

Each skeleton node maintains a list of references to other file systems. The mount operation is



Caching Operations:
letch, restore

Access Operations:
open, read, write,
seek, dose, etc.,

Figure 4: File Object

used to attach given file systems to the name space by creating a skeleton node. Jade generalizes the
mount operation to allow none, one, or more than one file system to be attached to a single skeleton
node. Moreover, the mounted file system pointed to by the reference can be either a physical file
system or another Jade file system. When resolving a given pathname, Jade first locates the proper
skeleton node, and then resolves the rest of the pathname by consulted the underlying file systems
referred to by references stored in the skeleton node. However, since a given skeleton node may have
more than one reference as well as references to other logical file systems, the procedure to resolve
the rest of the pathname is more complicated than those used by other distributed file systems.
Section 3 discusses pathname resolution in more detail.

Although conceptually simple, this design is more powerful than techniques introduced by
other distributed file systems; e.g., prefix tables and remote links used by the Sprite File
System[Welc86], mounting tables and mount points used by NFS, and volumes used by the An-
drew File System[Side86]. The fundamental difference comes from where and how the mounting
information is maintained. Andrew embeds all mounting information in volumes which are main-
tained by physical file systems. In Sprite, the remote link is maintained by the physical file system
and used as a marker of the boundary; the prefix table is located on client site, but serves as
a naming cache only. Thus, both Andrew and Sprite embed mounting information in the data
stored in the file server, which Jade cannot do, not only because of the autonomy restriction, but



also because each user may mount the file system in a different place. Sun's Network File System
separates the mounting information into two parts: the mounting table directs a path name to the
appropriate file server, and mount points relate a local directory to the root of the mounted file
system. The former is kept in the client workstation, while the latter is maintained by individual
physical file systems. Jade, on the other hand, realizes the mounting relation as the skeleton node
and maintains it at only the client workstation. More precisely, when one physical file system is
mounted under another, the latter system contains no information pointing to the former. All
information needed to mount one node under another is maintained at the client.

In most other distributed file systems, the name space is implemented as a kernel service. In
Jade, on the other hand, the private name space is implemented as a separate name server; each
user process uses an interprocess communication mechanism to consult its private name space.
Since the name space is defined on per-user basis, the traffic to an individual name space is small
and limited, and the private name space is not the bottleneck of the system. The advantage of
this approach is that it allows a set of processes owned by one user to share the same naming
environment even when those processes span more than one host.

The skeleton node can be considered a generalization of symbolic links provided by most Unix-
like File Systems[Ritc78][Saty85][Welc86]. A symbolic link is applied only within the file system in
which it resides; it redirects a path from one subtree to one other subtree in the same name space.
Symbolic links are, therefore, always leaves in the naming tree. On the other hand, a skeleton node
refers a path to another file system. A skeleton node may even point to more than one file system.
Moreover, one skeleton node can be under another skeleton node. For example, the skeleton node
/jade/doc/conf/original in Figure 1 is under another skeleton node /jade/doc/conf.

Projects like Tilde[Come85], QuickSilver[Cabr88], and Plan 9[Pike90] provide mechanisms to
let users construct their own name spaces rather than a single global name space. However, Jade
surpasses these systems in their ability to accommodate heterogeneity, allow for customization,
and support interactions between name spaces. Generally, none of these three systems allow a
name space to be mounted into another name space, and they all commit to a single protocol-suite.
Tilde allows users to choose individual name spaces (called trees) to form their naming environment
(called the forest). However, it does not allow one tree be attached under another tree, and therefore
the pathname is always started from the tree's name. Plan 9 provides a per-process based name
space. However, whenever invoking a new job in other servers, it needs to reconstruct a new naming
environment, thereby trading the cost of querying a separate name server for the cost of generating
a new naming environment.

3 Name Space

This section describes the data structures and algorithms used to implement the name space. The
key data structure is the skeleton hierarchy, which maintains boundaries between the underlying file
systems. A mount operation is used to create and tailor this hierarchy. The pathname algorithm is
more complex than those used by other file systems. This is because a given logical directory may
point to multiple underlying file systems, as well as to other logical file systems.
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3.1 Skeleton Hierarchy

A Jade name space consists of a collection of subtrees, or domains. Each domain corresponds to
one underlying file system. Domains are glued together to form the Jade name space. The root of
a domain—the node by which the domain is attached to the name space—is called a skeleton node.
For example, the domain rooted at /jade represents one domain and the node /jade is a skeleton
node in Figure 1.

A given skeleton node contains three pieces of information: its pathname, its attributes, and
a list of references to directories in other name spaces. The reference identifies the host (or the
ce//for AFS) that implements the desired file system, the root in the mounted file system, and the
network access protocol that is used to access this file system. For example, the skeleton node with
the pathname /jade (called the skeleton node /jade) is given by

</jade, 0666, meg.cs.arizona.edu:/usr/john/jade:NFS>

In this example, meg.cs.arizona.edu (or meg for short) is the host name; /usr/john/jade is
the root of the mounted file system; and NFS indicates the NFS protocol is used to access files on
meg. As another example, the skeleton node /jade/doc/paper is given by

</jade/doc/paper, 0666, cs.arizona.edu:user.john:/afs/az/usr/john/paper:AFS>

where cs.arizona.edu is the cell name; user.john is the volume name of the mounted file system
and /afs/az/usr/john/paper is the name of the root; and AFS indicates the AFS protocol used
to access files in this domain. The skeleton node might refer to another Jade file system rather than
a physical file system. For example, the skeleton node /mike refers to another Jade file system
named mike@state.edu and is given by

</mike, 0666, mike@state.edu:/database:JNP>

where JNP (Jade Naming Protocol[Rao91]) is used to access Jade name space mike@state.edu.
Furthermore, the skeleton node might have zero, or more than one, reference. For example, there
are three references associated with the skeleton node /bin:

jag.cs.arizona.edu:/usr/john/bin:UFS
meg.cs.arizona.edu:/usr/john/bin:NFS
meg.cs.arizona.edu:/usr/bin:NFS

As another example, the references of the skeleton node /RFC are

meg.cs.ariozna.edu:/usr/john/RFC:NFS
nic.ddn.mil:RFC:FTP

On the other hand, the skeleton node /jade/doc has no references and is considered as a logical
directory with two entries: /jade/doc/paper and /jade/doc/conf. The root directory (/) is
another example of a skeleton node without any references. Notice that skeleton nodes with no
references are not necessarily empty directories in the logical hierarchy; they may contain other
skeleton nodes.



The mount operation is the basic operation provided by Jade to allow users to construct their
name spaces. It creates a skeleton node in the user's logical hierarchy with the given path name,
and associates this node with references to file systems. In addition to the traditional mount that
links a node to one single file system, Jade supports null mount and multiple mount options. With
the null mount option, no file system is bound to the skeleton node. With the multiple mount
option, the node is bound to an ordered list of references. The order is important to resolve name
conflicts. We will discuss the name conflict issue later. Also, when new files are created, they are
stored on the first physical file system indicated in the list.

One Jade name space can be mounted into another Jade name space in the same way that a
physical file system can be mounted into a Jade name space. For example, skeleton node /mike
in John's name space as shown Figure 1 mounts the subtree /database of a private name space
belonging to another user named Mike. The Jade file system provides JNP for accessing the logical
name space. In this example, the pathname /mike/dfs.bib in John's name space and the path-
name /database/dfs.bib in Mike's name space refer to the same file. The Jade file system also
allows users to name files across name spaces. As illustrated in Figure 5, Mike's name space mounts
the subtree /bib/journal of Bob's name space under the skeleton node /database/ieee. There-
fore, the pathname /mike/ieee/computer.bib in John's name space refers to the file specified
by the pathname /bib/journal/computer.bib in Bob's name space.

mike

John's Name Space Mike's Name Space Bob's Name Space

Figure 5: Example Mounting Other Name Spaces

Figure 6 lists all directory operations provided by the name space. Notice that unlike most Unix-
like file systems, which treat directories the same as files, Jade directories are treated differently
from regular files. Specifically, file access operations (i.e., open, read, write, close, and seek) are no
longer applied to directories. This is necessary because directory services are supported by Jade,
rather than by the underlying physical file systems.

Using Figure 1 as an example of a private name space, consider the following examples. First,
the existence of skeleton nodes is not hidden from users. For example, the user can list entries in
a directory as follows:

% Is -1 /jade
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mkdir
rmdir
mount
unmount

lookup
remove
getentry
getskeleton
getattr
setattr

Makes a new directory in the physical file system.
Removes a directory in the physical file system.
Creates a skeleton node in the logical file system.
Removes a skeleton node in the logical file system.
Returns the file handle for the named file.
Deletes the specified file.
Lists the entries under one directory.
Lists the skeleton nodes under one directory.
Gets the attributes of a file/directory.
Sets the attributes of a file/directory.

Figure 6: Directory Operations

' <meg:/usr/john/jade:NFS>
> <meg:/usr/john/jade/src:NFS>
- <meg:/usr/john/jade/util:NFS>

Sdrwxrwxrwx John ./
-drwxrwxrwx John src
-drwxrwxrwx John util
Sdrwxrwxrwx John doc

Note that the mode of files and directories has been modified to include skeleton information. The
first character of the mode string S indicates that the entry is a skeleton node. The last column of
a skeleton node entry specifies references to a set of other name spaces.

Second, it is important to distinguish between the operations that modify the underlying file
systems and those operations that modify the logical hierarchy. For example, the operation mkdir
creates a new directory in a physical file system, as illustrated in the following example.

% mkdir /jade/tmp
% Is -1 /jade
Sdrwxrwxrwx John ./
-drwxrwxrwx John src
-drwxrwxrwx John util
-drwxrwxrwx John tmp
Sdrwxrwxrwx John doc

That is, a new directory named tmp is created in the physical file system /usr/john/Jade on host
meg. In contrast, the operation mount creates a skeleton node that exists only in the skeleton
hierarchy.

>• <meg:/usr/john/jade:NFS>
> <meg:/usr/john/jade/src:NFS>
>• <meg:/usr/john/jade/util:NFS>
><meg:/usr/john/jade/tmp:NFS>

% mount /jade/menu jag:/usr/John/menu
% Is -1 /jade
Sdrwxrwxrwx John ./
-drwxrwxrwx John src
-drwxrwxrwx John util

> <meg:/usr/john/jade:NFS>
> <meg:/usr/john/jade/src:NFS>
> <meg:/usr/john/jade/util:NFS>

11



-drwxrwxrwx John tmp -»<meg:/usr/john/jade/tmp:NFS>
Sdrwxrwxrwx John doc —»<>
Sdrwxrwxrwx John menu —><jag:/usr/john/menu:UFS>

The first argument to mount gives the logical directory name. The second argument identifies the
file system that is to be mounted at the newly created directory. If the second argument is not
given (i.e., the mount operation with the null option), then the directory exists only in the logical
hierarchy, as is the case with /jade/doc. If there are more than two arguments (i.e., the mount
operation with the multiple option), the command creates a directory mounting more than one file
system. Notice that the protocol used to access the file system is determined by Jade; it is not
specified by the user. Jade maintains a host/protocol table, and uses this table to complete the
mounting information.

Entries of the directory created by the multiple mount are composed of the union of all specified
mounted file systems. Consider the following mount operations:

% mount /jade/bin.meg meg:/usr/john/bin
% mount /jade/bin.jag jag:/usr/john/bin
% mount /jade/bin meg:/usr/John/bin jag:/usr/john/bin

The files under the directory /jade/bin consists of the directories /jade/bin.meg and /jade/bin.jag
as follows:

% Is /jade/bin.meg
efind find jdacc
% Is /jade/bin.jag
iostat jdacc pnsd
% Is /jade/bin
efind find iostat
jdacc pnsd

Notice that the filename jdacc exists in both of the file systems meg:/usr/john/bin/jdacc and
jag:/usr/john/bin/jdacc, and /jade/bin/jdacc refers the one located on the former file system.
Also, new files are created on the former file system as shown in the following example:

% touch /jade/bin/bar
% Is /jade/bin
bar efind find
iostat jdacc pnsd
% Is /jade/bin.meg
bar efind find jdacc
% Is /jade/bin.jag
iostat jdacc pnsd

12



Jade supports two operations to list entries of a directory: getentry returns all entries (skeleton
nodes and nodes on physical file systems) under the directory, and getskeleton returns only local
skeleton nodes under the directory. Since a given directory may refer to more than one physical
file system, the cost of collecting all entries can be very high. Jade provides getskeleton as a less
expensive alternative, and as Section 3.2 points out, this operation is very useful in pathname
resolutions.

3.2 Pathname Resolution

In order to resolve a given pathname, Jade locates the desired domain by identifying the skeleton
node whose pathname has the longest matched prefix with the given pathname. Jade then resolve
the rest of the pathname by consulting the underlying file systems referred to by the list of references
associated with this skeleton node. If there is only one physical file system specified by the list, the
procedure to resolve the remaining path is straightforward. However, because of multiple mounts
and mounting logical name spaces, this procedure is more complicated. Three issues need to be
considered. The first issue is the simple case of resolving the pathname in a physical file system.
The key to this issue is achieving acceptable performance. The second issue involves resolving a
name relative to more than one logical name space. Since Jade allows pathnames across logical
name space boundaries, the searching procedure may invoke a sequence of logical name spaces
before reaching the physical file system that is able to complete the resolution process. The last
issue deals with the multiple mount. For the multiple mount, it may be necessary to try several
possibilities before successfully resolving the given name.

3.2.1 Resolving Pathname in Physical File Systems

In general, there are two approaches in resolving the remaining path in the physical file system. In
the first approach, called local pathname resolution, each directory is brought across the network
from the host of the physical file system and searched on the host of the logical file system. In
the second approach, called remote pathname resolution, the pathname is packaged into a network
request message and sent to the host of the physical file system, which then opens and searches
directories locally.

The Jade file system supports the local pathname resolution model. In order to improve per-
formance, Jade not only maintains the skeleton hierarchy but it also caches the remote directories.
The reason behind this decision is that experiments [Shel86][Howa88] have shown that the activity
of most users is confined to a small slowly changing subset of the entire name space hierarchy. Thus,
a directory cache on the Jade has a high hit ratio, and much network traffic for moving directory
entries from remote file systems is avoided.

Caching is a general technique for reducing the cost of pathname resolution in distributed
systems[Shel86][Terr87][Saty90]. However, its functionality varies in different file systems. For
example, prefix tables used by the Sprite File System only map pathname prefixes to file servers;
NFS caches attributes and file handles of visited files/directories for later access; Locus and Andrew
use the local pathnames resolution and cache intermediate directories when resolving pathnames.
Like Locus and Andrew, Jade caches intermediate directories. However, rather than starting from
the root and caching each component directory under the root like Locus and Andrew, Jade starts
from the skeleton node and caches only component directories under this domain.
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Figure 7: Example Multiple Logical Name Spaces

3.2.2 Resolving Pathname in a Sequence of Name Spaces

Mounting logical file systems can be treated the same as mounting physical file systems, but
the resolution procedure is more complicated when a sequence of logical name spaces may
need to be traversal before a desired physical file systems can be located. Consider Fig-
ure 7 which shows three logical name spaces (i.e., John, Mike, and Bob) and two physi-
cal file systems (i.e., Jag and Meg), where John's name space mounts Mike's name space,
which in turn mounts Bob's name space, which finally mounts a physical file system on
meg. Each of the directories John:/jade.menu (the directory /jade.menu on John's name
space), Mike:/projl/doc/man, and Bob:/jade/versionl.0/doc/man refer to the same phys-
ical directory: meg:/usr/jade/versionl.0/doc/man. But in order to resolve a pathname
/jade.menu from John's name space, it is necessary to consult each of the logical name

.spaces before the physical file system is found. Notice that nodes in the name spaces of this
sequence may contain other skeleton nodes. For example, Mike's name space has a skele-
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getentry(/usr/jade/versionl.0/doc/man)

Figure 8: Example Recursive Method

ton node /projl/doc/man/ish introducing a different domain, and therefore, the directory
Mike:/projl/doc/man (and hence John:/jade.menu) includes not only files in the directory
meg:/usr/jade/versionl.0/doc/man (i.e., fetch.3c, restore.Sc, and stdio.Sc), but also ish.
Also notice that it is possible to form a loop within this calling sequence. How to detect and prevent
loops is one critical issues in designing the pathname resolution algorithm. Finally, name conflicts
may exist between names of local skeleton nodes and those from mounted name spaces. We will
address these two issues in later sections.

There are two methods to resolve the pathname in a sequence of name spaces: the recursive
method and the iterative method. With the first method, pathnames are recursively resolved
within the new name space, and all the entries (including local skeleton nodes and mounted files)
of the directory are collected and returned to the caller one at a time. Figure 8 illustrates the
procedure to query the directory /jade.menu of the name space John using this method. The
query starts from John's name space, which then generates a new query to Mike's name space,
which in turn queries Bob's Name space, which finally consults the physical file system meg. The
answers come backward from meg to Bob to Mike, and finally to John. The recursive method
has the advantage of the forward mounting property being completely hidden from the current
name space: the getentry operation is the only directory lookup service provided by the logical
name space, and the procedure for handling logical file system mounting is treated in exactly the
same way as that of the physical file system mounting. However, this method is very expensive
since it requires each of the logical name spaces in the calling sequence to collect directory entries
before returning the query. Moreover, because of its recursive nature, the original name space has
no control over the whole resolution activity, making detection of loops in the mounting sequence
more difficult.

We chose the iterative method illustrated in Figure 9. With the iterative method, the original
logical name space (i.e., John's name space) retains control over the resolution activity. When
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Figure 9: Example Iterative Method

{stdio3c fetchJc, restoreJc)

1.0/doc/man)

Jade calls a given name space, that name space responds to the query with the list of references
associated with the queried node and local skeleton nodes under this node. As in the exam-
ple, Mike's name space returns the query of the pathname /projl/doc/man with the reference
to Bob:/jade/versionl.0/doc/man and the skeleton node under the node /projl/doc/man.
John's name space then queries Bob's name space for further information, and so on. In this
method, the skeleton nodes are exposed, rather than hidden, by each logical name space. The
getskeleton operation queries the skeleton nodes under one directory (called the skeleton children
of the directory) and the list of references associated with this directory. In contrast, the getentry
operation lists all entries under one directory, including skeleton nodes and regular files and direc-
tories. Since the original name space has full control over the resolution procedure, it is easy to
detect loops in the mounting graph.

3.2.3 Handling Multiple Mounts

Jade allows more than one file system to be mounted on one single skeleton node. The mounted file
systems can be either physical file systems or other Jade file systems. In the latter case, a sequence
of nodes in different logical name spaces may be consulted before proper physical file systems are
located. However, multiple mounts may also occur in name spaces within this sequence. Hence,
among these invoked name spaces, there is a direct graph that describes the mounting relationships.
Figure 10 illustrates a node of the name space A and all name spaces referenced by this node. In
this example, name spaces are considered as units: the name spaces of A, C, and F are logical
name spaces, while the name spaces of B, D, E, G, H, and I are physical file systems. Arrows
represent mounting relationship among name spaces. In this example, a skeleton node in the name
space A multiply mounts nodes in name spaces B, C, and D.

The mounted file system (either physical file system or a logical file system) may have files with
names that already existed in the original skeleton hierarchy. Also, files from different file systems
mounted on one skeleton node (multiple mount) may have the same name. Jade uses the following
two rules to resolve name conflicts. First, names of local skeleton nodes have precedence over names
from mounted files systems. Second, when there are conflicts from different mounted rile systems,
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Figure 10: Example Direct Graph

the order of the list of references associated with the node is used to resolve conflicts1. Thus, names
from the mounted file system appeared in the front of the list of references have preference over
those appeared in the back of the list.

These preference rules suggest that the depth first search is the proper way to search name
spaces in the direct graph. In this example, the sequence of invoked name spaces is B, C, E, F,
H, I, G, and D. In order to improve the performance, the searching procedure halts whenever the
desired name is found in one of name spaces of this sequence.

3.2.4 Pathname Resolution Algorithms

To summarize, the Jade file system maintains the skeleton hierarchy and caches entries of visited
remote directories; a given skeleton node points to zero or more file systems, each file system may
be either a physical file system or another Jade file system; Jade uses local pathname resolution,
caches remote directories, iteratively consults individual name spaces, and uses depth first search
to consult name spaces. This subsection completes the picture by presenting the algorithm used to

1 An alternative way to resolve name conflicts between different mounted file systems is to compare timestamps of
files with the same name. It therefore changes the semantics of the list of references.
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resolve a pathname.
A Jade name space is implemented by a collection of nodes, each of them is either a skeleton

node or a cached node. Cached nodes, in turn, correspond to either skeleton nodes in other Jade
name spaces, or files/directories in physical file systems. The structure of the node consists of the
pathname, a list of references to other file systems, and a set of attributes. A hash table is used to
locate nodes by mapping a given pathname into the corresponding node.

The pathname resolution function, ResolvePathNameQ2, translates a pathname to the pointer
of the node. ResolvePathNameQ is given in the Appendix. It starts by locating the node in the
current name space which has the longest prefix of the input pathname; this node is called the
closest ancestor node. The closest ancestor node can be either a skeleton node or a cached node.
FindClosestAncestorQ performing this search is given in the Appendix. If the closest ancestor node
is a cached node, the validity of this cached node is checked. In order to reduce the traffic between
Jade and the physical file systems, we examine only the closest ancestor node instead of all the
nodes along the path from the skeleton node to the closest ancestor node.

Once the closest ancestor node is located, ResolvePathNameQ then resolves each component of
the remaining pathname. The function maintains two lists: a outstanding list keeps outstanding
references, and a visited list records references that have been visited. The visited list is used to
avoid visiting previous references in order to prevent the loops in the mounting sequence. The
body of ResolvePathName() consists of two while loops. The outer while loop scans each component
in the remaining path, and the inner while loop consults each of the references in the outstanding
list in order to resolve the current component. At the beginning, the outstanding list is set to
the references associated with the closest ancestor node. Whenever the component is resolved, the
outstanding list is reset to the list of references associated with the new node. For each reference
in the outstanding list, the name space pointed to by this reference is consulted using the CacheQ
function. If the reference points to a physical file system, CacheQ calls the operation getentry to
get entries in the remote directory and caches them. If the reference refers to a logical name space,
CacheQ calls the operation getskeleton to get the skeleton children under the remote node and the
reference list associated with it, caches these skeleton children, and returns the reference list. This
list then is put in front of outstanding list in order to implement the depth first search. The inner
while exists whenever the node with the name of the current component is located, otherwise the
while loop continues. If the outstanding list is empty, the function ResolvePathNameQ fails.

3.3 Other Issues

3.3.1 Get Directory Entries

Unlike other distributed file systems, Jade uses the hash table to locate desired nodes directly as
mentioned in the previous section, and it does not maintains any reference from a directory to
its entries. This is because entries under a directory include not only nodes from mounted file
systems, but also skeleton nodes in the logical name space. Thus, listing entries under a directory
in Jade is more complicated than in other systems. The Appendix outlines the Dir() function
that implements this operation; the complete algorithm is presented in [RaoQl]. In addition to the
previously mentioned hash table that maps a pathname into a node, another hash table is needed
in order to implement this function. This hash table, called the Skeleton Children Table (or SCT),

2ResolvePathName() is logically equivalent to;namei() in the Unix operating system.
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maps a given pathname into a set of nodes, each of which is an entry under this pathname and is a
skeleton node. Using Figure 1 as an example, SCT maps the pathname /jade/doc to two skeleton
nodes: /jade/doc/paper and /jade/doc/conf. Dir() starts by calling ResolvePathName() to
locate the directory node corresponding to the input pathname. Then, SCT is used to collect
entries which are children under this directory node and are skeleton nodes. Finally, the depth first
method presented in the previous section is used to collect other entries from mounted file system
referred to by this directory node.

3.3.2 Access Control

The Jade file system does not implement its own authentication control mechanism. Instead, it
relies on the underlying file systems to check the access rights whenever their files are accessed.
This is because Jade is just an agent between the file system and user; it does not have any special
privileges. We also believe that the authentication mechanism should be installed on the server
where objects are implemented, rather than on the intermediate agent. Acting as an agent, the
Jade file system also collects all authentication information needed to access file systems and issues
the proper information automatically whenever it accesses these files.

One problem of this decision is that a skeleton node owned by one user is readable by other
users (i.e., users cannot make skeleton directories unreachable for others). However, because we
use the iterative search method, the user still needs to have access rights in the physical file system
in order to list the contents of a directory on that physical file system.

4 Applications

This section presents three examples to illustrate the novel features provided by the Jade File
System. The first example shows that Jade provides a rich set of functions that allow users to
tailor their private name spaces to fit their needs. The second example illustrates how the mount
mechanism can be used to build an architecture specific name space in a heterogeneous environment.
The final example describes a version control mechanism built on top of Jade. This mechanism
provides a hierarchical view of a collections of files for each programmer and allows a maximal
sharing of theses files.

4.1 Tailoring Name Spaces

Since the structures of the underlying hierarchies of file systems remain visible to users, Jade
provides methods to allow users to assemble their own name spaces from these various underlying
hierarchies, thereby customizing the systems according to their own preferences. There are several
ways that users can tailor their name spaces.

First, skeleton nodes might not be part of any physical file system and may serve only as logical
directories with entries of other skeleton nodes. These skeleton nodes are created by the mount
operation with the null option. For example, the directory /jade/doc in Figure 1 is not contained
in any physical file system. Also, the resolution procedure implies that the name of a skeleton node
has preference over the name of files/directories in physical file systems, implying that names in
the private hierarchy supersede names in the underlying file systems. For example, if there were
a directory named /usr/john/jade/doc on host meg, then this directory would not be visible
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to the user because it would be hidden by the private directory /jade/doc. That is, /jade/doc
replaces meg:/usr/john/jade/doc. As another example, had there been a file or directory named
/usr/john/jade/junk on host meg, then it would have been hidden by the definition of junk
in the private directory. Because junk is bound to a null physical file system and does not point
to another private directory, its only purpose is to hide something in the underlying file system.
Entries that hide files or directories in the underlying file system are not automatically displayed
unless explicitly referenced.

Second, with the multiple mount option, users can define a directory to include files located in
more than one file system. The order in which the file systems are mounted is significant. For exam-
ple, the directory /bin points to meg:/usr/john/bin, meg:/usr/bin, and jag:/usr/john/bin.
As another example, the directory /tex points to jag:/usr/john/tex, jag:/usr/mike/tex, and
meg:/usr/lib/tex/macros. This features provides the same functionality as search paths in
Unix. The advantage of our approach is that directories created by the multiple mount op-
tion are treated exactly the same as other directories, and all directory operations still apply
to these directories. For example, with the command "Is /tex", the user can list all files under
jag:/usr/john/tex, jag:/usr/mike/tex, and meg:/usr/lib/tex/macros, while the command
"Is -1 /tex/plain.fmt" can be used to find out on which physical directory the file plain.fmt is
located. In contrast, Unix does not provide any general mechanism to list all available files under
the search path, or to locate a desired file by its name3.

Finally, the multiple mount option can be used to locate a file that is replicated in several file
systems. If there is a failure that causes one physical file system to become unreachable during
pathname resolution, Jade consults the next physical file system in the reference list. For exam-
ple, the directory /man points to jag:/usr/share/man and meg:/usr/share/man. With this
scheme, the physical file systems under the directory are usually identical and read-only. Putting
them under the same name, the replication property is transparent to users.

4.2 Architecture Specific Name Spaces

Jade allows a logical name space to be mounted into another name space. Using this scheme, users
can create auxiliary name spaces for special purposes. This technique can be used to hide hardware
heterogeneity.

Consider a user that uses either a MIPS or a Sun SPARC workstations, both running Unix.
The user might have a primary name space main which includes binaries for both architectures.
However, the user can also create architecture-dependent name spaces spare and mips, each of
which consists of skeleton nodes pointing to the proper nodes in the name space main, as illustrated
in Figure 11. In the name space main, the directory /bin/mips includes binaries for the MIPS
architecture, while the directory /bin/spare consists of binaries for the SPARC architecture. The
auxiliary name space spare (mips) has two skeleton nodes: root (/) pointing to the root of the
name space main, and /bin pointing to /bin/spare (/bin/mips) of name space main. When
the user logs onto the workstation, the appropriate name space (either mips or spare) is initiated
automatically4, and the user can use the same name to address the binary regardless of which of
the two workstations he or she is using.

3 Unix provides the command which to locate a given command, but it can only be applied to commands.
*In Unix, a simple routine in .cshrc file can perform the initialization.
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Figure 11: Example Architecture Dependent Name Spaces

4.3 Version Control

This section discusses how a version control mechanism can be easily built on top of the Jade file
system; the complete description of this mechanism can be found in [Rao91]. Jade allows users to
build their own views of a set of files. The refinement of the mount operation encourages users
to reorganize the structures of files in the logical layer rather than the physical layer. It thus
provides a framework for a software development and maintenance environment that allows several
programmers to work on a set of source files simultaneously.

In a large software project, there may exist more than one version of the software (e.g., one
or more release versions, a testing version, a working version for each programmer). In addition
to multiple versions, there may be multiple programmers working simultaneously. There are two
contradictory tasks in designing a software development environment. First, the system should
let users share files in different versions and switch between versions easily. Second, the system
should provide a mechanism to let the user build a private working area, without worrying about
interference from other programmers. Traditional software like SCCS[Allm86] require that a com-
plete copy of all the source files be made every time a new working area is needed. It can be very
expensive to copy files, especially for a large set of source files.

Recall that Jade pathnames are resolved relative to private name spaces and the multiple ref-
erences associated with one skeleton node provide a hierarchical view of a set of files located in
different physical directories (even on different hosts). For example, Figure 12 shows a software
development environment in which two programmers, John and Mike, share files located in four
different versions, but each programmer has his own view of the files. Consider, for example, John's
view consisting of three references. The first points to the directory jag:/jade/working/john/src,
the second refers to directory zep:/jade/test_version/src, and the last points to the directory
meg:/jade/release_version/src. John's view of the directory /project/src is shown in Fig-
ure 13. The system also provides functions to let users adjust their view, as well as get more
information about this view. For example, John can change his current view from the one he is
working on to the test version simply by removing the first reference in the order list.
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Figure 12: Example Software Development Environment

5 Performance

We have implemented a prototype of the Jade File System on the Sun workstation running Sun OS
4.1. The prototype consists of interfaces to UFS, NFS, AFS, and FTP. It is implemented in such
way that it co-exists with the file system provided by the kernel. We measured the performance of
this prototype using the Andrew Benchmark[Howa88]. This section briefly describes the prototype
and then discusses its performance.

5.1 Prototype

Jade is implemented at the user-level without any modification to the kernel. It uses Sun RFC
as the interprocess communication mechanism between the components illustrated in Figure 14.
The Name Space Manager and the Access Manager are implemented as separate severs; the former
resolves the pathname, while the latter handles file caching. Although the Name Space Manager
is defined on a per-user basis, the Access Manager is designed in such a way that processes from
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different users can share cached files, even if they are located on distinct hosts. The C library
is modified to include calls the Name Space Manager and the Access Manager. The Appendix
outlines the library function open as an example to show how the Name Space Manager and Access
Manager are tied together. Jade also uses the Sun Shared Library mechanism. By dynamically
linking the Jade shared library, most existing software (ed, cc, find, etc.,) are able to access Jade
without modification or recompilation.

In comparison with the kernel-approach implementation used by AFS and NFS, the user-level
approach has the following advantages: it is easy to experiment with different design options;
debugging user-level servers is much easier than kernel-level mechanisms because the servers are
ordinary applications and the standard debugging tools can be used; and the system is more easily
ported among different operating systems. A potential disadvantage of this approach, however, is
that performance will be degraded by the user-level approach. The next section will address this
issue in more detail.

5.2 Performance Results

We measured the performance of the prototype with the Andrew Benchmark developed at
CMU[Howa88]. The Benchmark includes five phases: making directories (MakeDir), copying
files (Copy), examining the status of files under one subtree (ScanDir), scanning every byte of
files under one subtree (ReadAll), and compiling files (Make).

Two cases are tested: a local area network and a TCP/IP Internet. For each case, we compare
the performance of Jade and NFS. For the first case, the physical file system is located on the local
area network and a 10 Mbits Ethernet connects this file system and the client workstation. For the
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Internet case, the file system is located at Purdue University, while the client workstation is at The
University of Arizona. There are 24 gateways between the file system and the client workstation,
and the communication channels range from 10 Mbits Ethernet to 1.544 Mbits Tl links. The client
workstation, where Jade and the Andrew Benchmark are running, is a Sun 4/60 workstation with
16 Mbytes of main memory and a 320 Mbytes local disk. The Access manager uses this local disk
to cache files. The client workstation is running Sun OS 4.1. Both file systems provide Sun NFS
protocol for file access.

The performance results of both cases are given in Table I. Overall, Jade exhibits a 36% (275
seconds versus 202 seconds) slowdown relative to NFS in the LAN case. We attribute this to
the cost of the user-level implementation and indirectly naming in the logical name space. For
example, each open function needs to consult the Name Space Manager to resolve pathnames5.
Since the Name Space Manager is running as a separate process, there are six user-kernel boundary
crossings. NFS only requires two crossings for this test. This result (36 % slowdown) is similar
to the result from the Sprite Pseudo-File-System[Welc89] which shows 33-41% slowdown when
running the Andrew Benchmark. In the Internet case, the overall performances of Jade is almost
identical to that of NFS, with only a.4% slowdown (1169 seconds versus 1125 seconds). It is clear
that the cost of accessing the internet is so high that the penalty of the user-level implementation

5In this test case, the consultation to the Access Manager is omitted since files are located on the same host as
the Access Manageris located.

24



is insignificant. Another interesting observation is that the ratio of the LAN case to the Internet
case is 4.25 for Jade which is lower than NFS's 5.57.

MakeDir
Copy
ScanDir
ReadAll
Make
Total

LAN
NFS

3 sees
20 sees
31 sees
50 sees
98 sees

202 sees (1.00)

Jade
3 sees
23 sees
52 sees
84 sees
113 sees

275 sees (1.36)

Internet
NFS

23 sees
299 sees
115 sees
120 sees
568 sees

1125 sees (1.00)

Jade
23 sees
536 sees
127 sees
139 sees
344 sees

1169 sees (1.04)

Table I. Performance Results

For the MakeDir phase, Jade has the same performance as NFS in both the LAN case and
the Internet case. Since no file access is invoked in this phase, this suggests that the performance
of pathname resolutions introduced by Jade is at least as good as that used by NFS, or even better
if one subtracts the time spent communicating between the client and the Name Space Manager.

For the Copy phase, the performance of Jade (23 seconds) is compatible to that of NFS (20
seconds) in the LAN case. However, in the Internet case, the performance of Jade (536 seconds)
suffers a 79% slowdown compared with the NFS case (299 seconds). This is because rather than
accessing files page by page, Jade caches entire files on the Access Manager. Figure 15 shows three
alternative ways to copy a file A to a file B, assuming A and B are located in the same physical
file system. With the basic case, the file A is fetched from its source to the Access Manager to
generate a cached copy of A, the cached copy of A is copied to another cached copy in the Access
Manager which is then used as the cached copy of the file B, and the cached copy of B is stored
back to its destination. The total cost is three copy operations. With the optimized case, Jade
provides a new call relabel to let users change the reference associated with the cached copy from
its source to a new sink, and therefore the copy from the cached copy of A to the cached copy of
B can be omitted. However two copy operations are still required. (The performance of the Copy
phase reported in Table I uses this approach.) The ideal way to solve this problem is to have the
access protocol support a new copy operation, thereby making the cost of copying files compatible
to the cost of renaming files.

For the ScanDir phase, the performance of Jade in the LAN case is 52 seconds, while NFS
is 31 seconds. In the Internet case, the former is 127 seconds and the latter is 115 seconds. The
lesson we learn from this phase is about network latency. In a local area network, the network
latency is not an issue, and the ratio of the message latency time to the time spent at the client
and the server for computation is insignificant. In the Internet, on the other hand, the network
latency becomes a major factor in overall performance. Avoiding unnecessary network messages is
crucial in performance improvement. For example, the NFS protocol supports the function readdir
to list entries under a given directory. However, it only returns a file name for each entry. In
order to obtain full information about a directory for each entry, it requires one extra function call,
lookup, to retrieve the file's attributes. In the LAN case, where network latency is not a issue,
these overhead is insignificant. In the Internet, where the network latency is much higher, the
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cost becomes visible and even serious. We have extended the function readdir to return attribute
information in addition to the name of each entry in a directory. The performance of this phase
in the Internet case then improves to 72 seconds which is 43% faster than the original Jade and
38% faster than NFS. Notice the speedup percentage will increases as a function of directory size
because the fixed cost of reading a directory is amortized over more directory entries.

For the ReadALL phase, the performance of Jade in the LAN case is 84 seconds and NFS
is 50 seconds. For the Internet case, the former is 139 seconds and the latter is 120 seconds.
However, when rerunning this phase in the Internet case, NFS, which uses page access, has a
similar performance. But Jade drops to 65 seconds which is 46% faster than NFS. This is because
Jade takes advantage of the fact that cached files on the Access Manager can be reused. Again, the
Make phase is a good example to show that caching entire files is essential in terms of performance
for access files in the Internet. In the LAN case, Jade takes 113 seconds and NFS takes 98 seconds.
In the Internet case, however, Jade's time drops dramatically to 61% of the NFS's time (344 seconds
versus 568 seconds). This result is extremely important since the majority of file access in a research
or academic environment invokes viewing, editing, and compiling a small set of files[Floy86].
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6 Concluding Remarks

Jade is a client-based, internet-wide file system. Its primary goal is to provide a uniform mechanism
to name and access files in an heterogeneous internet environment. Instead of introducing a new file
system, we focus on accommodating existing distributed file systems. Because of autonomy in the
internet, we restrict our solution to require no modification in software nor change in administration
of the existing file systems. We therefore define a logical layer between existing file systems and
their users. In order to avoid the complexity of maintaining an internet-wide, global name space,
Jade supports a per-user based name space. Finally, Jade allows multiple physical and logical file
systems to be mounted in any directory.

We have implemented a prototype of Jade. From experiments using the Andrew Benchmark,
we conclude with the following three points. First, Jade's user-level implementation and extra level
of indirection cause a 36% slowdown in the local area networks case. However, this cost becomes
insignificant compared with the cost to access the Internet, as Jade and NFS have compatible
performance in the Internet case. Second, because of the high cost of accessing the Internet,
caching entire files is essential. It is particular true when the majority of file access invokes viewing,
editing, and compiling of a small set of files. Finally, network latency, which is not an issue in local
area networks, becomes an important factor of performance in the Internet. While most of access
protocols are design with local area networks in mind, they disclose performance problems from
network latency when extended to the Internet. Experiments show that an enhanced readdir for
obtaining full information of a directory in addition to names speedups the performance about 40%
in the ScanDir phase of the Andrew Benchmark.
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Appendix

This appendix illustrates pseudo codes for the functions described in the paper.

Function of Resolving Path Name

ResolvePathName(pat/mame)
node := FindClosestAncestor(pa</mame);
let remaining-path be the difference between the path of node and pathname;
let current-path be pathname of node;
while remaining.path is not empty do

let component be the first component in remaining-path, and remove it from the path;
let outstanding.list be the list of references associated with node;
initiate visiting.list;
while not found and outstandingjist is not empty then

let reference be the first element in outstandingjist, and remove it from the list;
if reference is not found in visited'.list then

add reference into visitedJist;
new-list := Cache(re/erence);
new.node := LookupCache(curren£_pa</i);

/* Consult the hash table to get the node with current-path */.
if new.node is not nil then

let node be new.node;
let found be true;

else
insert new.list into the front of outstanding-list;

fi
fi

end /* inner while */
- if not found then

return nil
fi

end /* outer while */
return node;
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Function of Finding Closest Ancestor

FindClosestAncestor(pai/mame)
while true do

node := LookupCache(pat/mame);
/* Consult the hash table to get the node with pathname */.

if node is nil then
remove the last component of pathname;

else
if node is a skeleton node then

return node;
else /* The node is a cached node. */

check the validity of node ;
if node is valid then

return node;
else

remove the last component of pathname;
fi

fl
fi

end

Function of Listing Directory Entries

Dir(pathname)
dir.node := ResolvePathname(pa</mame);
if dir.node is nil then

return fail;
children := LookupCache(5CT, pathname);
let outstanding-list be the list of references associated with dir.node;
initiate visiting.list;
while outstanding-list is not empty do

let reference be the first element in outstanding-list and
remove it from the outstanding-list;

if reference is not found in visited-list then
add reference into visited-list;
(newJist, new-children) := Cache(re/erence);
children := children U new-children;
insert new-list into the front of outstandingjist;

fi;
end; /* while */
return children
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Open Function

open(path, flags, mode)
if path is not Jade filename then

return sysca\\(SYS.open, path, flags, mode);
fi

if open for read then
filejref\= NameSpaceManager.Resolve(jwjM);
if file.refis not nil then

cache.ref := AccessManager. Fetch(/i/e_re/);
if cache.refls not nil then

return sysca\\(SYS.open, cachejref, flags, mode);
fi

fl
if open for read only then

return fail;
fi

fi

if open for write then
let dir be path's directory;
dir.ref':= NameSpaceManager.Resolve(dtr);
if dir.ref is not nil then

cache.ref := AccessManager.NewCache(dzr_re/, path);
return sysca\\(SYS-open, cache.ref, flags, mode);

fi
fi
return fail;
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