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Elliptic Jets. Part 2. Dynamics of Coherent Structures:
Pairing

By Hyder S. Husain and Fazle Hussain
Department of Mechanical Engineering, University of Houston, Texas 77204-4792

Abstract

The dynamics of coherent structure interactions, in particular the jet column mode of vortex

pairing, in the near field of an elliptic jet have been investigated using hot-wire measurements and

flow visualization. A 2:1 aspect-ratio jet with an initially laminar boundary layer and a constant

momentum thickness all around the nozzle exit perimeter is used for this study. While detailed hot-
wire measurements were made in air at a Reynolds number Re^e (— UeDc/v)=3.2X104, flow

visualization was performed in water at a lower ReDc = 1.7xl04; here Uc is the exit speed and Dc is

the equivalent diameter of the nozzle exit cross-section. Excitation at the stable pairing mode induced

successive pairings to occur periodically at the same location, allowing phase-locked measurements

using a local trigger sensor. Coherent structures were educed at different phases of pairing in the

planes of both the major and minor axes. These are compared with corresponding data in a circular

jet, educed similarly.

Pairing interactions are found to be quite different from those in a circular jet. Due to

nonplanar and nonuniform self-induction of elliptical vortical structures and the consequent effect on

mutual induction, pairing of elliptic vortices in the jet column does not occur uniformly around the

entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane through an

entanglement process, while in the initial minor-axis plane, the trailing vortex rushes through the

leading vortex without pairing and then breaks down violently. These motions produce considerably

greater entrainment and mixing than in circular or plane jets. From distributions of dynamical

properties over the extent of coherent structures, the production mechanism is explained in terms of

the longitudinal vortices connecting the elliptic structures. Time-average measures and their

modification by controlled excitation are also discussed in terms of coherent structure dynamics. A

significant space in this paper is devoted to documenting phase-dependent and time-average flow

measures;, these new results should serve as target data for numerical simulations. Further details are

given by Husain (1984).



1. Introduction

Pairing is a dynamically significant interaction of large-scale vortical structures in shear layers,

jets and other turbulent shear flows. Large-scale engulfment, and enhanced mixing and transport of

momentum (both co- and counter-gradient) can occur during pairing (Winant & Browand 1974;

Hussain 1981; Laufer 1983; Ho & Huerre 1984). In many flow situations, such as impinging jets,

turbulent boundary layers and wall jets, large-scale organized structures can induce flow separation.

Pairing of the structures produces higher circulation structures, which in turn can significantly

augment separation and mixing. Thus control of pairing may be a method of controlling separation

or mixing. While mixing is not necessarily caused only by pairing, pairing following the formation

of ribs can cause mixing of core fluid by folding and spanwise stretching (and the consequent

possible reconnection within rolls). Pairing affects vortex core deformation, fine-scale mixing and

helicity generation, and may involve significant vortex reconnection activity. The pairing contributes

to a counter-gradient transport of momentum and is an additional cause for the breakdown of

coherent structures (and generation of fine-scale turbulence), as shown by Hussain & Zaman (1980)

in their study of a circular jet near field. Ho & Huang (1982), among many other researchers, have

discussed pairing in a plane mixing layer. Pairing can also be important in aerodynamic noise

generation. Laufer (1974) first hypothesized vortex pairing to be a primary source of jet noise, a

mechanism that found support from Acton (1977), Ffowcs-Williams & Kempton (1978) and

Crighton (1981). Further, Kibens (1980) suggested that the puzzling phenomenon of broadband

noise amplification, found by Moore (1977) and Bechert & Pfizenmaier (1975) in excited jets, was

due to spatial jitter in pairing events. Following vortex sound theory (Mohring 1978; Kambe 1984;

Obermeier 1985), which relates the far-field pressure to the third time derivative of the source

vorticity moment, it appears that the details of the vorticity field and its spatiotemporal evolution
during pairing (which involves rapid acceleration and deceleration of vortical fluids) are crucial in
understanding and controlling aerodynamic noise generation.

In this paper, we address the dynamics of coherent structures during their pairing for a limited
downstream distance defined by 1 <xlD& < 5. In this region, the azimuthal curvature of the jet is an

important parameter in the instability mechanism of the jet. This is unlike the situation very close to
the exit plane where the momentum thickness 9 « De; in this case the instability mode scales with the

exit momentum thickness 6e. In other words, the development of the short waves close to the jet

exit plane are insensitive to the jet geometry, while the long waves farther downstream are dependent

on the jet dimension (Batchelor & Gill 1962, p. 538). We differentiate the instabilities in these two

regions and designate these as the 'shear layer mode1 and the 'jet column mode' instabilities (Zaman

& Hussain 1980; Laufer & Zhang 1983). Petersen & Samet (1988) employed linear analysis by

taking into account the radial dependence, but found no difference between the shear layer and jet

column instability modes. However, there is indeed a difference between the instabilities of short-
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wave instability mode and longer modes whose wavelengths are comparable to the jet diameter (see

Bachelor & Gill 1962).

The instability leading to pairing and the topological details of coherent structures during

pairing are not only of fundamental concern in turbulence physics, but also of crucial importance for

effective turbulence management (both enhancement and suppression of turbulence phenomena such

as transports of heat, mass and momentum, combustion, drag and aerodynamic noise).

Additionally, the details of structure evolution for well-defined initial and boundary conditions can

serve as target data for validation of modeled and direct numerical simulations.

The instability mechanism leading to pairing (known as subharmonic resonance) was first

analyzed by Kelly (1967), who used a weakly nonlinear analysis for a temporally growing shear

layer. More recently, Monkewitz (1988) modified the theory for a spatially developing shear layer.

His analysis is for a small region near the saturation location of the fundamental, but does not

address the saturation of the subharmonic (i.e. occurrence of pairing). Numerically, Patnaik et al.

(1976), Acton (1976), Riley & Metcalfe (1980) and Corcos & Sherman (1984) have studied

temporally-evolving shear layers, while Ashurst (1979), Mansour & Barr (1985), Grinstein et al.

(1987) and Mansour et al. (1988) have explored pairing in spatially developing mixing layers.

No corresponding theoretical study has addressed pairing in the jet column where vortices are

fat and their azimuthal curvature is important. An energy-integral technique was used by Mankbadi

(1985) to study the interactions between a fundamental and its subharmonic in a circular jet. Raman

& Rice (1989) studied subharmonic resonance in the circular jet column using two-frequency

excitation (f and f/2). Similar to what was found in the shear layer domain, they observed

dependence of the growth of the subharmonic on its initial phase and on the critical fundamental

amplitude. Cohen & Wygnanski (1987) studied the interaction of two waves of different azimuthal

modes in circular jets. They observed the resonant growth of a subharmonic wave whose azimuthal

mode number is equal to the difference between the imposed numbers of modes of the fundamental

and the subharmonic.

Experimentally, almost everyone studying shear layers and jets has observed pairing (notably

Sato 1959; Wille 1963; Browand 1966; Winant & Browand 1974 ; Brown & Roshko 1974). Most

experimental investigations of vortex pairing have been based on either flow visualization or spectra

of the longitudinal velocity; there have been very few quantitative studies of coherent structure

dynamics associated with pairing. This phenomenon has been of considerable interest in our
laboratory — in particular, the pairing dynamics of coherent structures in an axisymmetric jet

(Hussain & Zaman 1980) and the role of pairing in jet noise (Bridges & Hussain 1987).

In part 1 of this paper (Hussain & Husain 1989; referenced herein as HH), we have discussed

the out-of-plane deformation of elliptic vortices due to self-induction and the parameters which

govern pairing in elliptic jets. In this part we focus on the details of the pairing mechanism of

nonplanar vortical structures and its effects on various turbulence measures: namely, coherent
3



velocities, incoherent turbulence intensities, incoherent and coherent Reynolds stresses, turbulence

production, mass entrainment, etc. The dynamics of coherent structure interaction have been

examined from the educed coherent vorticity field. Significant effects are highlighted by comparing

the results of the elliptic jet with those of a circular jet. We then address details of coherent

production of incoherent turbulence and discuss the role of ribs in the production mechanism.

Finally, time-average measures, including their modification under stable pairing mode of excitation,

are discussed in terms of coherent structure dynamics. Further details were documented by Husain

(1984).

2. Eduction technique

Velocity data from a flow domain may suggest large-scale organized events, only when the

latter are dominant. Large-scale organization, however, can be buried under higher-amplitude,

random turbulence; one must find ways to filter out the random field and focus on the underlying

organized events. Of course, one must also consider the coupling between the two fields. By

coherent structure we mean the ensemble average of properly aligned, organized vortical motions of

the same mode (i.e: the same size, shape, strength and orientation) at a particular phase of their

evolution. We use phase-average to denote this phase-aligned ensemble average. Phase averages at

different phases provide the time evolution of coherent structures. Using such a phase averaging

procedure, incoherent turbulence can be separated from the coherent part without any ambiguity, and

the topology and dynamics of coherent structures and their coupling with incoherent turbulence can

be studied quantitatively (Hussain 1981).

Several approaches have been used to educe coherent structures. An ideal approach would be

to obtain three-dimensional vorticity fields as a function of time and apply our eduction scheme to

these data. Due to the limitations of the current measurement techniques, studies of structures have
been limited so far to detection based on spanvvise vorticity in spanwise planes, rather than the full
three-dimensional details of flow; also, the measurements unavoidably suffer from limited spatial
resolution.

Present method. Pairing in an unexcited jet occurs somewhat randomly in space and time.

Eduction of naturally occurring pairing events using a single-point detection scheme (similar to that

used by Browand & Weidman 1976, Bruun 1977, Yule 1978 and Zaman & Hussain 1984) will

suffer from smearing because the eduction scheme cannot differentiate between structures of

different sizes, shapes and strengths, and their transverse locations. A multi-probe data acquisition

technique with proper conditioning of the measurement signals reduces smearing (Tso 1983,

Hayakawa & Hussain 1985),. but requires the use of Taylor's hypothesis, which introduces

substantial error in situations where structures undergo interactions such as pairing or tearing (Zaman



& Hussain 1981). Furthermore, a rake is ineffective when structures are small because of the

unavoidably coarse transverse spatial resolution (due to X-wire probe separation). To study the

pairing dynamics with currently available technology, particularly in the near field of a jet, the small

thickness of the shear layer forces the use of phase-locked measurements with a single probe (of

course without invoking Taylor's hypothesis).

A periodic perturbation greatly facilitates eduction by temporally stabilizing structure formation

and evolutionary stages. This substantially reduces the variance in structure size, shape, orientation

and strength, and minimizes smearing in the educed structures. Additionally, the (nearly periodic)

structures are detected using a local trigger probe, allowing more accurate alignment of detected

events. Further improvement can be achieved by optimizing the alignment through cross-correlation,

but is not warranted in the early stages of the evolution.

Inevitably, questions arise concerning the relevance of excited structures to unexcited ones.
Structure formation and pairing in an unexcited jet are induced by uncontrolled ambient disturbances

and feedback from downstream structures. Controlled excitation can overshadow these disturbances

and remove the associated phase jitter, thus allowing phase-locked measurements with a single

sensor. One would expect that such excitation will have significant effects on the time-average

measures because of stabilized periodic pairing in an excited jet as opposed to jitter in pairing in an

unexcited jet. However, when pairing occurs in an unexcited jet, we expect that the instantaneous

coherent structure evolution should not be drastically different form that undergoing pairing in an

excited jet. It was argued and later proven that small to moderate periodic excitations can pace the

initiation of structures without noticeably altering the structures (Hussain & Zaman 1980).
This method offers spatial resolution limited only by the probe size — particularly desirable in

situations where the flow domain is too small for a rake of X-wires. However, we reiterate that

while excitation is effective in reducing initiation jitter, it cannot eliminate evolutionary jitter (Hussain

1986). There are, therefore, limitations as to how far downstream the single-sensor technique can be

used because of increasing jitter with increasing x. Considering spatial resolution and the need for

Taylor's hypothesis when a rake is used, the phase-locked measurement technique with a single

sensor was considered to be a better compromise for the present study.

3. Experimental procedure

The jet facilities (air for hot-wire measurements and water for flow visualization) used in the

present study have been described in HH. The probe configuration and the coordinate system are

shown in figure l(a,b). Because the elliptic jet cross-section switches axes, we need to specify

reference planes. We use 'major plane' and 'minor plane' to denote the reference planes defined at

the nozzle exit — they are the planes passing through the exit major axis and minor axis respectively.



In this study we used a 2:1 aspect ratio elliptic jet of equivalent diameter Dc=5.08 cm with an initially

laminar boundary layer having a constant momentum thickness all around the nozzle exit perimeter

(nozzle Nl in HH). Equivalent diameter is defined as De=2(ab)1/2, where a and b are the semi-axes

at the nozzle exit. For the data in the present paper, the jet exit speed was 9.5ms~* corresponding to
Rej)e=3.2X104. The reason for using the unusual situation of a constant momentum thickness is

explained in HH, which also emphasizes the role of ini t ia l condition (i.e. jet exit flow) and

documents the quality of the flow, including longitudinal mean and rms fluctuation velocity profiles
of the exit boundary layer, but at a higher Reynolds number of ReDc=105. For the present study,

the exit boundary layer characteristics were rechecked in both the major and minor planes of the

elliptic cross-section. Boundary layer profiles were laminar, had low fluctuation level and agreed

very well with the Blasius profile, having shape factors close to 2.59; the exit momentum thickness
0e was 0.23mm, thus assuming a top-hat profile with elliptic support. Stable pairing was induced via

sinusoidal bulk forcing at an exit plane excitation level (u'JU^ of 2.5% using an acoustically-driven

longitudinal resonance of the settling chamber cavity (see HH). The excitation frequency and

amplitude level, and flow velocity were chosen carefully so that the centerline velocity signals were

devoid of any modulations near the location of pairing. Such a requirement is necessary for structure

eduction using the present phase-locked measurement technique. Velocity signals started modulating

(i.e. detuning) as the excitation amplitude was lowered below about 2%, signifying that the pairing

location was not fixed in space.

Flow visualization studies were made in a submerged water jet facility using a laser-induced

fluorescent dye (uranamine). Controlled perturbations were introduced by an electromagnetic

shaker. The sinusoidal motion of the shaker actuated a piston in a cylinder containing water. The

cylinder is connected to the outer perimeter of the shear layer excitation chamber through four tubes

(for details, see HH). With this excitation system, the amplitude of excitation dropped rapidly at
frequencies higher than about 8 Hz because of the large inertia of the oscillating water column in the

excitation system. Thus, in order to obtain StDc = 0-85 with a reasonable amplitude, we had to
choose a frequency of 5.76Hz, resulting in a lower Re - 1.7x10^ (Ue= 0.344 ms"1 ) than the Re

used in the air jet.

Response to excitation. HH showed that coherent structures in elliptic jets with moderate aspect
ratios are characterized by the jet column mode of stable pairing that occurs at StQe( = fDcAJc) = 0.85;

here f is the excitation frequency. As mentioned above, experiments in HH were made at Reoe=105;

in the present study, however, coherent structures were educed at a much lower ReDe~3.2xl04 for

better spatial resolution because at this lower speed the structures are larger. The jet column mode of
stable pairing was again checked at this Reoc ar>d found to occur optimally at Stj}e= 0.85, supporting

our claim that this mode is fairly independent of Rerje (at least within the Rerje range we have

studied).



Figure 2(a) shows the evolution of the jet centerline it-spectrum under excitation at StDe=0.85;

all the traces have the same logarithmic ordinate and linear abscissa scales. The spectra, averaged

over 128 realizations with a frequency resolution of 0.3% of the maximum, were obtained with a

real-time spectrum analyzer (Spectrascope SD335). As the streamwise distance increases, a

subharmonic component (associated with the first pairing) appears, overtakes the fundamental at
x/DK = 0.5, and grows to a maximum at;t/Dc = 2.0. Note that the subharmonic (associated with the

larger, paired structures) persists longer than the fundamental, as to be expected. Due to nonlinear

interactions, higher harmonics of the subharmonic and of the fundamental first grow and then decay
until they become submerged in the evolving background turbulence (for x/Dc > 6); beyond this

length the spectrum is fully developed and devoid of any noticeable peak. This is by no means an
indication that turbulence is fine-grained beyond x/Dc=6; organized structures are in a state of large-

scale breakdown, they lose their phase coherence and their random phase leaves no discernible

spectral footprint. There is no second subharmonic (f/4) component, suggesting that only one

pairing occurs before breakdown.

Since coherent structures were to be educed by phase-locked measurement, the centerline
longitudinal velocity signal wc(t), which was used as the trigger signal, was examined regarding its

variation in amplitude, jitter in time and superimposed fine-scale features. Figure 2(b) shows one
such set of «c(t) as a function of x. The traces also show the gradual development of the

subharmonic frequency followed by its saturation, harmonic growth and transition to turbulence.

Note that at */De=3.25, there is laminar flow on the jet centerline between successive turbulent

vortical structures. The signal is precisely sinusoidal at the exit but takes a cusp-like shape (around
x/De=2) after the frequency is halved. This corresponds to the situation where there is intense

velocity oscillation on the jet centerline associated with localized periodic pairing. The velocity
signal shows a decrease in amplitude from the exit value to a minimum (around Jt/Dc=0.25) before its

growth mostly due to the subharmonic. Such suppression has been observed also in our excited

circular jet studies and explained previously.
The periodic signal up to x/DQ= 2.5 (also evident from the sharp spectral peak) indicates

periodic passage of structures of equal strengths. This is important for phase-locked measurement

because this technique assumes that all the structures are of the same kind, although exact periodicity

of the signal is not expected.

Phase averaging. Eduction involves the separation of coherent and incoherent components <g>

and gj. of any field quantity g(x,i) obtained by phase-averaging a field variable g at a particular

phase. The coherent part is the ensemble average of the phase-aligned events at a particular phase

(i.e. phase average). Interpretation of the decomposition of coherent and incoherent fields (double

and triple decompositions) has been discussed at length previously (Hussain 1981). Most of the

important coherent structure properties (e.g. coherent vorticity, coherent turbulence production,
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incoherent normal and shear stresses) are independent of the choice of a steady reference frame.

However, streamlines and velocity vector patterns are not Galilean invariant, and require careful

interpretation (discussed further in § 4.1).

Time- and phase-average field measurements were made in both the major and minor planes.

Data presented in this paper cover spatial distributions of the following time- and phase-average

quantities: mean velocities U and V, turbulence intensities u' and v'\ Reynolds stress uv; time-

average shear, normal and total productions Ps> Pn and P; phase-average velocities <u> and <v>;

spanwise coherent vorticity <wz>; incoherent turbulence intensities <ur
2>1/2 and <t>r

2>1/2;

incoherent and coherent Reynolds stresses <urvr> and <upvp>; and coherent shear, normal and total

productions <PS>, <Pn> and <P>. The significance of these measures relating to coherent structure

dynamics was illustrated previously (Hussain 1981, 1983).

Data acquisition. For phase-average measures, the reference probe was located on the jet
centerline at x/De=1.8 where the f/2 component of the it-signal was the strongest, minimizing the

effect of jitter on the educed structures. The u-signal there was bandpass-filtered at f/2 and then used

as the reference signal to the triggering device. The output signal from the triggering device flagged

the computer (when the signal crossed a threshold) to sample data from an X-wire at that instant.

The adjustable dwell time of the triggering circuit allowed the delay time t (between the instants of

structure detection and signal sampling) to be set such that the structure would be captured (i.e.

educed) at the desired phase.

The phases for eduction were selected after examining the flow by visualization. We noted that

complete merger of vortices occurred in the major plane, but no merger took place in the minor

plane. To examine the details, one full cycle of the pairing process in the minor plane was divided

into five phases (I to V). The structures were also educed in the major plane at exactly the same

phases.

At each phase, measurements were carried out at a large number of spatial points in both major

and minor planes. The number of grids and their spacing were judiciously varied in the streamwise
and transverse directions with a finer spacing in the vortex core region. Thirty grids were used in the

streamwise direction, while the number of grids in the transverse direction varied between 20 to 30.
For a given location (x, y) of the X-wire, an average over a large ensemble (typically 2000 to 3000
samples, which gave convergent <u> and <v> values within 5% scatter) of data obtained at

successive trigger points (i.e. at identical locations of successive structures) gave the phase-average

at that point. This process was repeated after relocating the measurement probe, but keeping the
trigger conditions unchanged. Results are presented as contour plots. Positive-valued contours are
denoted by solid lines and negative-valued ones by dashed lines.
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4. Results and discussion

4.1 Coherent vorlicity

Figure 3(a) shows contours of coherent azimuthal vorticity <coz>, nondimensionalized by the

excitation frequency f; the five sequential phases (I to V) during the pairing process are shown in

both major and minor planes. The trigger times were chosen so that pairing of vortices are captured

at different relative inclinations. For example, the line connecting the two vortices in the minor plane

would be inclined at an angle 0 = 45° with the x-axis at phase I. At phases II to V, these angles were

to be approximately 90°, 120°, 127° and 155° respectively. These angles could not be preselected

exactly, as they were apparent only after eduction. In the following discussion, we will refer to

coherent vorticity simply by vorticity.

To compare pairing in elliptic and circular jets, coherent structures in a circular jet were also

educed under the same conditions (e.g. same nozzle exit area, exit velocity, excitation frequency,

level of excitation and phases) using the same facility, but with the elliptic nozzle replaced by a

circular nozzle. Due care was taken to check the initial (laminar boundary layer) condition (mean and

fluctuation level profiles) and axisymmetry of the flow. Structures were educed at three phases for 9

values of 50°, 90°, and 130°. These three phases correspond approximately to phases I, II and IV
of the elliptic jet. Contours of <co z>/f for the circular jet are shown in figure 3(b).

4.1.1. Vorticily contours.
In circular jets, self-induction is constant all around the perimeter and pairing occurs nearly

uniformly around the perimeter (Hussain & Zaman 1980). In an elliptic jet, however, interaction is

quite different in the major and minor planes. Merger of vortices occurs in the major plane (phase

III), while in the minor plane, the trailing vortex, instead of pairing, rushes through the leading one

by mutual induction and subsequently breaks down. Contours of <o>2> in the minor plane show the

distinct identities of the two vortices even up to phase V. A third region of vorticity concentration,

seen in the upper right-hand corner at phases IV and V (in the minor plane), is the remnant of the

leading vortex of the previous (downstream) vortex pair. There is no remnant of the trailing vortex

of the previous pair as it has already advected beyond the measurement region. The broken-down

structure farther downstream, if captured using the present measurement technique, would suffer

from significant smearing; therefore the structures were not educed farther downstream.

The low level vorticity contour (<coz>/f = 0.5) in the major plane shows a valley on the low-

speed side (figure 3a). Due to self-induction, the vortex cores in the major plane move toward the jet

axis shedding low vorticity fluid in their wakes on the low-speed side; this is what produces the

valley. In this region the ambient potential fluid is engulfed and subsequently imparted vorticity by

diffusion (compare phases IV and V). This region, where the vorticity has a local minimum, is

shown as a hatched area. Such discard of turbulent vortical fluid in the wake of vortical structures is



not unlike that observed by Maxworthy (1974). Note that all the vorticity contours show a mild dip

on the low-speed side of the minor plane. This is a result of the combined effects of flow reversal

and the arrival jitter of the leading vortex in the measurement region. Because of the inability of the

hot-wire to detect flow reversal, as well as due to increased jitter, the measurements on the low-

speed side of the outer structure are contaminated (explained by Hussain & Zaman 1980).

4.1.2. Peak vorticity

The evolution of vorticity peaks during the interaction process is shown in figure 4(a, b) for

both elliptic and circular jets. Since we have educed structures in the circular jet for only three

phases, the peak vorticity curve is extended up to x/D-4 using data from Hussain & Zaman (1980).

In the minor plane, the voracity of the leading structure diffuses more slowly than that of the trailing
vortex. Between phases I and V, the peak vonicity <«z>p of the leading structure is reduced from 6

to 4, while that of the trailing structure is reduced quite significantly — from 10 to 2. Between

phases I and III, as the trailing vortex rushes inside the leading one, the former's <wz>pis reduced at

a high rate as its perimeter is decreased. [This decrease in the perimeter length may not be simple as
azimuthal wrinkles are likely to occur.] Later, <«>p is further reduced by rapid diffusion because of

turbulent breakdown of the trailing vortex.

The elliptic vortices undergo deformation due to self-induction, and the leading vortex switches

axes prior to the pairing interaction. Such deformation increases vorticity due to stretching;

consequently, the diffusion of vorticity, mostly due to incoherent turbulence (see §.4.3), is also

increased. At phase II, the circumferential length of the leading vortex is increased by about 30%

(based on the local perimeter), indicating that the leading vortex has undergone substantial stretching.
Measurements show that in the minor plane, the leading vortex has higher levels of <Mr

2>1/2 and

<i>r
2>>/2 tj ian the trailing vortex (discussed in § 4.3). Thus an increase in peak coherent vorticity

due to stretching balances an opposing decrease due to turbulent diffusion, keeping the peak vonicity

nearly constant up to phase IV. In the major plane, the decrease in peak vorticity is less dramatic.

Since in this plane vortices converge toward the jet axis, there is no stretching. It appears that a

balance between an increase in coherent vorticity due to merger of vortices and a decrease due to

turbulent diffusion prevents a large decrease in the peak vorticity up to phase IV.

On the major-axis side, pairing does not occur through the leapfrog motion of planar vortices

found in a circular jet. Instead, merger occurs over a short length on the major axis sides through an

entanglement process (discussed in § 4.1.4 and § 4.1.5). A comparison between structure contours

in the circular and elliptic jets is meaningful only in the minor plane, because the interactions in this

plane up to phase IV appear to be similar. In the minor plane, «oi 2>p of the trailing vortex is

decreased at a much higher rate than in the circular jet, while <co 2>p of the leading vortex is almost

the same up to phase III as that in the circular jet. Farther downstream, structures in the circular jet
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undergo pairing, while the trailing vortex in the elliptic jet breaks down, resulting in a large decrease

in peak vorticity.

4.1.3. Vorticity diffusion and mixing.

Detailed mechanisms of mass enlrainment and fine-scale mixing are quite complex and their

direct measurements are difficult. Integral measures, such as increase in jet width, mass flux and

domains of high level of turbulence intensity, have been used to estimate mass entrainment and

mixing in the time-mean sense. Educed coherent structures allow a closer examination of

mechanisms of mass entrainment and vorticity diffusion, and provide an estimate of the amount of

mixing which occurs during their evolution. Since we studied the elliptic and circular jets under

identical initial conditions and using the same detection scheme, we can compare the effects of

geometry modification alone on various structure properties. Here we compare the areas enclosed by

various levels of vorticity contours for elliptic and circular jets. Such areas (ranging from <coz>/f = 1

to the maximum level at each phase) in the major and minor planes of the elliptic jet are shown in

figure 5(a,b) for the five phases. The corresponding circular jet data are shown in figure 5(c) for

phases I, II and IV. In the circular jet, areas enclosed by a particular vorticity contour level show
very little change from phases I to IV. In the elliptic jet, the decrease in <coz>p and in the areas

enclosed by <coz>/f >1.5 contours, and an increase in the areas for <coz>/f <1.0 are quite significant.
Note that both the decrease in the peak value of <coz> and the increase in the <coz>/f=l contour area

are higher (about twofold) in the minor plane.

Variations of area enclosed by the vorticity level <coz>/f=1 are shown in figure 5(d). At each

phase, the x/D location denotes the axial distance of the mid-point of the two interacting structures

from the jet exit plane. For comparison, circular jet data from Hussain & Zaman (1980) are also

included, which show good agreement with the present circular jet data, establishing the reliability of

the two independent measurements. These curves show clearly that the structure boundary defined

by a low level vorticity contour (e.g. <coz>/f=1) increases at a much higher rate in the elliptic jet than

in the circular jet, especially during phases I to III. Note that this area in the minor plane is higher by

about 20% at phase I and 60% at phase IV than in the circular jet. This indicates that more

(nonvortical) ambient fluid is engulfed in the elliptic jet than in the circular jet; that is, mixing in

elliptic jets is more rapid than in circular jets. The jet cross-section of elliptic and circular jets reported

by HH are consistent with these observations.

4.1.4.Vortex trajectories.
The trajectories of the vortex pairs during interaction are shown in figure 6(a). Solid lines are

derived from the locations of peak <coz> in figure 3(a). Dashed lines (nearer to the exit plane) are

inferred from the U/UC= 0.5 line. Dotted lines denote trajectories for the circular jet.
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The lip lines (i.e. constant radius lines passing through the nozzle lip) along the major and
minor planes for the nozzle used in this study (2:1 aspect ratio and De=5 cm) are 0.707De and

0.353De away from the jet centedine (these are the values of semi-axes a and b). In the major planCj

the transverse locations of both vortex centers (i.e. locations of peak vorticity) at phase I are equal,
being approximately 0.6De; the vortices in the major plane have moved transversely toward the jet

axis by self-induction. In the minor plane, the transverse distances are approximately 0.65De and

0.35De for the leading and trailing vortices respectively, indicating that the leading vortex has moved

a considerable distance away from the jet axis. A comparison of transverse locations of vortex

centers in both planes at phase I shows that the leading vortex has already switched axes, while the

trailing vortex aspect ratio has decreased only slightly.

In the minor plane, the leading vortex moves away from the jet axis rapidly, while the trailing

vortex moves almost parallel to the jet axis. That is, the distance between the two neighboring

vortices increases rapidly and monotonically, unlike in the circular jet. Note that at phase IV, the
distance (about 0.6De) between the two vortices in the elliptic jet is almost twice the maximum (=

0.025D) between the vortices in the circular jet (see figures 3(a, b)). It appears that this larger

distance between the two interacting vortices prevents them from pairing in the minor plane. In the

major plane, however, both vortices move toward the jet axis by self-induction; as the two vortices

get close they undergo pairing by mutual induction atx/De = 2.2.

To explain the differences between vortex interaction in the major and minor planes, let us

consider the motions of two adjacent elliptic vortices due to self- and mutual inductions. In figure

6(b,c), the directions of self- and mutual inductions are denoted qualitatively by vectors "S" and "M"

respectively. In the minor plane (figure 6b), since the resultant of both "S" and "M" of the leading

vortex is in a direction away from the jet axis, the leading vortex moves away from the trailing vortex

(thus increasing the distance between the two). This large separation prohibits merger in this plane.
In the major plane (figure 6c), the leading vortex has already moved toward the jet axis by self-

induction before the trailing vortex is formed. After the formation of the trailing vortex, the resultant

of "S" and "M" pushes it to move toward the jet axis, and the two vortices get closer, allowing

merger to occur. Note that complete merger in the major plane occurs within the short distance of
about ;c/De=0.2 (see phases II and III of figure 3a), while leapfrog motion in the circular jet

continues over a distance of about x/D=2 before the completion of merger.

4.1.5. Flow visualization.
The pairing mechanism was further studied by flow visualization. A sheet of laser light was

used to examine cross-sections of the structures in both the major and minor planes (see HH for

details of visualization technique). Digitally enhanced video frames are shown in figure 7(a) in the

form of isointensity contours of fluorescent dye. In this figure, the high speed side of the shear layer
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is below it. These pictures support the interaction process revealed by the measured vorticity

contours: complete merger of vortices in the major plane, but no such merger in the minor plane.

In the minor plane, as the interaction proceeds, the trailing vortex rushes inside the leading one

and breaks down violently soon after it emerges downstream. In frames 6 to 8, isolated, fragmented

contours show the broken-down parts of the trailing vortex. This process of violent breakdown

appears to enhance small-scale mixing in elliptic jets. In reference to our longstanding warning about

the limitations of flow visualization in understanding structure dynamics in turbulent flows, a

question obviously arises as to whether these isointensity contours, showing dye concentrations,

represent vorticity concentrations. Since these events occur near the dye injection location (between

2 and 3De) and within a short travel time, the concentrations of vorticity and dye cannot be distinctly

different; of course, farther downstream, the correspondence weakens even at unity Schmidt number

because of 3D motions.

Although the vorticity contours in the major plane exhibit merger, similar to that exhibited in a

circular jet, the pairing process in an elliptic jet is morphologically different from that in a circular jet.

This difference was revealed by flow visualization using flood lighting, which enabled us to observe

the interaction process simultaneously over the entire perimeter. In a circular jet the pairing

interaction takes place through a leapfrog motion of two vortices along the entire perimeter wherein

the vortex lines remain locally parallel (see also Reynolds & Bouchard 1981). In an elliptic jet, the

two neighboring vortices come close to each other only in the major plane and undergo pairing along

a small segment there. This starts as an entanglement rather than leapfrogging, although the

entangled vortices soon become a single vortex through diffusion. As an aid to the description of

pairing, inferred from data (figure 3a) and observed through visualization, our perception of the

pairing process is shown schematically in figure 7(b). A sequence of flow visualization pictures,

taken simultaneously from the major- and minor-axis sides, is shown in figure 7(c). For clarity,

perspective views are also drawn schematically at the bottom of the flow visualization pictures.

These visualization pictures, though they clearly show only local merger, unfortunately cannot reveal

the entanglement process.

Flow visualization studies in plane and circular jets have also revealed similar mergers of

vortices through entanglement, shown schematically in figure 7(d, e). Merger through entanglement

was also observed by Clark & Kit (1980) in plane jets. It appears that nonuniformity of initial

conditions or spanwise perturbations produce local curvature in the vortices of a plane jet, leading to

entanglement. In a circular jet, we have observed axisymmetric vortices being tilted alternately

forward and backward, presumably by a spiral instability mode, resulting in the entanglement

interaction over small sectors. Merger through entanglement may indeed be a common phenomenon

in many situations (see also Chandrasuda et al. 1978); elliptic jets can clearly allow us to examine

this mode of vortex merger in detail.
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4.2 Phase-average velocities.

Measured property contours for the five selected phases are voluminous; in order to save space

we discuss hereafter data contours only for phases I, II and IV. In all the figures, vortex centers are

identified by a "+" for spatial reference. In the following, we present data primarily for

documentation, and comment on them whenever possible.

4.2.1. Longitudinal and transverse velocities.
Phase-average longitudinal and transverse velocity contours <»>/Uc and <i»/Ue are shown

in figures 8 and 9 respectively. The distributions of<w> and <v> can be qualitatively explained by

decomposing the flow field into motions produced by self-induction (curvature-dependent induction)

and mutual-induction (by all other vortices), and by the rotational flow field of the vortex itself,

which we will call 'induced' and 'rotational' motions.
Contours of <u> show only positive regions, because the structures advect in the streamwise

direction at a speed higher than the opposing motion due to rotation on the low speed side.
Obviously, a hot-wire cannot differentiate the direction of <u>, but if flow reversal occurred,

contours of <u> would show a peak region on the low-speed side. Near the jet axis, all motions are

in the flow direction, producing a peak in <i/> distributions which is higher than the exit velocity.

The 'S-shaped' contour lines in phase II in the minor plane are due to the opposing rotational motion
between the structures—- <u(y)> decreases away from the inner vortex and then increases near the

core region of the outer vortex.

Each vortex is associated with a positive <v> region at the front (downstream) and a negative

region at the back (upstream) of its center, primarily due to rotational motion. However, the

transverse motions of the vortices due to self- and mutual inductions complicate the <v> contours.

Consider the <v> contours at phases I and II in the major plane. Between the structures, the

transverse velocities induced by the two vortices nearly cancel each other, causing a considerable
decrease in the regions of both positive and negative <i» and their corresponding peak values. In

phase II, the inward motion of the trailing vortex (due to self- and mutual inductions) is strong

enough to overshadow the outward fluid motion at its front (between the pair), producing a region of

only negative <v>.

In both planes, <v> contours show that outward motion at the front is stronger than the inward

motion at the back. Both positive and negative peaks of <v> contours are higher in the minor plane

than in the major plane during init ial stages of pairing (phases I-III), but during phases IV and V,
these peak values are higher in the major plane. The areas encompassed by a constant negative <v>

contour level, say <v> = - 0.02, at each phase (except for phase V) are larger in the minor plane

than in the major plane. This indicates that during the initial stages of interaction, the minor-axis side
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is more active in drawing ambient fluid. In this plane, as the trailing vortex rushes through the

leading vortex, it pulls in a large amount of ambient fluid. In the major plane, the larger area
encompassed by a constant positive contour level, say <v> = 0.02, indicates that a greater amount

of jet fluid is ejected in this plane lhan in the minor plane. It appears that these two different kinds of

interactions in the two planes associated with 3D motions produce better mixing in elliptic jets than

in circular jets. If one compares the two planes at phase IV, it is clear that motion induced by the

vortices is indeed highly 3D and defy simple explanation.

4.2.2. Convection velocity.
Convection velocity vc of advecting structures, computed from <u> and <v> values

corresponding to the vortex centers, is shown in figure 10. For comparison, uc/Ue distributions for

the circular jet (reproduced from Zaman & Hussain 1980) are also included in this figure. Note that
<ii> is an order of magnitude higher than <v> at the vortex center (figures 8 & 9), indicating that vc

is mostly longitudinal.
In the major plane, where vortices undergo pairing, the difference in vc of the leading and

trailing vortices is much less than that in the circular jet. Clearly, pairing through entanglement does
not allow a large difference in vc. In contrast, in the circular jet, the vortices undergo a 'leapfrog*

motion that involves a large increase in vc of the trailing vortex and a smaller decrease in vc of the

leading vortex and then a reversal in uc before merger.

In the minor plane, the trailing vortex rushing inside the leading one has a much higher vc than

that of the latter, somewhat similar to, but less than, that in the circular jet. Since the distance

between the vortices in the minor plane at each phase (e.g. 0.4De at phase II) is greater than that in
the circular jet (e.g. 0.25D at phase II), the mutual induction is less effective in the elliptic jet. This

is why the vc difference is smaller. It is worth noting that the merged vortex (in the major plane)

moves faster than in the circular jet by about 10-15%. This is not surprising because the mutual

induction across the jet axis is higher in the elliptic jet. In the minor plane, the trailing vortex

continues to move faster than shear layer midplane velocity because of self-induction caused by

higher curvature (figure 7b).

4,2.3. Velocity vector.
Unlike vorticity fields, velocity vector fields are not Galilean invariant, and therefore depend on

the choice of the reference frame. To represent vector fields in a meaningful manner, a proper choice

of the reference frame is necessary. For an isolated (i.e. noninteracting) vortex, a reference frame

moving with the vortex center is the proper choice. However, in a situation where vortices undergo

pairing, the choice of a single reference frame is problematic because the interacting vortices advect at

different speeds (see figure 10). More complicated is the interpretation of the vector patterns. Of
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course, the flow details associated with one structure can be accentuated by using its center as the

reference frame. This will typically obliterate the motion associated with other structures.

In the present study, various reference frames were tried: for example, that of the leading

vortex, that of the trailing vortex, a frame moving at the average of the convection velocities of the

two vortices, as well as a frame having the velocity halfway between the two vortex centers. No

choice is perfect. Not surprisingly, the most satisfactory results were obtained when the midpoint

velocity was used as the reference frame velocity. Phase-averaged velocity vectors using this

reference frame velocity are shown in figure 11 for the first four phases. In each figure, the vector

directions are denoted by arrows and the magnitudes by the line lengths. The corresponding

vonicity contours (<toz>/f =1,3 and 5) are superimposed as dashed lines.

A major advantage of the velocity vector field representation is that it gives a better physical

perception of the instantaneous flow field than vorticity contours. It shows relative movements of

different parts of a structure or of interacting structures as well as engulfment and ejection of fluids.

Since the advection speeds of the structures in the transverse direction are very small compared

to those in the streamwise direction, the transverse components of the velocity vectors correctly

depict the engulfment of ambient fluid at the back and ejection of jet core fluid at the front of the

structures. A few of these velocity vector plots clearly show the saddle regions (marked X). The

saddles between the interacting structures at phases III and IV in the minor plane are not clear

because a single reference velocity cannot depict the flow field when the two structures are advecting

at quite different velocities. The existence of longitudinal vortices (ribs) in the saddle regions, and

their roles in turbulence production and entrainment have been discussed previously (Hussain 1984,

1986).

4.3 Incoherent Turbulence Stresses and Coherent Production

The mechanisms of turbulence production and small-scale mixing are central to turbulence

physics, but are poorly understood. The coherent structure approach to turbulence has provided us

some understanding of the turbulence production mechanism. In this section we will examine the

incoherent normal and shear stresses, their contributions to coherent production and the associated

mechanisms. In the present study, since we have examined the properties in a plane only, the
productions due to incoherent normal stresses <ut

2> and <vr
2>, and incoherent Reynolds stress

<ufvt> are examined.

4.3.1. Incoherent normal stresses.
Figures 12 & 13 show contours of the phase-average incoherent turbulence intensities

<wr
2>1/2/Ue and <vr

2>1/2/Ue. The distributions of these two are similar. At all the phases the

peaks of incoherent turbulence occur near the coherent structure center. However, there are some
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differences regarding contour boundary and levels. For example, up to phase III, ^t^'^/Ue has a

higher peak value in the major plane than in the minor plane, while the higher peak value of
<ur

2>1/2/Ue occurs in the minor plane. However, peak values of <er>= (<ur
2> + <ur

2>) in both

planes are nearly equal (not shown). For example, at phase II, the peak values of <er>/Ue
2 are

approximately 0.057 and 0.054 in the major and minor planes respectively. In the circular jet, the
peak value of <v2>iri is higher than that of <«r

2>1'7; this is similar to that in the minor plane of the

elliptic jet where the structures undergo leapfrog motion (during the first three phases) as in the

circular jet.

It is now well recognized that large-scale spanwise coherent structures in shear flows are

connected by a spanwise array of nearly longitudinal vortices of alternating signs, known as ribs

(Hussain 1984; Bernal & Roshko 1986; Jimenez et al. 1985). The interactions of ribs and spanwise

coherent structures (rolls) play a crucial role in the production of incoherent turbulence. Turbulence

produced by the stretching of ribs is advected toward the center of the rolls, resulting in peak values

of incoherent turbulence intensities near the roll center. Incoherent turbulence intensity data in jets
(Hussain & Zaman 1980) and wakes (Cantwell & Coles 1983) show that <v**->112peaks are higher

than <wr
2>1/2 peaks after the formations of structures; peak values of <wr

2>1/2 increase in x and

finally exceeds <vT
2>l/2 peak values. These data suggest that during the initial stages of vortex roll-

up and pairing, the rib-roll interactions produce turbulence predominantly in the transverse direction;
<ur

2>1/2 is produced at a later stage. A higher peak in <ur
2>1^2 in the major plane, even at phase I,

suggests that transition occurred earlier in the this plane. The role of ribs in turbulence production

mechanism is discussed further in section 4.3.3.

Incoherent turbulence can arise from two sources other than ribs. The first is jitter; variations

in structure shape, size, orientation and strength may cause improper alignment of structures.

However, the present study of near-field structures under excitation should be free from any

significant jitter. The second cause can be the fine-scale turbulence superimposed on the spanwise

rolls. In the transitional region, one would expect that this contribution to incoherent turbulence is
much smaller than that of the ribs.

While interaction of ribs and rolls of orthogonal vorticities produces fine-scale 3-D turbulence,

neither the details of their interaction, nor the topology of the rib-roll connection, nor the winding of

the rib within the roll is yet understood. This area is the focus of further research in our laboratory.

4.3.2. Incoherent and coherent Reynolds stresses.
The contours of incoherent Reynolds stress <Krtfr>/Uc

2 (figure 14) show that the peak value

occurs near the saddles of <coz> contours. Similar spatial correspondence between the peaks of

<coz> and <wrt;r> has been observed in other flow situations, namely circular jets (Hussain &

Zaman 1980), wakes (Cantwell & Coles 1983; Hayakawa & Flussain 1985) and mixing layers
(Metcalfe et al. 1987). We believe that <wrt;r> is predominantly controlled by the ribs and their

i 17



interaction with the rolls. By refining the eduction scheme, incoherent turbulence arising from jitter
effects and its contribution to <ufvf> can be reduced significantly. The contribution of

superimposed fine-scale turbulence to <iiri>r> should be zero. Thus the major generator of

incoherent Reynolds stress is the ribs.

Ribs can be viewed as substructures which are characterized by phase correlated voracity fields

normal to the rolls. Since the connections of ribs to rolls occur randomly in spanwise direction, the

associated smaller-scale velocity fluctuations appear incoherent with respect to the educed rolls.
Spatial correspondence between <utv^> (both positive and negative) and coherent vorticity <0)2>

are direct consequences of the topology of ribs and rolls and their interactions. The orientation of

ribs, both in the saddle region and the region where they connect the rolls, determines the domains of

positive and negative <«rz>f>.
Velocity fields associated with ribs oriented at angles a < 90° and a > 90° to x are shown

schematically in figure 15(a). For a < 90°, the rotational velocity around a rib will contribute either

(+u, -i>) or (-11, +v) in a spanwise measurement plane. In either case the value of <ufv{> will be

negative. When a >90°, contributions are either (+u,+v) or (-u, -v), giving rise to a positive value

of <ufvt>. The dependence of the sign of <ufvT> distribution on the orientation of ribs is shown

schematically in figure 15(b,c) for a single vortex (e.g. phase IV in the major plane) or for pairing

vortices (e.g. phase H in the minor plane). This simple explanation is in qualitative agreement with
the measured positive and negative <«rUf> distributions.

The peak value of <wrUf> is higher in the major plane than in the minor plane. Because of

stronger self-induction in the major plane, the distances between the leading and trailing vortices in

this plane at phases I and II are longer by about 40% and 17% respectively than those in the minor

plane. That is, the ribs in the major plane undergo higher stretching, producing higher peak values
of <**,&,>. After the completion of pairing in the major plane (phase IV), <urv^> distributions show

larger regions of positive <utvf> in the first and third quadrants around the structure center, and

smaller regions of negative <iitvf> in the second and fourth quadrants consistent with the conceptual

schematic shown in figure 15(b).

We need to consider transports of momentum that cause both incoherent and coherent
Reynolds stresses. Contours of coherent Reynolds stress <upvp> are shown in figure 15(d) for

phase II only. These contours show alternate regions of positive and negative values. During
phases I to IV, peak values of <upv > are greater than the corresponding <Mrz>r> values in both

planes. This indicates that, during the initial stages of the interaction, large-scale transport by
coherent structures dominates the flow dynamics. Even when <upt>p> is larger, the time average

may not be large because of the alternate signs in <upvp>. At phase V, values of <ufvr> and

<«p0p> are found to be comparable, indicating that with increasing distance coherent and incoherent

motions become equally significant in the transport of momentum.

18



4.3.3. Coherent Turbulence Production.
Shear and normal production terms, <PS> (= - <utvr>(d<v>/dx +d<u>/dy)) and <Pn> (s -

<itr
2>3<u>/3;c - <ur

2>3<z;>/3}' ), are dependent on the coordinate system chosen while the total

production <P> (s <PS> + <Pn>) is invariant under rotation of the axes, and is therefore a more

meaningful quantity. However, a detailed study of the distributions of turbulence production terms

<PS> and <Pn> = <Pnu> + <Pnv> (where <Pnu> = -<ur
2>3<u>/3x and <Pnv> = - <vl

2>d<v>/dy)

in an appropriate coordinate system is very helpful in understanding the physical mechanism of
production in turbulent shear flows. Here we discuss these measures in the cartesian (x, y)

coordinates.
Contours of <PS>, <Pn> and <P> are shown in figure 16(a-c). Since both incoherent

Reynolds stress <uryr> and coherent strain rate <S> (not shown) have their maxima in the saddle

regions, the peak of shear production <PS> necessarily occurs there. <Pn> contours are quite

different from <PS> contours: peaks in <Pn> distributions occur not in the saddle region, but near

the structure boundary. A comparison between production contours in the major and minor planes
shows that peak values of <PS> are about 4 times higher in the major plane, while the peak values of

<Pn> are_about 2 times higher in the minor plane, resulting in comparable peak values of the total

production <P> in both planes. Furthermore, most of the negative production is produced by

normal stresses.

A notable observation from these data is that normal and shear productions are comparable in
their peak values, even though the net contribution of <Pn> to an area average is considerably lower

because of cancellation between positive and negative valued regions. Coherent structure studies in

the far field of jets (Tso 1983), wakes (Hayakawa & Hussain 1985) and mixing layers (Metcalfe et
al. 1987, Hayakawa & Hussain 1990) have found <Pn> to be very small and <PS> to contribute

most heavily to <P>. The apparent disagreement between those studies and the present one can be

reconciled by examining the effects of curvature of vortical structures on the terms contributing to

normal production. In cylindrical coordinates (figure 17a), shear and normal productions, in
comparison with the case in rectangular coordinates, have two additional terms, e.g., <wr.ur

2>/2y

and <ur.ur
2>/2y. The experiments were performed in a cartesian frame of reference; only later did

we realize that a cylindrical coordinate system was more appropriate and that these two terms had not

been measured. However, several arguments might be put forth to jus t i fy that the contributions of
these two terms to <P>_are negligible, and here we only consider the more significant terms <PS>,

<Pnu> and <Pnv>.

If the spatial distributions of <ur
2> and <yr

2> are very similar to each other, the normal

production term can be written as
<Pn> = - <ur

2>3<u>/3;c - <i>I
2>3<t»/3j' = - <wr

2>(3<w>/3x H-3<p>/3j +<v>/y) +<wr
2> <v>/y.

By continuity, the first term on the far right hand side vanishes, while the magnitude of the second

term depends on the radius of curvature of the vortical structures. Thus, in a plane mixing layer and
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a plane wake, or in the far field of a circular jet, where the radius of curvature is large, contribution
of <Pn> becomes negligible. However, in the near fields of elliptic and circular jets, the <v>/y

contribution to <Pn> can be significant, resulting in positive <Pn> in the region of positive <v> and

negative <Pn> in the region of negative <v>. Of course, the distributions of <«r
2> and <z>r

2> are

not exactly the same, and therefore their differences also contribute to <Pn>, but these differences are

found to be small in situations where structures interaction is nominal, as in the studies cited above.

Mechanism of turbulence production. In the following, we examine the niechanism of

turbulence production due to the interaction of the coherent strain field and incoherent turbulence.

Let us consider the azimuthal cross-section of a vortical structure. In this plane, if one rotates the
(x,y) axes, the values of <PS>, <Pnu> and <Pnv> are redistributed among themselves such that the

total production <P> remains invariant. By aligning axes at a braid (vortex sheet between vortical
structures) such that the new coordinates (x^.y^) are aligned with the diverging separatrix (where

straining motion 3<«1>/3y1 = d<vl>/dx} = 0), the total production <P> can be made equal to <Pn>

in the braid. This suggests that the physical mechanism of production is that of vortex stretching

aligned in that direction. Guided by coherent production data, Hussain (1984) suggested that the

saddle region is not a two-dimensional continuous sheet but consists of slender discrete vortices

(ribs) aligned with the diverging separatrix. This conjecture found support in the low Re transitional

pictures of Bernal & Roshko (1986) and in direct simulation of turbulent flows (Hussain 1986). The

interaction of ribs and rolls causes continual stretching of the ribs, resulting in the production of
turbulence. In the usual streamwise, transverse and spanwise (x, y, z) coordinate system, <PS> is

the greatest contributor to the total production in the saddle region due to the stretching of the rib
vorticity. The <PS> contours confirm that most of the turbulence produced by incoherent Reynolds

stress occurs near the saddles.

Effects of structure curvature on normal production. The mechanism of turbulence

production by normal stresses and the effects of curvature of the roll are examined next. Let us first
consider the cross-section of a two dimensional roller structure, whose distributions of <co^>, <v>,
3<u>/3x and 3<i»/3y are qualitatively shown in figures 17(b-e). In these figures, vortex centers are
marked with a '+', and positive and negative contours of 3<»>/3x and 3<i»/3y are denoted by solid

and dashed lines respectively. As ribs wrap around rolls, they undergo stretching or compression
depending upon the sign of strain rates 3<«>/3x and d<v>/dy. The positive strain rate d<u>/dx

causes stretching of the ribs in the streamwise direction, augmenting mostly v and w fluctuations

associated with the ribs. [This is also apparent from the definition of <Pnv>, because <PIW> = -

<vi>d<v>/dy = <vt
2>c)<u>/dx.] Similarly, strain rate d<v>/dy augments u and w fluctuations

by stretching the ribs in the transverse direction. In the case of two-dimensional roller structures,

20



however, the total contribution to <Pn> is very small because stretching of a rib by d<u>/dx at a

given location is associated with the same amount of compression by 3<z»/9y, and vice versa.

For a curved roller structure, tangential velocity must increase on the inner (high-speed) side

and decrease on the outer (low-speed) side to accommodate the same flow between two radial planes

crossing the vortex (see figure 17a). That is, the streamwise flow undergoes a larger acceleration

and deceleration on the inner side than on the outer side. This is also evident from the equation of
continuity in cylindrical coordinates. Because of the term <v>/y, the strain rate d<u>/dx acquires

higher peak values on the inner side of the structure than on the outer side. Contours of 3<u>/djc

for a curved roller structure are shown qualitatively in figure 17(f)- Such a strain rate field produces

higher stretching and compression of the ribs on the inner side of a curved vortical structure than

those on the outer side. [ In figure 17(a), approximate rib-roll configuration is also superimposed

for reference.] Preliminary studies of a circular jet using direct numerical simulation (Melander

1990) show clearly the effects of curvature on the distribution of 8<u>/3x . Distributions of
3<u>/3;t, 3<i;>/dy and <v>/y obtained in this simulation are shown in figures 18(a-c). In these

figures, a few contours of <coz> are superimposed for common reference. Contours of 3<i»/9y

show a clover-leaf distribution with alternating positive and negative regions with little difference in
their peak magnitudes. Because <v>/y is nonzero, contours of d<u>/dx show a higher peak value

on the inner side than on the outer side.

As a representative case, let us next examine the strain rate fields of interacting structures at

phase II in the minor plane of the elliptic jet. This is deduced by superposing the strain field (in
figure 17f) for two vortical structures. Qualitative contours of - 9<u>/3x of individual structures

and their resultant are shown in figures 19(a, b). Qualitative contours of <u2> (similar to figure 12)

and <Pnu> = ~ <ur
2>d<u>/dx are shown in figures 19(c, d). Similar contours for-

<vT
2> and <Pnv> arc shown in figures 19(e-h). Note that the deduced contours of <Pnu>

<Pnv> show significant differences between them. Contours of <Pnu> (figure 19d) show one

dominant positive region (marked Al) on the downstream side and two negative regions (marked N2
and N3) on the upstream side of the structures, while <Pnv> contours (figure 19h) show clover-leaf

distribution with alternating positive and negative regions around each structure center (marked A4,
A6, N4, N6 and A5, A7, N5, N7). Considering such strain fields and the regions where the ribs
joins the rolls, the regions of <Pnu> and<Pnv> are shown schematically in figures 19(i, j),

respectively. In figure 19(i), the ribs in the interacting regions labelled Al and A2 are stretched in
the ^-direction resulting in positive <Pnu>, while compression of the ribs in regions N2 and N3

produces negative <Pnu>. In the interacting regions labelled A4 and A7 (figure 19j), the ribs are

stretched in the x-direction, resulting in positive <Pnv>; compression of the ribs in regions N4, N5,

N6 and N7 produces negative <Pnv>. Furthermore, as the structure T2 moves in the jc-direction

from phase I to phase III, the section of the rib connecting the vortices rt and T2 (denoted by N) is

compressed. This region is thus characterized by negative values of <P,,U> and <Pnv>.
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Experimentally obtained distributions of <Pnu> and <Pnv> (figures 19 (k,l)) are fairly similar to the

inferred distributions (figures 19(d, h, i, j). For example, note the similarity of <Pnu> distributions

in regions marked Al, A2, N2 and N3 in figures 19(d, i, k), and distributions of <Pnv> in regions

A4, A7, N4, N5, N6 and N7 in figures I9(h, j, 1). There are a few dissimilarities also; for example,

regions A3 and Nl in figure 19(d), and regions A5 in figure 19(h) are not present in figures 19(k, 1).

These differences between the inferred results using simple structure configuration and the

experimentally obtained results are not unexpected; in reality structures are three-dimensional and

their interactions produce more complex strain fields. Furthermore, three-dimensional motions
resulting from the winding of ribs around rolls produce complex distributions of<Pnu> and <Pnv>.

Circular jet. For comparison with the elliptic jet, contours of <PS>, <Pn> and <P> of the circular

jet are shown in figure 20 for three phases (corresponding to the <o)2> contours shown in figure 3b).

These contour patterns are qualitatively similar to elliptic structures in the minor plane. However,

there are some differences, especially in the later phases. For example, (a) unlike the elliptic jet, the
circular jet shows regions of negative <PS> in phase IV; (b) higher peak values of <PS> in the first

two phases of the circular jet; and (c) absence of positive <Pn> near the bottom side of the trailing

vortex of the circular jet (phase II), where the upstream rib joins with the roll. These differences are

not unexpected because of the deformation of structures and a larger distance between the interacting

structures in the minor plane of the the elliptic jet.

Peak levels of incoherent turbulence intensities in elliptic and circular jets are almost the same.

However, a larger domain of the coherent structure cross-section, associated with incoherent

turbulence intensities and net positive region of total production <P>, indicate that total turbulence

production over the extent of the structure cross-section is greater in the elliptic jet than in the circular

jet in all phases.

4.4 Time-average characteristics

Although time-average measures of various turbulence properties cannot address the detailed

physics of turbulent flows, these measures are important in technological applications. These may
be particularly important here because stable pairing enhances mixing. Furthermore, they serve as a

data base for calibration of turbulence models and direct numerical simulations. Since time-average

measures are the integrated footprint of advecting organized structures, one should expect that the

spatial distributions of these measures can be explained, though not necessarily completely, in terms

of coherent structures and their interactions. The motivation for this section is to investigate how the

time-average measures are modified by stable pairing and to examine them in terms of coherent

structures.
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4.4.1. Longitudinal velocity.
Contours of longitudinal mean velocity U, nondimensionalized by both local centerline mean

velocity Uc and exit velocity Uc, are shown in figures 21(a,b) respectively. The contours of U/UC

illustrate that excitation at StDe=0.85 causes the outer boundary of the jet (e.g. the U/UC= 0.1 line) to

be pushed outward in both the major and minor planes with respect to die unexcited state. The inner
boundary of the mixing layer (e.g. the U/UC=0.9 line) is pushed outward everywhere in the minor
plane, while in the major plane, it is pushed initially toward the centerline for x/Dc< 5, but outward

farther downstream. The shift in the inner boundary due to excitation is not as significant as the
outer boundary. [Note that the contour U/UC=0.5 represents the conventional jet half width.] These

contours demonstrate enhanced spreading of the jet by the excitation. For example, the shear layer

thickness at xfDc~5 is increased by about 50% in the major plane and by about 20% in the minor
plane. The inward and outward inclinations of U/UC contours in both planes are consistent with the

vortex trajectories shown in figure 6(a). In the major plane, the motion of the vortices toward the jet
axis produces inward inclinations of the higher-level U/UC contours, while outward motion of the

leading vortex produces outward shifts of the U/UC lines in the minor plane. Excitation causes

humps in the U/UC contours at;t/De = 2.5 in the minor plane where the trailing vortex rushes inside

the leading one.

Since the centerline velocity Uc decreases beyond the potential core of the jet, U/UC contours

do not show the effect of excitation on the shortening of the potential core. This effect as well as the
increase in the shear layer width by excitation is more clearly apparent in the U/Ue contours (figure
21b). Note that the location where the U/Ue=0.95 line intersects the jet axis has moved from x/Dc =

5 to 2 due to the excitation; excitation considerably shortens the potential core.

The thickening of the shear layer by excitation is more pronounced in the major plane than in

the minor plane. It was mentioned in section 4.1 that, although the vortex cores in the major plane
advect toward the jet axis due to self-induction, these vortices leave behind low-vorticity fluid, which

diffuses into ambient fluid before being entrained, causing the shear layer to grow further in the outer

region. In the minor plane, the fact that the leading vortex moves almost monotonically away from

the jet axis (see vortex trajectories; figure 6a) causes a continuous spreading of the low-level contour
(U/Ue=0.1). The higher-level U/Ue contours are influenced mostly by the acceleration and

deceleration of the trailing vortex, producing a hump (for example, see the 0,6 contour).

4.4.2. Transverse velocity.
For the unexcited jet, the V/UC contours (figure 22) in the major plane show a large region of

low negative values (denoted by dashed lines), while in the minor plane all of the contours are
positive; the peak value of V/Ue is about 5 times higher in the minor plane. Excitation modifies V/UC

contours drastically in both planes. Note that V becomes positive everywhere in the major plane.
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The mean V field is the result of the superposition of the self-induced motion of vortical

structures and the rotational motion within the structures. In the unexcited state, pairing occurs

intermittently and the pairing location is not fixed in space. Furthermore, the core vorticity is not as

concentrated in the unexcited case as in the excited jet. As a result, one would expect a lower level of

V in the unexcited jet. In the major plane, since the vortices move toward the jet axis by self-
induction, the positive v region in front of the structures is further diluted, while the negative v

region at the back becomes accentuated. Thus the dominance of the negative v field associated with

advecting structures results in only negative time average values of V. Conversely, as the structures

in the minor plane move away from the jet axis, they contribute to positive V in this plane.

Under excitation, stronger ejection in front of interacting structures seems to dominate inward

ingestion, producing only a positive V region in the major plane. This is apparent from the
distributions of <v> (figure 9). The peak values and the area enclosed are higher for positive <v>

contours than for negative <v> contours. Inward motion of the core region, however, decreases

the values of positive V. This motion causes a valley in the V distribution (shown by hatched lines

in figure 22), but is not strong enough to produce negative V. In the minor plane, excitation

increases the peak value of V by a factor of about two. Closer to die jet axis, a small negative region

of V appears where the trailing vortex rushes through the leading vortex, producing stronger inward

motion behind it.

4.4.3. Turbulence intensities.
Figure 23 shows that for the unexcited jet, the longitudinal turbulence intensity (u'/Ue)

distributions have a single peak in each plane. This is because the formation and breakdown of

structures are not localized in space. Since these events (formation and breakdown of structures) are
spatially localized by the excitation, z/'/Uc contours show two peak regions in the shear layer; the

first peak (closer to the jet exit) in both planes corresponds to structure roll-up. The second peak in

the major plane corresponds to the breakdown of paired vortices. In the minor plane, the second
peak is due to the breakdown of leading vortices. Note that the contoursjiave a valley near the jet

axis. Downstream of the valley, the contour levels increase and then decrease. Along the jet axis;,
the first peak in «'/Uc is primarily induced by the accelerating trailing vortices as they rush through

the leading ones. The valley corresponds to the deceleration phase of the trailing vortices and the

peak region downstream of the valley is due to breakdown of the trailing vortices.
Like u'/Ue, the z//Ue contours in the unexcited jet (figure 24) show a single peak in each plane

for the same reason mentioned above. Under excitation, z//Ue contours also show two peaks in the

shear layers of both planes, and a valley (shown hatched) in the minor plane. However, the contour
details of y'/Ue are quite different from those of w'/Uc, especially near the jet axis. The valley in the

v' distributions is transversely away from the jet axis, and downstream of the valley there is another

peak (i.e. a third peak) in the minor plane. The first peak in u' along the jet axis (x/De£2.5) is
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mostly due to the induced motion up = (<«> - U) because large up variations occur on the jet axis

also. On the other hand, the positive and negative peak values of vp = (<v> - V) occur upstream

and downstream of advecting structures, and away from the jet axis (see figure 9; distributions of vp

and <v> are similar because of very low values of V), causing the peak and valley of t>'/Ue to occur

away from the jet axis. Because the up distribution is symmetric about the jet axis and is zero along

the jet axis, the v' distribution shows a lower peak value than does the u' distribution along the jet

axis. This is consistent with data in jets of other geometries, e.g. circular (Wygnanski & Fiedler

1969), planar (Gutmark & Wygnanski 1976) and rectangular (Krothapalli et al. 1981).

4.4.4. Reynolds stress.

Figure 25 shows that excitation produces regions of negative Reynolds stress in both planes.

The appearance of the negative uv close to the exit plane is quite evident from the phase-average

measures of <urvr> and <«pt>p> (figures 14 and 15e ), since the time-average Reynolds stress is

equal to the average of coherent Reynolds stress <nv> (= <urvr> + <upup>) over all phases.

Excitation increases the positive peak of uv by about 60% in both of the planes. A comparison of

<urz>r> and <upVp> contours shows that most of the negative correlation is associated with <UpVp>

(i.e. due to the large-scale motion of structures) during initial phases of pairing. Positive correlation

occurs at the structure front where the jet fluid is ejected away from the jet axis while negative

correlation occurs at the back of the structures where the ambient fluid is drawn inward. At phases

when the trailing vortex moves inside the leading vortex, the region of negative correlation is more

dominant than the region of positive correlation. Thus, under excitation, when pairing events are

stabilized to occur at a particular spatial location, the time-average Reynolds stress also shows a
region of negative correlation. Farther downstream, say x/DQ> 4, as the correlation of coherent

motion (i.e. <upup>) decreases, the weak negative regions of <upup> are overshadowed by the

positive regions of <upi>p> and <urur>, giving rise to only positive time-average uv contours. In

unexcited jets, when the interaction phases which give rise to negative correlation occur randomly in

space and time, contours of uv do not show negative regions because of dominance of positive

regions of <Upt;p> and <uIvr>.

4.4.5. Turbulence production.
Contours of time-average shear production Ps, normal production Pn and total production P are

shown in figure 26(a-c). In the unexcited case, since the strain rates BU/dy and 9U/3x are much

stronger than dV/dx and dV/dy, mean turbulence production due to shear and normal stresses is

predominantly contributed by the gradients of U. The shear production is dominated by 3U/dy,

which is negative in both planes, resulting in regions of only positive shear production. Note that

most of negative production is generated by normal stresses.
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Excitation shows significant effects on the production contours. Regions of negative Ps

develop in both planes. As to be expected, the negative Ps is much more dominant in the minor

plane because of large counter-gradient transport of momentum during the phase when the trailing

vortex passes through the leading one. In the unexcited case, the contribution of shear production is

much higher than normal production (almost an order of magnitude), but excitation significantly

increases the contribution of normal production.

Because of the dominance of positive values of Ps and Pn in the major plane of both excited

and unexcited cases, the total production P in this plane is only positive. In the excited case, the

distributions of P in both planes are also evident from the phase average <P> contours. Large

regions of positive <P> in the major plane result in only positive regions of P, while the dominance

of both positive and negative regions of <P> is reflected on the time -average P.

5. Concluding remarks

Three-dimensional deformation, intrinsic to elliptic vortices because of the curvature-dependent

self-induction, makes pairing in an elliptic jet more complicated than in a circular jet. Unlike circular

jets, where pairing is nearly uniform around the entire perimeter of the vortices, pairing in elliptic jets

occurs only in the major-axis sides. A large separation of interacting vortices in the minor plane

hinders pairing; the trailing vortex, instead of pairing, rushes through the leading vortex and

subsequently breaks:down.

Since pairing takes place along a short segment in the major-axis side only, morphologically

speaking, pairing does not occur through a leapfrog motion as in circular jets; rather it is better

described as an entanglement process. In post-transition and fully-developed turbulent states of

various shear flows, where the vortical structures are predominantly three-dimensional, merger

through entanglement is likely to be a common mode of vortex interaction. Other important modes

of interactions are merger of opposite-signed vortices and the cut-and-connect interaction (which we

have discussed elsewhere). By controlling the deformation and interaction of three-dimensional

vortical structures in the elliptic jet, we could investigate this important mode of interaction in detail.

It is quite reasonable to infer from the topology of vortex pairing that compared to leapfrogging

processes, an entanglement process causes greater stretching of interacting vortices, producing

greater enstrophy production and vorticity diffusion. Three-dimensional deformation of vortical

structures and the resulting pairing through entanglement in the major plane and violent breakdown

in the minor plane should cause better mixing in elliptic jets than in circular jets. This is evident from

the coherent vorticity contours which show that vorticity is diffused over a larger area (almost twice)

in elliptic jets than in circular jets.
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In the present study, although we have not educed rib substructures, the dynamics and

importance of ribs in turbulence production mechanism have been inferred from the detailed

measurements of turbulence production due to incoherent normal and Reynolds stresses. Prior

studies of coherent structures in plane wakes and mixing layers, and the far field of circular jets have

revealed that coherent production due to incoherent normal stresses is negligible compared to

production due to incoherent Reynolds stress. However, in the near fields of elliptic and circular
jets, where structure curvature is strong, curvature plays important roles in the production of

turbulence by normal stresses.

The authors are grateful to Dr. James Bridges for careful reviews of the manuscript, and to Dr.
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Figure captions

Figure 1 (a) Schematic of the flow facility and measurement scheme,
(b) Co-ordinate system.

Figure 2 (a) Evolution of w-spectrum along the jet centerline under excitation at St[)e=0.85.
(b) Traces of w(t) signal along the jet centerline under excitation at StDe=0.85.

Figure 3 Contours of coherent azimuthal vorticity <co/>/f at various phases during pairing:
(a) elliptic jet; (b) circular jet.

Figure 4 Distributions of vonichy peaks during pairing in elliptic and circular jets: (a) major
plane; (b) minor plane; n, leading vortex, elliptic jet; o, trailing vortex, elliptic jet;

, circular jet.

Figure 5 Areas enclosed by contours of various levels of vorticity <o>z>/f: (a) major plane;
(b) minor plane; (c) circular jet. o, phase I; n, phase II; v, phase III;
A. phase IV; O, phase V.
(d) Area enclosed by the vorticity level <co/>/f =1. n, major plane; •, minor plane;
o, circular jet; •, circular jet (Hussain & Zaman 1980).

Figure 6 (a) Trajectories of structures during pairing in elliptic and circular jets:
o, leading vortex (minor plane); •, trailing vortex (minor plane); v, leading vortex
(major plane); A, trailing vortex (major plane); circular jet.
Schematics showing motions of elliptic structures due to self- and mutual inductions:
(b) minor plane; (c) major plane

Figure 7 (a) Sequence of flow visualization pictures in the major and minor planes during
pairing, presented in the form of isointensity contours.(b) Schematics of the vortex
evolution process during pairing.
(c) Flow visualization pictures taken simultaneously in the major and minor planes
during pairing.
Schematics of the entanglement of vortices in: (d) plane jet; (e) circular jet.

Figure 8 Contours of phase-average longitudinal velocity <u> /Ue .

Figure 9 Contours of phase-average transverse velocity <v> /(Je

Figure 10 Convection velocities of vortices during pairing, o, leading vortex (minor plane);
•, trailing vortex, (minor plane); v, leading vortex (major plane); A., trailing vortex
(major plane); , trailing vortex (circular jet); , leading vortex (circular jet).

Figure 11 Distributions of phase-average velocity vectors during pairing.

Figure 12 Contours of incoherent longitudinal turbulence intensity <»r
2>1/2/Ue.

Figure 13 Contours of incoherent transverse turbulence intensity <vr
2>}/2/Uc.

Figure 14 Contours of incoherent Reynolds stress <{<Iyr>/(Je
2.
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Figure 15 (a) Schematics showing the mechanism of positive and negative <urur> generation.
(b, c) Schematics showing the regions of positive and negative <urvt>
(d) Contours of coherent Reynolds stress <Mpup>/Ue

2

Figure 16 (a) Contours of coherent shear production <Ps>/(Ue
2.f)-

(b) Contours of coherent normal production <Pn>/Ue
2.f)

(c) Contours of total coherent production <P>/Uc
2.f

Figure 17 (a) Schematic of a ring vortex and cylindrical coordinates.
Qualitative contours of: (b) <co7>; (c) <v>; (d) d<u>/dx ; (e) cku>/3y for a two
dimensional roller structure.
(f) Qualitative contours of d<u>/dx, showing the effects of structure curvature.

Figure 18 Numerical results of a circular jet.showing contours of: (a) d<u>/dx; (b) d<v>/dy;
(c) <v>/y . Solid and dashed lines are contours of positive and negative values
respectively. --- , vorticity contours.

Figure 19 (a) Qualitative contours of interacting vortices at phase II: (a) superposition of - d<u>/dx
of vortex 1 and vortex 2; (b) -3<u>/3x; (c) <wr

2>; (d) <Pnu>; (e) superposition of
- d<v>/dy of vortex 1 and vortex 2; (f) - 3<i»/9y; (g) <vr

2>; (h) <Pnv>.
Schematics showing how rib-roll interaction produce regions of: (i) <Pnu>; (j) <Pnv>-
(k) Contours of the normal production term <Pnu>/(Ue

2.f); phase II, minor plane.
(1) Contours of the normal production term <Pnv>/(Uc

2.f); phase II, minor plane.

Figure 20 Contours of <PS> /Ue
2.f)» <Pn> /Ue

2.f) and <P> /Uc
2.f) during pairing in the circular jet.

Figure 21 (a) Contours of U/UC of the excited (StDe=0.85) and unexcited elliptic jets.
- excited; --- unexcited.

(b) Contours of U/UC of the excited (Strjc=0.85) and unexcited elliptic jets.

Figure 22 Contours of V/Ue of the excited (St£)C=0.85) and unexcited elliptic jets.

Figure 23 Contours of u'/Uc of the excited (Strjc=0.85) and unexcited elliptic jets.

Figure 24 Contours of u'/Uc of the excited (StDc=0.85) and unexcited elliptic jets.

Figure 25 Contours of uu/Uc
2 of the excited (St£)C=0.85) and unexcited elliptic jets.

Figure 26 Contours of time-average turbulence production in excited (Stpjc^O-SS) and unexciled
elliptic jets: (a) shear production; (b) normal production; (c) total production.
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Figure 4 Distributions of vorticity peaks during pairing in elliptic and circular jets: (a) major
plane; (b) minor plane; n, leading vortex, elliptic jet; o, trailing vortex, elliptic jet;

, circular jet.
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Figure 5 Areas enclosed by contours of various levels of vorticity <coz>/f: (a) major plane;
(b) minor plane; (c) circular jeL o, phase I; n, phase II; v, phase IE;
*\ phase IV; O, phase V.

(d) Area enclosed by the vorticity level <coz>/f =1. n, major plane; •, minor plane;
o, circular jet; «, circular jet (Hussain & Zaman 1980).
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Figure 6 (a) Trajectories of structures during pairing in elliptic and circular jets-
o, leading vortex (minor plane); •, trailing vortex (minor plane); v, leading vortex
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Figure 7 (a) Sequence of flow visualization pictures in the major and minor planes during
pairing, presented in the form of isointensity contours.(b) Schematic of the vortex
evolution process during pairing.
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Figure 7 (c) Flow visualization pictures taken simultaneously in the major and minor planes
during pairing.
Schematics of the entanglement of vortices in: (d) plane jet; (e) circular jet.
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Figure 9 Contours of phase-average transverse velocity <i» /Ue
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Figure 10 Convection velocities of vortices during pairing, o, leading vortex (minor plane);
• , trailing vortex, (minor plane); v, leading vortex (major plane); A., trailing vortex
(major plane); , trailing vortex (circular jet); , leading vortex (circular jet). <
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Figure 16 (a) Contours of coherent shear production <Ps>/(Ue
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Figure 18 Numerical results of a circular jet.showing contours of: (a) d<u>/dx; (b) .
(c) <v>/y . Solid and dashed lines are contours of positive and negative values
respectively. , vonicity contours.



(a) (b) (c) (d)

A3O

/vortex 1

~\ <Pnu> = - <"r
2>

(e) (f) (h)

I
•H-

ortex 1 "I/vortex 2
<Pnv> = - <"r2

Figure 19 (a) Qualitative contours of interacting vortices at phase II: (a) superposition of-
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Figure 21 (a) Contours of U/UC of the excited (StDe=0.85) and unexcited elliptic jets.
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(b) Contours of U/Ue of the excited (StDe=0.85) and unexcited elliptic jets.



2.0

1.0

2/Dc 0
c 2.0

1.0

major plane
uncxcitcd

major plane
excited

minor plane
uncxcited

minor plane
excited

2.0

1.0

0
2.0

1.0

10 15 0 10 15

Figure 22 Contours of V/Ue of the excited (StDe=0.85) and unexcited elliptic jets.
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Figure 23 Contours of u'/TJe of the excited (StDe=0.85) and unexcited elliptic jets.
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Figure 24 Contours of z//Ue of the excited (StDe=0.85) and unexcited elliptic jets.
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2 of the excited (StDe=0.85) and unexcited elliptic jets.
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