it FT-TO-HAR

?937)

N T

In the Soft-to-Hard Technical Spectrum

for Advanced

irch Inst.

CSCL 0%

C1

iput

Where is Software

Engineering?

Theodore F. Leibfried
Robert B. MacDonald

University of Houston-Clear Lake

February 12, 1992

&

FoCis

b 7 L 7
- - &

\vj’iv’

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research and education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

In the Soft-to-Hard Technical Spectrum
Where is Software Engineering?

Preface

This RICIS document is one of a series of technical articles addressing different subjects
associated with computing and information systems. The various articles range from
those that have been directly stimulated by specific RICIS activities to those that discuss
issues of immediate or longer term concerns of the overall RICIS program. The articles
reflect the ideas, thoughts and findings of their respective authors and do not necessarily
represent those of any specific organization. The articles in this series have not generally
been subjected to any organized review process. However, some articles of the series will
be submitted for publication in specific professional journals.

Table of Contents

Introduction

Background

What is the Conventional Wisdom? or (Are We Well Served by the
Conventional Wisdom?)

Is Software Engineering an Engineering Discipline?

What is Science?

- What is Engineering?

So what is the Difference?

So What is Cdmputer Science?
(As We Know It Today)

What Does Electrical Engineering Have To Do With It?

Lo the Computer Scientist!

The Software Engineer Cometh!

What About the Curriculum Requirements?

What Are the Objectives of Modern Engineering?

What Then Should Be the Future Objectives of Computer Science?

How Can These Objectives be Attained?

So Where are We Now?

So What Should We Do?

Summary and Conclusions

References

10
10
1
11
12

13

Introduction

As societies move further into an “information age,” as more people become computer
literate and more of us become dependent on computing and information systems, greater
concern is necessarily being given to critical complex issues associated with this evolving
technology. While over the last four decades we have witnessed tremendous advance-
ments in computer hardware technologies, we are increasingly experiencing the adverse
effects of critical deficiencies in our abilities to develop the software needed to harness the
generic capabilities of our hardware technology.

In the computer journals and tabloids, there have been a plethora of articles written
about the software engineering field. But while advocates of the need for an engineering
approach to software development, we are at once impressed with how many authors
have treated the subject of software engineering without adequately addressing the funda-
mentals of what engineering as a discipline consists of. In addition, there is an absence
of a sufficient address of the role of the supporting sciences to engineering in the context
of the relative roles of computing science and software engineering. The purpose of this
article is to set forth some arguments as our attempt to NOT once more prove that Lord
Acton was correct when he wrote, “What we learn from history is that we do not learn
from history.” In this treatise, we have attempted to bring together a discussion of the
various related facets of this issue in a logical framework to advance the thesis that the
software development process is necessarily an engineering process and that we need
formally educated software engineers to develop our complex software systems of the
future.

The purpose of this paper, then, is to examine MORE OF THE DETAILS OF the issue of,
““whether or not the design and development of software for digital computer processing
systems should be both viewed and treated as a legitimate fleld of professional engineer-
ing.” In addition, we examine the type of academic and professional level education pro-
grams that would be required to support a “software-engineering” discipline. Lastly, we
comment on the future role and importance of “computer science” in the support-of “soft-
ware engineering.”

Background

It is prudent to recall the dangers of what the conventional wisdom portrays as the fea-
tures of engineering disciplines. It has often been said that engineering is more of an art
than it is a science. An art may make use of the findings of a science, but it presumably
does not advance the knowledge base of the science itself. Others have commented on
the “cookbook recipe” approaches of some decades earlier engineering practitioners.
These were included in the common views of the conventional engineering disciplines
prior to World War II when, coincidentally, major changes in technology were still rela-
tively slow paced. This all began to change in the 1940’s with the stimulus provided by
World War II. There is an interesting anecdote about Dean Terman’s stint as a founder of
the Lincoln Laboratories which was credited with developing advanced and somewhat
novel concepts in radar during and after World War II. When Dr. Terman first sought to
get technical personnel to Lincoln Laboratories, he brought in engineers. They were to
develop new experimental equipment to implement the concept of radio ranging. Much to
Terman's dismay, he observed that most of his engineers seemed to lack adequate back-
grounds to develop the new innovative designs required, but tended to only know how to
design and build equipment which was quite similar to that built before. He observed
that physicists on the project were generally better able to do the innovative design work
that he thought of as “engineering” work. This and similar experiences of others during
this era later had a profound effect upon the thrust of engineering education. In particu-
lar, electrical engineering experienced a most profound revision as a result of the “explo-
sion” of new and advancing technologies after WWII. David Parmnes, an electrical engineer,
commented on Dijkstra’s work, “On the Cruelty of Really Teaching Computing Science”
that “My own engineering education included more courses in the Mathematics Depart-
ment (taken side-by-side with mathematics students) than courses offered by the Electri-
cal Engineering Department.” {1]. What he has eloquently established is the “new” (and
perhaps over-reactive) philosophy engendered by Dr. Terman's experiences; as we have
moved into a fast changing, high technology culture, it is no longer sufficient for an engi-
neer to be capable of doing what has been done before. They need to be well-versed in
fundamentals of the theories derived from the supporting sciences, be well versed in the
appropriate mathematics and be capable of extending the derivation of the principals and
formulae to apply to new situations. “Recipe engineering” proved not to provide sufficient
flexibility, especially in an age of fast changing technology such as we are experiencing in
the computer field.

What is the Conventional Wisdom?
or
(Are We Well Served by the Conventional Wisdom?)

With the emergence of the recognition of the need to treat the software development pro-
cess as an engineering process and with the advent of the emergence of the first software
engineering curriculum, we are seeing some similarities to the past.

In 1989, an article relating to software engineering curriculum quoted a Taxonomy of
Educational Objectives. This taxonomy related that students of software engineering
need knowledge of computer methods, classification and abstractions but not any deep
understanding of them. [2]. We think this oversimplifies the problem and breadth with-
out depth is not enough.

Just as the first electrical engineering curriculum evolved from physics, we see the soft-
ware engineering curriculum evolving primarily from that of computer science and to a
lesser extent from electrical engineering. The conventional wisdom of software engineer-
ing, therefore, has a tendency to be biased more by the tenets of science and mathematics
and, in particular, those of computer science than by those of engineering. There is a
question however about computer science as it is currently studied, as we shall see.

It is our belief that software engineering practices and supporting educational curriculum
can benefit from drawing more heavily on the conventional wisdom of modemn day engi-
neering. This approach calls for a clear understanding of the important complementary
differences between engineering and science. It is also beneficial to keep in mind that the
transition of a “practitioner” from science to engineering and vice versa is not usually a
trivial one. The practice of a disciplined engineering approach to the design of a new or
better product is quite different from the scientific practice of defining a research experi-
ment to discern new knowledge. To compound the difficulty, a difference in the tempera-
ment and motivations of engineers and scientists also often exists. In making a leap to
engineering, it is critical to keep in mind that engineering is a “design discipline.” As
such, engineering design methodologies are the heart of engineering. While their applica-
tion can benefit from “tools,” without well understood design methodologies, tools are
fairly useless.

Due to the early history of software development practices, conventional wisdom has a
tendency to view software engineering as programming and that at most a proper set of
tools and appropriate management practices are sufficient to overcome the critical issues
of complex software development.

In addition to overcoming such common wisdom views as these, we have considerable
evidence that software engineering and its associated methodologies and technologies are
going to be as fast changing as those we have experienced in other engineering fields over
the past 50 years. This indicates that software engineers are going to need a rich back-
ground in a variety of supporting subjects if they are to be able to stay current in the
field. This will be true for both those who engineer future “systems” software as well as
the developers of “applications” software.

Is Software Engineering an Engineering Discipline?

What we seek to show is not that software engineering is a “Doomed Discipline,” a view
espoused by Dr. Dijkstra, but that it needs to address the subjects of computer science

3

and engineering from a formal methods point of view as well as a so-called practical view-
point. Mathematical modeling is as essential to the software development process as it is
to other engineering flelds. It is also not desirable for software engineers to continue to
design software that requires all of its parts to be newly created in order to implement the
design. The use of properly designed and verified (i.e. engineered) “component parts” in
software engineering is as critical to the success of future software development projects
as it is in other engineering disciplines. Just as in conventional engineering, the software
designer needs to design to take advantage of existing proven component parts wherever
possible. We believe that it is at least now clear that the products of software engineering,
e.g. design specifications, software system designs, attendant coded implementation pack-
ages, testing, etc. are, in fact, representative of the products of engineering. The resulting
stored instructions in a computer system’s hardware memory elements are just as real as
the “electrical components” that do the work of the design in any electronic system.

Science and engineering are different disciplines (professional fields of endeavor) that are,
nevertheless, significantly related and mutually supporting of one another. In a funda-
mental way, science supports engineering since the utilization of the scientific theory
provides the foundations of the engineering disciplines. It is interesting to note that engi-
neering also supports science in that the engineering of scientific instruments, compo-
nents and materials, etc. is critical to advanced research in the sciences (physics, chemis-
try, etc.). Clearly during the course of one's profession, it is not unusual for scientists to
engage in engineering activities and conversely for engineers to engage in science. How-
ever, these two endeavors are significantly different and should be recognized as such.

What is Science?

The quantitative sciences of physics, chemistry, meteorology, astronomy, as well as certain
sub-flelds of geology and biology are now generally viewed as separate scientific disciplines
which have somewhat fuzzy (difficult-to-define) boundaries. The sharp lines of demarca-
tion of these fields have become less rigid as fundamental unifying principles have been
discovered which tend to unite them. An example is the underlying discoveries of atomic
physics which have had a profound effect upon the concepts of chemical bonding. The
boundaries between chemists and physicists are often blurred.

Scientists are the professional practitioners who are educated and trained in the use of so

called “scientific methods” to produce new knowledge in the various fields of science. This
ever advancing knowledge is comprised of collections of facts, classes of models and gener-
alizations thereof which systematize and correlate observed facts to support predictions of
phenomena that can be compared with later observations or experimental results.

Scientific theory is in a nearly continuous state of advancement. Historically, we have
seen nearly all the once accepted scientific conceptual schemes of the past disproved by
increasingly innovative experimental and observational techniques and replaced by either
modified or new theories.

What is Engineering?

Engineering is the practice of applying the existing bodies of scientific knowledge to de-
velop new capabilities or to develop more cost-effective and/or reliable products and
services to improve already existing facilities or to generate new ones. Engineering com-
bines the use of knowledge together with the “art” and know-how which has been built up
and passed along over time by the body of practicing professionals.

This is not to say that engineers do not require the analytical ability possessed by scien-
tists. There is no way that an engineer could have developed the technology which has
played a major role in the advancement of science without having an appreciation of the
phenomena that technology was to observe. A clear understanding of underlying theory
is critical to its application in engineering. Engineering may be viewed as similar to the
applied sciences, in the same way, that the practice of medicine is applied biological
science. Physicians must understand and appreciate the biological findings before they
can apply them intelligently.

So What is the Difference?

The approaches of science, the so-called scientific methods, are substantiall); different
from the more commonly practiced approaches of engineering. Scientific methods all
start with a collection of facts, followed in turn by considerable thought, speculation and
conjecture. The result is the development of alternative working hypotheses that can be
tested and evaluated. Hopefully, these hypotheses lead to generalizations of predictive
theory. '

A well understood example of this process is the historical sequence leading to the devel-
opment of Newton's Second Law. The astronomical observations of Tycho Brahe were
followed in turn by the development of Kepler's Laws which captured the relationships
among Brahe's facts. Then, the generalizations of Newton’s Principles culminated the
process with their inherent broader capability of prediction.

On the other hand, engineers are practitioners who are educated and trained principally
in the comprehension and use of knowledge, empirical evidence, and more importantly,
disciplined problem solving methods to achieve solutions to technical problems and pro-
duce new and/or improved capabilities. Commonly accepted engineering approaches
generally begin with the identification of the need for a new or improved capability and
this is often described in terms of requirements. These are in turn translated into specific
product or system specifications. Analytical and physical modeling techniques are used
to analyze and develop a design. A resulting design, to be useful, must be such that it
can be implemented with existing materials and processes or alternatively with materials
or processes that can be developed. In the next step, the design is fabricated and tested
to determine how well it meets the initially determined requirements of the design and
implementation specifications. An economic or “business” decision may then be made as
to the viability of the product. If it is found to be useful and cost effective it is then fur-
ther engineered for manufacture.

5

An example of this process is the development of the diesel engine by Rudolf Diesel. He
had hoped to design and develop an internal combustion engine which approximated the
ideal thermodynamic Carnot cycle. When the prototype design literally blew up during
test, he redesigned the engine to use a less efficient but more practical cycle for which
materials and fabrication practice were available. The ideal cycle performance require-
ments were relaxed and the rest is history.

So What is Computer Science?
(As We Know It Today)

With the general definitions thus delineated, it is clear that some practitioners of com-
puter science already are practicing some sort of engineering or at least applied software
science. Not all computer scientists are searching for new algorithmic knowledge con-
tinually. Many computer scientists are developing software systems to accomplish spe-
cific purposes. Is not the design of a data base system an application of software design
and development?

What Does Electrical Engineering Have To Do With It?
(With Software Engineering, Of Course)

Electrical engineering is that branch of engineering primarily responsible for designing
and developing the hardware portions of computing and information system products and
systems. The sub-field of computer engineering has been established under electrical
engineering just as those of power, comrmunications, radio. television etc.

It is interesting to note that the fleld of electrical engineering is some 150 years old and
was initially established on the basis of the needs and opportunities suggested by the
theories of the physicists and mathematicians of that time. The first “electrical engineers”
were physicists who became personally interested in going “outside” the sciences to de-
sign and build the first products promised by the newly found scientific theory. Over 150
years, the discipline of electrical engineering has gone through a metamorphosis and
become formalized and marked by the use of “engineering approaches.” The first curricu-
lum in electrical engineering in the U.S. appeared in the early 1880’s. Today, electrical
engineers are educated within accredited university schools of engineering and enter the
work-place in a continuing process.

The specialties in computing hardware systems arose in electrical engineering during the
1960’s. One of the major outcomes of their engineering progress was the development of
general purpose digital computing systems having a generic capability to handle and
compute with data. This concept of “general purpose™ required that these generic sys-
tems be “programmed” to accomplish the varied specific purposes desired. These pro-
grams became known as “software” and the practitioners who developed these programs
came to be called “programmers.” Programmers came from many different fields and had

6

widely differing backgrounds. Initially, programming was primarily an art and program
development methods were, for the most part, left as an individualistic practice. This
“artisan” approach was reasonably satisfactory until the late 1960's when software appli-
cations and systems began to become increasingly complex.

Lo the Computer Scientist!

In the 1960's, the first departments of computer science were established in academia.
Initially, these concentrated on mathematical techniques necessary for numerical analysis.
The development of non-numerical programming algorithms and theory and the develop-
ment of “higher level” computer languages followed.

By the late 1960's, electrical and other engineers were producing computer hardware
systems of considerable capabilities. More importantly, there was the promise of new
systems having much improved capabilities with significantly reduced costs in the near
future. Computer engineering had been born as a viable branch of electrical engineering.
However, the state of the software was not keeping pace with the hardware.

Computing science departments became the primary source of people, who went into the
“programming field” and were the professionals faced with solving the so called “software-
crisis” as the software problem was first termed in the late 1960’s.

The Software Engineer Cometh!

During the late 1960’s, the idea of the need to “engineer” software developed and matured.
First, the special purpose digital computer and then the general purpose computer showed
that software systems could indeed replace some special purpose hardware. A program-
mable machine could perform the function of a hard-wired circuit. An early example of
this was the implementation of a phased lock loop for an aircraft tracking system through
use of a software program running on a PDP-11 digital computer. This type of implemen-
tation punctuated the dissolution of the lines of demarcation between electrical engineer-
ing and computer science.

During the period of the 1970’s and certainly by the mid 1980's, the idea and various
descriptions of a “discipline of software engineering” were advanced. By the end of the
1980’s, academia had produced the first academic programs of software engineering at the
masters level.

Software engineering is the missing branch of engineering needed to design and develop
the software systems required to run the hardware products and systems. In a sense,
software engineering is to what is conventionally called computer science as production
engineering is to design engineering. (In a very real sense in the future, software engineer-
ing needs to be to computer science what electrical engineering has been to physics).

7

The basic aspects of software engineering which need to be understood are: [5]

Technical,
Managerial,
Legal,
Security.

The technical aspect includes methods and tools for:

Deriving system(product) specifications,

Designing products and systems,

Building or implementing designs,

Testing (verification and validation) of products and systems,

Specifying the operation and maintenance of these products and systems.

The legal aspect includes:

Basic legal considerations which are needed to survive in business and protect
product rights.

Specific processes associated with conducting a business including:

- Software program protection (patents, copyrights, trade secrets),
- Contract law,

- Negotiations,

- Tax considerations,

- Labor law,

- Warranty of software performance,

- Ethics. -

The security aspect includes:

Concepts, the theory of and need for security in differing software systems,
Tools for generating secure software,

Questions of individual privacy and methods of preventing the compromise
thereof,

Methods for measuring system security.

The management aspect includes:

The need for a thorough insight into those basic environmental elements that a
manager must control to attain smooth, effective and efficient product develop-
ment which will have desirable operational and user interface characteristics over
the product life cycle.

Management tools and techniques of importance in the design, development and
sustaining engineering of products.

What About the Curriculum Requirements?

The engineering qualities of importance to a software engineer which need to be ad-
dressed in any educational program fall into three main categories; viz. basic knowledge,
skills and attitude:

Basic knowledge comprised of fundamental and applied science,

Fundamental knowledge of physics, chemistry and mathematics whichprovide
the foundation upon which all knowledge is assembled,

Applied sciences knowledge consisting of computer software and hardware
basics and practical network theory and including knowledge of other engineer-
ing disciplines such as practical thermodynamics which bridge the gap between
the knowledge base and engineering design,

Basic skills such as good communication, judgement skills, logical and orderly -
decision processes, good analytical capabilities and a concept of teamwork,

Attitude, which is hard to teach but is necessary for effective engineering
reflects a curiosity, a questioning attitude, objectiveness and reasonableness.

The general steps of the engineering method must not be overlooked. The principal steps

are:

Problem formulation,

Problem analysis,

Search for alternative solutions,
Decision,

Specification preparation,
Implementation,

Test and evaluation.

-

What Are the Objectives of Modern Engineering?

Whereas the objectives of science are to discover and create “knowledge,” the objectives of
engineering are to create new and improved capabilities which support man in his en-
deavors. Therefore, while engineers need to be well versed in the underlying sciences,
they need to be in the resulting techniques of engineering analysis for a variety of physical
phenomena. Only in this way, can an engineer hope to create related new and improved
products.

What Then _Should Be the Future Objectives of Computer Science?

Freed of the pressure to produce computer scientists capable of serving as “engineers,”
the computer science community can, in the future, focus upon creating the body of
fundamental, theoretical, scientific and mathematical material upon which advances in
software engineering can be solidly built! We assert that such a knowledge is critical to
important advancements in future software design processes and to the development of
an engineering capability to verify important characteristics of a proposed design or to
determine the trade-offs among alternative designs. Such a capability is essential for
achieving and maintaining the reliability and correctness of a design, which other engi-
neering disciplines provide their clients and to which society has come to demand. No
longer do engineers build structures on the basis of rough “sketches” and then have to
resort to testing to discover fundamental design flaws followed by major and empirical re-
construction. Important work by computer scientists is needed to advance the concepts
of and to provide the underpinnings of “provable software design.” Other advances are
needed to support better simulation methods especially for real-time systems simulation,
faster artificial intelligence systems and expert systems. Indeed, some of these advance-
ments may be closely linked to developments in the science of parallel processing.

How Can These Objectives Be AHtained?

An engineering curriculum must expose the student to a wide cross section of different
fields while providing specialized training in a particular engineering specialty. As an
example, consider that an electrical engineering student takes courses in a variety of
sciences (physics, chemistry, mathematics, etc.) as well as from the various classical
engineering disciplines (mechanical, civil, chemical, etc.). In addition, there are special-
ized courses in the electrical engineering field (communications, control, power, electron-
ics, etc.).

The standard undergraduate engineering curriculum is now usually regarded as a five-
year program providing this broad background in engineering and fundamental support-
ing sciences. Many of these programs approximate or exceed 160 credit hours. Graduate
degree programs lead to a more in-depth education in a selected area within a particular
engineering fleld.

Software engineering appears to be generically similar to other engineering fields in that it
builds upon the knowledge of supporting sciences. It is involved with engineering new
capabilities stemming from the development of computer software products and systems.
The engineering of these new systems is also predicated upon a number of related engi-
neering disciplines depending upon the nature of a particular specialty. For example, the
engineering of a software system which implements a complicated automatic control
system. Thus a software engineer, who plans to develop large control systems, needs to
understand the mathematics of control and the physics of the so-called “plant” which is
controlled.

10

So Where Are We Now?

The state of development of the field of computer engineering at this time may be com-
pared to the states of already existing engineering disciplines at the time of their emer-
gence. In the absence of academic and/or professional educational programs the early
practioners of an engineering field came from a variety of related fields with considerably
different specialized training.

The first practitioners of electrical engineering, some 150 years ago, were physicists, chem-
ists and others with little formal education in any engineering methodology and only the
practical experience of their laboratory work. In addition, few if any standards existed to
guide engineering development. During this period of transition, much was done in an ad
hoc fashion. While the other engineering fields each followed a somewhat different devel-
opment course, in detail, their development followed a similar pattern. Early “trial and
error approaches” followed by less qualified practitioners resulted in designs which were
inadequate from the viewpoints of reliability, cost and often safety. In each field, profes-
sional approaches based upon good engineering practices and the educational study
necessary for them were gradually adopted. It was only at that point of advancement that
“costly mistakes” could be avoided by early detection through “modeling” and “engineering
analysis.” Baber [3] makes an interesting precautionary point: software engineering must
imply an approach to this vocation which would be recognized by other engineering profes-
sions as having the basic characteristics typical of those other {conventional) fields. Sys-
tematizing work, tools and the application of management principles to the organization of
work, useful as they may be, are not the essence of engineering and are not sufficient to
transform our occupation into a professional engineering field.

By comparison in most all of the curricula in software engineering we have reviewed, the
broad background necessary for the practice of engineering is absent. What most seem to
do is to structure courses in specification writing, production management and testing of
large software systems regardless of nature of the system itself. With this direction, it
would seem that the source of students for the master of software engineering should
come from technical areas other than computer science but with perhaps a minor in
computer studies. '

So What Should We Do?

It is our hypothesis that the software engineering discipline is a new engineering field in
the early stages of transition from science and practice to a professional engineering disci-
pline. To make it viable there should be care in selecting applicants with the appropriate
background which will lend itself to complement the training which the current software
engineering curriculum can offer. The structure of the curriculum must contain the
fundamentals of computer science just as the other engineering curricula contain physics
and chemistry. In addition, the principles of software system design must be studied with
the appropriate laboratories included. As a by-product of this, “computer scientists™ will
be freed to do the important work of extending the knowledge base that is critical to impor-
tant advancements in the fleld of software engineering,.

11

Summary and Conclusions

If software engineering is to become an accredited and operative field of engineering, then
a first step is for schools of engineering to commit to the development of an undergradu-
ate curriculum that provides for a background in the standard natural and applied sci-
ences, in mathematics and associated computer science. Importantly, the undergraduate

- curriculum needs to provide the standard cross-section of introductory course work

common to all undergraduate engineering programs.

This would include the standard and much needed background in mechanics, strength of
materials, fluid flow, thermodynamics, electrical and electronic systems. In addition,
software engineers would benefit from introductory courses in business and management.
Such a program would provide software engineers with an exposure to business applica-
tions that would prove useful in the engineering of “management information systems.”
Courses in technical writing, economics, engineering law and ethics would be candidates
to round out the engineering background of the undergraduate software engineering

program.

Secondly, engineering schools need to develop masters level programs that allow excur-
sions of considerably more depth in specific specialty areas such as operating systems
modeling, simulation, networks and distributed systems, system optimization and soft-
ware design methodologies. In addition, the master's level would have a core which in-
cludes at least one course in advanced linear systems.

Lastly, doctoral programs need to be derived to produce individuals with backgrounds
suitable to participate and lead needed engineering research in the important frontiers of
future software engineering topics. Again, this can be observed to have been critical to
the development of the already established, mature engineering disciplines. Clearly,
software engineering researchers are going to be critical to the development of engineering
methodologies required to design ever increasingly complex, sophisticated, reliable and
cost effective systems of the future.

The current trend appears to have the first software engineering programs appearing at
the master’s level. Often students are not required to have an undergraduate engineering
degree and often have not had an introduction to even generic engineering goals, meth-
ods, ideologies, etc. These master's level programs often take on more the form of ad-
vanced computer science than advanced engineering. It is the authors' contention that
until academic institutions develop more suitable “full-range” educational opportunities in
software engineering, students will continue to come out of our colleges and universities
with educational backgrounds not forged to serve them well. "Full-range" educational
programs in software engineering and computer science will enhance both the practice of
computer science, that is successfully advancing the state of underlying knowledge and
theory needed. and the application of common engineering practices in the design and
development of the complex software systems required by current and future applica-
tions.

12

The authors would point to the field of chemistry as a good example where precedence for
success has already been established. Chemical scientists and chemical engineers with
their different academic training are equipped to advance the theory as well as practices
to produce solutions to complex chemical applications.

It is the authors opinion that rather than some type of crisis, we have a well defined and
continuing need for software engineering professionals to complement the pursuits of our
computer scientists and computer (electrical hardware) engineers through the engineering
of the “heart” of future computer and information systems. We cannot afford placing the
responsibility for the design of safety and mission critical systems to unqualified and
improperly educated personnel. Cases like the Theric 25 radiation disaster caused by a
software malfunction can be avoided by proper Software Engineering. (7]

References

1. David L. Parnas, in a reply to Edsger W. Dijkstra, “On the Cruelty of Really
Teaching Computer Science,” CACM Vol. 32, No. 12, December 1989.

2. Gary A. Ford and Norman E. Gibbs, “A Master of Software Engineering

Curriculum, Recommendations from the Software Engineering Institute,” IEEE Computer
Vol 22, No. 9, September 1989.

3. Robert L. Baber, The Spine of Software, Designing Provably Correct
Software: Theory and Practice; John Wiley & Sons Ltd. 1987.

4, Randall W. Jensen and Charles C. Tonies, Software Engineering, Prentice-
Hall Inc. 19xx.

5. C. R. Vick and C. V. Ramamoorthy, Handbook of Software Engineering, Van
Nostrand Reinhold and Co.

- 6. IEEE Spectrum, Education: the challenges are classic, November 1984,
22 August 1991.

7. J. Jacky, “Programmed for Disaster: Software Errors that Imperil Lives”, New
York Academy of Sciences (New York), September/October 1989. :

13

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

/

