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ABSTRACT

The focus of this dissertation is on advancea development of the
boundary element method for elasfic and inelastic thermal stress
analysis. New formulations for the treatment of body forces and
nonlinear effects are derived. These formulations, which are based on
particular integral theory, eliminate the need for volume integrals or
extra surface integrals to account for these effects. The
formulations are presented for axisymmetric, two- and three-
dimensional analysis. Also in this dissertation, two-dimensional and
axisymmetric formulations for elastic and inelastie, inhomogeneous
stress analysis are introduced. The derivations account for
inhomogeneities due to spatially dependent material parameters, and
thermally induced inhomogeneities.

The nonlinear formulations of the present work are based on a
incremental initial stress approach, Two inelastic solutions
algorithms are implemented: an iterative, and a variable stiffness
type approach. The Von Mises yield criterion with variable hardening
and the associated flow rule are adopted in these algorithms.,

All formulations are implemented in a general purpose, multi-
region computer code with the capability of local definition of
boundary conditions. Qhadratic, isoparametric shape functions are
used to model the geometry and field variables of the boundary (and
domain) of the problem. The multi-region implementation permits a

body to be modeled in substructured parts; thus dramatically reducing




the cost of the anaiysis. Furthermore, it allows a body consisting of
regions of different (homogeneous) material to be studied.

To test the program, results obtained for simple test cases are
checked against their analytical solutions. Thereafter, a range of
problems of practical interest are analyzed. In addition to
displacement and traction loads, prbblems with body forces due to

self-weight, centrifugal, and thermal loads are considered.
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A short list of notation is given below.
defined when first introduced.

in different context, but no confusion should arise.

NOTATION

All other symbols are
A few symbols have different meaning

Matrices are

indicated by bold print throughout this dissertation.

Ab,Bb.Cb

A°,8%,c®

Cij(e)

e ep
CijraCijia

e ep
D sk1°DijK1

E

F(dij,h)

Gi5-F15-Bysk

Boundary system matrices in assembled form

Coefficient matrices of the stress equations in
assembled form

A tensor dependent on location of the field point §

Elastic and elastoplastic constitutive tensors

Elastic and elastoplastic constitutive tensors
Young's modulus (in the Appendix, E represents the
complete elliptic integral of the second kind)

Body force

Yield function

Gravitational acceleration

Kernels of the displacement equation

szk'szk'ngkl Kernels of the strain equation

ngk’ngk'ngkl Kernels of the stress equation

h

The slope of the uniaxial equivalent stress, equivalent
plastiec strain curve

xvi




Jgjkl Jump term (free term) tensor

K v Complete elliptic integral of the first kind

Kij'LiJ Functions depended on the current state of stress
L() Linear differential operator

n; Unit direction normals

NY (q) Shape function

r,z Cylindrical coordinates of field point

R,Z Cylindrical coordinates of integration (Gauss) point
Sij Deviatoric stress

ts Traction

T Temperature change

T (x) . Imposed boundary traction

uy ‘ Displacement

Uiix) Imposed boundary displacement

X Refers to global coordinates of an integration point
x System vector of unknown boundary quantities

y System vector of known boundary quantities

a Coefficient of thermal expansion

xvii




= a(3A+2p)

Kronecker delta

Total strain

Elastic strain

Homogeneous part of elastic strain
Inhomogeneous part of elastic strain
Mechanical strain

Plastic strain

Thermal strain

Refers to local coordinate of an integration point
Lamé constant

Incremental plastic flow factor

Shear modulus

Poisson’s ratio

Refers to coordinates of a field point
Archimedes number

Mass density

(Real) stress

xviii




gce)

Superseript

c

Subscript

»

1,3,k

r,8,z

(Corrective) plastic part of initial stress
Elastic stress

Inhomogeneous part of initial stress
Initial stress

Thermal part of initial stress

Yield stress ¢ R

System vector of initial stress
Fictitious particular integral density

Angular velocity

>

Components related to complementary function

Components related to particular integral (not to be
confused with plastic component)

(Incremental) time rate of change

Spatial derivative

Indicial notation

i,j,k=1,2 in two-dimensions
i,j,k =1,2,3 in three-dimensions
i,j,k =r,z in axisymmetry

Directions of cylindrical components

xix
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CHAPTER ORE

INTRODUCTION

1.1 GENERAL REMARKS

Through the years, scientists have formulated mathematical
equations to describe the behavior of many physical phenomena in the
field of continuum mechanics. However, due to the complexity of these
equations, closed-form solutions are unobtainable for all but the
simplest problems. In developing applications, engineers must
therefore resort to approximate techniques for the solutions to
physical problems.

In the 19508, the advent of the digital computer spurred the
development of new approximate techniques or ’'numerical methods’.
Essentially, three numerical techniques evolved: the finite
difference method; the finite element method (FEM); and the boundary
element method (BEM).

The finite difference method, which employed ’'difference
equations’ for the generation of equation system, was the forerunner
of these methods. However, the large size of the resulting equation
system and its inability to readily deal with irregular boundaries
limited its success.

A more powerful and popular approach known as the finite element
method (FEM) emerged. In this procedure the domain is divided into

discrete elements, and trial functions are used to approximate the




functional variables across each element. Variational principles are
applied to obtain a best fit solution for an appropriate set of
boundary conditions. This method is very proficient in elastic and
inelastic stress analyses and reasonable success has been achieved in
dynamics.

Owing to their mathematical and numerical simpliecity, the
devqlopment of these two methods was rapid. In contrast, the
development was slower for a more complex technique known as the
boundary element method (BEM). In recent years, however, researchers
have focused considerable attention on this method mainly due to its
advantages over the former methods. These advantages include: the
ability to solve three~dimensional problems with greater efficiency,
higher resolution results for stress concentration problems, increased
accuracy, and greater ease in application for problems of infinite or
semi-infinite regions. Moreover, the system equations are written
only at nodal points on the surface of the body of interest, rather
than throughout the entire domain. This leads to a set of equations
that is smaller than that of competing methods.

Two distinct, yet equivalent (Lamb, 1932) boundary element
formulations exist. An indirect method, which introduces a ficticious
set of functions as an intermediate step in the solution process, and
a more popular direct formulation, which utilizes all real, physical
variables. Essentially, both methods consist of transforming the
governing differential equation into a boundary integral equation.
The surface of a body is divided into boundary elements, and shape
functions are used to represent variation of quantities across the

elements in terms of their nodal values, These integral equations are




integrated numerically, generating a system of equations at boundary
nodes. Standard solution procedures are employed to obtain results

for a prescribed set of boundary conditions.

1.2 THE HISTORICAL DEVELOPMENT OF BEM IN STRESS ANALYSIS

The first rigorous work on integral equations was published by
Fredholm in 1903. Since that time, extensive research has been
carried out by a number of researchers such as Kellog (1929),
Muskhelishvili (1953), Kupradze (1964f'and Smirhovi (1964). The most
notable work related to elastostatics was condﬁcted by Mikhlin (1957,
1964,1965). However, due to the complexity of finding analytical
solutions, most of these early works were of mathematical nature
dealing in topics of existence and uniqueness.

The advent of the digital computer brought about a change in the
usefulness of these mathematical formulations. The first application
in elastostatics by Jaswon and Ponter (1963) dealt with torsion in
elastic bars, A general elastostatic (direct BEM) approach based on
the displacement formulation derived from the Somigliana’s identity
(1885) was established by Rizzo (1967). Further contributions were
made by Cruse (1969, 1973), and Lachat and Watson (1976). An
alternative, indirect, elastostatic formulation was developed by
Banerjee (1969), Butterfield and Banerjee (1971), Watson (1973),
Tomlin (1973), and others.

As the method developed, the analysis was extended to other
areas. Cruse (1967) pioneered the study on transient elasﬁodynamics,
and Rizzo and Shippy (1977) laid forth an efficient procedure to

account for steady-state body forces such as centrifugal and thermal




loadings. Kermanidis (1975) produced the first elastie, axisymmetric
formulation, followed by Cruse, Snow and Wilson (1977) who extended
the axisymmetric analysis to include thermal and centrifugal body
force effects. And in 1979, Nigam (1979) introduced an axisymmetric
formulation capable of handling non-axisymmetric boundary conditions.

It soon became apparent that material nonlinearities, in the form
of initial stress (or initial strain), could be incorporated into the
elastic analysis through a volume integral in a manner analogous to
body force, and therefore, quasi-static algorithms for plasticity and
creep analysis were developed. Swedlow and Cruse (1971) presented the
first elastoplastic BEM formulation, followed by Riccardella (1973)
who is credited with the first two-dimensional formulation. Further
development by other workers followed: Rzasnik and Mendelson (1975),
Mendelson and Albers (1975), and Chaudonneret (1977). .These authors,
however, overlooked the strong singularity present in the domain
integral of the interior stress rate equation. 1In 1978, Bui (1978)
presented a correct treatment of this integral and indicated the
existence of the free term. Nevertheless, this integrél was strongly
singular and the numerical integration was still difficult.

Banerjee and co-workers developed a two-dimensional (Banerjee and
Mustoe, 1978), elastoplastic BEM formulation and were the first to
extend the analysis to three-dimensional (Banerjee, Cathie, and
Davies, 1979) and axisymmetric (Cathie and Banerjee, 1980) media. And
in 1982, Cathie and Banerjee (1982) presented a time independent
inelastic analysis. Their work is unique in the sense that the stress
rates are calculated via numerical differentiated displacement rates,

and therefore, the strongly singular domain integral is avoided. The




method is computationally efficient, however, some accuracy is lost in
the numerical differentiation.

Mukher jee and co-workers also have concentrated considerable
effort in this area. Their contributions included: a time-dependent
inelastic analysis using power creep; and the constitutive relations
due to Hart (Mukherjee and Kunar, 1978); and the implementation of an
axisymmetric visco-plastic analysis (Sarihan and Mukherjee, 1982). In
addition, they have presented an integral equation for stress rates
written as a function of a gradient of initial st;ain rates ;hich
eliminates the appearance of the strongly singular Lebesque integral
over the domain in favor of a weaker vslume integral.

Other researchers, such as Telles and Brebbia (1981), Kobayashi
and Nishimura (1980), and Telles (1983), have presented formulations
aﬁd have solved a, variety of plasticity problems.

The most notable advancement in stress analysis via the boundary
element method islthe development of the general purpose, three-
dimensional, dynamic and inelastic, stress analysis program — BEST3D -
developed for the National Aeronautics and Space Administration (NASA)
by Banerjee, Wilson and Miller (1985), Banerjee and Ahmad (1985) and
Banerjee and Raveendra (1986). Highlighted in this work is the use of
jsoparametric quadratic shape functions for modeling the variation of
fﬁnctions over the boundary elements and volume cells. In addition,
the system includes a sophisticated numerical integration scheme
(Banerjee, Wilson, Miller, 1985) and a multi-region facility.

The BEST3D system contains the most advanced plasticity analysis
to date. A Von Mises model, a two-surface model and a thermally

sensitive anisotropic plasticity model, are all contained in the




system. Furthermore, an iteration acceleration scheme ié used to
reduce the number of iterations needed for convergence.

All the aforementioned plasticity formulations are based on
iterative procedures that work successfully, but often takes unduly
large number of iterations to con#erge to the correct solution,
particularly in problems involving a high degree of nonlinearity such
as the loading close to the collapse state of stress when significant
amount of plastic zones develop. It was to this end that Banerjee and
Raveendra (1987) presented the first direct or 'non-iterative' two-
dimensional elastoplastic analysis which is comparable to the variable
stiffness method in the finite element analysis.

In any thermal stress analjsis, it is important to accoﬁnt for
the variations in elastic modulus. In 1968, Rizzo and Shippy (1968)
presented a BEM formulation for inhomogeneous elastic inclusions.
More recently Tanaka and Tanaka (1980) introduced a2 thermoelastic
formulation for inhomogeheous'material. In this analysis the material
parameters are independent of temperature, and vary only as a functién
of position. Finally, Ghosh and Mukher jee (1984) presented a two-
dimensional iterative formulation for thermoelastic deformation of
inhomogeneous media, In their work, they assumed the shear modulus
varied linearly with temperature. ‘In spite of these efforts the

problem of elastic inhomogeneity remains essentially unresolved.

1.3 SCOPE OF THE PRESENT WORK

Once considered an analysis for mathematicians, the boundary
element method is now accepted in the engineering community as a
powerful and versatile tool for solving practical problems. In many

applications, the boundary element method has proven itself superior




to other numerical methods, particularly in three-dimensional linear
analysis. However, further refinement is necessary if inelastiec
boundary element analysis is to assert a similar claim. The primary
objective of the present work is to rectify some of the deficiencies
in this area. Furthermore, in this dissertation, considerable effort
is put forth in extending all formulations to their axisymmetric form.
The realization thét many stress analysis problems of industrial
interest are axisymmetric in nature, and the fact that the
axisymmetric analysis costs a fraction of the three-~dimensional
counterpart, makes the axisymmetric analysis an invaluable tool.

To better appreciate the new boundary element formulations
presented in this dissertation, the conventional BEM formulations for
elastic and inelastic thermal analyses are first presented in Chapter
2. Included is a comprehensive look at the details of axisymmetric
inelastic stress analysis.

The need for only surface discretization is a significant
advantage BEM has over other methods requiring full domain
discretization. However, this advantage is partially diminished in
thermal and inelastic analysis where volume integration is required.
To rectify the matter, a new formulation, based on particular integral
theory is developed. This new procedure, incorporates the body force
effect into the boundary element system without additional surface or
volume integration., Application of the method for gravitational,
centrifugal and thermal body forces is presented in Chapter 3 and in
Chapter 4, the formulation is also extended to the inelastic analysis.

In Chapter 5 one of BEM's greatest deficiencies is addressed:

that being its inability to deal with material inhomogeneities. Both




natural material inhomogeneities as well as thermally induced
inhomogeneitie; are considered for both linear and non-linear thermal
analysis.

All formulations of the present work are implemented ihto a
general purpose, multi-region system capable of local definition of
boundary conditions. Quadratic isoparametric shape functions are used
to model the geometry and the field variables of both the boundary
element and volume cells. In Chapter 6, a variety of linear and
nonlinear problems are presented. In addition to displacement and
tfaction boundary loads, body forces due to self-weight, centrifugal,
and thermal loads are considered. In most problems, the body of
interest is sub-structured for a mul?i—region analysis. This
dramatically reduces the time and cost of the analysis as will be

discussed.
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CHAPTER TWO

CONVENTIONAL BOUNDARY ELEMENT FORMULATION
FOR ELASTIC AND INELASTIC STRESS ANALYSIS

2.1 INTRODUCTION

In this chapter, the conventional formulation of the boundary
integral equations for elastic and inelastic thermal stress analysis
is presented. In addition to the two- and three-dimensional
formulations, the axisymmetric case is also developed. The body
forces and nonlinear effects are incorporated in these formulations in
the conventional manner through volume integrals or addition surface
integrals.

After a brief discussion on the elastoplastic constitutive
relations, two BEM algorithms for the solution of inelastic problems
are described. The first algorithm is an iterative procedure which
includes a time saving feature which reduces the number of iterations
needed for convergence by utilizing the past history of initial stress
rates to estimate the values of the initial stress rates of the next
load increment. The second algorithm is a direct procedure similar to
the variable stiffness approach in the finite element method. This
procedure exbloits certain features of the constitutive relationship
to express the unknown nonlinear initial stress rate tensor as a
scalar quantity which then can be eliminated from the boundary
equation system through a back substitution of the (modified) stress

rate equations.
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The axisymmetrie, two—- and three-dimensional formulations are
implemented in a multi-region code which utilizes quadratic
isoparametric shape functions to model the geometry and field
variables of the boundary and domain of the body. Numerical
implementation procedures are briefly discussed, including techniques
that are used to calculate coefficients of the integrals over strong
singﬁlarity points on the boundary and domain of the body. Finally, a
number of examples are included to demonstrate the accuracy and

convergence of the plasticity algorithms.

2.2 BOUNDARY INTEGRAL FORMULATION
2.2.1 Governing Equations
The governing equation of stress for a body in equilibrium with

domain V and surface S can be expressed in a cartesian system Xy as

+f. =0 ' (2.1)

C.. .
13,3 1
i,j=1,2 for two-dimensional
i,j = 1,2,3 for three-dimensional
where %35 = cij(x) is the stress tensor, |
fi = fi(x) represents the total contribution of all body

forces present, and

the comma indicates spatial derivatives.

Throughout this dissertation, when the dimension of the problem is
irrelevant to the point of the discussion, three-dimension will be
assumed. Solutions of equations (2.1) are subject to boundary

conditions:
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u; = Ui(x) on S1 (2.2a)
or -
or ti = o’ij nj = Ti(x) on 52 (2.2b)
a compatible combination of the two on Sé (2.2¢)
where S = S1 + 82 + SS’

ui is the displacement vector,

ti is the traction vector,

ﬂj is the boundary normal vector,

Ui(x) are the imposed displacements, and

T,(x) are the imposed tractions.

In equation (2.2b) we have used the Cauchy traction relation

t. = 5.. n. (2.3)

and displacements are related to strain via

€. . =1/2 (u,

ij i,35t95,1) (2.4)

The (total) strain tensor e;j can be decomposed into an elastic
.strain 3§j and an initial strain sgj
e o
8ij = eij + Sij (2.5)
The elastic strain is directly related to stress through the elastic

constitutive relations

I - e
ij = Pijn1 ®k1 (2.6a)
e e
eij = Cijkl le (2.6b)
where
D® = 2
ijkl = 21 B3y 833 + A B4 8yq (2.7a)
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_ Lty Ys
ijk1 © E ik %51 T E %15 % (2.70)
Bij is the Kronecker delta
A and p are Lamé constants

E is the modulus of elasticity, and

v is Poisson’s ratio

. e e _ '
Note: Dijkl Cklpq = Sip qu (2.8)
e e . . .
Dijkl and Cijkl are symmetric with respect to (ij) and (k1)

The initial strain, by definition, is the difference between the
total strain and the elastic strain. The initial strain occurs from
various effects, such as plastic deformation, thermal loading, or
strain present in a body before loading occurs. In a thermoplastic

analysis, initial strain will be»defined as the summation of plastic

strain 0, and thermal strain el

t
ij = eij + €53 (2.9)

Substituting equation (2.5) into equation (2.6) yields a relation

between total strain and stress

_ A€ o
®35 = Dijk1l ®x1 ~ Oij (2.10a)
_ e o
€13 = Cijk1 k1 *+ eij (2.10b)
where
(¢] e (o]
°13 = Dijr1 K1 (2.10¢)

Substituting equation (2.4) and (2.10a) into equation (2.1)

produces the governing differential equation of equilibrium in terms

14




of displacement, body force, and initial stress:

(A+p) “j,ij +pu + £ = 05y, . (2.11)

i.33

This is the Navier equation with an initial stress term present.

2.2.2 Two- and Three-Dimensional Integral Formulation
In deriving the boundary integral equations for general elastic
and inelastic analysis, we consider an elastic body under two distinct
e e
equilibrium states. The first state (ui, ti, £y, ey, °ij) will be

f.,e$ s Gss)

considered the real state, and the second state (E., t s, Eo s
i i*%ijr %ij

i)
will be considered an arbitrary state.
The following integral statement can be inferred from equations
e
(2.6) and symmetry property of Dijkl

.[ G s e av = J‘ 8?~ c:: dV (2.12)

Using equation (2.5) this equation can be rewritten in terms of total

strain as
- _ [ Te - o
J' O'ij eij dv = J- eij Gij dv + j. O’ij Sij dv (2.13)
v ' i

Using equations (2.6b), (2.10c), and the symmetry property of

D?jkl we can show
J'; d o av = e, o2, av (2.14)
ij €ij ij %ij )
v v

Substituting this result in equation (2.13) gives
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- - e e o)
\' \'f v

Employing equation (2.4) and utilizing the symmetry property of
the stress tensor, equation (2.15) is transformed into
- _ e e (o]
j 553 ui,j av = I u o; 3 AV + J €53 o, . dV (2.16)

i,j "13 1]
vV v \'s

Applying the divergence theorem to the first two terms of the
above equation.and substituting equations (2.1) and (2.3) into this

result we arrive at

j gi(x) ui(x) ds + 5 ;i(X) ui(x) 4av = j ;i(x) ti(x) ds
S v S

e e o
+ j ui(x) fi(X) dv + j eij Gij dav (2.17)
v \')
In the absence of initial stress, this equation reduces to the
celebrated Betti's reciprocal work theorem.
We now define the arbitrary, elastic stress state to be

equivalent to the state of stress given by the Kelvin point force

solution for point force ek(g) acting at &;.

Fi(x) = 8(x,8) 84 €, (%)
ui(x) = Gy (x,8) ep(¥) (2.18)
e

eij(X) = Bijk(x,ﬁ) ek(g)

ti(X) = Fik(xt) ek(i)
where

5(x,&) is the Dirac delta function, and
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Gixr Bjjx» and Fjp represent the displacement, strain and stress

at point X; in an infinite space due to a unit point force at Ei

(both the two- and three-dimensional functions are defined in the
appendix). Noting the properties of the Dirac delta function, we

can show that

j Fi(x) u; (x) dv = J 8(x,8) 8jy € (§) uj(x) dV = up (&) e (&)
(2.19)

Substituting equations (2.18) and (2.19) into equation (2.17) and

using the orthogonality property to separate the three independent

components (and cancelling the ek(g)),the displacement at point &

can be expressed as

€308 us(® = [ 16550,0) £00 - Fyjx,0) uy (0] a5
S

+ [ a38 1300 @V + [ Byg(x8) o0 avin)
v v (2.20)

where Cij(ﬁ) = 8;4 for a point in the interior of the domain. When:

point §; is brought to the boundary Xg» Cij(xo) nust be derived from
the singular treatment of surface integral involving the Fij kernel.
The resulting tensor function Cij is depended on the subtended angle
of the tangent plane at Xge vFor a point on the smooth surface Cij =

1/2 813- The -surface integral involving kernel Fij in equation (2.20)

must be treated as a Lebesgue integral.
The integral equation for the strain at an interior point is
found analytically by substituting equation (2.20) (with Cij = sij)

into the strain-displacement relations, where differentiation is with

respect to the field point ¢ :
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N .

€ € 0
+ I Gkij(x:é)fk(x)dv(x) + J Bklij(x.§)6kl(x)dV(x) (2.21)
v - ¥

By introducing this result into the stress—strain equation (2.10a) the

stress integral equation is derived:

535(8) = § 1655500, 0) E(0-F 5 (x, Dy (1) 145 ()
S

s -

+  6f D n ot + B De (ATt (2.22)
v vV

The kernels Ggij , ngj and Bglij are defined in the Appendix.
The last integral in equations (2.21) and (2.22) is strongly singular
and must be treated as Lebesgue integral. Treatment of thesé
integrals is disc&ssed in subsequent sections.
Due to strong singularities in the kernel functions, equations
(2.21) and (2.22) ;re not used for calculations of stresses and

strains on the boundary. Instead, an alternate procedure will be

presented in later sections.

2.2.3 Axisymmetric Integral Formulation

The axisymmetric boundary integral equations can be derived
ffom the three—-dimensional BEM equation (2.20) which satisfies the
governing differential equation (2.11). In principle this is
accomplished by: recasting the three-dimensional BEM equation in
eylindrical coordinates; applying appropriate tensor transformations;
and integrating analytically to remove the angular (6) dependency.

However, once the axisymmetric displacement kernel Gij is known, the
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Fij and B jk kernels can be derived an alternate way starting with the

solution (the Gij kernel) for the displacements due to a ring load
intensity (Cathie and Banerjee, 1980). The strain due a ring load
(the Bijk kernel) is obtained by substitution of the G;; kernel into

the axisymmetric strain-displacement equations, where differentiation

is with respect to x. The surface traction due to a ring load (the
F;; kernel) is found by introducing the Bj 3 kernel into Hooke's law
and multiplying by appropriate normals,

The axisymmetric form of the displacement integral equation

can then be expressed as:

Cy (g (&) = [ [6;5(x,8)t(0)-F; {(x,8)u; (x)1dC(x)
c

+ oy e aam + [ B
A - A

1k (% 8) 03 (X)dAx) (2.23)
i,jk=r,z ,
where

o : . . .
ui’ ti, fi, and oiy are expressed in radial and axial components,

Cij = Sij for interiof points and is dependent on the surface

geometry at ¢ for boundary points, and

Gij , Fij and Bijk are defined in the Appendix.

Note that the surface integration is over a curve dC and the
volume integration is over an area dA., Furthermore, the 2aR term
which appears after integration in the @ direction has been absorbed

in the kernels. The domain integral need only be evaluated where the

initial stresses are non-zero.
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Axisymmetric integral equations for stress and strain at interior
points are derived in a manner analogous to the two- and three-

dimensional case.

2.3 NUMERICAL IMPLEMENTATION

The integral equations discussed in the preceding sections become
of practical interest only when numerical techniques are employed for
their solution. It should be noted that these integral equations are
exact statements, and any error in the final BEM solution is caused by
approximations in the numerical implementation.

The numerical implementations of the integral equations consist
of: discretization of the surface of the body (and domain when
necessary) and discretization of the integral equations; numerical

integration; assembly, and solution of these equations.

2.3.1 Discretization and Numerical Integration

Disecretization - The body under consideration is divided into
discrete boundary elements and, when applicable, volume cells.
Quadratic isoparametric curvilinear shape functions, presented in
Appendix I, are used to approximate the geometry and the field
variables over the boundary elements and volume cells in terms of
their nodal values. After discretization, the boundary displacement

equation can be expressed in the following manner.

M-v —
Cijui(t) = Zl[ im Gij(x,g)NY(n)dsm] th

M _
—m§1[ £m Fyj ()N (mash] o™

20




P -
¥ 2 [ f Gij(x,t)NB(n) va] fiﬁp

P=1 Vp
P _

+p21[ Ip Bikj(x'§)NB(“)dvp] (o510 BP (2.24)
=1y

where i,j,k = r,z

M = number of boundary elements,

P = number of volume cells,

NY(n) represents shape function of boundary elements, and
NB(n) represents shape function of volume cells.

Summation over y and B is implied.

The bars indicate nodal values and the integration coordinate x
has been expressed in local coordinates n via the above shape
funections.

The stress equation can be discretized in a similar fashion:

M -
%1508 =m2;[ gmGﬁij<x’€>NY‘"’ as™ Jepm

M -
-3 f Foij (6 ONY () as®] o™
m=1 Sm

3 -
+ 3 [ ] efgxonPon ave] ofP
p=1 Vp

+P21[ f pBﬁlij(xxﬁ)NB(ﬂ) avP] (o2p) PP (2.25)
N

A similar discretization of the strain equation is possible,

however, the implementation is unnecessary. Once the stress state at
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a point is known, the strains can be calculated by a direct

application of the constitutive relation.

Numerical Integration - The complexity of the integral in the

discretize equation necessitates the use of numerical integration for

their evaluation. The steps in the integration process for a given

element is outlined below:

1.

Using appropriate Jacobian transformations (given in
Appendix I), the curvilinear line element, surface element
or volume element is mapped on to a unit line, a plane unit

cell or a three-dimensional unit cell, respectively.

Depending on the proximity between the field point (éi) and
the element under consideration, there may be element sub-
division and additional mapping for improved accuracy

(Banerjee and Raveendra, 1986).

Gaussian quadrature (Appendix I) formulas are employed for
the evaluation of the discretized integral over each element
(or sub-element). These formulas approximate the integral
as a sum of weighted function values at designated points.
The error in the approximation is dependent on the order of
the (Gauss) points employed in the formula. To minimize
error while at the same time maintaining computational
efficiency, optimization schemes are used to choose the best
number of points for a particular field point and element

(Watson, 1979).
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2.3.2 Treatment of the Singular Integrals

The integration of the kernel functions are singular and require
special attention when an integration point (x) coincides with the
field point (&). .

The Displacement Equation - The integrationé of the Gij and Bijk
kernels of the displacement equation are weakly singular under this
circumstance and can be integrgted numerically using element
subdivisions near the singular point (Banerjee and Raveendra, 1986).
On the other hand, the integration of the Fij kernel of the
displacement equation is strongly singular and must be integrated as a
Lebesgue integral over the singular element. This integral can be
decomposed into a free term and a Cauchy principal-value integral, but
accurate numerical integration isvstill difficult (Banerjee and
Raveendra, 1986). When constructing the equations for the boundary
system, the singular integration involving the Fij kernel can be
circumvented by using the 'rigid body’ displacement technique (Swedlow
and Cruse, 1971) or the analogous ’'inflation mode,’ for axisymmetry
(Nigam, 1979). A brief description of these procedures is given
Below.

Rigid Body: For every boundary node of the system there is a 2
by 2 (or 3 by 3 for three-dimension) block of coefficients on the
diagonal of the F matrix, corresponding to the singular node, which is
difficult to determine by numerical iﬁtegration. Each of these terms,
however, can be determined independently by assuming two (or three)
different admissible displacement fields corresponding to a rigid body
displacement in each of the two (or three) directions. All tractions

(and body forces) are zero for this calculation.
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Inflation Mode: Since é rigid body displacement is not
admissible for the radial direction in axisymmetry, the two unknown
coefficients (corresponding to the radial displacement) are determined
by an inflation mode (i.e. a linear displacement in the radial
direction), Pr =pr and u, = 0 . With body forces set to zero, the
tractions related to this displacement are tr = 2(0 + p) n, and tz

= 2>vnz , in which n, and n, are normals on the boundary and A and

Z

p are Lamé constants. The remaining two unknown coefficients in the
displacement equation for the z-direction are dete;mined by uéing a
rigid body displacement in this direction.

It should be noted that when displacements are required on the
boundary between nodal points, the values should be calculated v;a
the shape function of the boundary element.

.A The Stress Eguation - The stress (or strain) calculation is
handled in two ways depending on whether the field point falls on the
boundary or in the-ﬁnterior of the domain.

Stress on the Boundary: For a point on the bdundary, all kernel
functions of the stress equation are all strongly singular and
difficult to integrate numerically. However, the stress on the
boundary can be obtained from the boundary tractions and
discplacements without any integration as originally proposed by
Cfuse (1974). A slight modification must be made to incorporate the
initial stress. In this procedure the stress-strain relations,the
Cauchy traction equation and the equations relating local and global
gradients of displacements are utilized in writing an expression for
the boundary stress. Demonstrated for the axisymmetric case, these

equations can be written in matrix form as follows
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- N N /
0 0 0 0 L n, 0 Up 1 0
0
0 0 0 0 0 n, n, 0 Uy p t,
n, .o n, -0 0 0 0 0 Up o Up. g 0
0 -n, 0 n, 0 0 0 O IR f Uy g ) 0
= < -
o
—cl 0 0 "02 1 0 0 0 GI'I' 0289 Grr.
_ o
02 0 0 —01 0 1 0 0 O‘zz 0289 Cyo
- - o
0 n p 0 0 0 1 0 rz 0 Oy
(¢}
¢, 0 0 -c 0 0 0 1 o cqe c
2 2 | 8 60 C 1°9 L GQ/
(2.26)
where ey o= A+ 2 e, = A
n, and n, are normals on the boundary, and

ur,s and u, g are the local displacement gradients on the

boundary.

Using shapé'functions and their first derivatives the vectors on the
right hand side of equatioﬁs,(2.26) can be expanded as a matr;x
multiplied by a vector consisting of nodal values of displacement,
~ traction and initial stress; Equation (2.26)is then pre-multiplied by
the inverse of the matrix on the left hand side.

Stress in the Interior: When the field point 1lies in the

interior of the body, the Gijk and Fijk kernels of the stress

equations are well behaved and require no special attention., However,

the Bijkl kernel is strongly singular and must be integrated as a
Lebesgue integral over the singular point. Once again, this type of
integral can be decomposed into a free term (given in the Appendix)
and a Cauchy principal-value integral. Although difficult and

expensive, reasonable accuracy can be obtained when this integral is
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numerically integrated using techniques described by Banerjee and
Raveendra (1986). However, for high accuracy, the coefficients of the
Bijkl kernel corresponding to a singular nodal point should be
evaluated using a procedure known as the 'Initial Stress Expansion

Technique, ' described below.

2.3.3 Initial Stress Expansion Technique

In this procedure, the coefficients of the stress equations
related to the non-singular nodes are integrated in the usual manner.
In each stress equation there remains three undetermined coefficients
in 2-D (six in 3-D, or four in a axisymmetry) corresponding to the
initial stress at the singular node. In a manner analogous to the
'rigid body’ technique, each of these coefficients are calculated by
assuming one of the three (six or four) admissible stress states and
compatible displacement fields given in Table 2.1 (2.2 or 2.3). For
each stress state, one unknowp coefficient in each stress equation can
be determined. It should be noted that in order to apply this method
the entire region must be covered with cells. In an iso-thermal
analysis in which the plastic yield zone is small, this technique
appears inefficient since it requires the présence of volume cells
throughout the elastic region which otherwise would be unnecessary.
Although this is true in a single region program, such is not the case
in multi—regibn code since the technique is applied to each region
independently and only used in regions where volume cells exist.
Therefore, the zones ih which plastic yielding is expected to occur
are isolated in separate regions fully populated with cells, and the

elastic regions remain free of any volume cells.
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2.3.4 Singularities at the Origin in Axisymmetry

Additional singularities exist in the axisymmetric kernel when
the field point falls on the origin (gr = 0). This problem'is
resolved by moving the field point a small radial distance from the
origin., This is a common practice also employed in the finite element
analysis of axisymmetric problems, In the equations for stress and
strain, the minimum distance should be 0.5% of the difference between
the maximum and minimum 2z coordinates at the origin. For the
displacement equation this distance can be considerably less.
Alternatively, a separate limiting form of the displacement kernels
for a field point on the origin can be derived (Bakr and Fenner,
1983).

Finally, for circumferential strain on the boundary at the

origin, the relation ¢

6 = °r
usual eg = u./r.

2.3.5 Assembly and Solution of Equations

A displacement equation is written for each boundary node and a
stress equation is written at points of interest. The resulting
coefficients are modified appropriately for cases where the functions
(boundary conditions) are referred to local boundaries. The
displacement and stress equations are assembled by collecting the
known and unknown values of tractions and displacements and their
coefficients together. At the common interface of substructured
regions, the equilibrium and compatibility conditions are invoked in a
manner described by Banerjee and Butterfield (1981). The final system

equations can be cast as:
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APx = BPy + CPo° (2.27a)

o = A% + BOy + C%° (2.27b)
where

x is the vector of unknown variables at boundary and
interface nodes.

y is the vector of known variables,

a° is the vector of initial stress (includes thermal load
contribution)

Ab,Bb,cb are the coefficient matrices of the boundary

(displacement) system, and
A%,B%,c° are the coefficient matrices of the stress equations.

It should be noted that Ab is a square matrix. Furthermore, in a
substructured system the matrices AP and BY are block banded
whereas matrices CP, A®, B® and C® are block diagonal.

Solution: Standard numerical pfocedures are used to solve for
the knowns in equations (2.27a), after which the stresses in equation
(2.27b) can be determined.

| The solver, employed in this work, is part of a software package
from LINPACK (Dongarra, et al, 1979), which decomposes the ib matrix
into an upper triangular submatrix by the Gaussian reduction process.
This procedure allows for an efficient resolution for vectors of
different values on the right hand side of the same equation. This is

essential for an efficient plasticity algorithm.
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2.4 CONVENTIONAL BEM FORMULATION WITH BODY FORCES

The general form of the governing differential equation for the
deformation of a homogeneous isotropic body subjected to
gravitational, centrifugal and thermal loading is given in equation

(2.11) and is repeated here.

(A+p) uj,ji tpuy gyt £y = 933, ] (2.28) |
in which

£, =1§+ 1]

& - p g ey for gravity loading in z direction

fg = pwz(xlel+x2e2) A for centrifugal loading about 2z axis

agj = BT 8y for thermal loading

p is the material density, g is the gravitational acceleration,
ei is a unit vector in the i direction, © is the angular
velocity, and X4 is the spatial coordinate from the center of

rotation, B = @ (3A+2n), o is thermal coefficient of expansion,

and T is the change in temperature.

For simplicity, rotation is assumed to be centered at the origin about
the z axis. The above equation is subject to boundary conditions
given in equation (2.2).

The three-dimensional boundary integral equation for displacement
satisfying eqﬁation (2.28) is given in equation (2.20) and is repeated

here.

Cyy(8uy (&) = f 16,506, 0)t3(x) = Fy5(x,8)uy(x)] dS(0)
S

+ 63,00 @@ + [ B D0 o (2.29)
A ' v
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and the corresponding equation for stress is given in equation (2.22).

Two drawbacks exist in the formulation. First, numerical volume
integration is time consuming and expensive, and second, the volume
integrals of the stress equatibn are strongly singular leading to
difficulties in the numerical integration.

For these reasons, Rizzo and Shippy (1977) (and Cruse, Snow and
Wilson, 1977 in axisymmetry) transformed the volume integrals of
equation (2.29) into a surface integral, through an application of the

R
divergence theorem (assuming a steady-state temperature distribugion).

The three-dimensional version is expressed as

€5 (a0 = f 16,068 (&0 = h(x) n (O} = Fyy(x,8)u; (0] @S
S

or .
»J
on

+oug j' {h(x)+BT(x)} - g—; {h(x)+BT(x)} P'j+3pw2nj(x)r] ds

S (2.30)
where

r is the eucidean distance between x and &,

T(x) is the temperature change at x,

n, (x) is the boundary normals at x,

o

£, = h,i(x).

(1~2p)/16np(1-v); v is Poisson's ratio, and

The method is effective in many applications, particularly for
gravitational and centrifugal analysis, but is restricted to steady-
state temperature distribution and still requires additional surface
integration. However, Rizzo (1977) and Shippy stated that the concept
is applicable to diffusive systems and Masinda (1984) has, without

evidence of implementations, produced formulations. Nevertheless, the
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formulation is restricted to problems in which no heat sources are
preseht and is only valid for uniform initial temperature
distribution. For a general transient thermoelastic analysis, one

still requires the use of volume internals.

2.5 INELASTIC BEM FORMULATION BASED ON VOLUME INTEGRALS

2.5.1 Incremental Theory of Plasticity

Before.proceeding with the inelastiec BEM formulation, it is
necessary to explore the constitutive relations that govern the
material nonlinearities. The stress-strain relationships based on the
'path independence in the small’ theory of plasticity gssentially have

three components.

1. A yield criterion - defines the limit of elastic behavior.
2. A plastic flow rule — relates the irrecoverable plastic
strain increment to the state of stress in a material.

3. A hardening ruie - dqfines the expansion or contraction of
the subsequent yield surfaces fesulting from continuoué

plastic flow.

The nature of the yield surface and hardening parameters are
material dependent. In this dissertation the Von Mises yield
criterion with strain hardening, Drucker's postulate for associated
plastic flow, and isotrépic hardening is assumed. These assumptions
provide a good model for ductile material, such as metal, under
monotonic loading.
with strain hardening is assumed in the present work. This can be

expressed in terms of the deviatoric stress tensor Sij and plastic
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strain P as

i
- (3 1/2 2 p p,1/2
F = (5 Sij S5 - h (3 ej5 85y (2.31)
where
1
Siy =055~ 3 855 oug
°, = co(egj) is the uniaxial yield stress, and
h = the slope of the uniaxial equivalent stress plastic strain

curve.

Plastic Flow Rule - The plastic flow rule (Drucker, 1952) states
that the plastic strain rate tensor is linearly related to the
gradient of the plastic potential Q through the stress point. This
implies that the plastic strain rate tensor is normal to the surface
of the plastic potential. This condition known as normality principle

is generally expressed as

.p *
e¥. = K. .\
o (2.32)
_ -89
Kij 30, |
where

A is non-negative scalar variable which depends on the current

stress rates and the past history of loading.

For metals, ’'associated flow’ (i.e., Q = F) is usually assumed
and will be adopted in this work. Other materials, such as soil,

require more complicated functions, and therefore 'non-associated
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flow’' (Q # F) is often assumed.

Isotropic Hardening - A hardening rule defines the subsequent

yield surfaces resulting from continuous plastic deformation.
Different hardening rules have been proposed to model the behavior of
various materials and loadings.

The isotropiec hardening rule ﬁhieh is employed in the present
work, assumes the yield surface uniformly expands about the origin in
the stress space while maintaining its shape, center and orientation
during plastic flow. Figure 2.1 illustrates this behavior. During
loading along path OA, the stress state is elastie. At point A, the
elastic limit is reached and additional loading along path AB expands
the yield surface to point B. Upon unloading, the behavior is elastiec
along path BC until point C is reached, beyond which yielding occurs
only once.

Let us assume a yield function for isotropic hardening material

can be expressed as
p =
F (Uij: eij' h) =0 (2.33)

where 43 is the current state of stress, egj is the total plastic

strain and h is the hardening that may vary with plastic strain.
Since consistency relation requires the stress point must remain

on newly developed surface during isotropic hardening, we have

_9F - F °p aF:
dF = 35—0y, + el Pl (2.34)
ij aeiJ

.

h can generally be expressed as a function of irrecoverable strain

rates.
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h =00 :p
aeP 1d
ij

and substituting this in équation (2.34) yields

_9F - . aF _°p N 9F _2dh .p
do, . 1J p ij " 8n . p i
ij aeij aeij

=0 (2.35)

dF

Equation (2.35) together with the normality condition (2.32) yields an

expression for A

= 10
A 15941 5 (2.36)
where

1 OF
L%, = = (2.37)

ij H acij
B=-| ag + & ag aaF (2.38)

[+
aemn oh aemn mn

Note the relationship given by equation (2.36) does not exist for
ideal plastieity since H vanishes for zero hardening. This can be
avoided by reformulating the above expression in terms of strain

increments. In the absence of thermal strains we have

3
3

= 1€
N Lijsij (2.39)
where
e _ 1 OF e
Liy = i3 Di1ij (2.40)
k1
oF oF F
gl = DS - ( ap + & ag y 2F (2.41)
acki acmn aekl ah ackl adkl

34




and it is obvious that for ideal plasticity #! does not vanish. In
the above equations, ng and ng are functions of the current state of
stress.

Having found a relation for i, the plastic strain rate can now be

found utilizing the normality condition (2.32), and the elastic strain

increment is determined using Hooke's law.

,.p D o

Sij = Cijkl ckl (2.42a)

e e )

eij = Cijkl Skl (2.42b)

where

P oF

Cijkl = Ly > (2.43)
%1

The total strain increment is a summation of the plastic, elastic and

thermal strain:

= P € t
8ij = Sij + Sij + eij (2.44)
where
el - ) T | (2.45)
ij = 835 @ :

and therefore the mechanical strain can be defined as

eij - Q Sij T) = 8§J + egj (2-46)

el, = (

i

or using equation (2.42)

m_ep

€13 = CTizkl %1 (2.47)
where

ep - € P

Cijk1 = Cigk1 * Cigka (2.48)

35




Upon inversion of the above equation, a relation for the stress

increment can be found in terms of the mechanical strain increment

_ €p m
%15 = Dijk1 &x1 : (2.49)

Where Di%kl is the elastoplastic constitutive tensor. More

specifically for the isotropic, strain-hardening Von Mises material

3u S;; Spy
k1 = “F %4k %31 .
H e R CTT YL A R .

2.5.2 Incremental Inelastic BEM Formulation
The governing differential equation of equilibrium .is given in

equation (2.11). Expressing it in incremental form:

(M) Uy oo 4 moug gy + £y = ofy ] O (2.51)

-

Boundary conditions, similar in form to equation (2.2), are
imposed‘on an iné?emental scale and incremental body forces are
applied in a manner analogous to section 2.4.

- The initial stress rate 0 ij 1is defined for the general case

of thermoplast1c1ty as a summation of the thermal stress rate G:j and

a plastic stress rate ng resulting from the nonlinearities present
in the plastic domain. For the purpose of the thermoplastic BEM

algorithm these can be defined as:

o _ t P
%3 = %5 * %1 (2.52a)
nt . : .

_ e ‘m ep m
ij = Dijk1 11 ~ Dijk1 ¢ 11 (2.52¢)
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8§l = Skl - skl aT (2.52d)
e ep '
where . Dijkl . Dijkl are the elastic and elastoplastic constitutive
tensors respectively, E is the modulus of elasticity, e is the
coefficient of thermal expansion, T is the incremental temperature

change, and eﬂl is the mechanical strain.

The axisymmetric, two-, and three-dimensional boundary integral
formulation derived in section 2.2 and rewritten in incremental form
are all applicable to inelastic BEM analysis. It is understood that
the field variables are incremental quantities, and the nonlinearities
are incorporated into the analysis through the initial stress rgte ;9

ij

as defined in equation (2.52).

2.5.3 Iterative Solution Algorithm for Thermoplasticity

The algorithm described here provides the solution for an

incremental, assembled system, analogous to the system defined by

equation (2.27). The solution requires complete knowledge of the
initial stress distribution ;° within the yielded region that is
induced by the imposition of the boundary loading, body forces, and
thermal 1loads. Unfortunately the nonlinear part ;p of the initial
stress is qot known a priori for a particular load increment and
therefore an iterative process must be employed within each loading
stage. |

An important feature incorporated in the iterative algorithm of
the present work is an iteration acceleration scheme (Raveendra, 1984)
which utilizes blastic stresses generated by the past history. In
this procedure, the path followed by the previous load increment is

used to extrapolate the plastic stresses at the beginning of the

37




current increment before the iterative operations, This results in
substantial reduction in computer time. This procedure is graphically
illustrated in Figure 2.2 for a simple tension problem with a variable
hardening parameter. The initial loading from point A generates
plastic stresses which are distributed during the iterations to arrive
at the solution at B . Upon loading from state B the extrapolated
path BC is followéd. At C the resulting corrective stresses are
distributed to reach state D .

The incremental algorithm is described below. Note, this
algorithm requires that a stress equation be written at each cell

node.

(a) Obtain the elastic solution for an arbitrary increment of

boundary loading y (and thermal loéding T) from

x = [AP171[BPy + cPot)

and (2.53)

AO’x + BO'y + cO’o,t

Q
]

(b) Scale the elastic solution such that the highly stressed node is
at yield. 1In the case of nonproportional loading this onset of
yielding cannot be reached by scaling. Instead, incremental
loads must be applied until yielding is reached.

(¢) Impose a small load increment y (and T ), (usually less than
five percent of the yield load) plus the estimated value of the
plastic stress rates accumulated from the previous load step and

evaluate
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(d)

(e)

()

- [ab1-1{pby & cbeO]

]

and . ‘ (2.54)

o = A% + B% + C%°

where ¢° is a combination of the estimated plastic stress

rates and the incremental thermal stress rates. If no prior
plastic history exists, the value of the estimated

plastic stress rates are zero.

Accumulate all incremental quantities of stress, traction and
displacement rates and use equation (2.52d) to calculate the

mechanical strain of this increment. .

Evaluate the current constitutive matrix using the new stress

history and calculate the current plastic stress rates via

P e ep ‘m

Ui:j = (Dijkl - Dijkl) ekl (2.55)
Accumulate the plastic stress history of this load increment to
be used as the estimated rate for the next load increment in step

(c).

If the current .increment of plastic stress rates, computed in
equation (2.55), is greater than a prescribed tolerance (normally
0.005 times the yield stress) at any node, then calculate the

incremental quantities due to these rates using

x = [AP17[cPP]  and & = A% + COP (2.56)
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and return to step (d) for the next iteration. If the value is
less than the prescribed tolerance go to step (g). Note the
boundary and thermal loading is zero for this calculation and the
mechanical strain rate will therefore be equal to the total
strain rate. If the number of iterations is greater than a
specified limit (usually 50) the system is assumed to have

reached the state of failure.

(g) Return to step (c) and apply the next load increment and the
accumulated plastic stress rates from this load step. (If the
size of the load increment changes the estimated plastic stress

rates should be scaled proportionally.)

Any residual plastic stress at the end of the iteration is carried

forward and applied to the system with the next load increment.

2.5.4 Variable Stiffness Plasticity Approach

The above nonlinear formulations include initial stress rates in
the governiné equations which are not known a priori and therefore are
solved by using iterative procedures. A non-iterative, direct
solution procedure is made feasible by reducing the number of unknowns
in .the governing equations by utilizing certain features of the
incremental theory of plasticity expressed by equations (2.32), (2.36)
and (2.39). This non-iterative or variable stiffness approach was
introduced by Raveendra (1984) in a single-region, two-dimensional
context. For the first time, this method is implemented in an
axisymmetric, two- and three-dimensional, multiregion computer

program,
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The initial stress rates “gj appearing in the incremental form

of integral equations (2.20) to (2.22) can be expressed in the context

of an elastoplastic deformation as:

O .
Gij = Kij A (2.57)
o oF
where Kij = DiJkl 5
%1

Substituting equations (2.36) and (2.57) in equation (2.20) and (2.22)
we obtain (in the absence of body forces):

0503 (&) = [ 165,00,808500 = Fy5(x,8)u; (01d5(0)
S

+ [ By 50K (OAXIAV(0) (2.58)
v

and

MY = Lgk(g) I [ngk(x:§)ti(X) - ngk(x.é)ui(x)]dS(x)
S
* Lgk(g) j ngjk(x:§)Kip(x)k(x)dV(x) (2.59)
A

Equations (2.58) and (2.59) can be solved simultaneously to evaluate
the unknown values of displacements, traction rates and the scalar
variable i .

Although equation (2.59) can be applied to any elastoplastic
strain hardening problem, ng becomes indeterminate for the case of
ideal plasticity (zero strain hardening), therefore, it cannot be used
for ideal plastiecity., However, this minor problem can be circumvented

either by specifying a small amount of strain hardening or more

41




appropriately replacing equation (2.59) by the strain rate equations
(2.39) and (2.21). Thus using equations (2.39) and (2.57) in (2.21)

we obtain

L ) : ] :
ME) = L0 [ 165,000t 00 - Ff 5 (x,du; (016500
S .
+ 1500 | Bf 5 (DK 0LV () (2.60)
v

Equation (2.60) can now be applied to any problems of «lastoplasticity
(both strain hardening and ideal plasticity);

Assembly of System Equations for the Variable Stiffness Method -
Although equations (2.36), (2.39) and (2.57) were s-ubstituted into the
analytic form of the integral equations for the presentation, during
actual implementation these equations are substituted, von a nodal
basis, into the ;'anremental form of the assembled equation system
 (2.27). Therefore, “using the incremental form of equation (2.27) as a

starting point, equations (2.36) and (2.57) are employed to arrive at

the following system:

abx - BPy 4+ cbra
and | (2.61)

A = LASx + LB"; + LCOKA
where ; are the known incremental boundary conditions and ; are the
unknown. Matrices A, B, C and A%, B%, C® are constant for a given
problem and matri'ces K, L are dependent upon state variables, and

are assumed to be constant during each small load step.
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It should be noted that the second equation is written only for
the céll nodes that are expected to yield during the current load
step._

The above equations can be rewritten as:

APy = bP + ¢y (2.62a)

and
A = Ahx + b + cM (2.62b)

or upon rearranging the equation (2.62b) we have

Hr = AMx + p* (2.63)

where bP = Bby , AP - cbg, At - La%,

b* = 1B® , C=1LCR , H=I-C*, and

I is the identity matrix.

Equation (2.63) can then be recast as

A = A% + p° ' (2.64)
where

AO = H"lAl

l;O = H—l{,l

Substituting the above equation into equation (2.62a) results in the

final system equations:

AFx = b¥ (2.65)

where
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AP = Ab _ c’.bho

b* = b + cAbp°

The above equation can be solved to evaluate the unknown vector x at
boundary nodes for every increment of loading. The present
formulation is similar to the variable stiffness approach used in the
finite element method since the system matrix on the boundary as well
as the right hand side vector are modified for each increment of
loading. For a multi-region system the inversion of H can be carried

out for each region separately.

Solution Process for Variable Stiffness Approach - As previously
mentioned, the solution process does not involve any iterative
procedure, instead the substantial part of the solution effort is
spent on assembly of the system equations for each load step. These

operations can be described as follows:

(a) Impose an arbitrary boundary loading and solve the elastic

problem in the usual manner.

(b) Scale the elastic solution such that the highest stressed node is

at yield.

(c) Apply a small load increment (usually < five percent of the yield
load) and compute K and L matrices using the past stress

history.

(d) Form the system equation (2.65) and solve for x.

(¢) Evaluate the initial stress rates o° using equations (2.57) and
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(2.64):

© = K Ao = K[A®°x + bO]
(f) Evaluate interior quantities displacement and stress rates using

the incremental form of equations (2.24) and (2.25).

(g) Return to step (¢) if the strains are less than a specified

norm. Otherwise, failure is assumed to have occurred.

It is of importance to note that the matrices K, L do not exist in
the elastic region,vtherefore, the corresponding equations involving
these matrices are formed and ;9 is determined, only for the nodes
that are at yield. Any small deviation from the yield surface can be

corrected by applying the stress rate difference (i.e. the initial

stress rate) during the next load step.

2.6 ACCURACY AND CONVERGENCE

In order to test the accuracy and convergence of the
elastoplastic formulations, simple problems with known solutions, such
as cubes, spheres, and cylinders, were analyzed. Axisymmetric, two-
and three-dimensional inelastic formulations were coupled with both
the iterative and variable stiffness solution algorithms., All
possible combinations were tested and in all cases excellent agreement
with the analytical solutions was obtained. A few of these examples

are presented here,

2.6.1 Two—dimensional Analysis of a Thick Cylinder
In order to verify convergence and accuracy of the two-

dimensional, iterative plasticity algorithm, an analysis of a thick
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cylinder subjected to increasing internal pressure.is carried out
under the plane stress condition. The discretization of the cylinder
(1:2 ratio), shown in figure 2.3, has ten elements and four volume
cells. In figure 2.4, the hoop strain vs. pressure for the inner and
outer surfaces are compared to the analytic solution (Hill, 1950).
Excellent agreement is obtained. Other numerical results, to within
1% error of the analytical solutions were obtained for the radial and
hoop stress through the cylinder at different load pressures, and the
displacement versus internal pressuré response. In figure 2.5, the
axial strain vs. pressure is compared with the theoretical solution,
and slight deviation is observed. A possible explanation for this
error is that the theoretical solution assumes the Tresca yield
criterion, where the present analysis is based on the Von Mises
eriterion. The computational time using the two-dimensional analysis
was found to be approximately 5% of the time required for the three-

dimensional BEM analysis.

2.6.2 Three-dimensional Analysis of a Thick Cylinder

A three-dimensional elastoplastic analysis of a thick cylinder
(in plane strain) is carried out using the variable stiffness
algorithm. The discretization of the cylinder (1:2 ratio), shown in
figure 2.6, has eighteen boundary elements and four (twenty-noded)

isoparametric cells. The material properties are (given in consistent

units):
E = 2600
v =0.3
0, = 600 (Von Mises yield criterion assumed)
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In figure 2.7, the load-displacement response (assuming ideal
plasticity) is compared to the theoretical result (Hill, 1950). In
figure 2.8, the circumferential stress distribution through the thick
cylinder is presented for two different load levels. Good agreement
with the analytical solution is observed in both figures.

In a second analysis, the material is assumed to exhibit variable

plastie strain hardening according to:

Stress vs. Plastic Strain

600 0.0
640 0.1
660 0.2
660 10.0

- In figure 2.9, the load-displacement response at the inner and
outer surface is presented. Results obtained from the iterative
procedure (with 5% load increments) are compared with two sets of
results from the variable stiffness method. One set is obtained using
2% load increments, and the other 5% increments., Results are

generally within 1% of one another.

2.6.3 Axisymmetric Analysis of a Hollow Sphere

A hollow sphere (1:2 ratio) subjected to internal pressure is
used to demonstrate the axisymmetric elastoplastic formulation. Nine
boundary elements and ten (eight noded) cells are used in the
discretizatipn of the sphere as shown in figure 2.10. The mesh
utilizes spherical symmetry and contains points on the origin. The
incline face is subjected to a roller boundary condition. The load-
displacement response is shown in figure 2.11 and the hoop stress

through the sphere at different load levels is given in figure 2.12.
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The BEM solution obtained using the iterative method is in good

agreement with the analytical result (Hill, 1950).

2.7 CONCLUDING REMARKS

The conventional boundary element formulations for elastic and
inelastic thermal stress analysis were presented. The inelastic
axisymmetric implementation presented in this chapter, with its use of
qua&ratic elements and multi-region facility, is the most advanced
implementation of its kind. Two inelastic algorithms, an itergtive
and a variable stiffness type approach were~employed, the latter for
the first time in axisymmetric and three-dimensional analysis. By
comparing resulté of test problems to their analyfical soiutions, the
accuracy of both methods was demonstrated. 1In Chap;er 6, the methods
will be used to analyze larger problems of practical interést. ‘

The body foﬁée and nonlinear effects in the present formulation
were incorporated.in the system through volume integrals or extra
surface integrals.“ In the next two chapters, new approaches for the

treatment of these effects will be presented.
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TABLE 1

STRESS STATES FOR INITIAL STRESS EXPANSION TECHNQIUE
IN TWO-DIMENSIORAL PLANE STRAIN
(PLAIN STRESS) ANALYSIS

Coefficient to

Nodal Values of Assumed Stress State

Stress State be detemmined S 5
: correspords to Oex Oy Uy u,
1 o, " E 0 (1-vHx | =v(1+v)y
2 “gy 0 E -v(1l+y)x (I—VZ)Y
3 cgy 0 0 (1+v)y (1+v)x
where
E is the modulus of elasticity.
v is the Poisson’s ratio, and
x and y are the nodal coordinates.

All stresses and tractions are zero for all stress states.

The stress states for two-dimensional plane strain analysis, given in the table
above, can be applied to the plane stress case, if the modified material parameters.

defined below, are used.

E = E(1+2v)
(1+0)2

VvV =

v

1+v




TABLE 2

STRESS STATES FOR INITIAL STRESS EXPANSION TECHNIGUE
IN THREE-DIMENSIONAL ANALYSIS

0s

- Coefficient to Nodal Values of Assumed Stress State
Stress State be determined 5 P 5 5 5 5
corresponds to Sex | %y | %2z | xy | %xz o9z u, Uy, u,,
1 o9y E 0 0 0 0 0 X —~y ~zZ
2 a§,’Y 0 E 0 0 0 0 | -vx y -vz
3 a2, 0 0 E 0 0 0 | -vx -vy z
4 agy 0 0 0 E 0 0 |{(1+v)y | (2+v)x 0
5 R ] ] 0 0 E 0 |[(1+v)z 0 (1+v)x
o}

6 %Gz 0 (] 0 0 0 E 0 (1+vz | (1+v)y
where

E is the modulus of elasticity.

v is the Poisson’s ratio, and

x,y, and z are nodal coordinates.

All stresses and tractions are zero for all stress states.




TS

TABLE 3

STRESS STATES FOR INITIAL STRESS EXPANSION TECHNIGUE
IN AXISYMMETRIC ANALYSIS

The value can be equated to one for simplicity.

Coefficient to Nodal values of assumed stress states
Stress State be determined: o o o o
number corresponds to L L. %90 L. %r % %50 Cpz “r "z t’_ t’z
o (2-v)E vE -E (14v)(1-2v) 2
1 %96 3(1-v)C T|TT-v1c 7| 2%r 0 0 0 c T 0 3(1-vIC O ol | %2
2 o:r 0 0 0 0 E 0 E 0 (1-v)r ~2vz | 0 o
3 a:z 0 0 0 0 0 E 0 0 -vr z 0 0
o
4 L 0 0 0 0 0 0 0 " 0 r 0 0
where E modulus of elasticity
B shear modulus
v Poisson’s ratio
r and z are nodal coordinates
nr and nz are normals of the boundary
c arbitrary parameter with dimensions of length, added to insure dimensional homogeneity.




Figure 2.1
Isotropic Hardening Behavior
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Accelerated Iterative Scheme
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Figure 2.3 .
Two-dimensional Discretization of a Thick Cylinder (Diameter Ratio’1:2)
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Figure 2.6
Three-dimensional Discretization of a Thick Cylinder (Diameter Ratio 1:2)
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Figure 2.10
Hollow Sphere (1:2 Ratio)
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CHAPTER THREE

ELASTIC BOUNDARY ELEMENT FORMULATIONS
BASED ON PARTICULAR INTEGRALS

3.1 INTRODUCTION

In this chapter, a novel boundary element approach for the
treatment of body forces is presented. The method is unique since no
volume integration or additional surface integration is required as in
earlier formulations. The method is based on the well known concept
of developing the solution of an inhomogeneous differential equation
by means of a complementary function and particular integral.

In the first section, the particular integral formulation for a
general inhomogeneous differential equation is developed and the
boundary element solution procedure is presented. The method is then
applied to gravitational and centrifugal body force analyses.
Finally, particular integrals are developed for thermal body forces
according to the uncoupled theory of thermoelasticity. In this theory
the heat conduction problem is independent of stress, and therefore,
will not be considered here. Instead, the temperature distribution is
assumed to be a known (or previously solved) function.

The axis&mmetric, two—, and three-dimensional formulations are
implemented in a general purpose, multi-region system, and examples

are presented to demonstrate the accuracy of the method.
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3.2 BOUNDARY ELEMENT FORMULATION USING PARTICULAR INTEGRALS

3.2.1 General Theohy

A solution satisfying a linear, inhomogeneous, differential
equation and boundary conditions can be found using the method of
particular integrals if the complete solution of the corresponding
homogeneous equation is known, provided, of course, a particular
solution can be found. The procedure is described below:

A linear inhomogeneous differential equation for a vector

L -

variable u, can be expressed in operator notation as
Lu;) + £ = 0 . (3.1)

where

L(ui) is a linear, self-adjoint, homogeneous, differential tensor

operator, and

£, is the inhomogeneous function.

The solution of the above equation can be represented as the sum

of a complementary function ug satisfying the homogeneous equation

L(ug) =0 (3.2)

and a particular integral ug satisfying the inhomogeneous equation
o

L(ui) = £y (3.3)

The total solution u; is expressed as

= 4© P .
ui = ui + ui | (3.4)
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In the theory df linear, inhomogeneous, differential equations,
it is understood that the particular integral is not unique, and any
expression satisfying equation (3.3) is a pafticular integral,
regardless of boundary conditions 6r how it was obtained.

Particular Integral - The particular integral is classically
found via the method of undetermined coefficients, the method of
variation'of parameters, or obtained by inspection of the
inhomogeneous differential equation. When these techniques fail to
produce a particular integral, a general procedure can be used. Here,
the singular solution satisfying the homogeneous differential equation
is multiplied by the inhomogengous quantity, and’the product is
integrated over an infinite domain. The final result is a particular
integral of the inhomogeneous equation. This can be expressed

mathematically as

©

Wiy = | Gy 5(x,8) £50x) dV(x) (3.5)

-0

where Gij(x,ﬁ) is the fundamental singular solution of the homogeneous

differential equation. The use of a polar coordinate system will
simplify the integration.

Once a particular integral is found, it is added to the
complementary function to form the total solution. The parameters of
the complementary function are adjusted to insure that the total
solution satisfies the boundary condition, and hence, produces a

unique solution to the boundary value problem.
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3.2.2 BEM Solution Based on Particular Integrals

The use of particular integrals in BEM was tentatively discussed
by Watson (1979) and Banerjee and Butterfield (1981). In 1986, Ahmad
and Banerjee (1986) successfully employed the idea in a two-—
dimensional eigenvalue analysis., Gravitational and centrifugal
formulations have been presented in axisymmetry (Henry, Pape,
Banerjee, 1987) and .two-dimensional (Pape, Banerjee, 1987) analysis.

Equation (3.1) can be defined for an elastostatic stress analysis

with gravitational, centrifugal or thermal body force as

L(ui) + £ = 0 (3.6)
where

L(ui) = (l""}l) uj,ij + pui’jj,

uy represents the displacement vector,

fi = -pgey for gravity loading in the =z direction,

£y = pwz(x1e1+x2e2) for centrifugal loading about the z axis, and

£, = BT,y for thermoelastic loading

When more than one type of body force is present, the net body force
is the summation of the individual body forces.

Complementary Function - The boundary integral equation

satisfying the homogeneous part of the differential equation is the
complementary function in this procedure. The complementary function

for displaceméht at point &, is expressed as

C;5(8) ui(®) = i [655(x,8) £1(X) - Fyy(x,8) ug(x)] dS(x)
(3.7

where the ui and ti are the complementary functions for displacement

and traction, respectively. The total solution for displacement uy
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and traction ti are

=u° p
up Tuyt Yy
- +C P

where ug and tg are the particular integrals for displacement and
traction, respectively.

Expliecit expressions for ug and tg will be derived for
gravitational, centrifugal and thermal body forces in subsequent
sections, but before proceeding to the formulation of these particular
integrals, a brief overview of the particular integral based BEM
procedure is presented.

Method of Solution - The boundary integral equation (3.7) is
discretized and integrated for a systeﬁ_of boundary nodes in the
manner described in Chapter 2. The resulting equations can be

expressed in matrix form as
Gt® -Fu® =0 (3.9)

By introducing equation (3.8) into equation (3.9), the

complementary function can be eliminated;
Gt -Fu =GtP —-FuP (3.10)

Thg particular integ?al terms on the right hand side of this equation
are functions of known body forces.

In a multi-region system, a set of (complementary) equations,
similar to equation (3.9) are generated independently for each region.
Likewise, the particular integrals of each region are derived

independently, leading to a set of equations for each region similar
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in form to equation (3.10). Interface conditions, expressing the
interaction of real quantities between region, are applied, and after
assembling the unknown.boundary quantities and corresponding
coefficients on the left hand side, and the khown boundary conditions
on the right, the final system can be written as

P = b + WP (3.11)
where Ab is a fully populated matrix, vector x represents the unknown
boundary condiﬁions. vector bP is the contribution of the known
boundary conditions and vector bP is the contribution of the
particular integral. This equation system can be solved for the
unknown vector x by standard numerical techniques.

A Note on Multi-region Programming - The most efficient solution
procedure for a single region BEM system utilizes equation (3.9)
instead of equation (3.10) since equation (3.10) requires additional
matrix multiplication. In this procedure the particular integrals ug

and tg are calculated and the complementary functions corresponding to

the known boundary conditions are determined using
c _ _..p c _ _ P

where Ui(x) and Ti(x) represent the imposed displacement and traction
boundary conditions, respectively. The solution to equation (3.9)
yields the unknown complementary functions, and when added to the
corresponding particular integral the correct solution is obtained.
This procedure is not as straight forward for multi-region
implementations, since interface conditions relate real quantities of
displacement and tractions, not the complementary quantitiés. In a

large, multi-region system with a complex assembly for local
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definition of boundéry conditions, sliding between interface elements,
ete., it may be beneficial to use equation (3.10) in spite of the
extra matrix multiplications rather than equation (3.9), since the
latter would require extensive modifications of interface conditions.
3.3 PARTICULAR INTEGRALS FOR GRAVITATIONAL AND CENTRIFUGAL

BODY FORCES

In the previous seétion, a boundary element formulation utiliziﬁg
particular integrals was described. Application of this procedure
requires the determination of the particular solution for displacement
and traction at all boundary nodes. Particular integrals for
gravitational and centrifugal body force loadings, applicable to two-
dimensional, three-dimensional and axisymmetry boundary element
analysis, are presented in this section.

The two- and three~dimensional particular integrals are most
readily obtained (Sokolnikoff, 1956) by the method of undetermined
coefficients., Using tensor transformations, the axisymmetric
particular integrals can be obtained from the three-dimensional form
(Henry, Pape, and Banerjee, 1987). For pure axisymmetry, i.e.,
axisymmetric bodies under axisymmetric loads these transformations

simplify to the following:

Coordinates: x1 =p
X3 = 2

Displacement; u, uy
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Stress: c =

rr - °11
%60 = %22
%pz = %13
Ong = Opg = 0
and tractions are found using the Cauchy traction relation
t = =
i = 033 By i,j =r,z | . (3:}5)

The application of the above transformation are straight forward and
therefore 6nly the two-, and three-dimensional particulgr integrals
will be defined.

The following two-dimensional, particular integrals assume thg
plane strain conditions.

The two-dimensional particular integrals for the plane stress

~ condition are obtaﬁped from the plane strain conditions replacing the

material constants v and A by a modified constants v and Py

Vo= V/(1+V) (3.16)
T = 28M
r = | (3.17)

The shear modulus p remains unchanged.

3.3.1 Particular Integrals for Gravitational Body Forces

dimensional solid of density p under gravitational acceleration g

directed along the -x, axis is expressed as
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fz = —-pg (3.18)

The particular integral for displacement under this body force is

p___ P8
U1 = TG %y

p___"p8 _ 2 2

uz = 8H(K+M) [(k + 2M)x2 + Xxll (3.19)
and the corresponding particular integral for stress is

o5 = P X,

(3.20)

ofy = i, = 0
and the particular integrals for tractions is

P -

t1 0 |

1

2 T TPE Xy Dy

Three-dimension — The body force in a three-dimensional solid of
density p under gravitational acceleration g directed along the “Xg

axis is expressed as

£, =£,=0
12 (3.22)
f‘3 = —pg

The particular integral for displacement under this body force is

_ Mg
U3 T a2 *1%3
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uP Apg

2 = p(3n+2p) F2%3 (3.23)
p_-(Apg 2 ___ g 2,2
Uz = 25(30+20) ¥3 T Fp(3a+2p) (xy +x3)

and the corresponding particular integral for stress is

33 = TP8 X3
D D (3.24)
o}y = o5y = o4y * o3 = O3 = O
and the particular integral for traction is
P _ P _
?1 = tz =0
(3.25)
3 = -pg X3 N3

3.3.2. Particular Integral for Centrifugal Body Forces

Two-dimension (plain strain) - The centrifugal body force in a
two-dimensional solid of density p rotating at a speed w about an axis .
parallel to the x

3 axis and centered at a reference coordinate §i is

expressed in indicial notation as

]
[]

pwz ¥y (3.26)

Vg =% &
The particular integral for displacement under this body force is
2

p_ _Tpv
U= 0wz Vi) X4 (3.27)

where summation is implied over k.
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The corresponding particular integral for stress and traction is,

respectively

2
Py
%5 = Toazy L) by + 2 vy )

2
p_ __TPY
Y = 7Gap L) ¥y ng + 20 yiype )

where
n; is the boundary normal at x4, and

sij is the Kronecker delta.

(3.28)

(3.29)

Three-dimension - The centrifugal body force in a three-dimension

solid of density p rotating at a speed o ébout an axis parallel to the

X3 axis and centered at a reference coordinate §1 is expressed as

2
fl = pw yl
2
f2= P‘D y2
fq = 0
where
Vi = 3-8

Note, §i = 0 in axisymmetry.

(3.30)

The particular integral for displacement under this body force is

P _ ‘Pw SA+4p B
Y1 = 302w [ 4(A+p) (y1+y2) * A y3 ] ¥1

_ —pu? Sh+4p 2 B2
= B(a+2p) [ (A1) (Y%*Yz) M TTIRE ] p)
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-pwl

p _ Py 2 2. -
U3 = Zhan) Y1t Y2) V3 (3.31)

The corresponding particular integral for stress is

2 2 2 2
611 = —pPO [clx1 + CoXy + CgX3]

632 = —pm2 [czxi + clxg + °3x§]
og3 = -pmz,[e4xi + c4x§ + csxgl
2
o), = pu” Cex;xX, (3.32)
D 2
913 = PO CsX1X3
2
ohs = pu CsXyxg
where
_ 6-3v-2v2 _ (1-2v) _v(1-2v)
€1 T 16(1-v) ¢3 T 8(1-v) Cs T 4(1-v)
o 2+3vi2v? _ -145v42v2 =(24v) (1-2V)
2 = 16(1-v) ¢4 = T8(1v) C¢ = T 8(1-v

and the particular integral for traction is obtained using the Cauchy

traction relation

ty = o5y 1 i,j =1,2,3 (3.33)

3.4 PARTICULAR INTEGRALS FOR TBERHAL ANALYSIS

The gravitational and centrifugal particular integrals, presented
in the previous section, were relatively straight forward since their
body forces had specific distributions that were represented by
elementary functions. In thermal stress analysis this is not the

case, since thermal body force can exhibit general temperature
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distributions. So consequently, thermal particular integrals are more
difficult to obtain.

In this section, the aim is to develop a particular integral
applicable to any temperature distribution. This distribution is
expressed by nodal temperatures specified at random point through the
domain of the body.

The present formulation starts with the assumption that the
particular integral for displacement can be éxpressed as a gradient of
a thermoelastic displacement potential h(x) in accordance with the

development of linear quasi-static thermoelastic theory (Nowacki,

1962):
uP(x) =k h, (0 (3.34)
where
_ a(3r+2p)

Substituting equation (3.34) into equation (3.6) and simplifying

yields

h’jj(X) = T(x) (3.36)

Hence, an implicit relation between ug and T is derived with the
use of a poﬁential function h(x). The irrotational form of the
particular integral in equation (3.34) does not imply a loss of
generality in the total solution since the balance of the temperature

effect is incorporated into the complementary function.
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The particular integral of equation (3.34) is of little interest
unless a suitable funétion h(x) can be found to accurately represent a'
general temperature distribution in equation (3.36). This is achieved
using a device, first introducéd in the context of finite elements,
called the global shape function.

3.4.1 Particular Integrals for Two- and Three-dimensional

Analysis
Assuming the function h(x) can be represente? by an infinite
N

series, an expression relating h(x) to a set of fictitious scalar

densities ﬂ(&n) via a global shape function C(x.{n) can be written as
h(x) = )  Clx,E)0(E) (3.37)

where C(x.ﬁn) = o suitable function of spatial coordinates x and

2.

Several functions were considered for this purposé, however, the

best results were obtained with the following expression:

clx,& ) = a2 [p% - by p°] | (3.38)

where

Ao is a characteristic length,
p is the euclidean distance between the field point x and the
' source point §n, and
b is a suitably}chosen constant to be discussed later. For
the present discussion, assume b, =1.

All distances are nondimensionalized by a characteristic length

Aye
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Using equations (3.34) and (3.37), the particular integral for
displacement is found:
.

W) = Y Di(x,E)0E) (3.39)
n<1

e
[}

1,2 for two-dimensions

[
[

=131,2,3 for three-dimensions

where

Di(XJEn) = kC,i(x,ﬁn) = kA°[2 - 3bn p]yi

¥y = [xi - (§n)i]
and
d = 3 for three-dimensional or d = 2 for two-dimensional' ' (plane
strain) analysis.
Applying the Laplacian operator on equation (3.37), an expression

for the temperature distribution is derived

«©

0 = ) K(x.g)0(E) (3.40)

where

K(xign) = C.ii(x,én)
= [2d - 3(1+d) b_ p]

A particular integral for strain can be found upon substitution

of equation (3.39) into the strain-displacement relation.

&P (x) = n21 Eyy (X,£,)0(E,) (3.41)

=1
x
[
~~
s
-
g
=}
St
[

= kC;kl(ngn)
Yy

1
> )]

=k [28k1 - 3bn (8k1p+
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This result introduced into the stress-strain law of

thermoelasticity produces the particular integral for stress:

o0 = Y 5;y(x.50(5y) (3.42)

e
e
Dijkl = M By Sy * 21 By 531 , B = a(3a+2p)

Finally a particular integral for traction is derived by
multiplying the above equation by appropriate normals
p =
P(x) =y Hy(x,E)0(E) (3.43)
n=1
where
Hi(x, &) = Sij(x.tn)nj(x). and

n;(x) = unit normal at x in the jtB direction.

Once again, the plane stress formulation can be obtained from the
plane strain case by substituting the modified material constants a

and % into the plane strain equation in place of « and A,

respectively, where

~ _ a(3A+2p)
% = 202a+)

and A is defined in equation (3.17)

3.4.2 Particular Integrals for Axisymmetric Analysis

The axisymmetric particular integrals can be derived in one of

the two ways described below:
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1. Direct Derivation - The particular integrals in equations
(3.34) and (3.36) are expressed independent of coordinate
systems using operator notation. Upon choosing a suitaﬁle.
eylindrical form of a global shape function C(x,¥), the
axisymmetric particular integrals are then obtained by
applying the axisymmetric form of the differential
operators. Note, a suitable shape function must render a K
matrix that is well-conditioned and will admit to an

inversion (see equation 3.53).

2. Indirect Derivation - The three-dimension particular
integrals, given in equations (3.39) through (3.43), are
rewritten in cylindrical coordinates. Upon application of
appropriate tensor transformations and analytic integration
in the angular (8) direction, a suitable set of axisymmetric‘

particular integrals are obtained.

The resulting particular integrals should exhibit axisymmetric
behavior and satisfy the physical conditions at the origin (u¥=0.
8§z=0. e$r=e%9). Choosing a global shape function for the direct
derivation that will satisfy these conditions and still admit to an
inversion is a difficult task. Nevertheless, the axisymmetric
particular integralé derived from the three-dimensional functions
using the indirect derivation should inherently satisfy these
conditions. For this reason, the indirect derivation has been adopted
in this dissertation. The resulting axisymmetric particular integrals

are given below.
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The particular integral for displacement, temperature and strain

are, respectively:

Bx) = Y0ty 008y (3.45)
n=1 i=r,z

T(x) = ) K(x,E) O(E,) (3.46)
n=1

p A .

ef 5 (x) —nziEiJ(x’gn) e (3.47)

ij = rr,2z,rz,60

where D, (x,&.), K(x,&,), Eij(x,gn) are subsequently defined.

In the present formulation, strain is derived from displacement
where differentiation (with respect to the field point x) is performed
prior to the analytic integration (with respect to the source point
§n) in the angular direction.

The particular integral for stress and traction are derived

directly from strain in the usual manner employing the following

relations

P _ € P _

o35 = Dijk1 ekl ~ 833 B T (3.48)
p_

t] = oiy n

The following notation is used in defining the axisymmetric

particular integrals.

ry = X, radial coordinate of the field point

N
i

X, axial coordinate of the field point

rg = (§r)n radial coordinate of the fictitious density node n
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zg = (§;), axial coordinate of the fictitious density node n

Note, the subscript n is dropped for simplicity.

are nondimensionalized by a éharagteristic length Ao

zZ = Zx—z§
= 2 2+1/2
R = [(rx+r§) + 2]
K = a(l+y)
T (1-v)
m = 4er§/R2
m1=m—1
K =

=1
]

E and K are defined in Appendix III.D

General Form (rx £ re and/or Zy # z&):

0o
1]

(E—le)/m

e,y = [2E(2m—1)+m1k(2—3m)]/3m2
Fy = 4°i/R

F2 = —4(2cy-c4) /R

Fg = 4(4cg-dc,+eq)/R
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E(m) is the complete Elliptic Integral of the second kind




4RE

[»]
[y
L]

(]
1

= 4mR(03—c2)

Ir r =0 and/or r§=0 and zx#zg. then the following substitutions should

be made for Fa and Ga

| Fq = 2n/R
F2 =0 ‘ .
F3 = F1/2
Gy = 2mR
G, =0

Particular Integral for Temperature:

K(x.tn) = 21 - 3b, Gy

Particular Integral for Displacement:
X

27 3
DP(X:En) = kAO ['3_' r_- z bn(rxGl'rng)]

2n 3
Dz(x,ﬁn) kAoz [3— - = bnGll

Particular Integral for Strain:

2n 3 2 2
EpxE) =k (37 -7 b, (G1+er1—2rxr§F2+r§F3)]
2r 3 2
E  (x.8) =k [37 - 7 b, (Gy+z F)
E 2 b
rz(x.f,n) = kz [- 4 “n (erl""rng)]
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If px=0, then

1

Eee(x,én) Err(x,ﬁn)

Singular Form (rx =r, and z, = z,):

The general form of the axisymmetric particular integrals are

singular when re = re and z, = zg. In this circumstance, the limiting

form of these functions, given below, should be used.

Particular Integral for Temperature:

K(x,8,) = 2n-24 b, r_
Particular Integral for Displacement:

2n ;
Dr(x,én) = kAorx [3_ -8 bnrx]

]
(=]

D, (x,¢g,)

Particular Integral for Strain:

2n
Err(x’gn) =k [37-10 b r. ]
27
E (x.8) =k [3m-6bpr.]
Erz(x,Cn) =0
2n
Eee(x:gn) =k ['3— -8 bnrx]
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3.4.3 Numerical Implementations

The particular integral for displacement ug(x) and traction ti(x)
must be evaluated at each boundary node before a solution to the
governing equation (3.6) can be achieved. For the purpose of
numerical evaluation, the infinite series representations of the
particular integrals are truncated at a finite number of N terms.
(The choice of N will be discussed later.) The particular integrals
for displacement, traction, and temperature distribution can be

rewritten for N number of terms as follows:

N

W (x) = nZ1 Dy (x,&,)O(E,) (3.49)
N

tPx) = nZ1 Hy (x,8,)0(E,) (3.50)
N

T(x) = }1 K(x,£,)8(E,) (3.51)
n=

The particular integrals are derived for each region, independent
of the other regions. Hence a set of (the above) equations are
written for each region where a temperature change is prescribed.

The evaluation of the ug and tg in the first two equations
requires the determination of N fictitious nodal densities ﬂ(én), n =

1 to N. For this reason N temperature equations (3.40) or (3.46) are

written at each §{ node. These equations are expressed in matrix

form, independently for each region, as

T=K9 (3.52)
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where K is a N x N matrix. Since the increment of temperature
distribution is known, the fictitious nodal values 0(§n) can be

determined:

o=x1rt (3.53)

A back substitution of the quantities G(&n) in the particular
integrals for displacement and traction allows for their evaluation at
any point. Hence, ug and tg can be determined at all boundary nodes,
and the boundary value problem can be solved as discussed in section

3.2.2,

Displacements, Stresses, and Strains at Interior Points- The

solution for the interior quantities consist of a complementary and a

particular part:

- 1.,C P
_.c p

813 T iy * e1j (3.54)
. C P

°13 T %13 * oy

The particular integrals of the above quantities are defined in two—
and three-dimensions by equations (3.39), (3.41) and (3.42) and the
complementary functions are inferred from equation (3.7). The
boundary stress calculation discussed in section 2.3.2 is used in
place of the integral equation to represent the complementary function
of stress for a péint on the boundary. This avoids strong
singularities in the integral equation associated with a boundary
point.

Selection of Parameters — The formulation presented thus far is
relatively straight forward, however, the following areas demand

special attention to guarantee high accuracy in the results.
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The boundary mesh chosen for a specific problem should be fine
enough to produce satisfactory results for elastostatic analysis.
Fictitious function nodes En should be introduced at all boundary
collocation nodes and at points where interior quantitiés are to be
evaluated since the interpolation of the global shape function is most
aceurate at these locations. Additional (fictitious function) nodes
may be used through the interior of the body for a better
representation of the particular integrals. A pattern of interior
nodes consistent with the fineness of the boundary mesh is
recommended, however, the number of additional points is dictated by
the complexity of the temperature distribution. In any case, a
uniform or neatly graded pattern is recommended for best results.

It is obvious from equation (3.40) that the largest term in each
column of matrix K falls on the main diagonal (when symmetric node
ordering is used). The magnitude of the off diagonal terms will not,
in general, be strongly banded unless special attention is paid in
ordering the nodes according to their proximity. In any case, errors
may show up when a large number of fictitious nodes are used. To
eliminate this problem, matrix K can be optimized by the choice of the
constants bn‘ These constants are dynamically calculated
(iﬁdependently for each n) to scale each column of matrix K so that
the lowest value is forced to zero. This optimization and the use of
double pivoting will reduce error in the solution of equation (3.53),
however, a price is paid for this matrix conditioning, since K will be
rendered nonsymmetric.

Still greater preeision can be achieved by adding a constant term

to the function in equation (3.40). This is accomplished by setting
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one of the constants bn to zero in one specific column (here, for
simplicity, we choose the last column; n = N). The benefits gained
are seen when equation (3.40) is expanded out. For a field point x,

we have

T(x) 2dC

+ 3(1+d) [blplﬂ(gl) + .40 *+ bnpnﬁ(én) + oo + bN—l PN-1 0(§N_1)]
+ 2d@(§N) ' (3.55)

where

P, = the euclidean distance between x and Eno and

2d0(&y) is the (self-adjusting) constant term

For a given temperature distribution, C is constant (independent of
x), whereas the term in brackets depends on the spatial varying
function p , and therefore, the term in the brackets dictates the
shape of the function. Note, the last term containing @(& n) (for n=N)
is independent of coordinates and therefore is seen as a constant term
that can adjust according to the value of ¢(§N).

The values of the nodal densities ¢(§n) must adjust to satisfy
the temperature T(xm) in N nodal equations. In the presence of the
last ternm, C is seen as arbitrary, since the last term'@(ﬁn) can
adjust to accommodate any value of C produced by the other N-1 0(§n)
values. This allows the @'s for the terms in brackets to adjust to
satisfy the temperature distribution in a free, relaxed manner. In

the absence of the last term, C is no longer arbitrary and the @(&n)'s
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must take on values that force the term in brackets to balance C so
that the temperature distribution is satisfied at nodal points. In
essence, without the last terms, the global shape function may be

forced to behave in a unnatural manner between the nodal points.

3.5 EXAMPLES
_In this section three problems are presented to demonstrate the

particular integral based, body force analysis.

3.5.1 Gravity Stresses Around a Vertical Shaft

The axisymmetric, gravity body force analysis is used to
determine the stress distribution in the soil near a vertiéal shaft in
a halfspace due to its own. weight. Eight quadratic elements (two for
each side of a square region) with a total of sixteen nodes are used.
to model this geoﬁetry. In addition, stresses are calculated at four
' interior points. 'In figure 3.1, the BEM results are coppared with the
analytical solution (Terzaghi, 1943). Excellent agreement is

obtained, even for this crude mesh.

3.5.2 Stresses in a Rotating Sphere

The axisymmetric centrifugal body force analysis is used to
determine stresses in a solid sphere rotating about the vertical axis.
Dﬁe to symmetry, only half of the body is modelled as shown in figure
3.2. Four elements with a total of nine nodes are used. Note that
the centerline is not discretized. The nodes along the r axis are
constrained against displacement in the 2z -direction. The only
loading applied is that due to a rotation about the z axis. The

BEM results are compared to theoretical and finite element
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(Zienkiewicz, 1977) results in figure 3.3 and 3.4. Again, excellent

agreement is obtained.

3.5.3 Thick Cylinder Subjected to Thermal Load

The axisymmetric, two- and three-dimensional thermoelastic
analysis by particular integrals is tested on a thick cylinder under
plane strain conditions. The boundary element discretizations for the
problem are shown in figure 3.5. The thick ecylinder, with an inner
radius of 10 inches and an outer radius of 20 inches, is assumed to

have the following material properties:

2600 1b/in2

E =
v= 0.3
a = 0,001 in/in/deg F

The temperature distribution

i |
T(r) = 1,000 g— - 70 (deg F)

1 is the inner radius and r is the

" is applied to the cylinder where r
radial distance. The resulting BEM solutions for displacement and
stress are given in Figures 3.6 and 3.7, respectively. These results

are compared with the analytical solution by Boley and Weiner (1960),

and once again, excellent agreement is observed.

3.6 CONCLUDING REMARKS
A new boundary element procedure, based on particular integrals,
was introduced for the treatment of body forces. A range of problems

was solved and shown to correlate favorably with existing results.
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The particular integrals satisfy the inhomogeneous differential
equation exactly, and therefore, the need for a volume integral or
additional surface integrals is eliminated. The (homogeneous)
boundary integral equation together with the particular integral
represents an exact statement of the problem, and any error in the BEM
solution is the result of approximations and errors introduced in the
numerical implementation and solution.

The general particular integral formulation introduced in this
chapter can be applied in other BEM analyses which involve
inhomogeneous differential equations., One such area, inelastic stress

analysis, will be taken up in the next chapter.
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Stress Distribution near a Vertical Shaft due to Self-weight
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Figure 3.2
Axisymmetric Mesh of a Solid Sphere
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Tangential Stress through a Rotating Sphere at Z=0
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Figure 8.5a . )
Two-dimensional Mesh of a Thick Cylinder (Diameter Ratio 1:2)

Figure 8.5b
Three-dimensional Mesh of a Thick Cylinder (Diameter Ratio 1:2)

Figure 8.5¢
Axisymmetry Mesh of a Thick Cylinder (Diameter Ratio 1:2)
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CHAPTER FOUR

INELASTIC BOUNDARY ELEMENT FORMULATION
BASED ON PARTICULAR INTEGRALS

4.1 INTRODUCTION

In the previous chapter, a general boundary element formulation
based on particular integrals was presented and applied to
gravitational, centrifugal and thermocelastic analysis. The next
logical step is the extension of the technique to other areas of BEM
analysis. In the present chapter, the formulation is extended to
problems where the body forces are generated by the initial stress
gradient; specifically elastoplastic analysis.

Two—~ and three-dimensional particular integrals, as well as
axisymmetric particular integrals are developed and implemented in a
general purpose BEM computer code. The final BEM equation system
produced by this formulation is similar in form to that generated by
volume integration. This allows the iterative and variable stiffness
algorithms developed in earlier works (Raveendra, 1984) to be
incorporated with this new particular integral formulation without
modification. Furthermore, the formulations developed in the next
chapter for elastic and inelastic inhomogeneous media will employ the

present procedure.

4.2 PARTICULAR INTEGRALS FOR INITIAIL STRESS BODY FORCES
The governing differential equation for a body subjected to an

initial stress body force is expressed in terms of displacement u, as
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(Xﬂl)uj’ji + ui,jj = “gj.j (4.1)

where A and p are Lamé constants.

The initial stress ng may be induced by a ‘lack of fit' stress,
temperature change, inhomogeneities, inelastic effects, or a
combination of these. In this chapter a boundary element formulation
using particular integrals is derived for the solution of the above
equaiion. and from this formulation, the incremental formulation for
plasticity is inferred. ¢ -

The total solution of the above equatioﬁ can be decomposed into a

particular integral and a complementary function:

vy = ug o+ uf
= ¢© p |

»

TR TR

The boundary integral derived in Chapterﬁz for elasticity
represents the complementary function since it satisfies the
homogeneous centerpart of equation (4.1). Hence, equations for the

boundary system, displacement, and stress can be expressed in matrix

form as
Fu® = Gt¢ (4.3a)
o® = G%°¢ - FOu° (4.3b)

Using equation (4.2), these equations can be rewritten as

Fu = Gt + [FuP - GtP] (4.4a)

o = GOt - F%u + [F%uP - GOtP + oP) (4.4b)
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The particular integral vectors uP, tP, and oP of the above equations
are r'e'lated to the initial stress by virtue of equation (4.1). Once
explicit relations are known, these functions are evaluated at nodal
poiﬁts allowing equation (4.4) to be solved in the conventional manner
for a set of well-posed boundary conditionms.

Effort is now turned toward deriving explicit expressions for the

particular integrals.

4.2.1 Two- and Three-Dimensional Particular Integrals
The two- and three-dimensional particular integrals for

displacement are related to the Galerkin vector Fi via

p _ (1-v) 1 | '
U= Fyokk T 3n Pk (4.5)

where v is Poisson’s ratio.
Substituting this equation into equation (4.1) renders a
relationship between the Galerkin vector and the initial stress

function:

1

S ¢
Fi,kkgs = TT-9) %14,

(4.6)

In subsequent steps of this derivation, it will be advantageous
for the implicit expression of equations (4.5) and (4.6) to be related
by a second order tensor, rather than a vector. Therefore, a tensor

function hij-is introduced where

(¢}
h:l:l.mmnn = %j (4.7)

Substitution of this equation into equation (4.6) and simplifying
yields an expression for the Galerkin vector in terms of this new

function:
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1

Finally, substituting this expression into equation (4.5) yields the

desired particular integral for displacement

[y

p_1 1 ,
ui =T M kT 2p(1) Pim,ilm (4.9)

The particular integral for strain, stress and tractions are

found using the following relations

1

815 =3 (ug'j + ug’i) (4.10a)
P _ ne p 0

%5 = Dijk1 ekl ~ ©ij (4.10b)
P _

t? = dﬁj n, (4.10¢)

where Dijkl is the elastic constitutive relation given by equation
(2.7a). It is impqrtant to note that the initial stress must be
subtracted out of equation (4.10b) in order to produce the correct
particular integral for stress. The complementary function for stress
and strain, on the other hand, are related directly by Dijkl' i.e.,
535 = Dijk1 ®k1-

Employing equations (4.10), the following expressions are

obtained for the particular integral for strain and stress:

p _ L 1
’13 T 2 My 1kky * By1,1kki ~ TT-W) Bym,ij1m’ (4.11)
(v)
°§J = =9 "ml,mikk 2ij * Pi1,jikk T hy1,11kk
-1 n
(1-v Mk,i1jk1 ~ Bij,11kk (4.12)
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In passing we note the above relations for particular integral
are derived in terms of initial stress, which is consistent with

Chapter 2. An initial strain 323 formulation is possible assuming-

(o]

where the associate particular integral for displacement is

(v) 1
W = 3= Pkk,135 * 2 Bij,jkk " (I Bkj,ikj (4.14)

The particular integrals given by equations (4.7), (4.9), (4.,11)
and (4.12) have little préctical use in this implicit form. However,
by applying the global shape function concept of the previous chapter,
an explicit formulation can be developed for analysis of problems with

general initial stress distributions,

Global Shape Function - Tensor hij(X) can be expressed in terms

of a fictitious tensor density Gij(g) as an infinite series using a
suitable global shape function C(x,E):

(-]

b (x) =nZIC(x,§n) O (£ (4.15)
m1l=1,2 for two—dimensions
m,l =1,2,3 for three dimensions

Several functions were considered, however, the best results were

obtained ﬁith the following expression.

Clx,&) = a3 [p* - b, 5] (4.16)

where

Ao is a characteristic length,

P is the euclidean distance between the field point x and the

source point §n’
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bn is a constant, chosen in a manner described in section

3.4.3. For the present discussion bn can assume the value

of unity.

All distances are non-dimensionalized by a characteristic length

A,-

The unknown fictitious densities are related to the initial
stress through equation (4.7). Substituting equation (4.15) into

equation (4.,7) leads to

0
oSy =nzlx(x.§n) 01pn(Ey) (4.17)

where

K(x,én) =C ) =a - bp

,mmnn(¥:&n

a = 8d4(d+2) , b = bn15(d+3)(d+1)

o
"

3; for three-dimensional analysis, and
d = 2; for two-dimensional (plane strain) analysis.
The particular integral for displacement can be found by
substituting equation (4.15) into equation (4.9).
[--]
p =
uf (x) 'nZiDiml(x’gn) e (4.18)

where
Dyp1(x.Ep) = Ay [(eg+dyp) (y810+y851) + (eptdap)yByy

d
1
+ P yiylym}
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yi = [xi - (En)i]
_ -8 _ _BBEE;_
¢1 T 3u(1-v) d; = 2u(1-v)
o = 8(d+2) 4 =4 bn15(d+3)
2 5%ty 2 =4 - "

The particular integral for strain and stress can be found by
substituting equation (4.18) into equation (4.10). Alternatively,
these functions can be found direct;y by a substitution of equation
(4.15) into equations (4.11) and (4.12). Employing the latter method,

the particular integral for stress can be written as

P .
13 -nzlsijlm(x.én)ﬁlm(én) (4.19)
where

£1
* o (yypdyy + ViV iByptyi Vi)

£y f3 fs
* o Y 8ty gy ) + 5 Vivgdyy ¢ ;E Yi¥3¥1Ym

ey = 2p.c1 f1 = —fs = 2pd4

e, = u(cl+02) £, = u(d1+d2)

es = el;x[cl(d+1)+czl £3 = £; + Aldg(d+2)+d,]
ey =€y~ a fqa=1f, +D

Finally, the particular integrals for traction are found using

equations (4.10c) and (4.19).
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Once again the plane stress formulation is derived from the two-
dimensional plane strain formulation by substituting the modified
material constants defined in equations (3.16) and (3.17) into the

plane strain equations.

4.2.2 Axisymmetric Particular Integrals

AlthoughAthe methodology for axisymmetric BEM analysis by
particular integrals is similar to that of two- and three-dimensions,
the functions, of course, are different. 1In this”section, an
axisymmetric form of particular inteérals is presented for
axisymmetric initial stress body forces.

The axisymmetric particular integrals can bé derived by one of
the two methods described in Section 3.4.2.

These methods are:

»

1. A direct derivation utilizing the axisymmetric form of the
differential operators in equations (4.7) and (4.9), and a

suitable axisymmetric shape function.

2. A derivation from the three-dimensional particular integral
utilizing appropriate cylindrical coordinate and tensor
transformations, and an analytic integration in the angular

(6) direction,

The second method has been adopted in this dissertation, and the

resulting axisymmetric particular integrals for initial stress,

displacement, and strain are given below.
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, N — — ’ N
Lo n n
Opp (X) Kll 0 0 K14 Dn.(tn)
(o] n
(¥ = |0 K 0 0 0, (&)
) L= \ (4.20)
'o n=1 n <
o2, (x) o o K% o 0., (2)
0 n n
6o (x) . 0 0 K nn(E )
P00' ™) | fa 44 | [ Poe'tn’
r AN
mrr(gn)
{ uP n n n n
U (x) 3 Dyy Dya Dyz Dyy 022(8n)
) , (4.21)
D n=1 n
n n n
| Yz () Da1 D33 Daz Dy Orz(En)
Poo(En)
\ /
v N — — 4 N
P n n n n
®pp (X) Eyg Eyp Eg3 Egy rp(Ey)
p n n n |
.2z(X)| g Ez1 "Ezp Ez3 Egy P22 En) .
=3 J (4.22)
4 P > n=1 n n n n f i
&pg (X) E3; E3y E3z Egy 0rz(En)
P n n n n
| ®oe(x) Esr Eaa Eg3 Eygy Po0(%n)
\ / = s N /
n n n
where Kij’ Dij and Eij are subsequently defined.

The particular integral expression for stress and traction are
derived from equations'(4.20) and (4.22) using equations (4.10b) and
(4.10c). In the present implementation, "gj(’!) is evaluated using
equation (4.22) and the resulting values are substituted in equations
(4.10b) and (4.10c) for the numerical determination of for the 6?3‘"’

p
and tij(X)'
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The following notation is used in defining the axisymmetric

particular integrals.

Px = Xn radial coordinate of field point

N
i

X, axial coordinate of field point

r§ = (ér)n radial coordinate of the fictitious density node n

E= (§,), axial coordinate of the fictitious density node n

Note, the subseript n will be dropped for simplicity. All

coordinates are nondimensionalized by a characteristic length Ao‘

z =2z - zg

R= LU, +rp?+ 221172

m = 4r,r./R?

my = m-1

K = K(m) is the complete Elliptic Integral of the first kind

t=
]

E(m) is the complete Elliptic Integral of the second kind

E and K are defined in Appendix III.D

hy =0
= 1
-1
B3 = 2p(1-v)
a; = h3/15
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General

It

Form (rx # re and/or Z, £z

h3/15
h2/3.+ ay
h3/8

h,/8

3

3h2/4 + by

_bl

(E-m,K) /m

[2E(20-1) + mK(2-3m)1/3m’
[4(2m-1)cy + 3myc,]/5m
(6(2m-1)e, + Smycyl/Tm

[8(2m—1)c5 + 7m1c4]/9m

[2(1+m1)E - le]/3

[4(1 + ml)e1 - 3m1E]/5

Elml
(K-E)/m

[E(1+m) - 2m1K]/m2
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5):




3
[E(2-7m; - 3m2) + K(9m;-1)m,]/3m

.
S
i

- 2 3 4 4
dS = [e, + 6mJE - 4mye; ~ 4m] K + m; d;1/m

F2 = —4(202 - cl)/R

*x]
w
L]

4(403"‘ 402 + 01)/R

F4 = —4(804 - 1203 + 602 - 01)/R

G, = 4RE
G2 = 4mR ((33 - 02)

_ 3
T, = 4d1/R

' 3
T, = -4(2d, - dl)/R
T, = 4(4d, — 44, + d )/R3
3 3 2 1
T, = —4(8d, - 12d, + 6d, — d) /R
4 = 4 3 2 1
_ 3

If ry = 0 and/or re = 0 and z, # Zg» then the following substitutions

should be made for Fa, Ga and Ta

F, = 2n/R
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F4 =0

Gl = 2nR

Gz =0

G3.-.:1[R
3

Ty = 2n/R

T2 = 0

T3 = T1/2

T4=O

Ts = 3T3/4

Particular Integral for Initial Stress:

Kyp(x,8) = 21 - 3Gy
Kpg(x,2) = -3G,
K41(x,§) = 1 — 3(G4-G3)
K44(x,§) =qx - 3G3
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Particular Integral for Displacement:
D, (x,8) = Ay { m(2a5+a,+ag)ry - by(r Gy=rGy)
- (b2+b3)(rxG3—r§G2) - b, [rx(ri+ 2P§)F3 - P§P§F4
- r§(2p§+r§)F2 + rxrgFl] }
| Dyp(x,8) = Ay { 2mayr, - bl(rxﬁl'rng) - bz(erl-r§F2)22 }
Dig(x,8) = Aoz { 2by LrZrIFy = ryrp(FisF)] + (bytbg)Gyl )
D14(x,§) = Ao { n(2a1+a2+a3)rx - (b2+b3; (Gl—Gs)rx
= b (rGy-r,G,) - byrl [rx(F;—F3) - re(FyFP1 ¥
D21(x,§) = Az { 2may - b;Gy - by (r§F3-2rxr§F2+r§F1) }
D22(x.§) = Agz { 2n(a +a,+ag) - (by+by+b3)Gy — b222F1 }
Dyalx,&) = -A; 2n(a2+a3)r§ + (by+by) (rsz—rgGl)
+ 20,27 (r Fyor Fyp) )
Dy (x,8) = Az { 2may - byGy - bzri (Fy-F3) }
Particular Integral for Strain:
E 4(x,8) = m(2a;+ay+tag) - byGy - (by+b3)Gy

2
§

2

+ (3b2+b3)rxr§F4 - [byr £

+b2(4r§+3r ) + b3(r2+r2)]F

x & 3
+ T r, (2bg+5b,+bg)F, - [byr2+b,r2]F
x'g 14017027030, 1'x P2 e "1

2

2.2 2
+ b2 [rer(T1+T5) - 2rxr§(rx+r§

) (Ty+T,) + (p;+4r§r§+rg)'r3]
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Byp(x,8) = 213y - by = by (r2F =2r,r,FpsriFy) = by2’F)
+ b 2(r T 2rxr~§'r2+r§

Ei3(x,8) = (3b2+b3)r§zF3 = (5by+ba)r zF, + 2byzr,Fy
+ 2b22 [rxr§T4 re(2rl +r§)T +r(r +2r§)T2 - r2 §TI]
E14(x,§) = n(2a +as+az) - byGy — (by+bg) (G;-Gg)

- by (r 172r "ng*"g 3) = (by+bg) (r F1 rereFa Ty 2p 3ty Fy)
- byr, [ 3r (F-Fjp) - 2r§(F2—F4) ]

+ b 2 [ r2(T 17T3) - 2rxr§(T2—T4) + ré(Ts—T;) ]

- 2 2
Ey1(x,8) = 2may = byGy + byz (r Ty-2r r§T2+r§ T

- b 2 20 o 2
. blz Fl - b2 (ers 2r'xr§F2+r§F1)

_ | - 2, .. .4
Ezz(X:é) = 2ﬁ(a1+a2+a3) - (b1+b2+b3)G1 - [b1+4b2+b3] z F1+b22 T1
_ 2
1
Esl(x,é) =3 { -z [ (3b2+b3)er3,— (2b1+3b2+b3)r§F2+2b r.Fy ]

+ 2b2z [ —riP§T4 + rx(r:+2r§)T3 g(zr +r§)T + rxrng 1}

1
Bip(xsd) = 3 (=2 [(20143b,4b3) (ryFyorgFy)] + 2bpz’ (0, TyryTy) )
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1
Ejg(x,8) = 3 { ~2(bysbg)Gy + (3by+bg) [(ryry(Fy#F3) = (r2+ri+z?)F,]

- 4b,2% [r r (1,41, - (r2er

xE §)T 11

Ez (x,8) = % { -2z bl(erl—rch)‘— z(3by+bg)r, (Fy-F3)
+ 2b,z r [r «(T1-T3) - ré(Tz—T4)] }

Eyp(x,8) = Dyq(x,8) /AP,

E p(x,8) = Dyp(x,8)/A P,

E 3(x,8) = Dqyg(x,8)/Ary

Egq(x,8) = Dya(x,8)/Ary

Ifr, = 0, then

E4l(x,§) = Eq4(x,8)
E42(x:§) = Elz(x:g)
E43(x:§) = E13(x:§)

E q(x,8) = Ey (x,8)

Singular Form (rx =r, and z, = za):

The genéral form of the axisymmetric particular integrals are

singular when Px = rg and Zy = z§. In this circumstance, the limiting

form of these functions, given below, should be used.
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G2 = —G1/3

Gy = 7G,/15
T, =4

T, = -4/3
T, = 28/15

Particular Integral for Initial Stress:

Kll(x:é) =7 - 3G3

K14(x,§) =q - 3(61—63)
Kyp(x,8) = 21 - 3Gy
Kya(x,8) = -3G,
K41(x,§) = n - 3(G4-G3)

Kyq(x,8) = m - 3G,
Particular Integral for Displacement:
Diq(x,8) = A, { 27y + n(ay+ag) - by(Gy-G,)
= (by+bg) (G,-G,) - byr, (T1—2T2+T3) }
D,y (x,8) = Ajry { 2ma; - by (G,-G,) }

D13(X.§) =0
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D14(x.§) = Aorx { 2“31 - bl(Gl_GZ) - bzrx(Tl-Ta)

+ [(a2+a3)ﬂ - (b2+b3) (Gl—Gs)] }

D,y(x,8) =0
Dzz(x.t) =0
D23(x,§) = A ry { 2n(a2+a3) + (b2+b3) (Gz_Gl) }
Dyy(x,8) =0

Particular Integral for Strain:

E,;(x,8) = n(2ay+ajy+ag) = byGy — (by+b3)Gy
b ey [(3bythy) (T,-Tg) = (bysby) (T=T,) + 7 by (Ty=2T,4Ty)]
B p(x,8) = 2may - byGy = byry (T4=Ty)
Ejq(x,8) =0
E 4(x,8) = m(2ay+ay+ag) = byGy — (by+bg) (G1—G3)

1
- rx{bl(Tl—Tz) + (E b2+b3)(T1‘T3) + b2[3(T1+T2) - 2(T2+T3)]}

321(x,§) = 2nay - byGy - b,yr (T4-Ty)
Ezz(x,g) = 2n(a1+a2+a3) - (b1+b2+b3)G1
Eyg(x,8) =0

E24(x.§) = 2may - byGy - bzrx(T1+T2)

Esl(x;g) =0
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]
o

Byq(x,8) = = (by#0,)C, + (5 b, + 2 by)r (T,-T,)
Eja(x,8) =0

E41(x.§) = Dll(x,g)/Aorx

Eyo(x,8) = Dyy(x,8) /A0y

Eyg(x,8) =0

Ega(x,8) =Dy (x,8)/Ar,

If r, = 0, then

1
o

E43(X:§) =

E44(x:§) = E14(x:§)

4.3 NUMERICAL IMPLEMENTATION

The present formulation is implemented in a manner analogous to
Chapter 3. Essentially, the procedure consists of evaluating the
relevant particular integrals at nodal points and solving equation
(4.4) for these values and a set of appropriate boundary conditions.
The particular integrals are a function of initial stress. However,
the initial stress of an inelastic analysis is unknown and must be
determined as part of the solution process. Therefore, it is

necessary to assemble the equation system in a manner that will admit
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to an inelastic solution algorithm. Both the iterative and the
variable stiffness algorithms of Chapter 2 can be employed without
modification if the assembly process presented below is utilized.

For the purpose of numerical evaluation, the particular integral
series solutions of the previous section are truncated to a finite
number of terms. Note, the particular integrals of-each region are
eva;uated independent of the other regions, and calculated only in
regions where inelastic effects are anticipated.

Equations for ug and t? are written for the boundary noded and

i

are expressed in matrix form for each region as

w=D2¢

T®

(4.23)
tP

in which D and T.gre matrices of the order (£*M) by (g*N) where M is
the number of boundary nodes, N is the number of terms in the series,
£ is the number of. degrees of freedom of the analysis, and g is the
number of independent stress components.

The initial stress, evaluated at the N nodal points, is expressed
as

=K (4.24)

in which K is a well conditioned (g*N) by (g*N) matrix. Post-

multiplying equations (4.24) by yields

p=x14° (4.25)

Back substituting this equation into equation (4.23) renders

w =pK1l4°
tP

(4.26)

i

rr1l4°
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Similar particular integral expressions can be written for
displécement and stress at interior points of interest. The
particular integral solution for stress, corresponding to nodes of

equation (4.4b), is written in matrix form as
of =skl4° (4.27)

Substituting equations (4.26) and (4.27) into equation (4.4) and

rearranging yields

Gt - Fu + Be® = 0

(4.28)
= G% - F% + B%°

Q
|

where

(-
]

-[GT - FDIKL
B® = -[6°T - PoDIK}

The equations of (4.28) are in the same form as those obtained by
conventional volume integration. After the above equations aré
generated for all regions in a problem, they are assembled in a manner

described in Chapter 2. The final system equations are expressed as

Abx = Bby + cbcp
(4.29)
o = A% + B% + C%°
A solution for the inelastic, incremental form of this equation is
obtained using one of the two algorithms presented in Chapter 2.
Finally we note, two time-saving features that are employed in

the present implementation.
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First, careful observation of equation (4.15) reveals thaé the K
matrix (equation 4.25), in two- and three-dimensions, consists of N2
diagonal matrix blocks. All diagonal terms of a particular diagonal
matrix block are the same value. By reducing each diagonal matrix
block to a single term, the overallvreduced.matrix is inverted at a
fraction of the cost of the whole. Expanding each term of the
inverted matrix back to a diagonal matrix block produces the correct
gt

Second, the stress for a boundary point is directly (and
efficiently) calculated by the method described in section 2.3.2,

instead of using the formal particular integral procedure of this

chapter.

4.4 EXAMPLES
In this section, three examples are presented to demonstrate the

particular integral based, inelastic analysis.

4.4.1 Three-Dimensional Analysis of a Cube with Hardening

The three-dimensional, inelastic particular integrals are tested
on a unit cube in tension with plastic strain hardening. The material
constants are (in consistent units): E =100, v = 0.3 and h = 50.0.
The surface of the cube is discretized (figure 4.1) using six (eight-
noded) boundary elements. The particular integrals are defined using
the twenty béﬁndary nodes and one interior node located at the center
of the cube. The displacement in the axial direction on a face
opposite the fixed end is shown in figure 4.2 for increasing tension.
The particular integral based results are in excellent agreement with

the analytical solution.
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4.4.2 Axisymmetric Analysis of a Thick Cylinder

A thick cylinder (1:2 ratio) subjected to interior pressure is
analyzed using the axisymmetric, inelastic particular integral
formulation under the plane strain condition. The axisymmetric mesh,
shown in figure 4.3, has ten quadratic boundary elements. Twenty-
three nodes are used to define the particular integral domain
representation. The load-displacement response at the outer surface
is in good agreement with the analytical solution (Hill, 1950) as
shown in figure 4.4. The hoop strain at the inner and outer surface
is shown in figure 4.5 for increasing pressure. Once again, the

results are in good agreement with the analytical solution.

4.5 CONCLUDING REMARKS

Thé particular integral based boundary element formulation
introduced in Chapter 3 was successfully extended to inelastic
analysis in the present chapter. The system matrices produced by this
method were assembled in the same form as those created using the
volume integral based method, and therefore, the two inelastic
solution algorithms, presented in Chapter 2, could be applied without
any medifications.

The method was demonstrated for a number of problems and
excellent agreement was obtained in comparison with existing results.
Pracfical applications of the present analysis will be presented in

Chapter 6.
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Figure 4.1
Three-dimensional Mesh of a Cube
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CHAPTER FIVE

BOUNDARY ELEMENT FORMULATION FOR INHOMOGENEOUS MEDIA

5.1 INTRODUCTION

One deficiency of the boundary element method is its inability to '
readily handle éontinuous material inhomogeneities. However, a method
analogous to the plasticity procedure can be employed to overcome this
difficulty. In this procedure, the effects of the inhomogeneities in
the material are incorporated in the boundary element system through
an initial stress body force.

In this chapter, formulations for elastic and inelastic analysis
of inhomogeneous media are presented. The inhomogeneities may occur
as a result of spatial variation in material parameters, or may be
thermally induced when material parameters are assumed to be
temperature dependent.

Successful inhomogeneous BEM formulations have been implemented
by Butterfield (1978) for potential flow problems and by Ghosh and
Mukherjee (1984) for thermoelastic bodies. Both of these linear
analyses were based on iterative procedures. The present analysis is
a direct implementation which incorporates the inhomogeneous effects
into the system without iteration. This leads to a direct solution
procedure for elastic inhomogeneous problems and a single iteration
process for plasticity analysis. The formulations are implemented in

a two-dimensional and axisymmetric, multiregion, general purpose
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system. Since the procedure involves an initial stress body force,
the volume must be appropriately represented in both elastic and
inelastic analysis, Either the conventional volume integral or the

new particular integral representation may be used for this purpose.

5.2 BEM FORMULATION FOR ELASTIC INHOMOGENEOUS MEbIA

In Chapter 2, the boundary integral equations are derived via the
Betti reciprocal work theorem. Although, this theorem is valid for
continuums of general material, the adoption of the Kelvin point force
solution renders the resulting in@egral equations valid only in
homogeneous, isotropic material. Nevertheless, material
inhomogeneities can be incorporated in the standard boundary integral
equations through a volume integral or the particular integral
equivalent.

The differential equation expressed in terms of stress (equation
2.1) is independent of material, and therefore, valid for

inhomogeneous material.

The strain in an elastiec, inhomogeneous, isotropic body is related to

stress via

e,L m

or

m _ .e,L

®k1 = C1jk1 °1j (5.2b)
where:

the superscript L indicates the use of a (local) constitutive

relation that varies with position, i.e.,
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e,L. _
Dijkl = A(x) Sij Bkl + 2H(X) Sik 8319 and

mechanical strain ei'él is defined in terms of total strain
el = gy - B4 al(x) T : (5.3)
k1 k1 k1l ¢ .

Substituting the strain-displacement equation (2.4) and equation
(5.2) into equation (5.1) yields the displacement form of the
equilibrium equation. Since material parameters are a function of
position, the resulting expression will include spatiil derivitives of

.
these parameters. These derivitives can be avoided, however, by
recasting the constitutive relation in an alternate form as deséribed

below:

The mechanical strain egj ijs divided into two parts; a

homogeneous strain ng and an inhomogeneous strain eij.

-

m h i
8ij = 8ij + eij (5.4)

~ The homogeneous strain is defined with respect to glbbal reference

material parameters 28 and pG that do not vary witﬁ position.

h _ .e,G
8ij = Cijkl Ukl . . (5.5)
or
_ne,G h
oij = Dijkl 8k1 . (5.6)

where Ciﬁil. Diéil are the global compliance tensors. The

inhomogeneous strain is simply the supplement part

i h

m
ij = eij - 81.1 (5-7)

€
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Using equation (5.4) in equation (5.6) yields an expression for stress

in terms of the global compliance tensor:

— e’G m i .
%3 = Dijk1 ®k1 ~ k1 (5.8)
where
i _ e, G i
%1 = Dijkl €1 _ | (5.9)

or using the definition of mechanical strain, a relation between

stress and total strain can be expressed as

_ e,G t i
%3 = Dijk1 ®x1 ~ %1 ~ %k (5.10)
where
t _ _e,G
%1 = Dijky Sy e(x) T (5.11)

Note in th;s calculation the 1dca1 value a(x) is assumed, but the

constitutive relation is with pespect to global reference parameters.
Substitution of equation (5.10) and the strain-displacement

relation into equation (5.1‘) leads to the displacement equilibrium

- equation expressed in terms global material parameters:

G, G G _ o
(A" +p™) uj.ij +p LTI £, = %13, (5.12)

where

o _t i
15 = 013 * o3y

Note, since A6 and pG are not a function of position, they are removed

from within the differential operators.
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Equation (5.12) is the extended form of the Navier equdtion,
expressed in terms of the global reference parameters. The boundary
integral equations satisfying equation (5.12) were presented in
Chapter 2. The expression for displacement (neglecting body forces)

is repeated here.

€35 ()uy (8 = f 16,506, 8)500 - Fyyx,00u;(0] dSCx)
S
+ f B0 o0 A (5.13)
\'f

where the kernel functions assume the global reference parameters.
Similar expressions for stress and strain can be written.
Alternatively, a solution satisfying equation (5.12) also can be
formulated using the particular integral procedure presented in the
previous chapter. Regardless of the formulation employed, the final
form of the system equations are the same for both the volume integral
and the particular integral based procedures. The solution to the
boundary value problem requires the knowledge of the inhomogeneous
part of the initial stress. To this end, equation (5.2).is set equal
to equation (5.8), and upon rearranging, the following relation 1is

obtained.

- (n€: G e,L m

This expression is analogous to equation (2.52¢) of the
plasticity formulation and it plays a similar role in the iterative
procedure for inhomogeneous problem. However, unlike plasticity, the

elastic, inhomogeneous analysis is not incremental.
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The inhomogeneous problem can be solved using the following
iterative procedure. The integral equations for the boundary system
and interior stresses are integrated and assembled in the usual manner

(Chapters 2 and 4). °§j is initially assumed to be zero. . The

boundary problem is solved under this condition and the resulting
stresses (and strains) are determined at cell nodes (or particular
integral nodes). Using equation (5.14), the inhomogeneous part of the
initial stresses are determined at these same nodes. In addition to
the external loading, the calculated values for the inhomogeneous
(initial) stress are applied to the system. The problem is resolved
and new values for aij are determined. This process is repeated until
a convergenced solution is obtained.

The rate of convergence is depéndené on the degree of
inhomogeneity, the choice of global reference parameters, and the.
geometry and loading of the problem. In some cases the convergence
may be slow or may not converge at all. For this reason, a direct
algorithm, analogous to the variable stiffness plasticity method of
Chapter 2, is developed. In this procedure, the unknown,
inhomogeneous part of the initial sﬁress is eliminated from the
boundary system permitting a direct solution.

The present formulation is implemented on a nodal basis, and
therefore, the subséquent derivation is carried out on the discrete
nodal equations rather than on the (continuous) integral equation.
First, the integral equations are integrated for a system of nodal
equations and assembled in a manner described in Chapter 2 or Chapter
4, Since the assembled form of the boundary equations are similar for

both the volume integral base method and the particular integral
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formulation, no distinction is necessary in the present derivation.

These assembled equations are repeated here in matrix form:

AP

x = B% + cPe® + Pt | (5.15a)

o = ASx + BSy + CO%% + C%t | (5.15b)

where a stress equation is written for every node where the unknown
ot o 5
ij exist. Therefore, C° is a square matrix.
Substituting equation (5.2b) into equation (5.14) we arrive at

the nodal relation

_ (e,G _ ne,l e,L
°§j = (331 ~ Pijk1’ Cximn ®mn (5.16)

In the present work, we will assume the modulus of elasticity may
vary with position, but Poisson’s ratio is constant over the domain.
This is a realistic assumption for most materials. Upon invoking this
assumption, the following simplification is possible.

e,G

e,L e,L _
D:3k1 = Pijk1) Crlmn = L

(5.17)
where E® and EL are global and local moduli of elasticity,

respectively. Substituting this result in equation (5.16) and

rearranging yields

c (5.18a)

i
ij =HO’1J

(5.18b) |
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Applying this relation to the nodes of equation (5.15), a matrix

expression can be written:
o = Thol (5.19)

where I represents the identify matrix and h represents a nodal vector
of corresponding nodal values of H.

Substituting equation (5.19) into equation (5.15b) yields
Thel = A% + B% + C%% + C%1 (5.20)

and upon rearranging equations (5.15a) and (5.20) we have

APy - pP 4 Pt (5.21a)

Dol = A% + b° (5.21b)
where

b = Bby + cPot

bc = BO'y + co’o,t

D =1Ih-C°

Equation (5.21b) can then be recast as:
ot = D! (4% + b%) | (5.22)

Substituting the above equation into equation (5.21a) results in the final

systenm equatibn:

Ax=0D>b (5.23)
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b* = b + Eb%, and
E = cbpl

This equation can be sol?ed for the unknown vector x using
standard numerical techniques. Once x is found, equation (5.22) is
used to calculate the inhomogeneous part of the initial stress, and
equation (5.19) is used to evaluate the corresponding stress at these
nodes. With vector x and ci determined, the displacement, strqfs or .
strain can be found at any point.

In a multi-region system, the matrices of the above equations are
block-banded. When the above formulation is effiéieﬁtly implemented.
this property leads to a reduction of work in the matrix
multiplication. Furthermore, the invérsion of matri# D is carried ouﬂ

one region at a time in a substructured analysis.

- 5.3 BEM FORMULATIGN FOR INELASTIC INHOMOGENEOUS MEDIA
The total inelastic strain increment is comprised of an elastie,
plastic and thermal strain rate components:

_ e p t :
8ij = Sij + Bi.j + eij (5.24)

The elastic strain rate can be unceremoniously divided into two parts:

a homogeneous strain rate 8?3‘ and a inhomogeneous strain rate eij.

o'e _ oi -h
eij = Bij + 81:5 (5.25)

using global material constants, e?j can arbitrarily be defined as

oh _ e’G . .
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e,G .h (5.26D)

or %3 = Dijk1 ex1

i . ‘e . 'n
and eij is defined as the difference between £y and e 4

In light of equation (5.25), equation (5.24) can be rewritten as

h _ t _ i _p
eij = Bij - Bij 81j 8ij ‘ (5.27)

and substituting this result in equation (5.26b) 1leads to the

following relation for stress rates.

&6 0 e,G 't e,G i e,G . p
%3 = Dijk1 ®k1 " Dijk1 ®k1 T Dijka ek1 T D ijkl eij (5.28)

Rewriting the above equation in simpler form yields a global

constitutive relation for inhomogeneous plastic media.

e,G

%13 = Pijkl ;kl - 023 (5.29)
where

;gj = ;gj + ;13 + ;gj | (5.30a)

;gj = Dijgl ;tl | h (5.30b)

;ij = Dijﬁl ;il (5.30¢)

;gj = Dijgl ;ﬁl o | (5.30d)

The displacement rate formulation of the equilibrium equation for
inhomogeneous media is derived by substituting the above constitutive
relation and the strain-displacement relation into the stress rate

equilibrium equation. The resulting equilibrium equation is
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XG,pG are the global material constants, and the initial stress

where
rates are defined by equation (5.30).

Once again, it is apparent that the boundary integral equation
derived in Chapter 2 or the alternatevparticular integral formulation
of Chapter 4, satisfies the above equilibrium equation. The thermal
(initial) stress rates are calculated from the known temperature
distribution, however, the initial stress rates for the plastic and
inhomogeneous effects, are unknown and must be determined as part of
the solution procedure. Therefore, it is necessary to derive a

relation between these initial stress rates and the current rate of

stress.

A relation for the inhomogeneous (initial) stress aij will be

derived first. In both the elastic and plastic regions, the elastic
strain rate is related to the stress rate via the local elastic

constitutive relation.

_ne,L e
cij = Dijkl ekl (5.323)
or
o = DSk (B - P ) (5.32b)
ij ijkl ‘8k1 T k1 .
where
.m L] ) L]

kL =t - %+ and

op _
1

1
o

in the elastic region

(This equation is analogous to equation (5.2) of the previous

section.) Equating this with equation (5.28) and rearranging leads to
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the desired relation

i _ ,.e,G e, L, ,‘m _’p '
o 13 = i T Pijn) Cern T k) (5.33a)
Gij = (D§3§1 - D?.;)ll('l) (eﬂl) for the elastic region (5.33b)

Next a relation involving the plastic (initial) stress is derived

using the local elastoplastic constitutive relation (equation (2.50)):
o, = pebsL ;B | (5.34)
ij ~ Yijkl "kl ¢

Equating this to equation (5.29) yields

'y * e,G ep,L.'m )
TR afj = (D355 - Digkl)akl for the plastic region. (5.35)

The equations above suggest the use of a single iterative
procedure in which the effects of the inhomogeneity and plasticity are
treated together., In an iterative algorithm (similar to the one in
Chapter 2) a small load increment is applied to the system, and the
resulting elastic stress state is determined. Theoretically, this
stress state is checked at nodal points through the domain and
depending whether or not the yield condition is violated, either
equation (5.33b) or equatién (5.35) is employed. However, when
inhomogeneities exist in the body, the boundary integral equations
will yield a fictitious state of stress that is dependent on the
global reference parameters, and therefore, the choice of equation
(5.33b) or (5.35) is not clear. The proper choice, however, is
critical since plastic deformation is irrecoverable and the use of the
wrong equation will ultimately result in error. So, before the effect

of plasticity can be accounted for, the actual inhomogeneous elastic
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stress state must be determined by its own initial stress correction.
Hence, a double iterative procedure is necessary to account first, for
the inhomogeneity effect, and second, the plasticity effect. More
specifically, between each iterative step of the plasticity algorithm,
it is implied that a converge inhomogeneous state is achieved through
a separate iteration.

This double iteration is very costly and a scheme for
accelerating the convergence (similar to that of Chapter 2) would be
essential. Also, further study may reveal that additional savings can
be obtained at later iterations, i.e., during initial iterations of
each load step, a double iteration process is necessary, however, at
later iterations, when the plastic regime is clearly defined, a single
iterative procedure may prove viable.

Nevertheless, a semi-direct method, based on the direct
formulation of the previous section, is possible. In this procedure,
the inhomogeneous effects are directly incorporated in the boundary
system throush a back-substitution of the stress rate equations, and
the plastic deformation is incorporated in the systenm through an
iteration process. Hénce, the method entails only a single iteration
prdcess in which inhomogeneity is satisfied at all times. In the
present work this approach is adopted. Therefore, it is necessary to
separate the plasticity and inhomogeneities effects of equation
(5.35). This could be accomplished by subtracting equation (5.33a)

from equation (5.35), resulting in

| e,L ep L, m e,L , p
i3 = (Pijk1 ~ Dyjk1dexy + (Dijkl Dy jk1) ek1
- e ¢ 'p
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This equation, however, is not an explicit relation bétween the
plastic (initial) stress rate and the current rate of stress (or
strain). Therefore, this equation is reformulated in an alternate
manner consistent with Chapter 2. From equation (2.52¢), the
mechanical strain at a point in which yielding occurs is related to

the plastic (initial) stress rate via

ep, L |
olj = (Dljkl Dijkl)gijkl (5.37)

The bar indicates that the plastic stress rate is related to the

plastic strain rate through the lécal constitutive relations as

follows
P _ .e,L e,L ep,L m

Substitution of this result into equation (5.30d) yields the desired

form of the relation:

p e,G ep,L, m

(This is a restatement of equation (5.36)). With equations (5.33) and
(5.39), the semi-direct BEM procedure for inelastic, inhomogeneous
media can be formulated.

We begin with the system equations (from either Chapter 2 or 4)

expressed in matrix form:
2Px = BPy + cPat + cPol + coP (5.40a)

o = A% y + + c“éi + c‘;P (5.40b)
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Once again, the Poisson ratio is assumed not to vary spatially
within a substructured region. Therefore, the following relation
between the stress rate and the inhomogeneous (initial) stress rate

can be written:

Ci 1 Y
where
q - B
EG"EL < i [

or expressed in matrix form for the nodes of equation (4.40b)
o =1Ih ot (5.42)

Sgbstituting this into equation (4.40b) leads to

»

Ih o = A% + B%® + %% + c%' + %P (5.43)

and rearranging equations (5.40a) and (5.43) yields.

abx = pP + cbt + CPoP (5.442)

A - p1 (4% + b% + C%P) (5.44b)
ﬁhere

b° = B + CPot

b° = Bc; + COgt

D=1In-cC°
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Substituting equation (5.44b) into (5.44a) results in the final system

equation:

A% = b°* + c*oP | (5.45)
where

TN LN T

b’ = b° + Eb®

c* = c® + Ec®

E = cPp}

This equation system for 1nhpmogeneous inelastié material takes
on the same form as the homogeneous, inelastic equation (see egq.
2.54), and can be solved in a similar fashion using the iterative
plasticity method. The stress at cell nodes (or particular integral
nodes) caane found using equation (5.42) where the corresponding
inhomogeneous (initial) stréss ;1 is defined by equation (5;44b).

After the unknowns on the boundary have been determined, the

~ displacement and stress at any point in the body can be found with the

appropriate discretized integral equation,

A few comments are in order. First, when the inhomogeneities are

‘caused by a prescribed variation in material parameters, the

inhomogeneities remain constant and the boundary system need only be
constructed once. However, thermally induced inhomogeneities vary
with change of temperature and the boundary system should, in
principle, be reéonstructed at every load increment. Thermally
induced inhomogeneities are, however, very mild and reconstruction is

not necessary at every load step. Instead, reconstruction can be
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delayed until the resulting error surpasses a prescribed tolerance.
This bringslﬁs to the second point; efficiency. Although it is
necessary to explicitly construct the A' matrix (and in the process
construct the D'1 and E matrices), other matrix manipulations
associated with the right hand side of equation (5.45) are unnecessary
and can be handled more efficiently through a series of matrix/vector
multiplications.’ More specifically, equation (5.45) should be set up

in the following manner.

A‘x =pl + b2 (5.46)

where

o
N
!
&
w

= 5“ + c°;P

e
w
|

Note vector b3 can be used a second time during the calculation of the
inhomogeneous (initial) stress rates (equation (5.44b)) and subsequent
calculation of the real stress rate (equation (542)){

Finally, it is possible to formulate an entirely direct apbroach,
for the analysis of inelastic, inhomogeneous media, by employing the
variable stiffness plasticity technique together with the direct
formulation for inhomogeneities. However, this approach is very
costly and inefficient due to the large amount of matrix manipulations
involved. For instance, the matrix multiplications in equation
(5.44b) and (5.42) has to be carried out explicitly in order to form

the inhomogeneous stress rate equation. And, in addition to the
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construction of matrix A* of equation (5.45), the ¢* matrix also has
to be explicitly constructed. Finally, once the inhomogeneous
operations are complete, the matrix operations associated with the
variable stiffness method must still be carried out. Thereforef the
overhead involved in the setup of the completely direct procedure will
inhibit its chance of becoming a viable alternative. This is
particularly true for thermally induced inhomogeneities since it

requires repeated construction of the inhomogeneous system.

5.4 EXAMPLES

In this section, three examples are presented to demonstrate the
inhomogeneous formulations. Inhomogeneous variation is usually
relatively mild in most problems. However, for purpose of

demonstration, severe variations are assumed in these examples.

5.4.1 Elastic Rod with Spatially Varying Modulus

An elastic cylindrical rod shown in figure 5.1a has an elastic
modulus that varies through the length. A uniform traction is applied
to top, and the bottom surface is fixed in the axial direction. An
axisymmetric discretization, shown in figure 5.1b, has three boundary
elements and one volume cell. The material properties of the rod are

(in consistent units):

100

E(z) = 1+z

0.3

<
It

The global reference modulus is assumed to be unity EG = 1,0. The
axial strain through the cube is shown in figure 5.2 for an applied

traction of t, = 100. Good agreement is obtained with the analytical
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solution e, = (1+2).

5.4.2 Eiastic Cube with Temperature Dependent Modulus

An elastic cube with a temperature dependent elastic modulus is
analyzed under plane strain conditions. For a cube in plane strain
with boundary conditions shown in 5.3a2 and subjected only to thermal

loading, the following relations are obtained

(1+v)

& = (1-»
Sy =g, = exy =0
Sy = Ogy = 0

aT

Oy = 0z = E 19

In most materials, the modulus is usually assumed to vary as a
linear function of temperature within a prescribed temperature range.

In terms of temperature T this can be expressed as
E(t) = Eo + k(T—To)

where Eo is the elastic modulus at the reference temperature T,. The

change in modulus in most real materials is usually quite small, and
therefore, k is usually a very small value. However, in this example
a severe variation of elastic modulus (k=1) is assumed for
demonstration purposes. The assumed temperature distribution and

material properties are (in consistent units):

T(x)

100x

= 0.7 x 1073

=}
|
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0.3

<
"

Eo = 100.0 at To = 0.0
k =1,0
Therefore,
E(T) = 100 + T
or
E = 100 (1+x)

Substituting these values in the expression for stress and strain

yield

= 0.13x

(o]

. -10x(1+x)

and integrating the strain across the length yields an expression for

displacement:
- 2
u = 0.065x

The discretization of the cube, shown in figure 5.3b, has four
boundary elements and nine particular integral nodes. The
displacement and stress profile obtained from the analysis is shown in
figures 5.4 and 5.5, respectively. Good agreement is obtained in

comparison to the analytical solutions.

5.4.3 Piastic Analysis of a CuSe with Spatially Varying Modulus
The plastic deformation of an inhomogeneous cube (figure 5.6a) in
tension is analyzed under plane strain conditions. The
discretization, shown in figure 5.6b, consists of four boundary

elements and one volume cell, The material properties, described
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below, assume a modulus of elasticity that varies as a function of x.

Given in consistent units:

E = 100/ (1+x)

v =0.3

o, = 106.0

h = 50.0 ‘
¢ =1.0

In figure 5.7, the displacement rate profile thrbugh'the cube in
the x direction (at y = 0) is given for loads: t, =100. (yield),

tx = 110., tx = 120., and tx = 130; Good agreement is found in’

comparison with the analytical solution. A similar graph is given for
the lateral displacement rate (at y = 0.5) in figure 5.8. Once again,

‘good agreement, with the analytical solution, is obtained.

5.5 CONCLUDING REMARKS

An axisymmetric and two-dimensional, boundary element
formulations were derived for elastic and inelastic, thermal,
inhomogeneous media. The elastic formulation employed a direct
solution procedure. The inelastic formulation used a s;mi-direct
proceduré based on the iterative plasticity algorithm presented in
Chapter 2. The results obtained by this method for the example
problems were in excellent agreement with analytical solutions.

The present formulation can be extehded to three-dimensional

analysis without difficulty.
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Figure 5.1b
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with One Volume Cell
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CHAPTER SIX

ADVANCED ENGINEERING APPLICATIONS

6.1 INTRODUCTION

In previous chapters, elementary examples such as cubes, spheres
and cylinders are used to verify the accuracy and convergence of
proposed formulations. These problems were chosen since their
simplicity gave way to analytical solutions.

In this chapter, more challenging problems of practical interest

are considered.

6.2 ELASTIC ANALYSIS

6.2.1 Bending of a Circular Plate

A clamped, circular plate subjected to a uniformly distributed,
circular, patch load is shown in figure 6.1a. The blate is modeled by
a five region, axisymmetric mesh shown in figure 6.1b. The modulus of
elasticity is E = 210,000, the Poisson’s ration is v = 0.3, and a/b =
10.

In figures 2 and 3, the radial, tangential, and shear stresses
obtained using the present axisymmetric BEM analysis is compared with
Reisner’s plate theory and a boundary element solution based on
Reisner'’s plate theory (Van der Weeen, 1982). General agreement is
_exhibited by the various analyses. The BEM solution of the present

analysis, deviates slightly from the plate theory results under the
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origin and near the support. However, this is expected, since plate
theory is invalid near such conditions.
The same problem was analyzed with a single region mesh. Results

were unchanged from those shown.

6.2.2 Conical Water Tank

A BEM analysis of a water tank shown in Figure 6.4 is carried out
using the axisymmetric gravitational particular integrals presented in
Chapter 3. Tﬁe hoop stress on the inside surface of the tank
subjected to hydrostatic pressure is shown in Figure 6.4 along with
the result from Zienkiewicz (1977). The two results are similar
although an exact 6omparison is not possible since geometry data and
material constants are not given for the later case. In Figure 6.5, a
comparison of BEM solutions are presented for the hoop stress, on both
the inner and outer surface (along A-B) of the tank, for two different
loadings. The first loading is hydrostatic pressure only, and the
second is a combination of the hydrostatic pressure and self-weight.
Note that in the lower section the hoop stress at the outer surface is
compressive, i.e. the bending effect is dominant there.

One hundred isoparametric quadratic boundary elements are used to .
model the body. The tank is assumed to be constructed of concrete
with p = 4.65 lbm/ft.s, E = 3.472x106 psi, and v = 0.18., The
thickness of the uniform section is taken to be 1 ft. The time
required for integration is reduced by dividing the tank into six
subregions. Two or more elements are used at every interface to
insure an accurate representation of the variables across the
interface. The computation time for a single region mesh is one and

one-half that of the six subregion model, although the computed
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results are almost identical. A solution to within 5% of the one

shown is achievable with half the number of elements.

6.2.3 Rotating Hub

The axisymmetric BEM analysis of a rotating disk is carried out
using the centrifugal particular integral discussed in Chapter 3,
Fourteen boundary elements with twenty-nine nodes are used to model
the axisymmetric hub (see Figure 6.6). In addition to the boundary
nodes, stresses at eight internal points are determined. In Figures
6.6 and 6.7, the contours of tangential stress and equivalent stress
are shown. Inadequate data is given in Zienkiewicz (1977) for a
detailed comparison of the similar problem, however, the similarities

are obvious.

6.3 INELASTIC ANALYSIS

6.3.1 Thick Cylinder of Two Materials (with Strain Hardening)

When a body consists of two or more materials a multi-region
capability becomes a necessity. The axisymmetric representation of a
thick cylinder of two materials is shown in Figure 6.8 and the
variable strain hardening curve for each material is described in
Table 6.1 below. The load-displacement behavior of the inner and
outer surfaces is shown in Figure 6.9 for both the direct and
jterative BEM algorithms based on volume integration. Once again
excellent agfeement is achieved between the two methods with the
direct method producing a solution up to collapse whereas the
iterative method does not. The load-displacement curve is initially
straight while both materials are elastic and starts to bend as the

inner material begins to yield. At this early stage at which only the
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inner eylinder has yielded, the evidence of the nonlinearities are not
appreciable. It is not until the outer material begins to yield that
substantial nonlinearities develop.

The cpu times were essentially the same for both methods.

TABLE 6.1
Material 1 Material 2

Yield Stress = 10,000 psi Yield Stress = 36,000 psi

Plastic ¢ Plastic o
Stress (psi) Strain Stress (psi) Strain
10,000 0.00 36,000 0.00
30,000 0.02 " 60,000 1 0.04
40,000 0.04 60,000 . 1.00

40,000 1.00

6.3.2 Steel Pressure Vessel

An axisymmetric, elastoplastic analysis of a vessel subjected to
internal pressure is shown in figure 6.10. The vessel, constructed of
'steel, has a modulus of elasticity, Poisson’'s ratid, and a yield
stress of E = 29,12 x 10% psi, v = 0.3, and7o° = 40,540 psi,
respectively. The Von Mises criterion is assumed with no strain
hardening. Six regions, ninety-nine quadratic boundary elements, and
twelve quadratic volume cells are used to model the body (Figure
6.11). Using engineering intuition, cells must be placed in areas
whére yielding is anticipated. The weld connection between the
spherical shell and branch is of prime concern and it is in this
region that the cells are situated. The other five regions are
assumed to remain elastic, and at the end of the analysis it must be
verified that the stresses in these regions have not violated the

yield condition.
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A plot of the vertical deflection of point A with increasing
pressdre obtained from both the variable stiffness and iterative
plasticity algorithm by volume integration is shown in Figure 6.12
along with results obtained oy Zienkiewicz (1977) uoing the finite
element method and test results by Dinno and Gill. The BEM results
are in excellent agreement with the results obtained by FEM. The
numerical solutions slightly deviate from the experimental results.
This variation is due to the idealizations’in the numerical analysis,
such as ideal plasticity and the adoption of Von Mises criterion.
More importantly, the body is assumed homogeneous when in reality the
weld and the surrounding region will exhibit greater stiffness.

It should be noted that the‘variable stiffness method proceeds
farther along the curve than the iterative procedure which does not .
converge at these load levels. The cpu times of the two BEM analysis
were about equal, although on a virtual memory computer (HP9000) the
real time of the direct plésticity method was greater than the
iterative procedure due to excessive page faulting. The use of é

multiregion system in both BEM analysis reduces the computational time
dramatically, since each nodal equation need only be integrated over
the surface in which it is contained. Furthermore, the volume
iptegration need only be performed over the region containing cells.

In the past it has been said that BEM analysis should not be used
on bodies of harrow cross-section, but through sophisticated numerical
integration and the utilization of a fine mesh, excellent results are

obtained.
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6.3.3 Residual Stresses in a Cylindrical Rod

An axisymmetric, thermoplastic problem of practical interest
shown in figure 6.13, regards the residual stresses in a long
cylindrical rod induced by cooling. In this problem the temperature
of a rod constructed of 1060 steel is raised gradually to 1250°F and
then quenched in a brine spray, quickly lowering the temperature to
80°F. Experimental results obtained by Carman and Hess at Franqurd
Arsenal are given in Boley and Weiner (1960) for the residual stresses
through the cross-section on the midplane of the rod. The Von Mises
yield criterion is assumed with a yield value that varies with

temperature

-14.3 t + 48710.0 for t < 400

o, (t) -18.7 t + 50470.0 for 400 < t < 775

-46.3 t + 71900.0 for t > 775

where ¢, = yield stress‘(psi) and t 1s current temperature (F9).
An assumed Biot number of 10 is used in determining the rate in which
heat is diffused through the rod.

Utilizing the iterative plasticity algorithm, ten quadratic
boundary elements and twelve quadratic volume cells were enough to
produce excelleﬁt results for this rather complex problem. Symmetry
was utilized by the introduction of a roller boundary condition on the
horizontal béftom face. The residual stresses along this face are

given in figures 6,14, 6.15 and 6.16.

6.3.4 Flexible Circular Footing
This problem concerns a flexible circular footing on an elastic-

ideally plastic half space which has 2 modulus of elasticity of E =
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10,000 kN/m2, Poisson’s ratio of v = 0.25 and a yield stress of o, =
173.2 kN/m? (Cu = colwfg). A Von Mises criterion and associated flow
rule is assumed.

For this axisymmetric analysis, two modeling regions are used.
One region encloses the anticipated plastic zone and the other defines
the remainder of the half space which is assumed to remain elastic.
In Figure 6.17, elements modeling the infinite half space are shown
starting at the axis of symmetry and continuing along the surface up
to a finite distance where it 1s assumed that additional elements
(modeling the infinite boundary) do not affect the functions in the
area of interest. (In an argument similar to the three-dimensional
proof described by Watson (1979), this assumption can be shown to hold
valid for axisymmetry.) When calculating the coefficients for the
singular node of the Fij (traction) kernel via the 'inflation mode
technique’, the modeled region must be completely bounded by a
surface. Keeping in mind that these coefficients are dependent only
on the geometry of their respective boundary element, the open region
can be artificially closed with an arbitrary surface. This arbitrary
surface is defined with so called ‘enclosing elements’ and their only
role is in the calculation of the singular boundary coefficients. It
is to be understood that the nodal points of the enclosing elements do
not become part of the boundary system.

In order to find the convergence of the correct solution, a
number of cell patterns were constructed for the plastic region. Two
of these meshes that were fine enough to produce satisfactory results
are shown in Figure 6.182 and 6.18. The load-displacement behavior

at the center of the footing is shown in Figure 6.19 along side the

166




results obtained by Cathie and Banerjee (1980) where the exact
analytical collapse load for this problenm is 6Cu; The results of
Cathie and Banerjee (1980) are stiffer than the results of the present

paper. The reason for this is the original analysis utilized cells

. With constant variations of initial stress rates in contrast to the

quadratic shape functions used in the present analysis. More
importantly, the first investigators calculated stress rates via a
linear shape function representation for displacement rates (as in the
finite element method), whereas the present analysis uses an accurate
integral representation for this. In Figures 6.20 and 6.21 the
vertical stress and horizontal stress along the axis of symmetry is
shown,

It is important to point out a complication associated with the
idealization of the flexible footing. Any applied loading
discontinuity can be accurately represented by the boundary element
discretization since tractions are described on a per element basis.
However, the boundary stress rates do not as easily admit to a
discontinuity. In the present analysis the stress rates are
calculated individually at the node on each adjoining elements using
the boundary stress calculation and the average value is assumed.
Therefore, the stress rates are smoothed out across the discontinuity.
Alternative ways to handle this difficulty are to model the edge of
the footing as a ramp function across a single element and thus
avoiding the discontinuity, or a double node can be introduced at this
point (one for each adjoining cell) and stress averaging eliminated.
In any case the element(s) containing the troubled point should be

kept small to better approximate the stress across the discontinuity.
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6.3.5 Three—dimensional Analysis of a Notch Plate
The plastic deformation of a notch plate_subjected to tension is
analyzed under plane stress conditions. Four combinations of analyses

are considered:

Particular Integral - Iterative
Particular Integral - Variable Stiffness
Volume Integral - Iterative

Volume Integral - Variable Stiffness

The material properties for the plate are:

E = 7000 kg/mm2

v = 0.2

6, = 24.3 kg/mm2 (Von Mises yield criterion)
h =0.0

A 90° notech is cut out of the sides of the plate. The maximum to
minimum width ratio is 2 and the thickness is 6/10 of the maximum
width. A quarter of the plate is discretized in two subregions as
shown in figure 6.22. The region, containing the notch, has thirty
quadratic boundary elements. The inset in this figure shows six
(twenty-node) isoparametric cells (with sixty-eight distinct cell
nodes) which are used in the volume integral based analysis. 1In the
particular integral analysis, particular integrals are defined using
the boundary ﬁodes and three interior nodes (corresponding to the mid-
side nodes of the cells) for a total of ninety-two particular integral
nodes. The second region has sixteen quadratic boundary elements.
Boundary conditions on the front and back faces are assumed traction

free.

168




In figure 6.23, the stress-strain response on the mid-plane of
the root is given forlthe four (3-D) BEM analyses and compared with
the two-dimensional plane stress and plane strain BEM solutions
obtained by Raveendra (1984). Tﬂe three-dimensional results are in
good agreement with one another, and fall between the two-dimensional
solutions, closer to the plane stress result, as one would expect.
For Solutions above the load level Zam/qo = 1.0 requires a finer mesh
around the notch, particularly in the volume cell dis?retizationx

Figure 6.24, shows another notch plate mesh for a particular
integral analysis. The boundary discretization is the same, but ten
additional particular'integral nodes are added in the interior (101
particular integral nodes, total). The bottom face becomes a plane
ofﬂsymmetry by applying a roller boundary condition.' In order to keep.
the dimension of the plate proportional to the first analysis, the
thickness of the mesh must be reduced by one-half, since symmetry is
bassumed by virtue Sf the additional roller boundary éondition. The
stress—-strain response at the root, obtained for éhis mesh using the
variable stiffness algorithm, is shown in figure 6.25. Results for
the three nodes across the thickness of the root are compared with the
two-dimensional solution (Raveendra, 1984). Once again, the three-
dipensiohal results lie between the plane stress and plane strain

solution.

6.3.6 Three-dimensional Analysis of a Perforated Plate

The plastic deformation of a perforated plate in tension is
analyzed under plane stress conditions. The volume distribution of
initial stress is represented using either twenty-noded isoparametric

volume cells or the point based particular integral. Each
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representation is coupled with either the iterative or the variable
stiffness solution process, leading to a total of four distinct

algorithms. The material properties for the plate are:

E = 7000 kg/mm?

v =0.2

S, = 24.3 kg/mm2 (Von Mises yield criterion)
h = 224.0 kg/mn>

The diameter of the circular hole, at the center of the plate, is one-
half the width, and the thickness is one~fifth the width. A4 quarter
of the plate is discretized in two subregions, as shown in figure
6.26. The first region, containing the root of the plate, has thirty
quadratic boundary elements. For the volume integral based analysis
the domain of this region is diécretized using nine (twenty-node)
isoparametric cells., 1In the particular integral analysis, particular
integrals are defined at points'corresponding to the cell nodes used
in the volume integral analysis. The second region has twenty-three
‘boundary elements. No volume discretization or definition of
particular integrals is required in this region since it remains
elastic throughout the analysis. Boundary conditions on both the
front and back faces are assumed traction free.

This problem was pre&iously analyzed experimentally by Theocaris
and Marketos (1964) and by Zienkiewicz (1977) using the finite element
method. The results obtained by the boundary element analysis is
compared to these results in figures 6.27 and 6.28. The stress-strain
response at the root of the plate is shown in figure 6.27. The

results obtained using the various BEM algorithms show good agreement
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with one another and with the variable stiffness FEM analysis.
Differences between the iterative and variable stiffness BEM
formulations are much less significant than the difference in the two
FEM algorithms. The volume integral base BEM procedure exhibits
greater stiffness than the particulér integral method. 1In figure
6.28, the stress distribution between the root and the free surface of
the specimen is shown for a load of 2°m/°o = 0.91. Once again,
excellent agreement is obtained among the four boundary element
analysis. In order to evaluate the degree of convergence of the
results, a mesh with sixteen volume cells (or the particular integral
equivalent) was studied. The results were unchanged from those shown.

The present analysis was carried out on the Cray-1 computer. The

CPU times for the four algorithms were:

Particular Integral/Iterative = 254 sec.
Particular Integral/Variable Stiffness = 358 sec.
Volume Integral/Iterative = 272 sec.
Volume Integra1/Variab1e Stiffness = 361 sec.

6.3.7 Two—-dimensional Analysis of a Perforated Plate

The perforated plate of the previous problem is analyzed using
the particular integral based, inelastic, two-dimensional, plane
stress analysis. Three discretizations, shown in figure 6.29, are
used to model the plate, Each mesh is divided into two subregions.
The initial stress distribution in the inelastic region is defined
using the particular integral representation. Twenty, forty-one and
sixty-five nodes are used, respectively, in these discretizations to

define the particular integrals.
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A solution is obtained using the variable stiffness method, and
the results are compared with the particular integral based, variable
stiffness resﬁlts of the previous three-dimensional analysis. The
stress-strain response at the root of the plate is shown in figure
6.30. The results obtained for the two-dimensional discretizations
are in good agreement with the three-dimensional solution. The
results of the more refined (65 particular integral nodes) mesh,
however, exhibits a smoother response and follows the three-
dimensional solution more closely than the other two-dimensional
results. The axial stress distribution across the plate, from the
root to the free edge, is shown in figure 6.31. All two-dimensional
results vary from the three-dimension solution, however, overall

agreement is observed.

6.4 CONCLUDING REMARKS

In this chapter, a range of problems of practical interest have
been analyzed using the axisymmetric, two- and three-dimensional,
thermal, elastic and inelastic boundary element formulations of
previous chapters. In addition to displacement and traction boundary
loads, body forces due to self-weight, centrifugal, and thermal loads
are considered. The solutions obtained in the analyses were compared
to known solutions when they exist, and good agreement was found in
most cases. Many of the problems were analyzed using various
alternative procedures to illustrate the relative accuracy of these
methods. Also demonstrated was the multi-region capability of the
computer code which enables one to model a body in substructured

parts; thus dramatically reducing the cost of the analysis.
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Figure 6.24
Three-dimensional Discretization of a Notch Plate for Particular Integral Analysis
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Figure 6.29
Discretization of a Two-dimensional Perforated Plate
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7.1 GENERAL CONCLUSIONS
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CHAPTER SEVEN

CONCLUSIONS AﬂD RECOMMENDATIONRS

7.1 GENERAL CONCLUSIONS

‘Considerable effort was aimed at extending all formulations
presented in this dissertation to their axisymmetr;p form. » The
inelastic axisymmetric BEM analysis of thig work represents the most
advanced implementation of its kind.  The initial stres; expansion

technique was particularly helpful in axisymmetry to overcome the

difficulty in calculating the coefficient of a singular point near the.

origin.

A& direct, v;riable stiffness type inelastic solution algorithm
- was, for the first‘}ime, implemented in a general purpose, multiregion
computer code. Although the computational time of analysis for this
method is greater than that of the conventional itefative procedure, a
distinct advantage of the variable stiffness method is its ability to
produce a solution close to the collapse state of stress.

New boundary element formulations, based on particular integrals,
were introduced for the treatment of body forces and‘nonlinear
effects. The method eliminated the need for volume integrals or extra
surface integrals to account for these effects. Furthermore, the
method is applicable to other BEM analysis which involve an
inhomogeneous differential equation.

Finally, inhomogeneous formulations were presented for elastic

and (for the first time) inelastic media., The formulations accounted
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for thermally induced inhomogeneities and those resulting from natural

variation in material parameters. The equation system of this

analysis is arranged in the same form as the hombgeneous—material

systemn.

This allowed existing inelastic solution algorithms to be

employed without modification.

7.2 RECOMMENDATIONS FOR FUTURE WORK

In order to facilitate future research based on the findings of

the present work, the following recommendations are presented:

1‘

The axisymmetric analysis of the present work is capable of
handling axisymmetric (boundary and body force) loading
only. Although the axisymmetric elastic analysis for
arbitrary loading exists, to date, the inelastic formulation

does not, and therefore, should be developed.

Fu}ther refinement for efficiency is needed in the variable
stiffness inelastic solution algorithm. At preseht. a
solution of a new system matrix is required at every load
step. A new strdtegy, utilizing a re-solution of the
previous increment'’s decomposed matrix system at alternate

load steps, may be possible.

The variable stiffness method is more stable than the
iterative algérithm near the collapse state of stress,
however, the iterative method is capable of plastic strain
softening where the present variable stiffness
implementation is not. It is conceivable that a hybrid
method could be developed that would incorporate the best

features of Both methods.
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The present work has been more concerned witﬁ the
development of BEM as an instrument for solving inelastic
problems than with the development of inelastic models for
BEM. This was obvious since only the Von Mises yield
criterion (with hardening) was employed. Now with the
present inelastic BEM analysis refined to such an advanced
stage, more realistic material models need to be included

for the study of more complex materials.

The analyses in this dissertation are limited to problems of
material nonlinearities. Problems such as metal forming
require the modeling of geometric nonlinearities associated
with finite displacement theory. BEM formulations should be
developed based on this theory. An extended form of the
particular integral based method can be derived for this
purpose or the conventional volume integral approach can be

used.

Although the present functional form of the global shape
function, chosen for the approximation of the particular
integrals, produced satisfactory results, further research

still should be devoted to the discovery of new functions.

The axisymmetric and two—-dimensional inhomogeneous
formulations developed in this dissertation should be
extended to three-dimensional analysis. However, the
extension to three-dimensions greatly increases the overhead
of the analysis, and therefore, an efficiency study should

be carried out to determine its feasibility.
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The variable stiffness algorithm, the particular integral
formulation, and the inhomogeneity formulation all have one
thing in common. All involve a large amount of matfix
manipulétions. Therefore, to maximize the efficiency of
these new methods, the computer code should be vectorized to

exploit the state-of-the-art computer technology.
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APPENDICES

APPENDIX I - NUMERICAL INTEGRATION

I.A Shape Functions

When a body is discretized, as described in Chapter 2, shape
functions are used to describe the geometry and field variables across
the boundary element (or cell) in terms of nodal variables. Geometry
coordinates; displacements, tractions, and initial stresses are

expressed in terms of shape functions as

Xy = N (&) x7

u; = N%(E) Gg

t; = N% (%) 't'g

0%y = MB(nl,nz)'(Es'gj)’3
where

N® and MP represent the shape function,

e and B the order éf the shape function,

£, m; and n, are intrinsic (local) coordinates, and
the bar indicates the nodal values.

Some common shape functions used in this dissertation are given
below. Additional shape functions can be found in text books, (e.g.

Banerjee and Butterfield, 1981).
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Three-noded, one-dimensional shape functions (Figure A.1):

wm>=%num)

Mz(n) % n(1-v)

Ms(n)

(14n) (1-7)

Eight-noded, two—dimensional shape function (Figure A.2):

1 .
Ma(nl,ﬂz) = Z(1+Sa1n1)(1+sa2n2)(Sa1ﬂ1+sa2n2—1) =1,2,3,4

1
M%(ny) = (145 ,n,) (1-n2) e

1
M ny) = E(1+Sa1“1)(1‘“§) a

where S,1 takes the sign of n, coordinates.

5,7

6,8

The shape functions for

six-noded triangular elements can be obtained by collapsing the

quadrilateral to triangle.

Twenty—-noded, three—dimensional shape function (Figure A.3):

L wa 1
Ming,mp.mg) = g (145,9n9) (145 9ny) (145,3n3) (849145 4N +S 43M3-2)

a 1 .. 2
M (ﬂl) =4 (1 nl)(1+sa2ﬂ2)(1+5a3ﬂ3)

a _1.._2
M (ﬂl) = 4(1 ﬂ2)(1+$a1ﬂ1)(1+3a3ﬂ3)

o 1. 2
M (ﬂl) 4(1 ﬂ3)(1+sa1n1)(1+sazn2)

where s . assumes the sign of n, coordinates.
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I.B Jacobian Transformations
Boundary element mapping:
A curvilinear (2-D) 1line element can be mapped into one-

dimensional space using the following Jacobian transformation

L]

dC(x) JL(n)dn

where

0x, ax. _1/2
1 1
Lo = 7 5 )

i =1,2 for a two—dimensional
curvilinear element

Similarly, a curvilinear (3-D) surface element can be mapped into two-

dimensional space using the following Jacobian transformations

das(x) = Js(nl,nz)dnldnz
where

2 2 2.1/2
Isng.my) = [dy + dj + d3]

3X2 dxg  9x, 3x,4

d, = ( - )
1 dny dny  dmy 8my
o = axl 3xg ) 3x4 0%, )
2 Iy dmy  dny Omy

axl dx, 9x4 3x,
dg = ( - )

an1 an2 anz anl

Volume cell mapping:
Two- and three-dimensional volume cells can be mapped into two-
and three-dimensional space, respectively, using the following

Jacobian transformations
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di(x) = J("1'ﬂ2) dnqdn,

av(x) = J(“1'“2'ﬂ3) dnldﬂzﬂg
where
0x,
Jny) = ||5n—1||
! i,j =1,2 for two-dimensions
i,j =1,2,3 for three-dimensions

I.C Gauss-Legendre Formula

In one dimension, the application of Gauss-Legendre formula

(Stroud and Secrest, 1966) is expressed as

1 A
j f(x)dx = } wor(x®)
-1 a=1

where
f(x) is the ﬁreseribed function,
wo is the weight at sampling point a,
s? is the abscissae of the sampling point, and’

A is the order of the integration rule.

Two- and three—-dimensional integrals are evaluated through
repeated application of the above formula:

1 1 A B b b
: I j f(x,y)dxdy = } 2 wow® £(x2,x°)
-1"-1 1 b=1

and
1 1 1 A

B C
J_lj_lffian:Z)dxdydz =a21 bzl czlwawbwcf(xa,yb.zc)
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APPENDIX II -~ TWO— AND THREE-DIMENSIONAL KERNEL FURCTIORS

The kernel functions for the two- and three-~dimensional boundary
integral equations for displacement and stress are presented below.
In these definitions the parameter d=2 is used for two-dimensions
(plane strain) and d=3 for three-dimensions. The indicial notation
ranges from 1 to 2 for two-dimensions, and from 1 to 3 for three-
dimensions.  The two-dimensional plane stress kernel functions are
derived from the plain strain function by using a modified material

parameter v=  /(1+v).

IX.A Displacement Equation

uy(g) = /g [Gij(x.§)ti(x) - Fij(x.c)ui(x)]ds(x)

+ 0, 1054(x, 0 F5(x) + Byyy(x,8) 07, () 1dv(x)

in which Gij is the fundamental point force solution due to Kelvin

(Love, 1944)

c

1
650 = ——1@y fog8sy [€a-2) + (a-3)1n(r)] + z524]

" where

1
¢ 8np(1-v)

[

c, = (3-4v)
Vi = xi'§1
r? = y.v4
2y = yy/r

and d is the dimensionality of the problem.
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Gy 4 represents the displacement u;(x) at x in direction i due to a

point force €4(¢) at § in direction j,
i.e. , ui(X) = Gij(x,t)ej(f)

It should be noted that the two-dimensional solution includes an

arbitrary constant term Aij in addition to the expressions provided by

the above equations since, unlike the three-dimensional case where Gi

J

vanishes as r»», the expression for GiJ does not vanish as r-« for
two-dimensional problems.
The Bijk kernel represents the strains corresponding to the
fundamental displacement solution and is given as
c

1
Bijk(Xog) = - z;:;;;?a:Iy [04(53kzi + 5ikzj) - Sijzk + dZiZJZk]

where

Cy = (1-2v)

The Fij kernel represents the tractions on an incline normal

nk(x) due to a point force:
= Ty [Catngzngzg) ¢ (Ogbyy + dzgzpzgn ]
II.B Stress Equation

= [ 1a° ¢
Uij(t) = fs [Gijk(x,t)ti(x) - Fijk(x.t)ui(x)]ds(x)

+ fv [ngk(x,t)fi(X) + ngjk(x.t)cgp]dv

where

c
3
———qmDy [CaBy gy + by - yezy) + dzgz ]

G° (x,8) = -
1k (d-1)r
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and

Cs

FO, (x,E) =
13k (d-)r

- nk(c46ij + d(V)zin) - dzmnm [C46szi + (v )sikzj

= (v) Sijzk - (d+2)zizj?k]]

C3

(d-1)r¢

o .

- daipzjzk - d(V)(SiJzkzp + 8jpzizk + skpzizj + sikzjzp)

+ d(d+2)zizjzkzp]

-1
T 4n(1-v)

C =——:L—
5 2n(1-v)

(1-4 V)

Q
"

The integration of the ngkl kernel is strongly singular and must
be treated as a Lebesgue integral. This term can be decomposed into

Cauchy principle-value integral and a free term Jgjkl(g);

jv B;jkl(x:g)dV(X) = fv ngkl(x:g)dV(X) + Jgjkl(ﬁ)

where

c
o 8 2 2_
Jipjk = 3(a+) [[(d -2) - (M 4)]61J8kp + [1f(v)(d+2)5ipsjk]]

-1
Cg = (1-v
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APPENDIX III - AXISYMMETRIC KERKNEL FUNCTIdNS

Here, the displacement and stress kernel functions used in the
axisymmetric boundary element analysis of bodies subjected to
axisymmetric bogndary loads and initial stress body forces are given.

The Gij kernel of equation (III.2) is the ring source solution,
first derived by Kermanidis (1975) and Cruse et. al, (1977). Other
authors Baker and Fenner (1983) and Tan (1984) have defined Gij as
the transpose of the ring solution. In the following r and 2

correspond to tﬁe field point, and R and Z are the integration (Gauss)

points. Note, although %E = - gf holds true for axial (z) direction

in axisymmetric kernels, such is not the case for the radial (r)
9 ]

direction, 1i.e. 37 £ - TR

A 2nR term, which appears after integration in the @
direction, has been absorbed in the kernel; therefore, the numerical
integration is performed over a curve dC . Some other authors Bakr
and Fenner (1983) and Cruse et, al, (1977) do not absorb this term in

their kernels.

IXII.A Displacement Equations

7 ) ' W
u.(r,2z) G G

- - ? dC(R)Z)
u,(r,z)

d (III.1)
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in which

]
+

)
+

(I11.2)

Elliptic Integral of the second kind.

Gzi]
3R J Pz
Gzi .
SR ln  ierez
G
_ rr
Bg1 = R
Bga = R
i,j=r,z

GiJ = A4k + By,E i,j=r,z
Gij being the displacement vector uy due to a ring load
intensity e, - = Qg ,
intensity 3 i.e., uy(x) Glj(x §)ej
K = K(m) is the complete Elliptic Integral of the first kind,
and
E = E(m) is the complete
aG_. G... 9G aG
ri ri zi ri
Fog = [eg g7 * CotF * L RN
oG G_. 8G,. . aG. .
zi ri ri ri
Fos = [e1 57 * ©0F * 3R I, +u [57
_ 9, _ 3G,y _ Gy + 3G,
Bys = 3% Bay <= B2 L P AN )
_ 8C,., _ 8Gy, _ 3G, 3Gy,
Bi2 © R Bya T 3z B3y T 32 3R
where
aGij _ LY - 3B, 4 3K 3E
3R - TR 3R B+ 2333R * BijaR
9G;5 8hyy e o 251 K oE
32 - 9z 3z B+ Aj5397 + By oz
n. = n (R,Z) 4is the normal in r direction
r r

n,(R,Z) is the normal in =z direction

228




oA
zr

oR

oA
zZ

R

8A
rr

oz

aA
rz

9Z

oA
zZr

A
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02
a2 By = - "i (M - 28?)
Rp“H
- g% Bop © =2 N
rsz
2a B = 2072
B ©3 2z ~
PzH ‘
2«03 aBrr~_ _ 2as1
v~ 91fpp 3R = " ®rE - 91Bpr
aB,, 202
- dyhp, 3R o2H - (E +d,) By,
9B,. 2aRZ
oR rsz dszr
0B
ZZ
3R -~ 928y
aBrr 202 Z .
FY ~ RrE 52 7 ;5 Brr
dB
rz a
TR T 2 92 p,2y dg - d3Bp,
8B a ,
A4 de ~ dqoB
9Z rp2H 5 3%zr




]

-—=A
02 H2 ZZ

e}
|

= [(m + m? + 222

o3
]

(2 - 2)

p2 = [ - m? + 7%]

_ R
a B ————————re
8npu(1-v)
cl = )\ + ZP_
02 = A
ey = 3 -4,

N=R2—r2+22
p. = R+r
1 )
1
i =5+h
4 p 2(R-r
2= P
pz
dg Z (35 + 1—0
P B2
2
d, = N - 42

3z~ 2y

- d3B,,

A,p = Lamé constants

v = Poisson'’s ratio

field points
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_ 2

=2
= cy(R + 1) + Zrm - 282
o4

_ ~ 272Rp
82 = ¢3 4

*
p P

III.B Stress Equation

v

-0' O'- -.0' 0'-.
crr(r’Z) Grl Gzl tr Frl le
(o3 o o o
< GZZ(r'Z)P= I J Gy, G,y t, _ NCR
o o (o2 [+
Opg(r,2) C Gprg Gu3 Frg Fgs
(o3 (¢3 [+ 3 [«
%ge(r+2) [Cra  Cz4 Fra Faq]
\ — — 7
(o] (e} o [¢] (o]
. I Fjs  Byy By By Opp
[+ [+ g o (o]
A Bija  Byy B3y By S22
o o o o { o 7
Bijs B3 Bz By, Spz
[« 4 [+ (¢} g 0
P14 Baa By Byy| | ogo
in which - /
P T Cir | 80y
11 T ¢1 T3y T Sl % 3z
oG G 'aG
¢ iz _ig ir
Cia = eq 3z * S5+ =)
o o S, 264,
i3 = 0 (¢ 7z
G 3G Ye
o __j_.l ir iz _
Gig =c3 7 * (%7 32 ) l=r.z
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oF. F. oF.
c _ ir Yir iz
Fi1 =cy 3r * % + 33
oF, F.  oF.
o _ iz Cir ir
Fio =c¢1 3z T ST * 35
po _ (aFiz PFir,
i3 = * Vor 3z
F oF._  dF.
o _ ir ir iz -
F‘14 = ¢q —r + cz( ar 22 ) i=r,z
TR T S
ar ~ or ar B+ A5 37 *Bijoar
ac, .
lj = - aGlj i;j =r,z
3z Y
aFri _ aZGri + 1 aGri + aZGzi)] a2Gri + aszi)n
ar e 3Rar T %2R Br *3zar (1P t r(3Ter T FRer "2
aFri _ aZGri + 1 3Cpy aszi)] (azGri + aszi)n
iz [01 3Fsz T %2R 3z Yt azez 'l * n(3zaz t aRez M2
ani _ azGz:l 1 8G.; . azGri)} azGri + aszi)n
ar [01 37ar © 2R 3¢ Y awer ') 0z t #GGzar t 3mer O
2 2 2 2
ani - [ 3 c;zi + o (1 aGr'i + 8 Gri)] + (a Gr'i + d Gz:i.)n
3z ¢1 379z 2'R oz dRoz n, + vi3zaz 3Rz
i
2 2
BS 9 Grr + _1_ aGrr 8 Gr‘z)
11 = ©1 3rar T %2y 3% * 3%ez

232




o
B21

(¢}
B31

4
B41

o
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B22
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B3,

42
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Bi3

c
B23

33

3%c .. 9%

¢

+ C

zr 1 aGrr
¢y GGzar * 3wy’ T2 IF (37t Rt Gz
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C1 3Rz
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2z 1 anr 3°G
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2 2
8 Grz 9 Gzz
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where

Simil

8G oG
1 rz rr
G — —
Bys =g (3¢ * 52
2 2
B .. 1 3Cpp ‘o (a Crp +'a Grz)
14 = %1 r "oR 2'3Rar aRdz
2 2
B® - 1 ifgg + e (a Gzr + 8 Gzz)
24 %1 r 792 2'3Zar 920z
2 2 2 2
B = o 1 (aGrr + anr) + e [(a Grr + 3 Gzr) + (a Grz + d Gzz)]
34 " *1r YA oR 2 8Zdr oRor 07202 oRoz
o L 1 20y 30y
44 “ 1 7R “rr T %2 F ‘Tor 3z
2 2
05 My, Magax | ¥y ek 22K
3Rer  Rer 3R ar T ar oR T Rij amor
2
3B 0B, 8B 2
P P15 g, PBigoe, %Byyam 0% -
*awr E Y 3R 3r T ar R * Bij 3Wer. 1, =r.z
2 2 2
ar for d Gij ] Gij and . Gi'
oRoz > 9Zer 020z
ok y _ 2¢30 3Brp _ 2a
ar - RE ~ ©1frr ar ~ ~ ®rH 53 ~ €1Bpr
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III.C Axisymmetric Jump Term Tensor, J i jkl(g)

The jump term (or free term) that is associated with the Lebesgue
domain integral of the stress equation is given below. This jump term

corresponds to the axisymmetric ’'initial stress' formulation defined
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in equation (IXI.3).

Using notation corresponding to equation (I1II.3)

_(3-4v)
(1-4v)
0y . -1
[J] [U } = 8(1"\’) 0
-4V

(1-4v)

(3-4v)
0

—4v

0

0
2

0

0

0
0

8(1-v)

-t

rz

(o]
%00

. N 7/
When the field point falls at the origin the jump term tensor

given above is no longer valid.

dimensional jump term tensor given below should be used.

2(4-5v) (1-5v)
- (1-5v) 2(3-4v)
[314e°) = 15(i-v)
0 0
(1-5v) (1-5v)

III.D Elliptic Integrals

The complete elliptic integral of the first (K(m)) and second

0

0
(7-5v)

0

(E(m)) kind with modulus m can be defined as

n/2
de
K (m) =£ S
[{1-m sin29]1/2
n/2
E(m) = I [1-m sinzGlllsz
o

(1-5v)

(1-5v)
0

2(4-5v)

—d

For this situation the three-

The modulus corresponding to the axisymmetric kernel is given as

k-

Rr
m = m = 1-nm

o o]
(3]

For numerical calculations, the integrals are approximated using the

following polynominal approximation (Abramowitz and Stegun, 1974) for

(0 {m<1),
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4

K = K(m) = E [aimi + bimi ln(iz)] + g(m)
i=o
4
E=Em =1+ } [cimi + dimi ln(i;)] + e(m)
1=1 -

letm)] is < 2 x 1078 and a;, by, ¢y and d; are constants defined
below: |

@, = 1.38629 436112 by = .5

ey = .09666 344259 b1 = ,12498 593597

e, = .03590 092383 b, = .06880 248576

ey = .03742 563713 b3 = ,03328 355346

e, = .01451 196212 b4 = ,00441 787012

¢y = .44325 141463 ©dy = .24998 368310

C, = 06260 601220 dy = .09200 180037

cy = .04757 383546 dg = -04069 697526

04 = ,01736 506451 d4 = ,00526 449639

ITII.E Derivative of Elliptic Integrals

3K 3E hy

3R = by P T T
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3K 3E 2

L 81 % _2 g

3z . 3z " 2

9K M-2r2 3E M-2r2

ar - 2r T ar -~ 2 ¢
2rH

oK _ _ oK 9E _ _ 2E

dz 32 3z  9Z
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Figure A.1 .
Two-dimensional Boundary Element
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Figure A.2

Three-dimensional Boundary Element
(or Two-dimensional Volume Cell)
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Figure A.8
Three-dimensional Volume Cell
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