Fluid Mechanics Experiments in Oscillatory Flow
Volume II—Tabulated Data

J. Seume, G. Friedman, and T.W. Simon
University of Minnesota
Minneapolis, Minnesota

March 1992

Prepared for
Lewis Research Center
Under Grant NAG3–598

NASA
National Aeronautics and Space Administration
ABSTRACT

Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re_{max}, Re_{ω}, and AR, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow.

Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented.

The following is presented in two volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).
ACKNOWLEDGEMENTS

The following work was sponsored by the Lewis Research Center of NASA under grant NASA/NAG3-598. The authors thank the grant monitors, James Dudenhoefer and Roy Tew for their guidance.

Consultation on instrumentation and 3D graphics was provided by Robert Hain, the comparison of data to steady-flow correlations in this report was done by Terry Johnson and much of the document preparation was with the aid of Phillip Tuma and Amy Johnson.
CONTENTS VOLUME I

ABSTRACT i

ACKNOWLEDGEMENTS ii

CONTENTS iii

NOMENCLATURE vi

LIST OF FIGURES ix

LIST OF TABLES xiii

1. INTRODUCTION 1
 1.1. Motivation 1
 1.2. Background 2
 1.3. Review of Oscillating Flow Research 3
 1.3.1. Laminar 3
 1.3.2. Transitional 4
 1.3.3. Turbulent 8

2. EXPERIMENTAL SETUP AND PROCEDURE 9
 2.1. Apparatus and Operating Range 9
 2.1.1. Dimensionless Operating Range 9
 2.1.2. Dimensional Operating Range 10
 2.1.3. Appartus 11
 2.2. Instrumentation 14
 2.2.1. Single-wire Probe 15
 2.2.2. Cross-wire Probe 16
 2.3. Calibration 18
 2.4. Data Acquisition 19
 2.5. Data Processing 22
 2.5.1. Probe Position 22
 2.5.2. Pressure Gradient Effect on Couette Flow Model 25
 2.5.3. Variation of Ambient Conditions 28
3. RESULTS

3.1. Qualification Tests

3.1.1. Variation in Flywheel Position.

3.1.2. Convergence of Velocity Measurements in Oscillating flow.

3.1.4. Repeatability of Transition Crank Position.

3.1.5. Steady-flow Results.

3.2. Exploration of Transition Mechanisms.

3.2.1. High-amplitude Cases.

3.2.2. Medium-amplitude Cases.

3.2.3. Low-amplitude Cases.

3.2.4. Similarity.

3.2.5. Convective Triggering of Transition.

3.2.6. Non-convective Triggering of Transition.

3.2.7. The Effects of Convectively and Non-convectively Triggered Transition.

3.2.8. Return to Laminar Flow.

3.3. SPRE Test Results with a Smooth (Nozzle) Entry.

3.3.1. Transition Mechanisms.

3.3.2. Results at s/d = 0.33 (Boundary Condition).

3.3.3. Results at s/d = 16.

3.3.4. Results at s/d = 30.

3.3.5. Results at s/d = 44.

3.3.6. Comparison of Profiles to Computational Data.

3.3.7. Modelling with Steady, Fully-Developed Flow Correlations

3.3.8. Comparison of Profiles to Computational Data.

3.4. Test Results with a Flush-square Entry.

4. CONCLUSIONS

5. REFERENCES

APPENDICES

A. Measurement Stations

B. Uncertainty Documentation
CONTENTS VOLUME II

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
</tbody>
</table>

1. DATA LISTINGS

- Single Wire Data: 1
- Cross-wire Data: 48
- Processed Data: 101

2. PROGRAM LISTINGS

- 127
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_R</td>
<td></td>
<td>Relative amplitude of fluid displacement</td>
</tr>
<tr>
<td>A^+</td>
<td></td>
<td>Empirical effective sublayer thickness for Van Driest model</td>
</tr>
<tr>
<td>c_f</td>
<td></td>
<td>Skin-friction coefficient</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>Piston diameter</td>
</tr>
<tr>
<td>d</td>
<td>m</td>
<td>Duct inner diameter</td>
</tr>
<tr>
<td>f</td>
<td>sec$^{-1}$</td>
<td>Frequency</td>
</tr>
<tr>
<td>k_T</td>
<td></td>
<td>Correction factor for tangential cooling of hot-wire sensor</td>
</tr>
<tr>
<td>l</td>
<td>m</td>
<td>Duct length</td>
</tr>
<tr>
<td>P</td>
<td>bar</td>
<td>Fluid static pressure</td>
</tr>
<tr>
<td>p^+</td>
<td></td>
<td>Pressure gradient parameter</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>bar</td>
<td>Average pressure</td>
</tr>
<tr>
<td>r</td>
<td>m</td>
<td>Cross-stream coordinate, measured from the duct centerline</td>
</tr>
<tr>
<td>R</td>
<td>m</td>
<td>Pipe inner radius</td>
</tr>
<tr>
<td>Re_d</td>
<td></td>
<td>Reynolds number for steady flow, based on the duct diameter and the bulk-mean velocity</td>
</tr>
<tr>
<td>Re_{max}</td>
<td></td>
<td>Reynolds number based on the duct diameter and the amplitude of the bulk-mean velocity</td>
</tr>
<tr>
<td>Re_ω</td>
<td>$\frac{\omega d^2}{4\nu_0}$</td>
<td>Kinetic Reynolds number, or Valensi number</td>
</tr>
<tr>
<td>Re_δ</td>
<td>$u_{m,max} \frac{\delta}{\nu}$</td>
<td>Reynolds number based on the Stokes layer thickness</td>
</tr>
<tr>
<td>Re_{δ_2}</td>
<td>$\delta_2 u_m \sqrt{\nu}$</td>
<td>Momentum thickness Reynolds number</td>
</tr>
<tr>
<td>Symbol</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>s</td>
<td>m</td>
<td>Streamwise distance measured from open end of duct, or the stroke of the piston</td>
</tr>
<tr>
<td>Str = $\frac{\omega d}{u_{m,max} \cdot \text{Re}{\max}} = \frac{4V_a}{\text{Re}{\max}}$</td>
<td></td>
<td>Strouhal Number</td>
</tr>
<tr>
<td>t</td>
<td>sec</td>
<td>Time</td>
</tr>
<tr>
<td>T</td>
<td>°C</td>
<td>Fluid temperature</td>
</tr>
<tr>
<td>u</td>
<td>m/sec</td>
<td>Instantaneous velocity</td>
</tr>
<tr>
<td>\bar{u}</td>
<td>m/sec</td>
<td>Streamwise component of ensemble-averaged velocity</td>
</tr>
<tr>
<td>u' = $\sqrt{u'^2}$</td>
<td>m/sec</td>
<td>Streamwise component of rms-velocity fluctuation</td>
</tr>
<tr>
<td>u_{eff}</td>
<td>m/sec</td>
<td>Effective cooling velocity</td>
</tr>
<tr>
<td>u_{∞}</td>
<td>m/sec</td>
<td>Freestream velocity</td>
</tr>
<tr>
<td>u_m</td>
<td>m/sec</td>
<td>Bulk-mean velocity</td>
</tr>
<tr>
<td>$u_{m,max}$</td>
<td>m/sec</td>
<td>Amplitude of the bulk-mean velocity</td>
</tr>
<tr>
<td>u_n</td>
<td>m/sec</td>
<td>Velocity component normal to sensor</td>
</tr>
<tr>
<td>u_T</td>
<td>m/sec</td>
<td>Velocity component tangential to sensor</td>
</tr>
<tr>
<td>$u_* = \sqrt{\frac{\tau_w}{\rho}}$</td>
<td>m/sec</td>
<td>Friction velocity</td>
</tr>
<tr>
<td>$u^+ = \frac{u}{u_*}$</td>
<td></td>
<td>Nondimensional velocity, in wall coordinates</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>m/sec</td>
<td>Radial component of ensemble-averaged velocity</td>
</tr>
<tr>
<td>v'</td>
<td>m/sec</td>
<td>Radial component of rms-velocity fluctuation</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
<td>Transducer voltage</td>
</tr>
<tr>
<td>$V_a = \frac{\omega d^2}{4v}$</td>
<td></td>
<td>Valensi number</td>
</tr>
<tr>
<td>$-u'v'$</td>
<td>m2/sec2</td>
<td>Reynolds shear stress</td>
</tr>
<tr>
<td>x</td>
<td>m</td>
<td>Streamwise distance, measured from drive end of duct</td>
</tr>
<tr>
<td>Symbol</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>x_m</td>
<td>m</td>
<td>Amplitude of displacement of bulk fluid</td>
</tr>
<tr>
<td>y</td>
<td>m</td>
<td>Cross-stream coordinate, measured from the duct wall</td>
</tr>
</tbody>
</table>

$y^+ = \frac{y u_*}{n}$

Distance normal to the wall in inner coordinates

Greek

$\alpha = \sqrt{\alpha a}$

Womersely parameter

$\delta = (2 v / \omega)^{1/2}$

Stokes-layer thickness

δ_2

Momentum thickness

θ (°)

Crank angle within the cycle

κ

Karman constant

μ N·sec/m2

Dynamic viscosity

ν

Kinematic viscosity

ν_0

Kinematic viscosity at the reference state

ρ kg/m3

Density

τ Pa

Shear stress

$\psi = \overline{u'v'}/u'_w v'_w$

Correlation coefficient

$\omega = 2 \pi f$

Angular frequency

Superscripts

+ Wall coordinate

* Normalized quantity, except where used in friction velocity, u_w

Subscripts

m Average over cross-section of duct

max Maximum during one cycle

o Reference state

w At the wall
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ensemble-averaged velocity at s/d = 0.33.</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Streamwise velocity fluctuation at s/d = 0.33.</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 0.33.</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Ensemble-averaged velocity at s/d = 16.</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Streamwise velocity fluctuation at s/d = 16.</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 16.</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Ensemble-averaged velocity at s/d = 30.</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Streamwise velocity fluctuation at s/d = 30</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Centerline view.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Streamwise velocity fluctuation at s/d = 30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Near-wall view.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 30.</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>Ensemble-averaged velocity at s/d = 44.</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Streamwise velocity fluctuation at s/d = 44</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 44.</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>Streamwise velocity fluctuation at s/d = 0.033 (smoothed).</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>Radial velocity fluctuation at s/d = 0.33 (smoothed).</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>Reynolds shear stress at s/d = 0.33 (not smoothed).</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>Streamwise velocity fluctuation at s/d = 16 (smoothed).</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>Radial velocity fluctuation at s/d = 16 (smoothed).</td>
<td>73</td>
</tr>
<tr>
<td>19</td>
<td>Reynolds shear stress at s/d = 16 (not smoothed).</td>
<td>74</td>
</tr>
<tr>
<td>20</td>
<td>Streamwise velocity fluctuation at s/d = 30 (smoothed).</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>Radial velocity fluctuation at s/d = 30 (smoothed).</td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td>Reynolds shear stress at s/d = 30 (not smoothed).</td>
<td>87</td>
</tr>
<tr>
<td>23</td>
<td>Streamwise velocity fluctuation at s/d = 44 (smoothed).</td>
<td>98</td>
</tr>
<tr>
<td>24</td>
<td>Radial velocity fluctuation at s/d = 44 (smoothed).</td>
<td>99</td>
</tr>
<tr>
<td>25</td>
<td>Reynolds shear stress at s/d = 44 (not smoothed).</td>
<td>100</td>
</tr>
</tbody>
</table>
DATA LISTINGS

I. SINGLE-WIRE DATA

SPRE Operating Point
Nozzle Inlet Geometry
(θ, \bar{u}) (θ, u') (θ, u_m)

<table>
<thead>
<tr>
<th>axial station</th>
<th>s/d</th>
<th>T ($^\circ$C)</th>
<th>P (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.33</td>
<td>25.68</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>25.29</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>25.22</td>
<td>0.989</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>24.06</td>
<td>0.990</td>
</tr>
</tbody>
</table>

Note that the data are tabulated at every 4 degrees of crank position except within ±10 degrees of transition, for which the resolution is every 2 degrees.

II. SUPPLEMENTAL FIGURES

In order to supplement the three-dimensional figures which appear in the main body of the thesis, additional figures generated from the single-wire data have been included after the tabulated data for each of the four axial stations. At each station, plots are provided of the ensemble-averaged velocity, the streamwise rms-velocity fluctuation, and the turbulence intensity.
<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.5175</td>
<td>0.0095</td>
<td>0.6560</td>
<td>0.0059</td>
<td>0.8207</td>
<td>0.0178</td>
</tr>
<tr>
<td>104</td>
<td>0.5040</td>
<td>0.0085</td>
<td>0.6017</td>
<td>0.0164</td>
<td>0.7732</td>
<td>0.0103</td>
</tr>
<tr>
<td>108</td>
<td>0.4790</td>
<td>0.0033</td>
<td>0.5804</td>
<td>0.0048</td>
<td>0.7430</td>
<td>0.0054</td>
</tr>
<tr>
<td>112</td>
<td>0.4412</td>
<td>0.0077</td>
<td>0.5312</td>
<td>0.0065</td>
<td>0.7190</td>
<td>0.0057</td>
</tr>
<tr>
<td>116</td>
<td>0.4060</td>
<td>0.0070</td>
<td>0.5023</td>
<td>0.0085</td>
<td>0.6766</td>
<td>0.0015</td>
</tr>
<tr>
<td>120</td>
<td>0.3866</td>
<td>0.0020</td>
<td>0.4498</td>
<td>0.0074</td>
<td>0.6561</td>
<td>0.0007</td>
</tr>
<tr>
<td>124</td>
<td>0.3511</td>
<td>0.0080</td>
<td>0.4071</td>
<td>0.0078</td>
<td>0.5895</td>
<td>0.0111</td>
</tr>
<tr>
<td>128</td>
<td>0.3164</td>
<td>0.0080</td>
<td>0.3740</td>
<td>0.0091</td>
<td>0.5238</td>
<td>0.0084</td>
</tr>
<tr>
<td>132</td>
<td>0.2714</td>
<td>0.0054</td>
<td>0.3304</td>
<td>0.0036</td>
<td>0.4596</td>
<td>0.0137</td>
</tr>
<tr>
<td>136</td>
<td>0.2340</td>
<td>0.0016</td>
<td>0.2696</td>
<td>0.0039</td>
<td>0.3870</td>
<td>0.0023</td>
</tr>
<tr>
<td>140</td>
<td>0.1921</td>
<td>0.0020</td>
<td>0.2214</td>
<td>0.0040</td>
<td>0.3010</td>
<td>0.0095</td>
</tr>
<tr>
<td>144</td>
<td>0.1540</td>
<td>0.0000</td>
<td>0.1730</td>
<td>0.0031</td>
<td>0.2254</td>
<td>0.0047</td>
</tr>
<tr>
<td>148</td>
<td>0.1216</td>
<td>0.0026</td>
<td>0.1291</td>
<td>0.0028</td>
<td>0.1709</td>
<td>0.0045</td>
</tr>
<tr>
<td>152</td>
<td>0.0838</td>
<td>0.0036</td>
<td>0.0965</td>
<td>0.0052</td>
<td>0.1205</td>
<td>0.0013</td>
</tr>
<tr>
<td>θ deg.</td>
<td>r/R = 0.994</td>
<td></td>
<td>r/R = 0.993</td>
<td></td>
<td>r/R = 0.990</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>̅u m/sec</td>
<td>̅u' m/sec</td>
<td>̅u m/sec</td>
<td>̅u' m/sec</td>
<td>̅u m/sec</td>
<td>̅u' m/sec</td>
</tr>
<tr>
<td>156</td>
<td>0.0679 0.0026</td>
<td>0.0649 0.0026</td>
<td>0.0700 0.0030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>0.0455 0.0000</td>
<td>0.0422 0.0026</td>
<td>0.0346 0.0024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>0.0276 0.0016</td>
<td>0.0217 0.0005</td>
<td>0.0130 0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>0.0183 0.0023</td>
<td>0.0104 0.0009</td>
<td>0.0042 0.0013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>0.0133 0.0009</td>
<td>0.0066 0.0001</td>
<td>0.0014 0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.0211 0.0015</td>
<td>0.0121 0.0012</td>
<td>0.0064 0.0008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.0283 0.0009</td>
<td>0.0217 0.0005</td>
<td>0.0130 0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ deg.</th>
<th>r/R = 0.988</th>
<th></th>
<th>r/R = 0.984</th>
<th></th>
<th>r/R = 0.981</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>̅u m/sec</td>
<td>̅u' m/sec</td>
<td>̅u m/sec</td>
<td>̅u' m/sec</td>
<td>̅u m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.0320 0.0149</td>
<td>0.0423 0.0218</td>
<td>0.0536 0.0304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0442 0.0139</td>
<td>0.0641 0.0244</td>
<td>0.0858 0.0348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0699 0.0158</td>
<td>0.1057 0.0270</td>
<td>0.1394 0.0320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.0925 0.0158</td>
<td>0.1433 0.0299</td>
<td>0.1872 0.0366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.1143 0.0211</td>
<td>0.1775 0.0342</td>
<td>0.2334 0.0459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.1346 0.0250</td>
<td>0.2107 0.0372</td>
<td>0.2754 0.0504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1549 0.0284</td>
<td>0.2447 0.0428</td>
<td>0.3229 0.0632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.1718 0.0404</td>
<td>0.2773 0.0636</td>
<td>0.3653 0.0804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.1904 0.0476</td>
<td>0.3059 0.0789</td>
<td>0.4042 0.0961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.2183 0.0607</td>
<td>0.3507 0.1018</td>
<td>0.4578 0.1126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.2626 0.0816</td>
<td>0.4157 0.1164</td>
<td>0.5185 0.1268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.3105 0.1006</td>
<td>0.4871 0.1351</td>
<td>0.5925 0.1438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.3669 0.1215</td>
<td>0.5607 0.1449</td>
<td>0.6771 0.1756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.4529 0.1551</td>
<td>0.6597 0.1793</td>
<td>0.7750 0.1957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.4928 0.1721</td>
<td>0.7329 0.2225</td>
<td>0.8509 0.2186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.5893 0.2028</td>
<td>0.8490 0.2503</td>
<td>0.9848 0.2862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.6906 0.1961</td>
<td>0.9355 0.2419</td>
<td>1.1050 0.2739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.7504 0.2018</td>
<td>1.0011 0.2572</td>
<td>1.1766 0.2772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0.7903 0.2004</td>
<td>1.0701 0.2752</td>
<td>1.2435 0.2858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.8531 0.1911</td>
<td>1.1350 0.2510</td>
<td>1.2968 0.2686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.9001 0.1821</td>
<td>1.2098 0.2494</td>
<td>1.4140 0.2991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>0.9391 0.2012</td>
<td>1.2400 0.2691</td>
<td>1.4653 0.3162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>0.9622 0.1989</td>
<td>1.2986 0.2618</td>
<td>1.4999 0.2889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>1.0067 0.1776</td>
<td>1.3676 0.2694</td>
<td>1.5580 0.2701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1.0368 0.1600</td>
<td>1.3817 0.1891</td>
<td>1.5815 0.2124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1.0199 0.0873</td>
<td>1.3620 0.1259</td>
<td>1.5686 0.1456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0.9927 0.0615</td>
<td>1.3229 0.0810</td>
<td>1.5267 0.0940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.9730 0.0378</td>
<td>1.2925 0.0439</td>
<td>1.4925 0.0489</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
r/R = 0.988

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>0.9601</td>
<td>0.0229</td>
<td>1.2794</td>
<td>0.0261</td>
<td>1.4797</td>
<td>0.0263</td>
</tr>
<tr>
<td>100</td>
<td>0.9357</td>
<td>0.0125</td>
<td>1.2428</td>
<td>0.0175</td>
<td>1.4556</td>
<td>0.0160</td>
</tr>
<tr>
<td>104</td>
<td>0.9166</td>
<td>0.0078</td>
<td>1.2028</td>
<td>0.0069</td>
<td>1.3973</td>
<td>0.0093</td>
</tr>
<tr>
<td>108</td>
<td>0.8806</td>
<td>0.0122</td>
<td>1.1767</td>
<td>0.0124</td>
<td>1.3523</td>
<td>0.0069</td>
</tr>
<tr>
<td>112</td>
<td>0.8400</td>
<td>0.0085</td>
<td>1.1259</td>
<td>0.0084</td>
<td>1.3129</td>
<td>0.0153</td>
</tr>
<tr>
<td>116</td>
<td>0.7902</td>
<td>0.0063</td>
<td>1.0622</td>
<td>0.0040</td>
<td>1.2504</td>
<td>0.0107</td>
</tr>
<tr>
<td>120</td>
<td>0.7458</td>
<td>0.0025</td>
<td>1.0082</td>
<td>0.0081</td>
<td>1.1677</td>
<td>0.0041</td>
</tr>
<tr>
<td>124</td>
<td>0.6878</td>
<td>0.0073</td>
<td>0.9448</td>
<td>0.0071</td>
<td>1.0927</td>
<td>0.0090</td>
</tr>
<tr>
<td>128</td>
<td>0.6530</td>
<td>0.0091</td>
<td>0.8687</td>
<td>0.0070</td>
<td>1.0175</td>
<td>0.0079</td>
</tr>
<tr>
<td>132</td>
<td>0.5859</td>
<td>0.0033</td>
<td>0.7954</td>
<td>0.0080</td>
<td>0.9252</td>
<td>0.0076</td>
</tr>
<tr>
<td>136</td>
<td>0.4854</td>
<td>0.0128</td>
<td>0.7038</td>
<td>0.0055</td>
<td>0.8338</td>
<td>0.0110</td>
</tr>
<tr>
<td>140</td>
<td>0.3785</td>
<td>0.0063</td>
<td>0.6179</td>
<td>0.0042</td>
<td>0.7172</td>
<td>0.0128</td>
</tr>
<tr>
<td>144</td>
<td>0.2846</td>
<td>0.0030</td>
<td>0.4717</td>
<td>0.0088</td>
<td>0.5953</td>
<td>0.0096</td>
</tr>
<tr>
<td>148</td>
<td>0.2061</td>
<td>0.0099</td>
<td>0.3441</td>
<td>0.0111</td>
<td>0.4506</td>
<td>0.0056</td>
</tr>
<tr>
<td>152</td>
<td>0.1395</td>
<td>0.0040</td>
<td>0.2305</td>
<td>0.0071</td>
<td>0.3093</td>
<td>0.0062</td>
</tr>
<tr>
<td>156</td>
<td>0.0604</td>
<td>0.0033</td>
<td>0.1317</td>
<td>0.0058</td>
<td>0.1749</td>
<td>0.0074</td>
</tr>
<tr>
<td>160</td>
<td>0.0327</td>
<td>0.0030</td>
<td>0.0506</td>
<td>0.0016</td>
<td>0.0705</td>
<td>0.0049</td>
</tr>
<tr>
<td>164</td>
<td>0.0082</td>
<td>0.0013</td>
<td>0.0088</td>
<td>0.0006</td>
<td>0.0137</td>
<td>0.0011</td>
</tr>
<tr>
<td>168</td>
<td>0.0016</td>
<td>0.0006</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>172</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0022</td>
<td>0.0002</td>
<td>0.0041</td>
<td>0.0001</td>
</tr>
<tr>
<td>176</td>
<td>0.0019</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>180</td>
<td>0.0084</td>
<td>0.0015</td>
<td>0.0086</td>
<td>0.0007</td>
<td>0.0117</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

r/R = 0.984

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.1161</td>
<td>0.0534</td>
<td>0.1716</td>
<td>0.0830</td>
<td>0.2940</td>
<td>0.1353</td>
</tr>
<tr>
<td>6</td>
<td>0.1604</td>
<td>0.0609</td>
<td>0.2774</td>
<td>0.0644</td>
<td>0.4938</td>
<td>0.1285</td>
</tr>
<tr>
<td>12</td>
<td>0.2834</td>
<td>0.0629</td>
<td>0.4196</td>
<td>0.0692</td>
<td>0.6983</td>
<td>0.0880</td>
</tr>
<tr>
<td>14</td>
<td>0.3701</td>
<td>0.0630</td>
<td>0.5275</td>
<td>0.0876</td>
<td>0.7980</td>
<td>0.0841</td>
</tr>
<tr>
<td>16</td>
<td>0.4424</td>
<td>0.0741</td>
<td>0.6188</td>
<td>0.0755</td>
<td>0.9118</td>
<td>0.0878</td>
</tr>
<tr>
<td>18</td>
<td>0.5157</td>
<td>0.0816</td>
<td>0.6855</td>
<td>0.0791</td>
<td>1.0048</td>
<td>0.1022</td>
</tr>
<tr>
<td>20</td>
<td>0.5816</td>
<td>0.0922</td>
<td>0.7391</td>
<td>0.0796</td>
<td>1.1099</td>
<td>0.1251</td>
</tr>
<tr>
<td>22</td>
<td>0.6325</td>
<td>0.0922</td>
<td>0.7879</td>
<td>0.0996</td>
<td>1.1694</td>
<td>0.1413</td>
</tr>
<tr>
<td>24</td>
<td>0.6682</td>
<td>0.1049</td>
<td>0.8437</td>
<td>0.1223</td>
<td>1.2577</td>
<td>0.1680</td>
</tr>
<tr>
<td>26</td>
<td>0.7241</td>
<td>0.1235</td>
<td>0.9155</td>
<td>0.1531</td>
<td>1.3614</td>
<td>0.1993</td>
</tr>
<tr>
<td>28</td>
<td>0.8040</td>
<td>0.1588</td>
<td>1.0036</td>
<td>0.1894</td>
<td>1.4671</td>
<td>0.2347</td>
</tr>
<tr>
<td>30</td>
<td>0.8890</td>
<td>0.1785</td>
<td>1.1121</td>
<td>0.2284</td>
<td>1.5998</td>
<td>0.2684</td>
</tr>
<tr>
<td>32</td>
<td>0.9858</td>
<td>0.2257</td>
<td>1.2272</td>
<td>0.2704</td>
<td>1.7320</td>
<td>0.3013</td>
</tr>
</tbody>
</table>

r/R = 0.981
<table>
<thead>
<tr>
<th>θ deg.</th>
<th>\bar{u} m/sec</th>
<th>u' m/sec</th>
<th>\bar{u} m/sec</th>
<th>u' m/sec</th>
<th>\bar{u} m/sec</th>
<th>u' m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1.1154</td>
<td>0.2655</td>
<td>1.3962</td>
<td>0.3193</td>
<td>1.9690</td>
<td>0.3611</td>
</tr>
<tr>
<td>40</td>
<td>1.2384</td>
<td>0.3272</td>
<td>1.5175</td>
<td>0.3745</td>
<td>2.1915</td>
<td>0.4221</td>
</tr>
<tr>
<td>44</td>
<td>1.3654</td>
<td>0.3739</td>
<td>1.7041</td>
<td>0.4054</td>
<td>2.3792</td>
<td>0.4547</td>
</tr>
<tr>
<td>48</td>
<td>1.5686</td>
<td>0.4187</td>
<td>1.8652</td>
<td>0.4388</td>
<td>2.6197</td>
<td>0.4560</td>
</tr>
<tr>
<td>52</td>
<td>1.6828</td>
<td>0.4248</td>
<td>2.0333</td>
<td>0.4442</td>
<td>2.8492</td>
<td>0.4453</td>
</tr>
<tr>
<td>56</td>
<td>1.7636</td>
<td>0.4207</td>
<td>2.1452</td>
<td>0.4514</td>
<td>2.9400</td>
<td>0.4566</td>
</tr>
<tr>
<td>60</td>
<td>1.8286</td>
<td>0.4076</td>
<td>2.2499</td>
<td>0.4518</td>
<td>3.1060</td>
<td>0.4586</td>
</tr>
<tr>
<td>64</td>
<td>1.9466</td>
<td>0.4041</td>
<td>2.3708</td>
<td>0.4863</td>
<td>3.2852</td>
<td>0.4592</td>
</tr>
<tr>
<td>68</td>
<td>2.0000</td>
<td>0.4324</td>
<td>2.4300</td>
<td>0.4437</td>
<td>3.4210</td>
<td>0.4097</td>
</tr>
<tr>
<td>72</td>
<td>2.1032</td>
<td>0.4275</td>
<td>2.5282</td>
<td>0.4380</td>
<td>3.5521</td>
<td>0.4671</td>
</tr>
<tr>
<td>76</td>
<td>2.1631</td>
<td>0.3764</td>
<td>2.6479</td>
<td>0.4289</td>
<td>3.6767</td>
<td>0.4325</td>
</tr>
<tr>
<td>80</td>
<td>2.2167</td>
<td>0.3059</td>
<td>2.6572</td>
<td>0.3186</td>
<td>3.7516</td>
<td>0.3347</td>
</tr>
<tr>
<td>84</td>
<td>2.1763</td>
<td>0.1811</td>
<td>2.6489</td>
<td>0.1956</td>
<td>3.7345</td>
<td>0.2316</td>
</tr>
<tr>
<td>88</td>
<td>2.1186</td>
<td>0.1144</td>
<td>2.5982</td>
<td>0.1366</td>
<td>3.6743</td>
<td>0.1620</td>
</tr>
<tr>
<td>92</td>
<td>2.0741</td>
<td>0.0684</td>
<td>2.5459</td>
<td>0.0744</td>
<td>3.6151</td>
<td>0.0953</td>
</tr>
<tr>
<td>96</td>
<td>2.0519</td>
<td>0.0380</td>
<td>2.5246</td>
<td>0.0450</td>
<td>3.5843</td>
<td>0.0480</td>
</tr>
<tr>
<td>100</td>
<td>2.0180</td>
<td>0.0186</td>
<td>2.4691</td>
<td>0.0259</td>
<td>3.5579</td>
<td>0.0190</td>
</tr>
<tr>
<td>104</td>
<td>1.9424</td>
<td>0.0135</td>
<td>2.4026</td>
<td>0.0217</td>
<td>3.4661</td>
<td>0.0257</td>
</tr>
<tr>
<td>108</td>
<td>1.8980</td>
<td>0.0088</td>
<td>2.3398</td>
<td>0.0012</td>
<td>3.3902</td>
<td>0.0154</td>
</tr>
<tr>
<td>112</td>
<td>1.8170</td>
<td>0.0116</td>
<td>2.2580</td>
<td>0.0210</td>
<td>3.2888</td>
<td>0.0000</td>
</tr>
<tr>
<td>116</td>
<td>1.7318</td>
<td>0.0114</td>
<td>2.1524</td>
<td>0.0097</td>
<td>3.1533</td>
<td>0.0127</td>
</tr>
<tr>
<td>120</td>
<td>1.6515</td>
<td>0.0026</td>
<td>2.0488</td>
<td>0.0179</td>
<td>3.0317</td>
<td>0.0020</td>
</tr>
<tr>
<td>124</td>
<td>1.5635</td>
<td>0.0070</td>
<td>1.9355</td>
<td>0.0116</td>
<td>2.9058</td>
<td>0.0079</td>
</tr>
<tr>
<td>128</td>
<td>1.4546</td>
<td>0.0116</td>
<td>1.8172</td>
<td>0.0054</td>
<td>2.7336</td>
<td>0.0121</td>
</tr>
<tr>
<td>132</td>
<td>1.3361</td>
<td>0.0149</td>
<td>1.6903</td>
<td>0.0157</td>
<td>2.5548</td>
<td>0.0000</td>
</tr>
<tr>
<td>136</td>
<td>1.2183</td>
<td>0.0092</td>
<td>1.5457</td>
<td>0.0115</td>
<td>2.3485</td>
<td>0.0137</td>
</tr>
<tr>
<td>140</td>
<td>1.0667</td>
<td>0.0124</td>
<td>1.3675</td>
<td>0.0140</td>
<td>2.1189</td>
<td>0.0136</td>
</tr>
<tr>
<td>144</td>
<td>0.9028</td>
<td>0.0081</td>
<td>1.1706</td>
<td>0.0085</td>
<td>1.8631</td>
<td>0.0065</td>
</tr>
<tr>
<td>148</td>
<td>0.7579</td>
<td>0.0116</td>
<td>0.9944</td>
<td>0.0098</td>
<td>1.6397</td>
<td>0.0143</td>
</tr>
<tr>
<td>152</td>
<td>0.6464</td>
<td>0.0020</td>
<td>0.8262</td>
<td>0.0061</td>
<td>1.4033</td>
<td>0.0076</td>
</tr>
<tr>
<td>156</td>
<td>0.4054</td>
<td>0.0120</td>
<td>0.6557</td>
<td>0.0070</td>
<td>1.1269</td>
<td>0.0090</td>
</tr>
<tr>
<td>160</td>
<td>0.1983</td>
<td>0.0074</td>
<td>0.3804</td>
<td>0.0080</td>
<td>0.8470</td>
<td>0.0083</td>
</tr>
<tr>
<td>164</td>
<td>0.0553</td>
<td>0.0030</td>
<td>0.1332</td>
<td>0.0077</td>
<td>0.5494</td>
<td>0.0136</td>
</tr>
<tr>
<td>168</td>
<td>0.0022</td>
<td>0.0010</td>
<td>0.0137</td>
<td>0.0017</td>
<td>0.1929</td>
<td>0.0060</td>
</tr>
<tr>
<td>172</td>
<td>0.0053</td>
<td>0.0007</td>
<td>0.0038</td>
<td>0.0004</td>
<td>0.0116</td>
<td>0.0014</td>
</tr>
<tr>
<td>176</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0077</td>
<td>0.0009</td>
</tr>
<tr>
<td>180</td>
<td>0.0277</td>
<td>0.0019</td>
<td>0.0476</td>
<td>0.0038</td>
<td>0.0645</td>
<td>0.0032</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>0.3266</td>
<td>0.1696</td>
<td>0.2064</td>
<td>0.1675</td>
<td>0.0785</td>
<td>0.0973</td>
</tr>
<tr>
<td>8</td>
<td>0.5746</td>
<td>0.1386</td>
<td>0.5877</td>
<td>0.1775</td>
<td>0.4488</td>
<td>0.1776</td>
</tr>
<tr>
<td>12</td>
<td>0.8030</td>
<td>0.1016</td>
<td>0.9220</td>
<td>0.1323</td>
<td>0.8599</td>
<td>0.1336</td>
</tr>
<tr>
<td>14</td>
<td>0.9426</td>
<td>0.1024</td>
<td>1.0984</td>
<td>0.1267</td>
<td>1.0638</td>
<td>0.1254</td>
</tr>
<tr>
<td>16</td>
<td>1.0669</td>
<td>0.0987</td>
<td>1.2743</td>
<td>0.1249</td>
<td>1.2543</td>
<td>0.1299</td>
</tr>
<tr>
<td>18</td>
<td>1.1857</td>
<td>0.1200</td>
<td>1.4324</td>
<td>0.1387</td>
<td>1.4433</td>
<td>0.1316</td>
</tr>
<tr>
<td>20</td>
<td>1.2993</td>
<td>0.1349</td>
<td>1.5930</td>
<td>0.1357</td>
<td>1.6206</td>
<td>0.1321</td>
</tr>
<tr>
<td>22</td>
<td>1.4153</td>
<td>0.1519</td>
<td>1.7362</td>
<td>0.1352</td>
<td>1.7782</td>
<td>0.1331</td>
</tr>
<tr>
<td>24</td>
<td>1.5184</td>
<td>0.1724</td>
<td>1.8556</td>
<td>0.1420</td>
<td>1.9255</td>
<td>0.1233</td>
</tr>
<tr>
<td>26</td>
<td>1.6256</td>
<td>0.2134</td>
<td>1.9964</td>
<td>0.1477</td>
<td>2.0803</td>
<td>0.1239</td>
</tr>
<tr>
<td>28</td>
<td>1.7611</td>
<td>0.2472</td>
<td>2.1374</td>
<td>0.1661</td>
<td>2.2392</td>
<td>0.1245</td>
</tr>
<tr>
<td>30</td>
<td>1.9085</td>
<td>0.2647</td>
<td>2.3062</td>
<td>0.1804</td>
<td>2.4106</td>
<td>0.1138</td>
</tr>
<tr>
<td>32</td>
<td>2.0432</td>
<td>0.2823</td>
<td>2.4689</td>
<td>0.1857</td>
<td>2.5652</td>
<td>0.1114</td>
</tr>
<tr>
<td>36</td>
<td>2.3248</td>
<td>0.3322</td>
<td>2.7819</td>
<td>0.2007</td>
<td>2.8673</td>
<td>0.1097</td>
</tr>
<tr>
<td>40</td>
<td>2.5423</td>
<td>0.3548</td>
<td>3.0143</td>
<td>0.1895</td>
<td>3.1032</td>
<td>0.1094</td>
</tr>
<tr>
<td>44</td>
<td>2.7610</td>
<td>0.3834</td>
<td>3.2767</td>
<td>0.1971</td>
<td>3.3486</td>
<td>0.1066</td>
</tr>
<tr>
<td>48</td>
<td>3.0323</td>
<td>0.3695</td>
<td>3.5661</td>
<td>0.1517</td>
<td>3.6141</td>
<td>0.0868</td>
</tr>
<tr>
<td>52</td>
<td>3.3003</td>
<td>0.3491</td>
<td>3.7929</td>
<td>0.1410</td>
<td>3.8302</td>
<td>0.0754</td>
</tr>
<tr>
<td>56</td>
<td>3.4609</td>
<td>0.3552</td>
<td>3.9723</td>
<td>0.1402</td>
<td>3.9991</td>
<td>0.0715</td>
</tr>
<tr>
<td>60</td>
<td>3.6057</td>
<td>0.3740</td>
<td>4.1292</td>
<td>0.1368</td>
<td>4.1659</td>
<td>0.0554</td>
</tr>
<tr>
<td>64</td>
<td>3.8199</td>
<td>0.3617</td>
<td>4.3411</td>
<td>0.1266</td>
<td>4.3751</td>
<td>0.0567</td>
</tr>
<tr>
<td>68</td>
<td>3.9733</td>
<td>0.3285</td>
<td>4.4797</td>
<td>0.0799</td>
<td>4.4914</td>
<td>0.0466</td>
</tr>
<tr>
<td>72</td>
<td>4.1334</td>
<td>0.3130</td>
<td>4.5732</td>
<td>0.0683</td>
<td>4.5846</td>
<td>0.0220</td>
</tr>
<tr>
<td>76</td>
<td>4.2055</td>
<td>0.2983</td>
<td>4.6705</td>
<td>0.0544</td>
<td>4.6683</td>
<td>0.0201</td>
</tr>
<tr>
<td>80</td>
<td>4.3326</td>
<td>0.2363</td>
<td>4.7553</td>
<td>0.0280</td>
<td>4.7447</td>
<td>0.0160</td>
</tr>
<tr>
<td>84</td>
<td>4.3651</td>
<td>0.1705</td>
<td>4.8032</td>
<td>0.0331</td>
<td>4.7879</td>
<td>0.0131</td>
</tr>
<tr>
<td>88</td>
<td>4.3221</td>
<td>0.1282</td>
<td>4.8065</td>
<td>0.0269</td>
<td>4.7669</td>
<td>0.0103</td>
</tr>
<tr>
<td>92</td>
<td>4.2636</td>
<td>0.0809</td>
<td>4.8096</td>
<td>0.0151</td>
<td>4.7906</td>
<td>0.0084</td>
</tr>
<tr>
<td>96</td>
<td>4.2407</td>
<td>0.0414</td>
<td>4.8108</td>
<td>0.0134</td>
<td>4.7921</td>
<td>0.0101</td>
</tr>
<tr>
<td>100</td>
<td>4.2050</td>
<td>0.0271</td>
<td>4.7825</td>
<td>0.0206</td>
<td>4.7644</td>
<td>0.0213</td>
</tr>
<tr>
<td>104</td>
<td>4.1098</td>
<td>0.0125</td>
<td>4.7245</td>
<td>0.0027</td>
<td>4.7086</td>
<td>0.0076</td>
</tr>
<tr>
<td>108</td>
<td>4.0408</td>
<td>0.0156</td>
<td>4.6734</td>
<td>0.0181</td>
<td>4.6590</td>
<td>0.0173</td>
</tr>
<tr>
<td>112</td>
<td>3.9584</td>
<td>0.0033</td>
<td>4.5935</td>
<td>0.0166</td>
<td>4.5801</td>
<td>0.0153</td>
</tr>
<tr>
<td>116</td>
<td>3.8013</td>
<td>0.0171</td>
<td>4.4415</td>
<td>0.0000</td>
<td>4.4261</td>
<td>0.0064</td>
</tr>
<tr>
<td>120</td>
<td>3.6538</td>
<td>0.0179</td>
<td>4.2930</td>
<td>0.0190</td>
<td>4.2830</td>
<td>0.0252</td>
</tr>
<tr>
<td>124</td>
<td>3.5311</td>
<td>0.0000</td>
<td>4.1414</td>
<td>0.0171</td>
<td>4.1327</td>
<td>0.0194</td>
</tr>
<tr>
<td>128</td>
<td>3.3465</td>
<td>0.0207</td>
<td>3.9817</td>
<td>0.0034</td>
<td>3.9691</td>
<td>0.0103</td>
</tr>
<tr>
<td>132</td>
<td>3.1395</td>
<td>0.0173</td>
<td>3.7988</td>
<td>0.0033</td>
<td>3.7882</td>
<td>0.0116</td>
</tr>
<tr>
<td>136</td>
<td>2.9443</td>
<td>0.0099</td>
<td>3.5836</td>
<td>0.0103</td>
<td>3.5822</td>
<td>0.0163</td>
</tr>
<tr>
<td>140</td>
<td>2.6872</td>
<td>0.0244</td>
<td>3.3488</td>
<td>0.0235</td>
<td>3.3680</td>
<td>0.0207</td>
</tr>
<tr>
<td>144</td>
<td>2.4137</td>
<td>0.0132</td>
<td>3.0613</td>
<td>0.0114</td>
<td>3.0937</td>
<td>0.0180</td>
</tr>
<tr>
<td>148</td>
<td>2.1102</td>
<td>0.0105</td>
<td>2.7826</td>
<td>0.0101</td>
<td>2.8065</td>
<td>0.0135</td>
</tr>
<tr>
<td>152</td>
<td>1.8340</td>
<td>0.0189</td>
<td>2.5215</td>
<td>0.0259</td>
<td>2.5389</td>
<td>0.0040</td>
</tr>
</tbody>
</table>
Table 1:

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>1.5473</td>
<td>0.0100</td>
<td>2.1959</td>
<td>0.0075</td>
<td>2.2465</td>
<td>0.0198</td>
</tr>
<tr>
<td>160</td>
<td>1.2105</td>
<td>0.0094</td>
<td>1.8338</td>
<td>0.0104</td>
<td>1.8963</td>
<td>0.0110</td>
</tr>
<tr>
<td>164</td>
<td>0.8560</td>
<td>0.0061</td>
<td>1.4620</td>
<td>0.0009</td>
<td>1.5581</td>
<td>0.0030</td>
</tr>
<tr>
<td>168</td>
<td>0.5059</td>
<td>0.0100</td>
<td>1.0884</td>
<td>0.0032</td>
<td>1.2130</td>
<td>0.0094</td>
</tr>
<tr>
<td>172</td>
<td>0.1423</td>
<td>0.0048</td>
<td>0.7223</td>
<td>0.0018</td>
<td>0.8666</td>
<td>0.0082</td>
</tr>
<tr>
<td>176</td>
<td>0.0031</td>
<td>0.0008</td>
<td>0.2353</td>
<td>0.0099</td>
<td>0.4639</td>
<td>0.0078</td>
</tr>
<tr>
<td>180</td>
<td>0.0228</td>
<td>0.0019</td>
<td>0.0020</td>
<td>0.0008</td>
<td>0.0295</td>
<td>0.0027</td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0536</td>
<td>0.0773</td>
<td>0.0360</td>
<td>0.0568</td>
<td>0.0199</td>
<td>0.0387</td>
</tr>
<tr>
<td>8</td>
<td>0.3680</td>
<td>0.1665</td>
<td>0.2841</td>
<td>0.1526</td>
<td>0.2486</td>
<td>0.1416</td>
</tr>
<tr>
<td>12</td>
<td>0.3018</td>
<td>0.1317</td>
<td>0.7402</td>
<td>0.1255</td>
<td>0.6919</td>
<td>0.1225</td>
</tr>
<tr>
<td>14</td>
<td>1.0091</td>
<td>0.1256</td>
<td>0.9506</td>
<td>0.1249</td>
<td>0.8937</td>
<td>0.1031</td>
</tr>
<tr>
<td>16</td>
<td>1.2106</td>
<td>0.1319</td>
<td>1.1448</td>
<td>0.1212</td>
<td>1.1083</td>
<td>0.1165</td>
</tr>
<tr>
<td>18</td>
<td>1.4118</td>
<td>0.1296</td>
<td>1.3646</td>
<td>0.1337</td>
<td>1.3288</td>
<td>0.1394</td>
</tr>
<tr>
<td>20</td>
<td>1.5987</td>
<td>0.1307</td>
<td>1.5587</td>
<td>0.1342</td>
<td>1.5526</td>
<td>0.1432</td>
</tr>
<tr>
<td>22</td>
<td>1.7724</td>
<td>0.1376</td>
<td>1.7315</td>
<td>0.1339</td>
<td>1.7434</td>
<td>0.1352</td>
</tr>
<tr>
<td>24</td>
<td>1.9308</td>
<td>0.1363</td>
<td>1.9090</td>
<td>0.1348</td>
<td>1.9112</td>
<td>0.1382</td>
</tr>
<tr>
<td>26</td>
<td>2.0906</td>
<td>0.1272</td>
<td>2.0599</td>
<td>0.1388</td>
<td>2.0640</td>
<td>0.1400</td>
</tr>
<tr>
<td>28</td>
<td>2.2451</td>
<td>0.1311</td>
<td>2.2385</td>
<td>0.1387</td>
<td>2.2378</td>
<td>0.1461</td>
</tr>
<tr>
<td>30</td>
<td>2.4241</td>
<td>0.1295</td>
<td>2.4150</td>
<td>0.1164</td>
<td>2.4201</td>
<td>0.1424</td>
</tr>
<tr>
<td>32</td>
<td>2.5848</td>
<td>0.1180</td>
<td>2.5801</td>
<td>0.1210</td>
<td>2.5780</td>
<td>0.1347</td>
</tr>
<tr>
<td>36</td>
<td>2.8912</td>
<td>0.1164</td>
<td>2.8758</td>
<td>0.1239</td>
<td>2.8775</td>
<td>0.1310</td>
</tr>
<tr>
<td>40</td>
<td>3.1227</td>
<td>0.1086</td>
<td>3.0961</td>
<td>0.1212</td>
<td>3.0999</td>
<td>0.1165</td>
</tr>
<tr>
<td>44</td>
<td>3.3684</td>
<td>0.1032</td>
<td>3.3487</td>
<td>0.1098</td>
<td>3.3514</td>
<td>0.1199</td>
</tr>
<tr>
<td>48</td>
<td>3.6343</td>
<td>0.0892</td>
<td>3.5965</td>
<td>0.0922</td>
<td>3.5977</td>
<td>0.0944</td>
</tr>
<tr>
<td>52</td>
<td>3.8378</td>
<td>0.0803</td>
<td>3.7947</td>
<td>0.0865</td>
<td>3.7998</td>
<td>0.0930</td>
</tr>
<tr>
<td>56</td>
<td>4.0079</td>
<td>0.0706</td>
<td>3.9623</td>
<td>0.0719</td>
<td>3.9623</td>
<td>0.0874</td>
</tr>
<tr>
<td>60</td>
<td>4.1622</td>
<td>0.0658</td>
<td>4.1259</td>
<td>0.0697</td>
<td>4.1176</td>
<td>0.0667</td>
</tr>
<tr>
<td>64</td>
<td>4.3672</td>
<td>0.0580</td>
<td>4.3343</td>
<td>0.0607</td>
<td>4.3144</td>
<td>0.0662</td>
</tr>
<tr>
<td>68</td>
<td>4.4824</td>
<td>0.0432</td>
<td>4.4454</td>
<td>0.0527</td>
<td>4.4337</td>
<td>0.0472</td>
</tr>
<tr>
<td>72</td>
<td>4.5884</td>
<td>0.0246</td>
<td>4.5372</td>
<td>0.0240</td>
<td>4.5348</td>
<td>0.0337</td>
</tr>
<tr>
<td>76</td>
<td>4.6681</td>
<td>0.0207</td>
<td>4.6246</td>
<td>0.0208</td>
<td>4.6137</td>
<td>0.0304</td>
</tr>
<tr>
<td>80</td>
<td>4.7408</td>
<td>0.0207</td>
<td>4.6954</td>
<td>0.0124</td>
<td>4.6823</td>
<td>0.0175</td>
</tr>
<tr>
<td>84</td>
<td>4.7817</td>
<td>0.0208</td>
<td>4.7342</td>
<td>0.0146</td>
<td>4.7182</td>
<td>0.0131</td>
</tr>
<tr>
<td>88</td>
<td>4.7830</td>
<td>0.0205</td>
<td>4.7340</td>
<td>0.0136</td>
<td>4.7183</td>
<td>0.0129</td>
</tr>
<tr>
<td>92</td>
<td>4.7917</td>
<td>0.0157</td>
<td>4.7393</td>
<td>0.0100</td>
<td>4.7226</td>
<td>0.0172</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>$r/R = 0.594$</td>
<td></td>
<td></td>
<td>$r/R = 0.461$</td>
<td></td>
<td>$r/R = 0.328$</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>4.7951</td>
<td>0.0116</td>
<td>4.7413</td>
<td>0.0131</td>
<td>4.7267</td>
<td>0.0196</td>
</tr>
<tr>
<td>100</td>
<td>4.7581</td>
<td>0.0067</td>
<td>4.7094</td>
<td>0.0194</td>
<td>4.7114</td>
<td>0.0119</td>
</tr>
<tr>
<td>104</td>
<td>4.7155</td>
<td>0.0032</td>
<td>4.6562</td>
<td>0.0037</td>
<td>4.6533</td>
<td>0.0017</td>
</tr>
<tr>
<td>108</td>
<td>4.6379</td>
<td>0.0215</td>
<td>4.6053</td>
<td>0.0187</td>
<td>4.5831</td>
<td>0.0189</td>
</tr>
<tr>
<td>112</td>
<td>4.5643</td>
<td>0.0185</td>
<td>4.5281</td>
<td>0.0151</td>
<td>4.5033</td>
<td>0.0182</td>
</tr>
<tr>
<td>116</td>
<td>4.4332</td>
<td>0.0000</td>
<td>4.3768</td>
<td>0.0053</td>
<td>4.3927</td>
<td>0.0040</td>
</tr>
<tr>
<td>120</td>
<td>4.2783</td>
<td>0.0091</td>
<td>4.2358</td>
<td>0.0237</td>
<td>4.2283</td>
<td>0.0172</td>
</tr>
<tr>
<td>124</td>
<td>4.1266</td>
<td>0.0109</td>
<td>4.0826</td>
<td>0.0185</td>
<td>4.0781</td>
<td>0.0155</td>
</tr>
<tr>
<td>128</td>
<td>3.9740</td>
<td>0.0029</td>
<td>3.9238</td>
<td>0.0106</td>
<td>3.9364</td>
<td>0.0041</td>
</tr>
<tr>
<td>132</td>
<td>3.7916</td>
<td>0.0033</td>
<td>3.7440</td>
<td>0.0107</td>
<td>3.7535</td>
<td>0.0091</td>
</tr>
<tr>
<td>136</td>
<td>3.5788</td>
<td>0.0092</td>
<td>3.5383</td>
<td>0.0157</td>
<td>3.5339</td>
<td>0.0167</td>
</tr>
<tr>
<td>140</td>
<td>3.3559</td>
<td>0.0217</td>
<td>3.3228</td>
<td>0.0207</td>
<td>3.3021</td>
<td>0.0233</td>
</tr>
<tr>
<td>144</td>
<td>3.0817</td>
<td>0.0174</td>
<td>3.0532</td>
<td>0.0182</td>
<td>3.0333</td>
<td>0.0172</td>
</tr>
<tr>
<td>148</td>
<td>2.8046</td>
<td>0.0086</td>
<td>2.7733</td>
<td>0.0151</td>
<td>2.7696</td>
<td>0.0131</td>
</tr>
<tr>
<td>152</td>
<td>2.5438</td>
<td>0.0000</td>
<td>2.5056</td>
<td>0.0000</td>
<td>2.5167</td>
<td>0.0028</td>
</tr>
<tr>
<td>156</td>
<td>2.2304</td>
<td>0.0164</td>
<td>2.2211</td>
<td>0.0196</td>
<td>2.1986</td>
<td>0.0121</td>
</tr>
<tr>
<td>160</td>
<td>1.8978</td>
<td>0.0050</td>
<td>1.8746</td>
<td>0.0117</td>
<td>1.8753</td>
<td>0.0045</td>
</tr>
<tr>
<td>164</td>
<td>1.5613</td>
<td>0.0021</td>
<td>1.5343</td>
<td>0.0000</td>
<td>1.5418</td>
<td>0.0038</td>
</tr>
<tr>
<td>168</td>
<td>1.2106</td>
<td>0.0058</td>
<td>1.1973</td>
<td>0.0089</td>
<td>1.1952</td>
<td>0.0067</td>
</tr>
<tr>
<td>172</td>
<td>0.8641</td>
<td>0.0053</td>
<td>0.8620</td>
<td>0.0094</td>
<td>0.8552</td>
<td>0.0080</td>
</tr>
<tr>
<td>176</td>
<td>0.4648</td>
<td>0.0087</td>
<td>0.4546</td>
<td>0.0081</td>
<td>0.4560</td>
<td>0.0073</td>
</tr>
<tr>
<td>180</td>
<td>0.0341</td>
<td>0.0036</td>
<td>0.0354</td>
<td>0.0030</td>
<td>0.0362</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s/d = 0.33$</td>
<td></td>
<td></td>
<td>$r/R = 0.194$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0205</td>
<td>0.0365</td>
<td>0.0241</td>
<td>0.0486</td>
</tr>
<tr>
<td>8</td>
<td>0.2157</td>
<td>0.1299</td>
<td>0.2084</td>
<td>0.1402</td>
</tr>
<tr>
<td>12</td>
<td>0.6604</td>
<td>0.1171</td>
<td>0.6475</td>
<td>0.1280</td>
</tr>
<tr>
<td>14</td>
<td>0.8715</td>
<td>0.1041</td>
<td>0.8665</td>
<td>0.1103</td>
</tr>
<tr>
<td>16</td>
<td>1.0866</td>
<td>0.1220</td>
<td>1.0795</td>
<td>0.1173</td>
</tr>
<tr>
<td>18</td>
<td>1.3080</td>
<td>0.1286</td>
<td>1.3149</td>
<td>0.1249</td>
</tr>
<tr>
<td>20</td>
<td>1.5347</td>
<td>0.1368</td>
<td>1.5472</td>
<td>0.1336</td>
</tr>
<tr>
<td>22</td>
<td>1.7324</td>
<td>0.1372</td>
<td>1.7456</td>
<td>0.1431</td>
</tr>
<tr>
<td>24</td>
<td>1.9053</td>
<td>0.1491</td>
<td>1.9121</td>
<td>0.1418</td>
</tr>
<tr>
<td>26</td>
<td>2.0707</td>
<td>0.1399</td>
<td>2.0792</td>
<td>0.1377</td>
</tr>
<tr>
<td>28</td>
<td>2.2340</td>
<td>0.1530</td>
<td>2.2517</td>
<td>0.1468</td>
</tr>
<tr>
<td>30</td>
<td>2.4150</td>
<td>0.1435</td>
<td>2.4257</td>
<td>0.1474</td>
</tr>
<tr>
<td>32</td>
<td>2.5871</td>
<td>0.1345</td>
<td>2.5843</td>
<td>0.1290</td>
</tr>
<tr>
<td>36</td>
<td>2.8926</td>
<td>0.1234</td>
<td>2.8915</td>
<td>0.1221</td>
</tr>
<tr>
<td>(\theta) (deg)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>40</td>
<td>3.1142</td>
<td>0.1231</td>
<td>3.1064</td>
<td>0.1201</td>
</tr>
<tr>
<td>44</td>
<td>3.3570</td>
<td>0.1179</td>
<td>3.3511</td>
<td>0.1178</td>
</tr>
<tr>
<td>48</td>
<td>3.5990</td>
<td>0.1116</td>
<td>3.6026</td>
<td>0.1034</td>
</tr>
<tr>
<td>52</td>
<td>3.8103</td>
<td>0.0989</td>
<td>3.8128</td>
<td>0.0970</td>
</tr>
<tr>
<td>56</td>
<td>3.9553</td>
<td>0.0886</td>
<td>3.9673</td>
<td>0.0873</td>
</tr>
<tr>
<td>60</td>
<td>4.1162</td>
<td>0.0754</td>
<td>4.1305</td>
<td>0.0802</td>
</tr>
<tr>
<td>64</td>
<td>4.3148</td>
<td>0.0662</td>
<td>4.3202</td>
<td>0.0659</td>
</tr>
<tr>
<td>68</td>
<td>4.4303</td>
<td>0.0483</td>
<td>4.4401</td>
<td>0.0605</td>
</tr>
<tr>
<td>72</td>
<td>4.5268</td>
<td>0.0379</td>
<td>4.5225</td>
<td>0.0372</td>
</tr>
<tr>
<td>76</td>
<td>4.6109</td>
<td>0.0292</td>
<td>4.6138</td>
<td>0.0213</td>
</tr>
<tr>
<td>80</td>
<td>4.6819</td>
<td>0.0173</td>
<td>4.6817</td>
<td>0.0184</td>
</tr>
<tr>
<td>84</td>
<td>4.7153</td>
<td>0.0065</td>
<td>4.7248</td>
<td>0.0198</td>
</tr>
<tr>
<td>88</td>
<td>4.7150</td>
<td>0.0072</td>
<td>4.7225</td>
<td>0.0190</td>
</tr>
<tr>
<td>92</td>
<td>4.7192</td>
<td>0.0140</td>
<td>4.7309</td>
<td>0.0209</td>
</tr>
<tr>
<td>96</td>
<td>4.7260</td>
<td>0.0192</td>
<td>4.7356</td>
<td>0.0209</td>
</tr>
<tr>
<td>100</td>
<td>4.7120</td>
<td>0.0088</td>
<td>4.7083</td>
<td>0.0125</td>
</tr>
<tr>
<td>104</td>
<td>4.6635</td>
<td>0.0176</td>
<td>4.6398</td>
<td>0.0175</td>
</tr>
<tr>
<td>108</td>
<td>4.5630</td>
<td>0.0188</td>
<td>4.5897</td>
<td>0.0052</td>
</tr>
<tr>
<td>112</td>
<td>4.5045</td>
<td>0.0167</td>
<td>4.5097</td>
<td>0.0018</td>
</tr>
<tr>
<td>116</td>
<td>4.3923</td>
<td>0.0000</td>
<td>4.3613</td>
<td>0.0171</td>
</tr>
<tr>
<td>120</td>
<td>4.2272</td>
<td>0.0169</td>
<td>4.2501</td>
<td>0.0279</td>
</tr>
<tr>
<td>124</td>
<td>4.0786</td>
<td>0.0144</td>
<td>4.0772</td>
<td>0.0155</td>
</tr>
<tr>
<td>128</td>
<td>3.9361</td>
<td>0.0000</td>
<td>3.9130</td>
<td>0.0210</td>
</tr>
<tr>
<td>132</td>
<td>3.7530</td>
<td>0.0083</td>
<td>3.7358</td>
<td>0.0181</td>
</tr>
<tr>
<td>136</td>
<td>3.5336</td>
<td>0.0163</td>
<td>3.5381</td>
<td>0.0197</td>
</tr>
<tr>
<td>140</td>
<td>3.3027</td>
<td>0.0220</td>
<td>3.3222</td>
<td>0.0192</td>
</tr>
<tr>
<td>144</td>
<td>3.0339</td>
<td>0.0163</td>
<td>3.0489</td>
<td>0.0079</td>
</tr>
<tr>
<td>148</td>
<td>2.7693</td>
<td>0.0130</td>
<td>2.7782</td>
<td>0.0198</td>
</tr>
<tr>
<td>152</td>
<td>2.5164</td>
<td>0.0000</td>
<td>2.4935</td>
<td>0.0101</td>
</tr>
<tr>
<td>156</td>
<td>2.1977</td>
<td>0.0108</td>
<td>2.2200</td>
<td>0.0062</td>
</tr>
<tr>
<td>160</td>
<td>1.8747</td>
<td>0.0026</td>
<td>1.8731</td>
<td>0.0090</td>
</tr>
<tr>
<td>164</td>
<td>1.5412</td>
<td>0.0042</td>
<td>1.5266</td>
<td>0.0083</td>
</tr>
<tr>
<td>168</td>
<td>1.1943</td>
<td>0.0061</td>
<td>1.1944</td>
<td>0.0025</td>
</tr>
<tr>
<td>172</td>
<td>0.8541</td>
<td>0.0073</td>
<td>0.8655</td>
<td>0.0017</td>
</tr>
<tr>
<td>176</td>
<td>0.4552</td>
<td>0.0068</td>
<td>0.4636</td>
<td>0.0090</td>
</tr>
<tr>
<td>180</td>
<td>0.0371</td>
<td>0.0027</td>
<td>0.0371</td>
<td>0.0030</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>u_m (m/sec)</td>
<td>θ (deg)</td>
<td>u_m (m/sec)</td>
<td>θ (deg)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2</td>
<td>0.0740</td>
<td>90</td>
<td>4.8078</td>
<td>178</td>
</tr>
<tr>
<td>4</td>
<td>0.1416</td>
<td>92</td>
<td>4.7992</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>0.2622</td>
<td>94</td>
<td>4.7978</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.4277</td>
<td>96</td>
<td>4.7884</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6108</td>
<td>98</td>
<td>4.7725</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7978</td>
<td>100</td>
<td>4.7460</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9845</td>
<td>102</td>
<td>4.7172</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1653</td>
<td>104</td>
<td>4.6798</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3450</td>
<td>106</td>
<td>4.6412</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.5180</td>
<td>108</td>
<td>4.5997</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.6693</td>
<td>110</td>
<td>4.5330</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.8101</td>
<td>112</td>
<td>4.4992</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.9557</td>
<td>114</td>
<td>4.4107</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.1193</td>
<td>116</td>
<td>4.3390</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.3029</td>
<td>118</td>
<td>4.2768</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.4641</td>
<td>120</td>
<td>4.1657</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.6323</td>
<td>122</td>
<td>4.1142</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.7818</td>
<td>124</td>
<td>4.0183</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.9018</td>
<td>126</td>
<td>3.9408</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.0013</td>
<td>128</td>
<td>3.8419</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.1438</td>
<td>130</td>
<td>3.7323</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.2800</td>
<td>132</td>
<td>3.6355</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.4149</td>
<td>134</td>
<td>3.5312</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.5546</td>
<td>136</td>
<td>3.4095</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.7027</td>
<td>138</td>
<td>3.3132</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.7859</td>
<td>140</td>
<td>3.1635</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.8752</td>
<td>142</td>
<td>3.0286</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.9519</td>
<td>144</td>
<td>2.8760</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4.0422</td>
<td>146</td>
<td>2.7438</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.1301</td>
<td>148</td>
<td>2.5885</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.2519</td>
<td>150</td>
<td>2.4567</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.3690</td>
<td>152</td>
<td>2.3195</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.4419</td>
<td>154</td>
<td>2.1730</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.5087</td>
<td>156</td>
<td>2.0135</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.6048</td>
<td>158</td>
<td>1.8552</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.6516</td>
<td>160</td>
<td>1.6741</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.6792</td>
<td>162</td>
<td>1.5017</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.7371</td>
<td>164</td>
<td>1.3370</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.7829</td>
<td>166</td>
<td>1.1752</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.8121</td>
<td>168</td>
<td>1.0047</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.8371</td>
<td>170</td>
<td>0.8403</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.8478</td>
<td>172</td>
<td>0.6877</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.8395</td>
<td>174</td>
<td>0.5349</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.8248</td>
<td>176</td>
<td>0.3457</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Ensemble-averaged velocity at s/d = 0.33
Figure 2: Streamwise velocity fluctuation at s/d = 0.33
Figure 3: Streamwise turbulence intensity, u'/\bar{u}, at $s/d = 0.33$
<table>
<thead>
<tr>
<th>θ deg.</th>
<th>r/R = 0.995</th>
<th>u m/sec</th>
<th>u' m/sec</th>
<th>r/R = 0.992</th>
<th>u m/sec</th>
<th>u' m/sec</th>
<th>r/R = 0.983</th>
<th>u m/sec</th>
<th>u' m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0499</td>
<td>0.0091</td>
<td></td>
<td>0.0392</td>
<td>0.0119</td>
<td></td>
<td>0.0644</td>
<td>0.0282</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0573</td>
<td>0.0087</td>
<td></td>
<td>0.0495</td>
<td>0.0100</td>
<td></td>
<td>0.0974</td>
<td>0.0301</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0727</td>
<td>0.0080</td>
<td></td>
<td>0.0690</td>
<td>0.0112</td>
<td></td>
<td>0.1587</td>
<td>0.0320</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.0973</td>
<td>0.0072</td>
<td></td>
<td>0.0999</td>
<td>0.0100</td>
<td></td>
<td>0.2471</td>
<td>0.0328</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1131</td>
<td>0.0098</td>
<td></td>
<td>0.1280</td>
<td>0.0131</td>
<td></td>
<td>0.3371</td>
<td>0.0380</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.1350</td>
<td>0.0298</td>
<td></td>
<td>0.1624</td>
<td>0.0561</td>
<td></td>
<td>0.4368</td>
<td>0.1359</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.2114</td>
<td>0.0510</td>
<td></td>
<td>0.2794</td>
<td>0.0860</td>
<td></td>
<td>0.6894</td>
<td>0.1521</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.2655</td>
<td>0.0707</td>
<td></td>
<td>0.3674</td>
<td>0.1130</td>
<td></td>
<td>0.8406</td>
<td>0.1750</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.2394</td>
<td>0.0413</td>
<td></td>
<td>0.3264</td>
<td>0.0671</td>
<td></td>
<td>0.7925</td>
<td>0.1097</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.2293</td>
<td>0.0224</td>
<td></td>
<td>0.3019</td>
<td>0.0383</td>
<td></td>
<td>0.7531</td>
<td>0.0607</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.2425</td>
<td>0.0162</td>
<td></td>
<td>0.3263</td>
<td>0.0286</td>
<td></td>
<td>0.7823</td>
<td>0.0461</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.2605</td>
<td>0.0181</td>
<td></td>
<td>0.3537</td>
<td>0.0261</td>
<td></td>
<td>0.8329</td>
<td>0.0465</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.2655</td>
<td>0.0197</td>
<td></td>
<td>0.3611</td>
<td>0.0272</td>
<td></td>
<td>0.8460</td>
<td>0.0480</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0.2662</td>
<td>0.0194</td>
<td></td>
<td>0.3627</td>
<td>0.0252</td>
<td></td>
<td>0.8515</td>
<td>0.0472</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.2694</td>
<td>0.0210</td>
<td></td>
<td>0.3659</td>
<td>0.0251</td>
<td></td>
<td>0.8547</td>
<td>0.0479</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.2760</td>
<td>0.0226</td>
<td></td>
<td>0.3745</td>
<td>0.0271</td>
<td></td>
<td>0.8672</td>
<td>0.0493</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0.2877</td>
<td>0.0271</td>
<td></td>
<td>0.3910</td>
<td>0.0354</td>
<td></td>
<td>0.8930</td>
<td>0.0614</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.3237</td>
<td>0.0588</td>
<td></td>
<td>0.4514</td>
<td>0.0950</td>
<td></td>
<td>0.9688</td>
<td>0.1438</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>0.3506</td>
<td>0.1015</td>
<td></td>
<td>0.4897</td>
<td>0.1306</td>
<td></td>
<td>1.0286</td>
<td>0.2312</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>0.3903</td>
<td>0.1464</td>
<td></td>
<td>0.5284</td>
<td>0.1946</td>
<td></td>
<td>1.1187</td>
<td>0.3568</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.4289</td>
<td>0.1799</td>
<td></td>
<td>0.5820</td>
<td>0.2273</td>
<td></td>
<td>1.2125</td>
<td>0.4251</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>0.4617</td>
<td>0.2317</td>
<td></td>
<td>0.6453</td>
<td>0.2757</td>
<td></td>
<td>1.3152</td>
<td>0.5137</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>0.5640</td>
<td>0.2439</td>
<td></td>
<td>0.7760</td>
<td>0.3438</td>
<td></td>
<td>1.4574</td>
<td>0.5600</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.6581</td>
<td>0.3043</td>
<td></td>
<td>0.8577</td>
<td>0.3539</td>
<td></td>
<td>1.6698</td>
<td>0.6266</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>0.6855</td>
<td>0.2908</td>
<td></td>
<td>0.8772</td>
<td>0.3576</td>
<td></td>
<td>1.7056</td>
<td>0.6200</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0.6994</td>
<td>0.2917</td>
<td></td>
<td>0.9276</td>
<td>0.3893</td>
<td></td>
<td>1.7444</td>
<td>0.6151</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0.6983</td>
<td>0.3068</td>
<td></td>
<td>0.9031</td>
<td>0.3658</td>
<td></td>
<td>1.8539</td>
<td>0.6365</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>0.6762</td>
<td>0.2712</td>
<td></td>
<td>0.9327</td>
<td>0.3724</td>
<td></td>
<td>1.7243</td>
<td>0.6100</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.6553</td>
<td>0.3134</td>
<td></td>
<td>0.8509</td>
<td>0.3702</td>
<td></td>
<td>1.6074</td>
<td>0.5988</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0.5226</td>
<td>0.2693</td>
<td></td>
<td>0.7245</td>
<td>0.3182</td>
<td></td>
<td>1.4033</td>
<td>0.5402</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.3883</td>
<td>0.1664</td>
<td></td>
<td>0.5261</td>
<td>0.2304</td>
<td></td>
<td>1.0754</td>
<td>0.3322</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0.2905</td>
<td>0.1119</td>
<td></td>
<td>0.3969</td>
<td>0.1545</td>
<td></td>
<td>0.8844</td>
<td>0.2284</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>0.2348</td>
<td>0.0489</td>
<td></td>
<td>0.3159</td>
<td>0.0829</td>
<td></td>
<td>0.7572</td>
<td>0.1671</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.1918</td>
<td>0.0335</td>
<td></td>
<td>0.2461</td>
<td>0.0571</td>
<td></td>
<td>0.6437</td>
<td>0.1164</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>0.1596</td>
<td>0.0261</td>
<td></td>
<td>0.1963</td>
<td>0.0401</td>
<td></td>
<td>0.5362</td>
<td>0.1057</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>0.1391</td>
<td>0.0211</td>
<td></td>
<td>0.1626</td>
<td>0.0300</td>
<td></td>
<td>0.4469</td>
<td>0.0911</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>0.1215</td>
<td>0.0162</td>
<td></td>
<td>0.1386</td>
<td>0.0226</td>
<td></td>
<td>0.3789</td>
<td>0.0688</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>0.1016</td>
<td>0.0087</td>
<td></td>
<td>0.1083</td>
<td>0.0137</td>
<td></td>
<td>0.2905</td>
<td>0.0464</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>0.0812</td>
<td>0.0084</td>
<td></td>
<td>0.0792</td>
<td>0.0096</td>
<td></td>
<td>0.2041</td>
<td>0.0276</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>0.0655</td>
<td>0.0055</td>
<td></td>
<td>0.0572</td>
<td>0.0056</td>
<td></td>
<td>0.1415</td>
<td>0.0194</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>0.0518</td>
<td>0.0036</td>
<td></td>
<td>0.0412</td>
<td>0.0046</td>
<td></td>
<td>0.0850</td>
<td>0.0136</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>0.0385</td>
<td>0.0037</td>
<td></td>
<td>0.0243</td>
<td>0.0031</td>
<td></td>
<td>0.0384</td>
<td>0.0073</td>
<td></td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(r/R = 0.995)</td>
<td>(r/R = 0.992)</td>
<td>(r/R = 0.983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>0.0251</td>
<td>0.0025</td>
<td>0.0117</td>
<td>0.0025</td>
<td>0.0066</td>
<td>0.0028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>0.0178</td>
<td>0.0005</td>
<td>0.0045</td>
<td>0.0006</td>
<td>0.0004</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>0.0177</td>
<td>0.0006</td>
<td>0.0041</td>
<td>0.0008</td>
<td>0.0008</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>0.0229</td>
<td>0.0029</td>
<td>0.0094</td>
<td>0.0022</td>
<td>0.0026</td>
<td>0.0021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>0.0320</td>
<td>0.0045</td>
<td>0.0166</td>
<td>0.0033</td>
<td>0.0119</td>
<td>0.0058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.0387</td>
<td>0.0049</td>
<td>0.0239</td>
<td>0.0052</td>
<td>0.0311</td>
<td>0.0115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.0463</td>
<td>0.0063</td>
<td>0.0342</td>
<td>0.0075</td>
<td>0.0625</td>
<td>0.0228</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>(r/R = 0.959)</th>
<th>(r/R = 0.939)</th>
<th>(r/R = 0.872)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.2712</td>
<td>0.1173</td>
<td>0.3455</td>
</tr>
<tr>
<td>8</td>
<td>0.4204</td>
<td>0.1100</td>
<td>0.5951</td>
</tr>
<tr>
<td>12</td>
<td>0.6245</td>
<td>0.0839</td>
<td>0.8039</td>
</tr>
<tr>
<td>16</td>
<td>0.8123</td>
<td>0.0716</td>
<td>1.0510</td>
</tr>
<tr>
<td>20</td>
<td>0.9821</td>
<td>0.0675</td>
<td>1.2756</td>
</tr>
<tr>
<td>24</td>
<td>1.1699</td>
<td>0.2423</td>
<td>1.5357</td>
</tr>
<tr>
<td>28</td>
<td>1.6245</td>
<td>0.2550</td>
<td>2.0798</td>
</tr>
<tr>
<td>32</td>
<td>1.8034</td>
<td>0.2973</td>
<td>2.1906</td>
</tr>
<tr>
<td>36</td>
<td>1.7522</td>
<td>0.1943</td>
<td>2.2501</td>
</tr>
<tr>
<td>40</td>
<td>1.7236</td>
<td>0.1329</td>
<td>2.2749</td>
</tr>
<tr>
<td>44</td>
<td>1.7790</td>
<td>0.1141</td>
<td>2.3620</td>
</tr>
<tr>
<td>48</td>
<td>1.8756</td>
<td>0.1109</td>
<td>2.4760</td>
</tr>
<tr>
<td>52</td>
<td>1.9279</td>
<td>0.1105</td>
<td>2.5506</td>
</tr>
<tr>
<td>56</td>
<td>1.9458</td>
<td>0.1114</td>
<td>2.5754</td>
</tr>
<tr>
<td>60</td>
<td>1.9567</td>
<td>0.1066</td>
<td>2.6053</td>
</tr>
<tr>
<td>64</td>
<td>1.9840</td>
<td>0.1185</td>
<td>2.6365</td>
</tr>
<tr>
<td>68</td>
<td>2.0253</td>
<td>0.1534</td>
<td>2.7007</td>
</tr>
<tr>
<td>72</td>
<td>2.0782</td>
<td>0.2377</td>
<td>2.8200</td>
</tr>
<tr>
<td>76</td>
<td>2.1664</td>
<td>0.3377</td>
<td>2.9307</td>
</tr>
<tr>
<td>80</td>
<td>2.2941</td>
<td>0.4636</td>
<td>3.0790</td>
</tr>
<tr>
<td>84</td>
<td>2.4729</td>
<td>0.5986</td>
<td>3.1904</td>
</tr>
<tr>
<td>88</td>
<td>2.5574</td>
<td>0.6174</td>
<td>3.3052</td>
</tr>
<tr>
<td>92</td>
<td>2.6912</td>
<td>0.6982</td>
<td>3.4395</td>
</tr>
<tr>
<td></td>
<td>2.9505</td>
<td>0.7765</td>
<td>3.5936</td>
</tr>
<tr>
<td>96</td>
<td>3.1147</td>
<td>0.7300</td>
<td>3.7722</td>
</tr>
<tr>
<td>100</td>
<td>3.1667</td>
<td>0.7535</td>
<td>3.8012</td>
</tr>
<tr>
<td>104</td>
<td>3.2034</td>
<td>0.7945</td>
<td>3.8137</td>
</tr>
<tr>
<td>108</td>
<td>3.2329</td>
<td>0.7436</td>
<td>3.9123</td>
</tr>
</tbody>
</table>
r/R = 0.959

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>3.2303</td>
<td>0.7264</td>
<td>3.8506</td>
<td>0.7579</td>
<td>4.6250</td>
<td>0.6642</td>
</tr>
<tr>
<td>100</td>
<td>3.1196</td>
<td>0.7759</td>
<td>3.6977</td>
<td>0.7479</td>
<td>4.6618</td>
<td>0.6683</td>
</tr>
<tr>
<td>104</td>
<td>2.7603</td>
<td>0.6706</td>
<td>3.4730</td>
<td>0.6850</td>
<td>4.6415</td>
<td>0.6343</td>
</tr>
<tr>
<td>108</td>
<td>2.3775</td>
<td>0.5449</td>
<td>3.1188</td>
<td>0.5649</td>
<td>4.4928</td>
<td>0.5705</td>
</tr>
<tr>
<td>112</td>
<td>2.0545</td>
<td>0.4237</td>
<td>2.7702</td>
<td>0.4636</td>
<td>4.2916</td>
<td>0.5018</td>
</tr>
<tr>
<td>116</td>
<td>1.8296</td>
<td>0.2960</td>
<td>2.5221</td>
<td>0.3778</td>
<td>4.0751</td>
<td>0.4266</td>
</tr>
<tr>
<td>120</td>
<td>1.6246</td>
<td>0.2295</td>
<td>2.2985</td>
<td>0.3056</td>
<td>3.8111</td>
<td>0.3749</td>
</tr>
<tr>
<td>124</td>
<td>1.4503</td>
<td>0.1929</td>
<td>2.0852</td>
<td>0.2577</td>
<td>3.5616</td>
<td>0.3009</td>
</tr>
<tr>
<td>128</td>
<td>1.3206</td>
<td>0.1604</td>
<td>1.9146</td>
<td>0.2037</td>
<td>3.3640</td>
<td>0.2250</td>
</tr>
<tr>
<td>132</td>
<td>1.2210</td>
<td>0.1217</td>
<td>1.7815</td>
<td>0.1516</td>
<td>3.1915</td>
<td>0.1532</td>
</tr>
<tr>
<td>136</td>
<td>1.0912</td>
<td>0.0828</td>
<td>1.6190</td>
<td>0.1060</td>
<td>2.9934</td>
<td>0.1072</td>
</tr>
<tr>
<td>140</td>
<td>0.9487</td>
<td>0.0591</td>
<td>1.4425</td>
<td>0.0758</td>
<td>2.7773</td>
<td>0.0888</td>
</tr>
<tr>
<td>144</td>
<td>0.8158</td>
<td>0.0419</td>
<td>1.2759</td>
<td>0.0598</td>
<td>2.5430</td>
<td>0.0693</td>
</tr>
<tr>
<td>148</td>
<td>0.6797</td>
<td>0.0330</td>
<td>1.0929</td>
<td>0.0468</td>
<td>2.2817</td>
<td>0.0606</td>
</tr>
<tr>
<td>152</td>
<td>0.4918</td>
<td>0.0426</td>
<td>0.8939</td>
<td>0.0438</td>
<td>1.9845</td>
<td>0.0537</td>
</tr>
<tr>
<td>156</td>
<td>0.2399</td>
<td>0.0363</td>
<td>0.6558</td>
<td>0.0369</td>
<td>1.6377</td>
<td>0.0497</td>
</tr>
<tr>
<td>160</td>
<td>0.0451</td>
<td>0.0178</td>
<td>0.3037</td>
<td>0.0498</td>
<td>1.2701</td>
<td>0.0532</td>
</tr>
<tr>
<td>164</td>
<td>0.0019</td>
<td>0.0018</td>
<td>0.0464</td>
<td>0.0243</td>
<td>0.8948</td>
<td>0.0545</td>
</tr>
<tr>
<td>168</td>
<td>0.0012</td>
<td>0.0017</td>
<td>0.0015</td>
<td>0.0015</td>
<td>0.5346</td>
<td>0.0796</td>
</tr>
<tr>
<td>172</td>
<td>0.0365</td>
<td>0.0194</td>
<td>0.0095</td>
<td>0.0114</td>
<td>0.1501</td>
<td>0.0561</td>
</tr>
<tr>
<td>176</td>
<td>0.1415</td>
<td>0.0389</td>
<td>0.1273</td>
<td>0.0476</td>
<td>0.0035</td>
<td>0.0094</td>
</tr>
<tr>
<td>180</td>
<td>0.3169</td>
<td>0.0708</td>
<td>0.3423</td>
<td>0.0843</td>
<td>0.0901</td>
<td>0.0788</td>
</tr>
</tbody>
</table>

r/R = 0.939

r/R = 0.872

s/d = 16

r/R = 0.739

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.1116</td>
<td>0.1144</td>
<td>0.0688</td>
<td>0.0899</td>
<td>0.0424</td>
<td>0.0642</td>
</tr>
<tr>
<td>8</td>
<td>0.5178</td>
<td>0.1790</td>
<td>0.4176</td>
<td>0.1660</td>
<td>0.3498</td>
<td>0.1605</td>
</tr>
<tr>
<td>12</td>
<td>0.9392</td>
<td>0.1270</td>
<td>0.8605</td>
<td>0.1251</td>
<td>0.6083</td>
<td>0.1196</td>
</tr>
<tr>
<td>16</td>
<td>1.3461</td>
<td>0.1148</td>
<td>1.2908</td>
<td>0.1180</td>
<td>1.2407</td>
<td>0.1131</td>
</tr>
<tr>
<td>20</td>
<td>1.7467</td>
<td>0.1074</td>
<td>1.7132</td>
<td>0.1107</td>
<td>1.6615</td>
<td>0.1046</td>
</tr>
<tr>
<td>24</td>
<td>2.3806</td>
<td>0.2035</td>
<td>2.2267</td>
<td>0.1957</td>
<td>2.0631</td>
<td>0.1701</td>
</tr>
<tr>
<td>28</td>
<td>2.4453</td>
<td>0.1780</td>
<td>2.3378</td>
<td>0.1499</td>
<td>2.3003</td>
<td>0.1482</td>
</tr>
<tr>
<td>32</td>
<td>2.7765</td>
<td>0.1871</td>
<td>2.7691</td>
<td>0.1911</td>
<td>2.7470</td>
<td>0.1915</td>
</tr>
<tr>
<td>36</td>
<td>3.2040</td>
<td>0.1207</td>
<td>3.1975</td>
<td>0.1496</td>
<td>3.0965</td>
<td>0.1884</td>
</tr>
<tr>
<td>40</td>
<td>3.4855</td>
<td>0.0991</td>
<td>3.5000</td>
<td>0.1159</td>
<td>3.4625</td>
<td>0.1780</td>
</tr>
<tr>
<td>44</td>
<td>3.7694</td>
<td>0.0847</td>
<td>3.8068</td>
<td>0.1054</td>
<td>3.7733</td>
<td>0.1317</td>
</tr>
<tr>
<td>48</td>
<td>4.0854</td>
<td>0.0777</td>
<td>4.1305</td>
<td>0.0800</td>
<td>4.1233</td>
<td>0.1000</td>
</tr>
<tr>
<td>52</td>
<td>4.3565</td>
<td>0.0819</td>
<td>4.4165</td>
<td>0.0737</td>
<td>4.4060</td>
<td>0.1037</td>
</tr>
<tr>
<td>θ deg.</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>54</td>
<td>4.4564</td>
<td>0.0877</td>
<td>4.5282</td>
<td>0.0728</td>
<td>4.5145</td>
<td>0.0945</td>
</tr>
<tr>
<td>56</td>
<td>4.5460</td>
<td>0.0970</td>
<td>4.6201</td>
<td>0.0777</td>
<td>4.6072</td>
<td>0.0923</td>
</tr>
<tr>
<td>58</td>
<td>4.6441</td>
<td>0.1328</td>
<td>4.7118</td>
<td>0.1019</td>
<td>4.6940</td>
<td>0.1135</td>
</tr>
<tr>
<td>60</td>
<td>4.7242</td>
<td>0.1744</td>
<td>4.8097</td>
<td>0.1256</td>
<td>4.7953</td>
<td>0.1258</td>
</tr>
<tr>
<td>62</td>
<td>4.8175</td>
<td>0.2135</td>
<td>4.9174</td>
<td>0.1448</td>
<td>4.9115</td>
<td>0.1457</td>
</tr>
<tr>
<td>64</td>
<td>4.8871</td>
<td>0.2730</td>
<td>4.9926</td>
<td>0.2011</td>
<td>5.0080</td>
<td>0.1627</td>
</tr>
<tr>
<td>66</td>
<td>4.9709</td>
<td>0.3124</td>
<td>5.0740</td>
<td>0.2234</td>
<td>5.1085</td>
<td>0.1861</td>
</tr>
<tr>
<td>68</td>
<td>4.9945</td>
<td>0.3369</td>
<td>5.1361</td>
<td>0.2507</td>
<td>5.1514</td>
<td>0.2099</td>
</tr>
<tr>
<td>70</td>
<td>5.0282</td>
<td>0.3888</td>
<td>5.1715</td>
<td>0.2626</td>
<td>5.1933</td>
<td>0.2215</td>
</tr>
<tr>
<td>72</td>
<td>5.0606</td>
<td>0.4027</td>
<td>5.2006</td>
<td>0.2612</td>
<td>5.2199</td>
<td>0.2290</td>
</tr>
<tr>
<td>76</td>
<td>5.0799</td>
<td>0.4130</td>
<td>5.2639</td>
<td>0.2873</td>
<td>5.3034</td>
<td>0.2395</td>
</tr>
<tr>
<td>80</td>
<td>5.1701</td>
<td>0.4340</td>
<td>5.3242</td>
<td>0.3142</td>
<td>5.3655</td>
<td>0.2616</td>
</tr>
<tr>
<td>84</td>
<td>5.2281</td>
<td>0.4285</td>
<td>5.3820</td>
<td>0.3112</td>
<td>5.4701</td>
<td>0.2372</td>
</tr>
<tr>
<td>88</td>
<td>5.1939</td>
<td>0.4465</td>
<td>5.4097</td>
<td>0.3050</td>
<td>5.4590</td>
<td>0.2634</td>
</tr>
<tr>
<td>92</td>
<td>5.2265</td>
<td>0.4273</td>
<td>5.3949</td>
<td>0.3425</td>
<td>5.4834</td>
<td>0.2467</td>
</tr>
<tr>
<td>96</td>
<td>5.1845</td>
<td>0.4616</td>
<td>5.4570</td>
<td>0.3007</td>
<td>5.5353</td>
<td>0.2253</td>
</tr>
<tr>
<td>100</td>
<td>5.2515</td>
<td>0.4279</td>
<td>5.4757</td>
<td>0.2504</td>
<td>5.5468</td>
<td>0.1804</td>
</tr>
<tr>
<td>104</td>
<td>5.2698</td>
<td>0.3668</td>
<td>5.4608</td>
<td>0.1933</td>
<td>5.5070</td>
<td>0.1367</td>
</tr>
<tr>
<td>108</td>
<td>5.2460</td>
<td>0.3281</td>
<td>5.4278</td>
<td>0.1535</td>
<td>5.4607</td>
<td>0.0789</td>
</tr>
<tr>
<td>112</td>
<td>5.2041</td>
<td>0.2501</td>
<td>5.3889</td>
<td>0.0883</td>
<td>5.3945</td>
<td>0.0475</td>
</tr>
<tr>
<td>116</td>
<td>5.1239</td>
<td>0.1712</td>
<td>5.3437</td>
<td>0.0527</td>
<td>5.3344</td>
<td>0.0488</td>
</tr>
<tr>
<td>120</td>
<td>4.9686</td>
<td>0.1252</td>
<td>5.2029</td>
<td>0.0366</td>
<td>5.1900</td>
<td>0.0369</td>
</tr>
<tr>
<td>124</td>
<td>4.7608</td>
<td>0.0848</td>
<td>5.0021</td>
<td>0.0217</td>
<td>4.9856</td>
<td>0.0264</td>
</tr>
<tr>
<td>128</td>
<td>4.5829</td>
<td>0.0648</td>
<td>4.8185</td>
<td>0.0298</td>
<td>4.8060</td>
<td>0.0309</td>
</tr>
<tr>
<td>132</td>
<td>4.3641</td>
<td>0.0358</td>
<td>4.6262</td>
<td>0.0260</td>
<td>4.6182</td>
<td>0.0276</td>
</tr>
<tr>
<td>136</td>
<td>4.1427</td>
<td>0.0399</td>
<td>4.3969</td>
<td>0.0141</td>
<td>4.3851</td>
<td>0.0194</td>
</tr>
<tr>
<td>140</td>
<td>3.9065</td>
<td>0.0363</td>
<td>4.1325</td>
<td>0.0276</td>
<td>4.1333</td>
<td>0.0319</td>
</tr>
<tr>
<td>144</td>
<td>3.5968</td>
<td>0.0275</td>
<td>3.8456</td>
<td>0.0341</td>
<td>3.8473</td>
<td>0.0491</td>
</tr>
<tr>
<td>148</td>
<td>3.2763</td>
<td>0.0334</td>
<td>3.5179</td>
<td>0.0316</td>
<td>3.5153</td>
<td>0.0484</td>
</tr>
<tr>
<td>152</td>
<td>2.9292</td>
<td>0.0332</td>
<td>3.1947</td>
<td>0.0241</td>
<td>3.2047</td>
<td>0.0252</td>
</tr>
<tr>
<td>156</td>
<td>2.5410</td>
<td>0.0276</td>
<td>2.8543</td>
<td>0.0248</td>
<td>2.8647</td>
<td>0.0228</td>
</tr>
<tr>
<td>160</td>
<td>2.1576</td>
<td>0.0305</td>
<td>2.5041</td>
<td>0.0268</td>
<td>2.5195</td>
<td>0.0222</td>
</tr>
<tr>
<td>164</td>
<td>1.7451</td>
<td>0.0367</td>
<td>2.0838</td>
<td>0.0237</td>
<td>2.1237</td>
<td>0.0289</td>
</tr>
<tr>
<td>168</td>
<td>1.3208</td>
<td>0.0386</td>
<td>1.6599</td>
<td>0.0264</td>
<td>1.7171</td>
<td>0.0274</td>
</tr>
<tr>
<td>172</td>
<td>0.9026</td>
<td>0.0487</td>
<td>1.2445</td>
<td>0.0326</td>
<td>1.3328</td>
<td>0.0310</td>
</tr>
<tr>
<td>176</td>
<td>0.4449</td>
<td>0.0813</td>
<td>0.8120</td>
<td>0.0314</td>
<td>0.9081</td>
<td>0.0344</td>
</tr>
<tr>
<td>180</td>
<td>0.0329</td>
<td>0.0429</td>
<td>0.2748</td>
<td>0.0539</td>
<td>0.4105</td>
<td>0.0561</td>
</tr>
<tr>
<td>(\theta) deg.</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>0.0307</td>
<td>0.0502</td>
<td>0.0197</td>
<td>0.0362</td>
<td>0.0244</td>
<td>0.0490</td>
</tr>
<tr>
<td>8</td>
<td>0.3098</td>
<td>0.1530</td>
<td>0.2601</td>
<td>0.1361</td>
<td>0.2618</td>
<td>0.1471</td>
</tr>
<tr>
<td>12</td>
<td>0.7632</td>
<td>0.1158</td>
<td>0.7315</td>
<td>0.1042</td>
<td>0.7339</td>
<td>0.1175</td>
</tr>
<tr>
<td>16</td>
<td>1.1881</td>
<td>0.1107</td>
<td>1.1558</td>
<td>0.1020</td>
<td>1.1586</td>
<td>0.0995</td>
</tr>
<tr>
<td>20</td>
<td>1.6083</td>
<td>0.1012</td>
<td>1.5760</td>
<td>0.0933</td>
<td>1.5912</td>
<td>0.0943</td>
</tr>
<tr>
<td>24</td>
<td>2.3215</td>
<td>0.1289</td>
<td>2.3634</td>
<td>0.1734</td>
<td>2.3739</td>
<td>0.1811</td>
</tr>
<tr>
<td>28</td>
<td>2.7292</td>
<td>0.1850</td>
<td>2.7554</td>
<td>0.1960</td>
<td>2.8076</td>
<td>0.1782</td>
</tr>
<tr>
<td>32</td>
<td>3.0128</td>
<td>0.1971</td>
<td>2.9521</td>
<td>0.1996</td>
<td>3.0080</td>
<td>0.1975</td>
</tr>
<tr>
<td>36</td>
<td>3.3378</td>
<td>0.2212</td>
<td>3.2128</td>
<td>0.2379</td>
<td>3.1900</td>
<td>0.2268</td>
</tr>
<tr>
<td>40</td>
<td>3.6811</td>
<td>0.1881</td>
<td>3.5317</td>
<td>0.2513</td>
<td>3.5847</td>
<td>0.2498</td>
</tr>
<tr>
<td>44</td>
<td>4.0856</td>
<td>0.1455</td>
<td>3.9364</td>
<td>0.2420</td>
<td>3.6980</td>
<td>0.2901</td>
</tr>
<tr>
<td>52</td>
<td>4.3624</td>
<td>0.1639</td>
<td>4.2399</td>
<td>0.2398</td>
<td>3.9511</td>
<td>0.3327</td>
</tr>
<tr>
<td>54</td>
<td>4.4901</td>
<td>0.1447</td>
<td>4.3735</td>
<td>0.2277</td>
<td>4.0778</td>
<td>0.3288</td>
</tr>
<tr>
<td>56</td>
<td>4.5750</td>
<td>0.1462</td>
<td>4.4765</td>
<td>0.2303</td>
<td>4.2018</td>
<td>0.3257</td>
</tr>
<tr>
<td>58</td>
<td>4.6726</td>
<td>0.1539</td>
<td>4.5851</td>
<td>0.2130</td>
<td>4.3368</td>
<td>0.3350</td>
</tr>
<tr>
<td>60</td>
<td>4.7762</td>
<td>0.1522</td>
<td>4.6792</td>
<td>0.2556</td>
<td>4.4371</td>
<td>0.3542</td>
</tr>
<tr>
<td>62</td>
<td>4.8774</td>
<td>0.1760</td>
<td>4.8086</td>
<td>0.2448</td>
<td>4.5971</td>
<td>0.3527</td>
</tr>
<tr>
<td>64</td>
<td>4.9949</td>
<td>0.2083</td>
<td>4.8853</td>
<td>0.2689</td>
<td>4.7304</td>
<td>0.3672</td>
</tr>
<tr>
<td>66</td>
<td>5.0950</td>
<td>0.2094</td>
<td>4.9780</td>
<td>0.2957</td>
<td>4.7498</td>
<td>0.3994</td>
</tr>
<tr>
<td>68</td>
<td>5.1548</td>
<td>0.2273</td>
<td>5.0116</td>
<td>0.2985</td>
<td>4.8220</td>
<td>0.4127</td>
</tr>
<tr>
<td>70</td>
<td>5.1811</td>
<td>0.2363</td>
<td>5.0651</td>
<td>0.2947</td>
<td>4.8815</td>
<td>0.3915</td>
</tr>
<tr>
<td>72</td>
<td>5.2094</td>
<td>0.2370</td>
<td>5.1100</td>
<td>0.3282</td>
<td>4.9306</td>
<td>0.3944</td>
</tr>
<tr>
<td>76</td>
<td>5.2870</td>
<td>0.2414</td>
<td>5.2255</td>
<td>0.2838</td>
<td>5.0325</td>
<td>0.4370</td>
</tr>
<tr>
<td>80</td>
<td>5.3754</td>
<td>0.2391</td>
<td>5.3141</td>
<td>0.3086</td>
<td>5.1720</td>
<td>0.4016</td>
</tr>
<tr>
<td>84</td>
<td>5.4589</td>
<td>0.2430</td>
<td>5.3982</td>
<td>0.2922</td>
<td>5.1702</td>
<td>0.4263</td>
</tr>
<tr>
<td>88</td>
<td>5.4662</td>
<td>0.2348</td>
<td>5.4191</td>
<td>0.2753</td>
<td>5.2517</td>
<td>0.3897</td>
</tr>
<tr>
<td>92</td>
<td>5.5146</td>
<td>0.2277</td>
<td>5.4520</td>
<td>0.2776</td>
<td>5.3063</td>
<td>0.3950</td>
</tr>
<tr>
<td>96</td>
<td>5.5687</td>
<td>0.1820</td>
<td>5.5147</td>
<td>0.2310</td>
<td>5.3318</td>
<td>0.3963</td>
</tr>
<tr>
<td>100</td>
<td>5.5682</td>
<td>0.1581</td>
<td>5.5389</td>
<td>0.2010</td>
<td>5.3616</td>
<td>0.3688</td>
</tr>
<tr>
<td>104</td>
<td>5.5272</td>
<td>0.1149</td>
<td>5.5005</td>
<td>0.1440</td>
<td>5.3401</td>
<td>0.3290</td>
</tr>
<tr>
<td>108</td>
<td>5.4600</td>
<td>0.0829</td>
<td>5.4240</td>
<td>0.1623</td>
<td>5.2988</td>
<td>0.3291</td>
</tr>
<tr>
<td>112</td>
<td>5.4028</td>
<td>0.0614</td>
<td>5.3678</td>
<td>0.1256</td>
<td>5.2242</td>
<td>0.3244</td>
</tr>
<tr>
<td>116</td>
<td>5.3240</td>
<td>0.0676</td>
<td>5.2957</td>
<td>0.1087</td>
<td>5.1611</td>
<td>0.2849</td>
</tr>
<tr>
<td>120</td>
<td>5.1796</td>
<td>0.0665</td>
<td>5.1540</td>
<td>0.0967</td>
<td>5.0414</td>
<td>0.2825</td>
</tr>
<tr>
<td>124</td>
<td>4.9825</td>
<td>0.0468</td>
<td>4.9729</td>
<td>0.0891</td>
<td>4.8835</td>
<td>0.2502</td>
</tr>
<tr>
<td>128</td>
<td>4.8027</td>
<td>0.0478</td>
<td>4.7880</td>
<td>0.0693</td>
<td>4.7347</td>
<td>0.1963</td>
</tr>
<tr>
<td>132</td>
<td>4.6067</td>
<td>0.0417</td>
<td>4.6006</td>
<td>0.0591</td>
<td>4.5606</td>
<td>0.1720</td>
</tr>
<tr>
<td>136</td>
<td>4.3889</td>
<td>0.0242</td>
<td>4.3887</td>
<td>0.0499</td>
<td>4.3532</td>
<td>0.1614</td>
</tr>
<tr>
<td>140</td>
<td>4.1304</td>
<td>0.0434</td>
<td>4.1177</td>
<td>0.0685</td>
<td>4.0798</td>
<td>0.1743</td>
</tr>
<tr>
<td>144</td>
<td>3.8434</td>
<td>0.0700</td>
<td>3.8128</td>
<td>0.0997</td>
<td>3.7515</td>
<td>0.1674</td>
</tr>
<tr>
<td>148</td>
<td>3.5009</td>
<td>0.0843</td>
<td>3.4782</td>
<td>0.1174</td>
<td>3.4945</td>
<td>0.1204</td>
</tr>
<tr>
<td>152</td>
<td>3.2049</td>
<td>0.0313</td>
<td>3.1927</td>
<td>0.0491</td>
<td>3.2137</td>
<td>0.0892</td>
</tr>
<tr>
<td>θ</td>
<td>\ddot{u}</td>
<td>\dot{u}'</td>
<td>\ddot{u}</td>
<td>\dot{u}'</td>
<td>\ddot{u}</td>
<td>\dot{u}'</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>156</td>
<td>2.8672</td>
<td>0.0217</td>
<td>2.8655</td>
<td>0.0271</td>
<td>2.9101</td>
<td>0.0433</td>
</tr>
<tr>
<td>160</td>
<td>2.5216</td>
<td>0.0197</td>
<td>2.5225</td>
<td>0.0238</td>
<td>2.5576</td>
<td>0.0399</td>
</tr>
<tr>
<td>164</td>
<td>2.1343</td>
<td>0.0293</td>
<td>2.1342</td>
<td>0.0313</td>
<td>2.1819</td>
<td>0.0447</td>
</tr>
<tr>
<td>168</td>
<td>1.7197</td>
<td>0.0274</td>
<td>1.7187</td>
<td>0.0289</td>
<td>1.7602</td>
<td>0.0402</td>
</tr>
<tr>
<td>172</td>
<td>1.3427</td>
<td>0.0323</td>
<td>1.3438</td>
<td>0.0343</td>
<td>1.3626</td>
<td>0.0413</td>
</tr>
<tr>
<td>176</td>
<td>0.9182</td>
<td>0.0363</td>
<td>0.9194</td>
<td>0.0399</td>
<td>0.9189</td>
<td>0.0694</td>
</tr>
<tr>
<td>180</td>
<td>0.4282</td>
<td>0.0617</td>
<td>0.4353</td>
<td>0.0761</td>
<td>0.4043</td>
<td>0.1078</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u_m (m/sec)</td>
<td>θ (deg.)</td>
<td>u_m (m/sec)</td>
<td>θ (deg.)</td>
<td>u_m (m/sec)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0542</td>
<td>90</td>
<td>4.8057</td>
<td>178</td>
<td>0.3664</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1313</td>
<td>92</td>
<td>4.8399</td>
<td>180</td>
<td>0.2327</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2641</td>
<td>94</td>
<td>4.8355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.4416</td>
<td>96</td>
<td>4.8221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6280</td>
<td>98</td>
<td>4.8369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.8126</td>
<td>100</td>
<td>4.8264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9908</td>
<td>102</td>
<td>4.8016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1763</td>
<td>104</td>
<td>4.7701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3633</td>
<td>106</td>
<td>4.7267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.5385</td>
<td>108</td>
<td>4.6585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.7365</td>
<td>110</td>
<td>4.5971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.9722</td>
<td>112</td>
<td>4.5422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.1000</td>
<td>114</td>
<td>4.4911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.2359</td>
<td>116</td>
<td>4.4274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.3868</td>
<td>118</td>
<td>4.3448</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.5283</td>
<td>120</td>
<td>4.2560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.6990</td>
<td>122</td>
<td>4.1484</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.8306</td>
<td>124</td>
<td>4.0545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.9497</td>
<td>126</td>
<td>3.9647</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.0612</td>
<td>128</td>
<td>3.8813</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.1796</td>
<td>130</td>
<td>3.7915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.3041</td>
<td>132</td>
<td>3.7088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.4475</td>
<td>134</td>
<td>3.6141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.5810</td>
<td>136</td>
<td>3.5036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.7007</td>
<td>138</td>
<td>3.4002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.8023</td>
<td>140</td>
<td>3.2785</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.8915</td>
<td>142</td>
<td>3.1577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.9656</td>
<td>144</td>
<td>3.0246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4.0454</td>
<td>146</td>
<td>2.8944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.1311</td>
<td>148</td>
<td>2.7445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.2324</td>
<td>150</td>
<td>2.6067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.3206</td>
<td>152</td>
<td>2.4602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.4063</td>
<td>154</td>
<td>2.2945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.4569</td>
<td>156</td>
<td>2.1410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.5111</td>
<td>158</td>
<td>1.9767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.5628</td>
<td>160</td>
<td>1.8088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.6023</td>
<td>162</td>
<td>1.6373</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.6466</td>
<td>164</td>
<td>1.4604</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.6947</td>
<td>166</td>
<td>1.2917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.7405</td>
<td>168</td>
<td>1.1223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.7683</td>
<td>170</td>
<td>0.9546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.7924</td>
<td>172</td>
<td>0.7988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.8083</td>
<td>174</td>
<td>0.6487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.8099</td>
<td>176</td>
<td>0.5042</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: Ensemble-averaged velocity at s/d = 16.
Figure 5: Streamwise velocity fluctuation at s/d = 16
Figure 6: Streamwise turbulence intensity, u' / \bar{u}, at $s/d = 16$

Note: The peaks appear lower than the actual data due to smoothing by the plotting package. The peak turbulence intensity is 1.02, at 158° for $r/R = 0.983$.
<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0483</td>
<td>0.0107</td>
<td>0.0408</td>
<td>0.0120</td>
<td>0.0285</td>
<td>0.0159</td>
</tr>
<tr>
<td>8</td>
<td>0.0577</td>
<td>0.0097</td>
<td>0.0504</td>
<td>0.0102</td>
<td>0.0437</td>
<td>0.0175</td>
</tr>
<tr>
<td>12</td>
<td>0.0724</td>
<td>0.0093</td>
<td>0.0651</td>
<td>0.0094</td>
<td>0.0675</td>
<td>0.0169</td>
</tr>
<tr>
<td>16</td>
<td>0.0941</td>
<td>0.0093</td>
<td>0.0801</td>
<td>0.0108</td>
<td>0.1078</td>
<td>0.0209</td>
</tr>
<tr>
<td>20</td>
<td>0.1089</td>
<td>0.0084</td>
<td>0.1097</td>
<td>0.0113</td>
<td>0.1461</td>
<td>0.0210</td>
</tr>
<tr>
<td>24</td>
<td>0.1235</td>
<td>0.0115</td>
<td>0.1267</td>
<td>0.0120</td>
<td>0.1750</td>
<td>0.0202</td>
</tr>
<tr>
<td>28</td>
<td>0.1406</td>
<td>0.0107</td>
<td>0.1474</td>
<td>0.0138</td>
<td>0.2092</td>
<td>0.0230</td>
</tr>
<tr>
<td>32</td>
<td>0.1647</td>
<td>0.0102</td>
<td>0.1713</td>
<td>0.0108</td>
<td>0.2589</td>
<td>0.0272</td>
</tr>
<tr>
<td>36</td>
<td>0.1767</td>
<td>0.0099</td>
<td>0.1901</td>
<td>0.0144</td>
<td>0.3005</td>
<td>0.0292</td>
</tr>
<tr>
<td>40</td>
<td>0.1833</td>
<td>0.0123</td>
<td>0.1997</td>
<td>0.0153</td>
<td>0.3204</td>
<td>0.0281</td>
</tr>
<tr>
<td>44</td>
<td>0.1978</td>
<td>0.0130</td>
<td>0.2174</td>
<td>0.0178</td>
<td>0.3496</td>
<td>0.0299</td>
</tr>
<tr>
<td>48</td>
<td>0.2176</td>
<td>0.0152</td>
<td>0.2396</td>
<td>0.0155</td>
<td>0.3941</td>
<td>0.0349</td>
</tr>
<tr>
<td>52</td>
<td>0.2261</td>
<td>0.0143</td>
<td>0.2475</td>
<td>0.0156</td>
<td>0.4091</td>
<td>0.0352</td>
</tr>
<tr>
<td>56</td>
<td>0.2259</td>
<td>0.0146</td>
<td>0.2471</td>
<td>0.0167</td>
<td>0.4083</td>
<td>0.0359</td>
</tr>
<tr>
<td>60</td>
<td>0.2315</td>
<td>0.0140</td>
<td>0.2550</td>
<td>0.0184</td>
<td>0.4246</td>
<td>0.0353</td>
</tr>
<tr>
<td>64</td>
<td>0.2384</td>
<td>0.0117</td>
<td>0.2651</td>
<td>0.0199</td>
<td>0.4431</td>
<td>0.0366</td>
</tr>
<tr>
<td>68</td>
<td>0.2383</td>
<td>0.0119</td>
<td>0.2660</td>
<td>0.0189</td>
<td>0.4433</td>
<td>0.0359</td>
</tr>
<tr>
<td>72</td>
<td>0.2291</td>
<td>0.0136</td>
<td>0.2541</td>
<td>0.0183</td>
<td>0.4210</td>
<td>0.0344</td>
</tr>
<tr>
<td>76</td>
<td>0.2228</td>
<td>0.0147</td>
<td>0.2450</td>
<td>0.0153</td>
<td>0.4029</td>
<td>0.0333</td>
</tr>
<tr>
<td>80</td>
<td>0.2230</td>
<td>0.0142</td>
<td>0.2451</td>
<td>0.0149</td>
<td>0.4034</td>
<td>0.0329</td>
</tr>
<tr>
<td>82</td>
<td>0.2225</td>
<td>0.0146</td>
<td>0.2453</td>
<td>0.0155</td>
<td>0.4042</td>
<td>0.0356</td>
</tr>
<tr>
<td>84</td>
<td>0.2362</td>
<td>0.1098</td>
<td>0.2566</td>
<td>0.0758</td>
<td>0.4128</td>
<td>0.0658</td>
</tr>
<tr>
<td>86</td>
<td>0.3039</td>
<td>0.1963</td>
<td>0.3451</td>
<td>0.2280</td>
<td>0.5354</td>
<td>0.3280</td>
</tr>
<tr>
<td>88</td>
<td>0.4972</td>
<td>0.3205</td>
<td>0.5978</td>
<td>0.3680</td>
<td>0.8964</td>
<td>0.5527</td>
</tr>
<tr>
<td>90</td>
<td>0.6503</td>
<td>0.3081</td>
<td>0.7785</td>
<td>0.3741</td>
<td>1.2132</td>
<td>0.4997</td>
</tr>
<tr>
<td>92</td>
<td>0.6882</td>
<td>0.2566</td>
<td>0.7883</td>
<td>0.3193</td>
<td>1.2174</td>
<td>0.4676</td>
</tr>
<tr>
<td>94</td>
<td>0.6866</td>
<td>0.2631</td>
<td>0.7831</td>
<td>0.2882</td>
<td>1.1846</td>
<td>0.4251</td>
</tr>
<tr>
<td>96</td>
<td>0.6806</td>
<td>0.2589</td>
<td>0.7803</td>
<td>0.3148</td>
<td>1.1817</td>
<td>0.4345</td>
</tr>
<tr>
<td>100</td>
<td>0.6841</td>
<td>0.2637</td>
<td>0.7795</td>
<td>0.3118</td>
<td>1.1774</td>
<td>0.4438</td>
</tr>
<tr>
<td>104</td>
<td>0.6549</td>
<td>0.2551</td>
<td>0.7351</td>
<td>0.2953</td>
<td>1.1427</td>
<td>0.4476</td>
</tr>
<tr>
<td>108</td>
<td>0.6501</td>
<td>0.2707</td>
<td>0.7303</td>
<td>0.2901</td>
<td>1.1068</td>
<td>0.4286</td>
</tr>
<tr>
<td>112</td>
<td>0.6206</td>
<td>0.2555</td>
<td>0.7134</td>
<td>0.2820</td>
<td>1.0498</td>
<td>0.4259</td>
</tr>
<tr>
<td>116</td>
<td>0.5756</td>
<td>0.2461</td>
<td>0.6829</td>
<td>0.2937</td>
<td>1.0066</td>
<td>0.3804</td>
</tr>
<tr>
<td>120</td>
<td>0.5376</td>
<td>0.2205</td>
<td>0.6463</td>
<td>0.2797</td>
<td>0.9703</td>
<td>0.4093</td>
</tr>
<tr>
<td>124</td>
<td>0.5115</td>
<td>0.2297</td>
<td>0.5890</td>
<td>0.2709</td>
<td>0.9249</td>
<td>0.3718</td>
</tr>
<tr>
<td>128</td>
<td>0.4642</td>
<td>0.2118</td>
<td>0.5133</td>
<td>0.2292</td>
<td>0.8114</td>
<td>0.3486</td>
</tr>
<tr>
<td>132</td>
<td>0.4247</td>
<td>0.1978</td>
<td>0.4667</td>
<td>0.2248</td>
<td>0.7388</td>
<td>0.3314</td>
</tr>
<tr>
<td>136</td>
<td>0.3465</td>
<td>0.1742</td>
<td>0.3902</td>
<td>0.2091</td>
<td>0.6430</td>
<td>0.3125</td>
</tr>
<tr>
<td>140</td>
<td>0.2819</td>
<td>0.1503</td>
<td>0.3309</td>
<td>0.1993</td>
<td>0.5014</td>
<td>0.2972</td>
</tr>
<tr>
<td>144</td>
<td>0.2137</td>
<td>0.1332</td>
<td>0.2285</td>
<td>0.1526</td>
<td>0.3691</td>
<td>0.2701</td>
</tr>
<tr>
<td>148</td>
<td>0.1589</td>
<td>0.1067</td>
<td>0.1803</td>
<td>0.1469</td>
<td>0.2508</td>
<td>0.2302</td>
</tr>
<tr>
<td>152</td>
<td>0.1289</td>
<td>0.0895</td>
<td>0.1346</td>
<td>0.1136</td>
<td>0.2005</td>
<td>0.2088</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>$r/R = 0.997$</td>
<td></td>
<td></td>
<td>$r/R = 0.995$</td>
<td></td>
<td>$r/R = 0.991$</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>0.1143</td>
<td>0.0827</td>
<td>0.1098</td>
<td>0.0931</td>
<td>0.1533</td>
<td>0.1810</td>
</tr>
<tr>
<td>160</td>
<td>0.0905</td>
<td>0.0598</td>
<td>0.0868</td>
<td>0.0697</td>
<td>0.1076</td>
<td>0.1308</td>
</tr>
<tr>
<td>164</td>
<td>0.0694</td>
<td>0.0427</td>
<td>0.0608</td>
<td>0.0469</td>
<td>0.0692</td>
<td>0.0840</td>
</tr>
<tr>
<td>168</td>
<td>0.0498</td>
<td>0.0249</td>
<td>0.0437</td>
<td>0.0307</td>
<td>0.0356</td>
<td>0.0456</td>
</tr>
<tr>
<td>172</td>
<td>0.0370</td>
<td>0.0155</td>
<td>0.0269</td>
<td>0.0161</td>
<td>0.0158</td>
<td>0.0240</td>
</tr>
<tr>
<td>176</td>
<td>0.0310</td>
<td>0.0120</td>
<td>0.0208</td>
<td>0.0087</td>
<td>0.0069</td>
<td>0.0101</td>
</tr>
<tr>
<td>180</td>
<td>0.0316</td>
<td>0.0089</td>
<td>0.0228</td>
<td>0.0091</td>
<td>0.0081</td>
<td>0.0088</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S\text{PRE}$</td>
<td></td>
<td></td>
<td>$S/d = 30$</td>
<td></td>
<td>$S/d = 30$</td>
<td></td>
</tr>
<tr>
<td>$r/R = 0.986$</td>
<td></td>
<td></td>
<td>$r/R = 0.983$</td>
<td></td>
<td>$r/R = 0.977$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0373</td>
<td>0.0301</td>
<td>0.0469</td>
<td>0.0385</td>
<td>0.0852</td>
<td>0.0658</td>
</tr>
<tr>
<td>8</td>
<td>0.0616</td>
<td>0.0285</td>
<td>0.0658</td>
<td>0.0445</td>
<td>0.1604</td>
<td>0.0744</td>
</tr>
<tr>
<td>12</td>
<td>0.1117</td>
<td>0.0296</td>
<td>0.1518</td>
<td>0.0422</td>
<td>0.2772</td>
<td>0.0730</td>
</tr>
<tr>
<td>16</td>
<td>0.1848</td>
<td>0.0358</td>
<td>0.2544</td>
<td>0.0547</td>
<td>0.4413</td>
<td>0.0861</td>
</tr>
<tr>
<td>20</td>
<td>0.2552</td>
<td>0.0367</td>
<td>0.3525</td>
<td>0.0488</td>
<td>0.5959</td>
<td>0.0703</td>
</tr>
<tr>
<td>24</td>
<td>0.3117</td>
<td>0.0384</td>
<td>0.4238</td>
<td>0.0568</td>
<td>0.6781</td>
<td>0.0526</td>
</tr>
<tr>
<td>28</td>
<td>0.3806</td>
<td>0.0451</td>
<td>0.5158</td>
<td>0.0579</td>
<td>0.7574</td>
<td>0.0548</td>
</tr>
<tr>
<td>32</td>
<td>0.4739</td>
<td>0.0501</td>
<td>0.6235</td>
<td>0.0478</td>
<td>0.8494</td>
<td>0.0565</td>
</tr>
<tr>
<td>36</td>
<td>0.5481</td>
<td>0.0517</td>
<td>0.6778</td>
<td>0.0353</td>
<td>0.9270</td>
<td>0.0579</td>
</tr>
<tr>
<td>40</td>
<td>0.5801</td>
<td>0.0446</td>
<td>0.7013</td>
<td>0.0404</td>
<td>0.9657</td>
<td>0.0584</td>
</tr>
<tr>
<td>44</td>
<td>0.6182</td>
<td>0.0400</td>
<td>0.7382</td>
<td>0.0449</td>
<td>1.0141</td>
<td>0.0606</td>
</tr>
<tr>
<td>48</td>
<td>0.6692</td>
<td>0.0361</td>
<td>0.7929</td>
<td>0.0429</td>
<td>1.0835</td>
<td>0.0608</td>
</tr>
<tr>
<td>52</td>
<td>0.6869</td>
<td>0.0370</td>
<td>0.8189</td>
<td>0.0439</td>
<td>1.1176</td>
<td>0.0627</td>
</tr>
<tr>
<td>56</td>
<td>0.6864</td>
<td>0.0366</td>
<td>0.8227</td>
<td>0.0441</td>
<td>1.1234</td>
<td>0.0589</td>
</tr>
<tr>
<td>60</td>
<td>0.7017</td>
<td>0.0381</td>
<td>0.8369</td>
<td>0.0437</td>
<td>1.1440</td>
<td>0.0624</td>
</tr>
<tr>
<td>64</td>
<td>0.7183</td>
<td>0.0386</td>
<td>0.8567</td>
<td>0.0463</td>
<td>1.1661</td>
<td>0.0618</td>
</tr>
<tr>
<td>68</td>
<td>0.7201</td>
<td>0.0376</td>
<td>0.8613</td>
<td>0.0473</td>
<td>1.1713</td>
<td>0.0612</td>
</tr>
<tr>
<td>72</td>
<td>0.6999</td>
<td>0.0363</td>
<td>0.8364</td>
<td>0.0445</td>
<td>1.1450</td>
<td>0.0599</td>
</tr>
<tr>
<td>76</td>
<td>0.6845</td>
<td>0.0339</td>
<td>0.8137</td>
<td>0.0416</td>
<td>1.1192</td>
<td>0.0573</td>
</tr>
<tr>
<td>80</td>
<td>0.6849</td>
<td>0.0334</td>
<td>0.8125</td>
<td>0.0416</td>
<td>1.1168</td>
<td>0.0556</td>
</tr>
<tr>
<td>82</td>
<td>0.6851</td>
<td>0.0348</td>
<td>0.8133</td>
<td>0.0445</td>
<td>1.1187</td>
<td>0.0598</td>
</tr>
<tr>
<td>84</td>
<td>0.7040</td>
<td>0.1422</td>
<td>0.8389</td>
<td>0.1726</td>
<td>1.1769</td>
<td>0.2684</td>
</tr>
<tr>
<td>86</td>
<td>0.6815</td>
<td>0.4617</td>
<td>1.0133</td>
<td>0.4917</td>
<td>1.4356</td>
<td>0.6394</td>
</tr>
<tr>
<td>88</td>
<td>1.2715</td>
<td>0.6818</td>
<td>1.4986</td>
<td>0.7660</td>
<td>1.9702</td>
<td>0.8691</td>
</tr>
<tr>
<td>90</td>
<td>1.6255</td>
<td>0.6443</td>
<td>1.8591</td>
<td>0.7161</td>
<td>2.3519</td>
<td>0.7936</td>
</tr>
<tr>
<td>92</td>
<td>1.6913</td>
<td>0.6071</td>
<td>1.9615</td>
<td>0.6624</td>
<td>2.4574</td>
<td>0.6771</td>
</tr>
</tbody>
</table>
$r/R = 0.986$

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>1.6946</td>
<td>0.6074</td>
<td>1.9789</td>
<td>0.6213</td>
<td>2.4678</td>
<td>0.6807</td>
</tr>
<tr>
<td>96</td>
<td>1.6871</td>
<td>0.5502</td>
<td>1.9415</td>
<td>0.6171</td>
<td>2.4536</td>
<td>0.7117</td>
</tr>
<tr>
<td>100</td>
<td>1.6302</td>
<td>0.5521</td>
<td>1.9369</td>
<td>0.6550</td>
<td>2.3813</td>
<td>0.7080</td>
</tr>
<tr>
<td>104</td>
<td>1.6044</td>
<td>0.5642</td>
<td>1.6928</td>
<td>0.6416</td>
<td>2.3860</td>
<td>0.6878</td>
</tr>
<tr>
<td>108</td>
<td>1.5749</td>
<td>0.5591</td>
<td>1.8222</td>
<td>0.6244</td>
<td>2.2883</td>
<td>0.7423</td>
</tr>
<tr>
<td>112</td>
<td>1.5018</td>
<td>0.5265</td>
<td>1.7696</td>
<td>0.6222</td>
<td>2.2401</td>
<td>0.6850</td>
</tr>
<tr>
<td>116</td>
<td>1.4436</td>
<td>0.5522</td>
<td>1.6530</td>
<td>0.5737</td>
<td>2.1651</td>
<td>0.6862</td>
</tr>
<tr>
<td>120</td>
<td>1.3477</td>
<td>0.4865</td>
<td>1.6474</td>
<td>0.5719</td>
<td>2.0838</td>
<td>0.6271</td>
</tr>
<tr>
<td>124</td>
<td>1.3003</td>
<td>0.4609</td>
<td>1.5532</td>
<td>0.5467</td>
<td>1.9683</td>
<td>0.6284</td>
</tr>
<tr>
<td>128</td>
<td>1.2109</td>
<td>0.4660</td>
<td>1.3730</td>
<td>0.5039</td>
<td>1.8702</td>
<td>0.6015</td>
</tr>
<tr>
<td>132</td>
<td>1.0645</td>
<td>0.4153</td>
<td>1.3004</td>
<td>0.4661</td>
<td>1.6245</td>
<td>0.5544</td>
</tr>
<tr>
<td>136</td>
<td>0.9240</td>
<td>0.3925</td>
<td>1.1475</td>
<td>0.4545</td>
<td>1.4224</td>
<td>0.5479</td>
</tr>
<tr>
<td>140</td>
<td>0.7723</td>
<td>0.3924</td>
<td>0.9200</td>
<td>0.4202</td>
<td>1.2485</td>
<td>0.5131</td>
</tr>
<tr>
<td>144</td>
<td>0.5663</td>
<td>0.3610</td>
<td>0.6930</td>
<td>0.4222</td>
<td>0.9821</td>
<td>0.5237</td>
</tr>
<tr>
<td>148</td>
<td>0.4217</td>
<td>0.3586</td>
<td>0.5222</td>
<td>0.4133</td>
<td>0.7728</td>
<td>0.5108</td>
</tr>
<tr>
<td>152</td>
<td>0.3115</td>
<td>0.3009</td>
<td>0.4453</td>
<td>0.3798</td>
<td>0.5968</td>
<td>0.4878</td>
</tr>
<tr>
<td>156</td>
<td>0.2545</td>
<td>0.2666</td>
<td>0.3676</td>
<td>0.3346</td>
<td>0.5115</td>
<td>0.4205</td>
</tr>
<tr>
<td>160</td>
<td>0.1953</td>
<td>0.2150</td>
<td>0.2819</td>
<td>0.2781</td>
<td>0.4353</td>
<td>0.3711</td>
</tr>
<tr>
<td>164</td>
<td>0.1263</td>
<td>0.1614</td>
<td>0.1718</td>
<td>0.1952</td>
<td>0.2873</td>
<td>0.2819</td>
</tr>
<tr>
<td>168</td>
<td>0.0609</td>
<td>0.0990</td>
<td>0.0801</td>
<td>0.1219</td>
<td>0.1632</td>
<td>0.2026</td>
</tr>
<tr>
<td>172</td>
<td>0.0236</td>
<td>0.0460</td>
<td>0.0272</td>
<td>0.0558</td>
<td>0.0564</td>
<td>0.1073</td>
</tr>
<tr>
<td>176</td>
<td>0.0069</td>
<td>0.0191</td>
<td>0.0077</td>
<td>0.0212</td>
<td>0.0138</td>
<td>0.0321</td>
</tr>
<tr>
<td>180</td>
<td>0.0056</td>
<td>0.0112</td>
<td>0.0074</td>
<td>0.0140</td>
<td>0.0126</td>
<td>0.0214</td>
</tr>
</tbody>
</table>

$r/R = 0.983$

$r/R = 0.977$
<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>1.3438</td>
<td>0.0793</td>
<td>1.9718</td>
<td>0.1180</td>
<td>2.4561</td>
<td>0.1481</td>
</tr>
<tr>
<td>52</td>
<td>1.3922</td>
<td>0.0820</td>
<td>2.0501</td>
<td>0.1131</td>
<td>2.5581</td>
<td>0.1435</td>
</tr>
<tr>
<td>56</td>
<td>1.4033</td>
<td>0.0809</td>
<td>2.0791</td>
<td>0.1087</td>
<td>2.6032</td>
<td>0.1505</td>
</tr>
<tr>
<td>60</td>
<td>1.4237</td>
<td>0.0751</td>
<td>2.1183</td>
<td>0.1145</td>
<td>2.6492</td>
<td>0.1488</td>
</tr>
<tr>
<td>64</td>
<td>1.4489</td>
<td>0.0686</td>
<td>2.1580</td>
<td>0.1223</td>
<td>2.7047</td>
<td>0.1513</td>
</tr>
<tr>
<td>68</td>
<td>1.4570</td>
<td>0.0706</td>
<td>2.1672</td>
<td>0.1196</td>
<td>2.7382</td>
<td>0.1461</td>
</tr>
<tr>
<td>72</td>
<td>1.4283</td>
<td>0.0701</td>
<td>2.1334</td>
<td>0.1131</td>
<td>2.7073</td>
<td>0.1473</td>
</tr>
<tr>
<td>76</td>
<td>1.3961</td>
<td>0.0684</td>
<td>2.0979</td>
<td>0.1053</td>
<td>2.6776</td>
<td>0.1480</td>
</tr>
<tr>
<td>80</td>
<td>1.3815</td>
<td>0.0701</td>
<td>2.0936</td>
<td>0.1053</td>
<td>2.6813</td>
<td>0.1536</td>
</tr>
<tr>
<td>84</td>
<td>1.3911</td>
<td>0.0754</td>
<td>2.0961</td>
<td>0.1211</td>
<td>2.6920</td>
<td>0.1806</td>
</tr>
<tr>
<td>88</td>
<td>1.4481</td>
<td>0.2883</td>
<td>2.1212</td>
<td>0.2103</td>
<td>2.7545</td>
<td>0.3238</td>
</tr>
<tr>
<td>90</td>
<td>1.7108</td>
<td>0.6697</td>
<td>2.2022</td>
<td>0.4088</td>
<td>2.8287</td>
<td>0.4909</td>
</tr>
<tr>
<td>92</td>
<td>2.2563</td>
<td>0.8921</td>
<td>2.4713</td>
<td>0.7212</td>
<td>3.0642</td>
<td>0.7348</td>
</tr>
<tr>
<td>94</td>
<td>2.6635</td>
<td>0.7983</td>
<td>2.9321</td>
<td>0.8852</td>
<td>3.2940</td>
<td>0.8319</td>
</tr>
<tr>
<td>96</td>
<td>2.8312</td>
<td>0.7270</td>
<td>3.2867</td>
<td>0.7776</td>
<td>3.5876</td>
<td>0.7432</td>
</tr>
<tr>
<td>100</td>
<td>2.8039</td>
<td>0.7302</td>
<td>3.4568</td>
<td>0.7104</td>
<td>3.7206</td>
<td>0.6784</td>
</tr>
<tr>
<td>104</td>
<td>2.7562</td>
<td>0.7352</td>
<td>3.4325</td>
<td>0.7138</td>
<td>3.8405</td>
<td>0.6174</td>
</tr>
<tr>
<td>108</td>
<td>2.6639</td>
<td>0.7039</td>
<td>3.3806</td>
<td>0.7209</td>
<td>3.6617</td>
<td>0.6342</td>
</tr>
<tr>
<td>112</td>
<td>2.5983</td>
<td>0.6966</td>
<td>3.2049</td>
<td>0.6778</td>
<td>3.5856</td>
<td>0.6383</td>
</tr>
<tr>
<td>116</td>
<td>2.5513</td>
<td>0.6828</td>
<td>3.1253</td>
<td>0.6559</td>
<td>3.4889</td>
<td>0.6414</td>
</tr>
<tr>
<td>120</td>
<td>2.3965</td>
<td>0.6836</td>
<td>3.0126</td>
<td>0.6672</td>
<td>3.3386</td>
<td>0.6138</td>
</tr>
<tr>
<td>124</td>
<td>2.2665</td>
<td>0.6244</td>
<td>2.9013</td>
<td>0.6735</td>
<td>3.1638</td>
<td>0.5978</td>
</tr>
<tr>
<td>128</td>
<td>2.1682</td>
<td>0.6152</td>
<td>2.7201</td>
<td>0.6187</td>
<td>3.0381</td>
<td>0.5997</td>
</tr>
<tr>
<td>132</td>
<td>1.9850</td>
<td>0.5949</td>
<td>2.5835</td>
<td>0.6179</td>
<td>2.8437</td>
<td>0.5838</td>
</tr>
<tr>
<td>136</td>
<td>1.7621</td>
<td>0.5524</td>
<td>2.3565</td>
<td>0.6043</td>
<td>2.6191</td>
<td>0.5579</td>
</tr>
<tr>
<td>140</td>
<td>1.5342</td>
<td>0.5730</td>
<td>2.0324</td>
<td>0.5706</td>
<td>2.3508</td>
<td>0.5599</td>
</tr>
<tr>
<td>144</td>
<td>1.2015</td>
<td>0.5604</td>
<td>1.6923</td>
<td>0.5912</td>
<td>1.9875</td>
<td>0.5721</td>
</tr>
<tr>
<td>148</td>
<td>1.0081</td>
<td>0.5689</td>
<td>1.4102</td>
<td>0.5976</td>
<td>1.6988</td>
<td>0.5895</td>
</tr>
<tr>
<td>152</td>
<td>0.7894</td>
<td>0.5253</td>
<td>1.1703</td>
<td>0.6278</td>
<td>1.4102</td>
<td>0.5920</td>
</tr>
<tr>
<td>156</td>
<td>0.7077</td>
<td>0.4783</td>
<td>1.0212</td>
<td>0.5846</td>
<td>1.2655</td>
<td>0.5765</td>
</tr>
<tr>
<td>160</td>
<td>0.6147</td>
<td>0.4242</td>
<td>0.9088</td>
<td>0.5068</td>
<td>1.0895</td>
<td>0.5451</td>
</tr>
<tr>
<td>164</td>
<td>0.4377</td>
<td>0.3447</td>
<td>0.7367</td>
<td>0.4132</td>
<td>0.8717</td>
<td>0.4540</td>
</tr>
<tr>
<td>168</td>
<td>0.2616</td>
<td>0.2701</td>
<td>0.4860</td>
<td>0.3343</td>
<td>0.6221</td>
<td>0.3879</td>
</tr>
<tr>
<td>172</td>
<td>0.1106</td>
<td>0.1727</td>
<td>0.2615</td>
<td>0.2753</td>
<td>0.3668</td>
<td>0.3152</td>
</tr>
<tr>
<td>176</td>
<td>0.0286</td>
<td>0.0741</td>
<td>0.0800</td>
<td>0.1375</td>
<td>0.1451</td>
<td>0.1868</td>
</tr>
<tr>
<td>180</td>
<td>0.0187</td>
<td>0.0296</td>
<td>0.0358</td>
<td>0.0573</td>
<td>0.0407</td>
<td>0.0597</td>
</tr>
<tr>
<td>θ deg.</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\dot{u}) m/sec</td>
<td>(u') m/sec</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>0.1897</td>
<td>0.1758</td>
<td>0.1271</td>
<td>0.1477</td>
<td>0.1026</td>
<td>0.1369</td>
</tr>
<tr>
<td>8</td>
<td>0.5612</td>
<td>0.1980</td>
<td>0.4766</td>
<td>0.2026</td>
<td>0.4384</td>
<td>0.2035</td>
</tr>
<tr>
<td>12</td>
<td>0.9225</td>
<td>0.1467</td>
<td>0.8797</td>
<td>0.1478</td>
<td>0.8386</td>
<td>0.1415</td>
</tr>
<tr>
<td>16</td>
<td>1.2787</td>
<td>0.1312</td>
<td>1.2826</td>
<td>0.1306</td>
<td>1.2404</td>
<td>0.1306</td>
</tr>
<tr>
<td>20</td>
<td>1.6237</td>
<td>0.1134</td>
<td>1.6631</td>
<td>0.1207</td>
<td>1.6287</td>
<td>0.1225</td>
</tr>
<tr>
<td>24</td>
<td>1.8906</td>
<td>0.1110</td>
<td>1.9963</td>
<td>0.1017</td>
<td>1.9563</td>
<td>0.1025</td>
</tr>
<tr>
<td>28</td>
<td>2.1925</td>
<td>0.0992</td>
<td>2.3145</td>
<td>0.0940</td>
<td>2.2943</td>
<td>0.0845</td>
</tr>
<tr>
<td>32</td>
<td>2.4811</td>
<td>0.1054</td>
<td>2.6627</td>
<td>0.0801</td>
<td>2.6494</td>
<td>0.0830</td>
</tr>
<tr>
<td>36</td>
<td>2.7599</td>
<td>0.1138</td>
<td>2.9949</td>
<td>0.0639</td>
<td>2.9966</td>
<td>0.0743</td>
</tr>
<tr>
<td>40</td>
<td>2.9580</td>
<td>0.1309</td>
<td>3.2665</td>
<td>0.0789</td>
<td>3.2854</td>
<td>0.0763</td>
</tr>
<tr>
<td>44</td>
<td>3.1574</td>
<td>0.1445</td>
<td>3.5312</td>
<td>0.0661</td>
<td>3.5637</td>
<td>0.0618</td>
</tr>
<tr>
<td>48</td>
<td>3.3837</td>
<td>0.1595</td>
<td>3.8185</td>
<td>0.0877</td>
<td>3.8749</td>
<td>0.0744</td>
</tr>
<tr>
<td>52</td>
<td>3.5440</td>
<td>0.1626</td>
<td>4.0665</td>
<td>0.0845</td>
<td>4.1332</td>
<td>0.0648</td>
</tr>
<tr>
<td>56</td>
<td>3.6648</td>
<td>0.1599</td>
<td>4.2638</td>
<td>0.0978</td>
<td>4.3637</td>
<td>0.0589</td>
</tr>
<tr>
<td>60</td>
<td>3.7640</td>
<td>0.1652</td>
<td>4.4548</td>
<td>0.1104</td>
<td>4.5771</td>
<td>0.0519</td>
</tr>
<tr>
<td>64</td>
<td>3.8815</td>
<td>0.1683</td>
<td>4.6565</td>
<td>0.0960</td>
<td>4.7909</td>
<td>0.0634</td>
</tr>
<tr>
<td>68</td>
<td>3.9599</td>
<td>0.1934</td>
<td>4.8231</td>
<td>0.1309</td>
<td>5.0007</td>
<td>0.0537</td>
</tr>
<tr>
<td>72</td>
<td>3.9941</td>
<td>0.2028</td>
<td>4.9495</td>
<td>0.1237</td>
<td>5.1572</td>
<td>0.0689</td>
</tr>
<tr>
<td>76</td>
<td>4.0167</td>
<td>0.2120</td>
<td>5.0540</td>
<td>0.1503</td>
<td>5.3080</td>
<td>0.0796</td>
</tr>
<tr>
<td>78</td>
<td>4.0474</td>
<td>0.2348</td>
<td>5.1188</td>
<td>0.1961</td>
<td>5.3410</td>
<td>0.1123</td>
</tr>
<tr>
<td>80</td>
<td>4.1055</td>
<td>0.3165</td>
<td>5.1509</td>
<td>0.2516</td>
<td>5.3593</td>
<td>0.1681</td>
</tr>
<tr>
<td>82</td>
<td>4.1659</td>
<td>0.4514</td>
<td>5.1571</td>
<td>0.3271</td>
<td>5.3713</td>
<td>0.2596</td>
</tr>
<tr>
<td>84</td>
<td>4.2555</td>
<td>0.5667</td>
<td>5.0901</td>
<td>0.4380</td>
<td>5.3757</td>
<td>0.3253</td>
</tr>
<tr>
<td>86</td>
<td>4.2060</td>
<td>0.6791</td>
<td>4.9669</td>
<td>0.5268</td>
<td>5.2971</td>
<td>0.4407</td>
</tr>
<tr>
<td>88</td>
<td>4.1898</td>
<td>0.6417</td>
<td>4.7795</td>
<td>0.5685</td>
<td>5.1334</td>
<td>0.4996</td>
</tr>
<tr>
<td>90</td>
<td>4.1323</td>
<td>0.6144</td>
<td>4.6516</td>
<td>0.5322</td>
<td>5.0623</td>
<td>0.5127</td>
</tr>
<tr>
<td>92</td>
<td>4.2353</td>
<td>0.5335</td>
<td>4.6917</td>
<td>0.4916</td>
<td>4.8664</td>
<td>0.4429</td>
</tr>
<tr>
<td>94</td>
<td>4.2621</td>
<td>0.5185</td>
<td>4.7140</td>
<td>0.4528</td>
<td>5.0026</td>
<td>0.4524</td>
</tr>
<tr>
<td>96</td>
<td>4.2915</td>
<td>0.5127</td>
<td>4.7246</td>
<td>0.4272</td>
<td>5.0379</td>
<td>0.4072</td>
</tr>
<tr>
<td>100</td>
<td>4.2946</td>
<td>0.5104</td>
<td>4.7360</td>
<td>0.4256</td>
<td>5.0424</td>
<td>0.4070</td>
</tr>
<tr>
<td>104</td>
<td>4.2471</td>
<td>0.5052</td>
<td>4.6694</td>
<td>0.4629</td>
<td>4.9469</td>
<td>0.3999</td>
</tr>
<tr>
<td>108</td>
<td>4.1261</td>
<td>0.5151</td>
<td>4.5519</td>
<td>0.4556</td>
<td>4.8433</td>
<td>0.4081</td>
</tr>
<tr>
<td>112</td>
<td>4.0263</td>
<td>0.5221</td>
<td>4.4635</td>
<td>0.4406</td>
<td>4.7614</td>
<td>0.4292</td>
</tr>
<tr>
<td>116</td>
<td>3.9331</td>
<td>0.5159</td>
<td>4.3388</td>
<td>0.4337</td>
<td>4.6459</td>
<td>0.4107</td>
</tr>
<tr>
<td>120</td>
<td>3.8360</td>
<td>0.5048</td>
<td>4.2186</td>
<td>0.4224</td>
<td>4.5371</td>
<td>0.3885</td>
</tr>
<tr>
<td>124</td>
<td>3.6852</td>
<td>0.4614</td>
<td>4.0709</td>
<td>0.4149</td>
<td>4.3846</td>
<td>0.3707</td>
</tr>
<tr>
<td>128</td>
<td>3.4594</td>
<td>0.4555</td>
<td>3.8938</td>
<td>0.4102</td>
<td>4.2170</td>
<td>0.3413</td>
</tr>
<tr>
<td>132</td>
<td>3.3623</td>
<td>0.4358</td>
<td>3.7554</td>
<td>0.3608</td>
<td>4.0335</td>
<td>0.3542</td>
</tr>
<tr>
<td>136</td>
<td>3.0952</td>
<td>0.4600</td>
<td>3.5720</td>
<td>0.3755</td>
<td>3.8815</td>
<td>0.3448</td>
</tr>
<tr>
<td>140</td>
<td>2.8697</td>
<td>0.4463</td>
<td>3.3432</td>
<td>0.3992</td>
<td>3.7086</td>
<td>0.3261</td>
</tr>
<tr>
<td>144</td>
<td>2.5185</td>
<td>0.4571</td>
<td>3.0977</td>
<td>0.4084</td>
<td>3.4918</td>
<td>0.3349</td>
</tr>
<tr>
<td>148</td>
<td>2.2551</td>
<td>0.4992</td>
<td>2.8749</td>
<td>0.3936</td>
<td>3.2381</td>
<td>0.3486</td>
</tr>
<tr>
<td>152</td>
<td>1.9521</td>
<td>0.4861</td>
<td>2.5834</td>
<td>0.3949</td>
<td>2.8854</td>
<td>0.3934</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>θ (deg.)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>156</td>
<td>1.7407</td>
<td>0.4982</td>
<td>156</td>
<td>1.7407</td>
<td>0.4982</td>
<td>156</td>
</tr>
<tr>
<td>160</td>
<td>1.5122</td>
<td>0.4608</td>
<td>160</td>
<td>1.5122</td>
<td>0.4608</td>
<td>160</td>
</tr>
<tr>
<td>164</td>
<td>1.2595</td>
<td>0.4256</td>
<td>164</td>
<td>1.2595</td>
<td>0.4256</td>
<td>164</td>
</tr>
<tr>
<td>168</td>
<td>0.9339</td>
<td>0.3594</td>
<td>168</td>
<td>0.9339</td>
<td>0.3594</td>
<td>168</td>
</tr>
<tr>
<td>172</td>
<td>0.6254</td>
<td>0.3205</td>
<td>172</td>
<td>0.6254</td>
<td>0.3205</td>
<td>172</td>
</tr>
<tr>
<td>176</td>
<td>0.3014</td>
<td>0.2606</td>
<td>176</td>
<td>0.3014</td>
<td>0.2606</td>
<td>176</td>
</tr>
<tr>
<td>180</td>
<td>0.0743</td>
<td>0.1096</td>
<td>180</td>
<td>0.0743</td>
<td>0.1096</td>
<td>180</td>
</tr>
</tbody>
</table>

SPRE

s/d = 30

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0971</td>
<td>0.1316</td>
<td>4</td>
<td>0.0971</td>
<td>0.1316</td>
<td>4</td>
<td>0.0971</td>
<td>0.1316</td>
</tr>
<tr>
<td>8</td>
<td>0.4091</td>
<td>0.2016</td>
<td>8</td>
<td>0.4091</td>
<td>0.2016</td>
<td>8</td>
<td>0.4091</td>
<td>0.2016</td>
</tr>
<tr>
<td>12</td>
<td>0.8217</td>
<td>0.1481</td>
<td>12</td>
<td>0.8217</td>
<td>0.1481</td>
<td>12</td>
<td>0.8217</td>
<td>0.1481</td>
</tr>
<tr>
<td>16</td>
<td>1.2122</td>
<td>0.1318</td>
<td>16</td>
<td>1.2122</td>
<td>0.1318</td>
<td>16</td>
<td>1.2122</td>
<td>0.1318</td>
</tr>
<tr>
<td>20</td>
<td>1.5890</td>
<td>0.1211</td>
<td>20</td>
<td>1.5890</td>
<td>0.1211</td>
<td>20</td>
<td>1.5890</td>
<td>0.1211</td>
</tr>
<tr>
<td>24</td>
<td>1.9259</td>
<td>0.1094</td>
<td>24</td>
<td>1.9259</td>
<td>0.1094</td>
<td>24</td>
<td>1.9259</td>
<td>0.1094</td>
</tr>
<tr>
<td>28</td>
<td>2.2617</td>
<td>0.1001</td>
<td>28</td>
<td>2.2617</td>
<td>0.1001</td>
<td>28</td>
<td>2.2617</td>
<td>0.1001</td>
</tr>
<tr>
<td>32</td>
<td>2.6275</td>
<td>0.0880</td>
<td>32</td>
<td>2.6275</td>
<td>0.0880</td>
<td>32</td>
<td>2.6275</td>
<td>0.0880</td>
</tr>
<tr>
<td>36</td>
<td>2.9802</td>
<td>0.0821</td>
<td>36</td>
<td>2.9802</td>
<td>0.0821</td>
<td>36</td>
<td>2.9802</td>
<td>0.0821</td>
</tr>
<tr>
<td>40</td>
<td>3.2799</td>
<td>0.0839</td>
<td>40</td>
<td>3.2799</td>
<td>0.0839</td>
<td>40</td>
<td>3.2799</td>
<td>0.0839</td>
</tr>
<tr>
<td>44</td>
<td>3.5592</td>
<td>0.0671</td>
<td>44</td>
<td>3.5592</td>
<td>0.0671</td>
<td>44</td>
<td>3.5592</td>
<td>0.0671</td>
</tr>
<tr>
<td>48</td>
<td>3.8774</td>
<td>0.0735</td>
<td>48</td>
<td>3.8774</td>
<td>0.0735</td>
<td>48</td>
<td>3.8774</td>
<td>0.0735</td>
</tr>
<tr>
<td>52</td>
<td>4.1476</td>
<td>0.0676</td>
<td>52</td>
<td>4.1476</td>
<td>0.0676</td>
<td>52</td>
<td>4.1476</td>
<td>0.0676</td>
</tr>
<tr>
<td>56</td>
<td>4.3834</td>
<td>0.0490</td>
<td>56</td>
<td>4.3834</td>
<td>0.0490</td>
<td>56</td>
<td>4.3834</td>
<td>0.0490</td>
</tr>
<tr>
<td>60</td>
<td>4.6030</td>
<td>0.0543</td>
<td>60</td>
<td>4.6030</td>
<td>0.0543</td>
<td>60</td>
<td>4.6030</td>
<td>0.0543</td>
</tr>
<tr>
<td>64</td>
<td>4.8273</td>
<td>0.0519</td>
<td>64</td>
<td>4.8273</td>
<td>0.0519</td>
<td>64</td>
<td>4.8273</td>
<td>0.0519</td>
</tr>
<tr>
<td>68</td>
<td>5.0343</td>
<td>0.0471</td>
<td>68</td>
<td>5.0343</td>
<td>0.0471</td>
<td>68</td>
<td>5.0343</td>
<td>0.0471</td>
</tr>
<tr>
<td>72</td>
<td>5.2086</td>
<td>0.0412</td>
<td>72</td>
<td>5.2086</td>
<td>0.0412</td>
<td>72</td>
<td>5.2086</td>
<td>0.0412</td>
</tr>
<tr>
<td>76</td>
<td>5.3488</td>
<td>0.0594</td>
<td>76</td>
<td>5.3488</td>
<td>0.0594</td>
<td>76</td>
<td>5.3488</td>
<td>0.0594</td>
</tr>
<tr>
<td>80</td>
<td>5.4386</td>
<td>0.1228</td>
<td>80</td>
<td>5.4386</td>
<td>0.1228</td>
<td>80</td>
<td>5.4386</td>
<td>0.1228</td>
</tr>
<tr>
<td>84</td>
<td>5.4636</td>
<td>0.1797</td>
<td>84</td>
<td>5.4636</td>
<td>0.1797</td>
<td>84</td>
<td>5.4636</td>
<td>0.1797</td>
</tr>
<tr>
<td>88</td>
<td>5.4658</td>
<td>0.4258</td>
<td>88</td>
<td>5.4658</td>
<td>0.4258</td>
<td>88</td>
<td>5.4658</td>
<td>0.4258</td>
</tr>
<tr>
<td>90</td>
<td>5.3750</td>
<td>0.4176</td>
<td>90</td>
<td>5.3750</td>
<td>0.4176</td>
<td>90</td>
<td>5.3750</td>
<td>0.4176</td>
</tr>
<tr>
<td>92</td>
<td>5.2904</td>
<td>0.3866</td>
<td>92</td>
<td>5.2904</td>
<td>0.3866</td>
<td>92</td>
<td>5.2904</td>
<td>0.3866</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(r/R = 0.463)</td>
<td>(r/R = 0.330)</td>
<td>(r/R = 0.197)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\ddot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>5.2671</td>
<td>0.4079</td>
<td>5.4283</td>
<td>0.3132</td>
<td>5.5174</td>
<td>0.2973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>5.3012</td>
<td>0.3708</td>
<td>5.4024</td>
<td>0.3191</td>
<td>5.4666</td>
<td>0.2845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.2760</td>
<td>0.3768</td>
<td>5.3812</td>
<td>0.3190</td>
<td>5.4673</td>
<td>0.2997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>5.1828</td>
<td>0.3577</td>
<td>5.3070</td>
<td>0.3541</td>
<td>5.4065</td>
<td>0.2862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>5.0290</td>
<td>0.3864</td>
<td>5.1944</td>
<td>0.3462</td>
<td>5.2862</td>
<td>0.3070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>4.9625</td>
<td>0.3895</td>
<td>5.1068</td>
<td>0.3668</td>
<td>5.1984</td>
<td>0.3145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>4.8367</td>
<td>0.3923</td>
<td>5.0279</td>
<td>0.3377</td>
<td>5.1315</td>
<td>0.3147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>4.7924</td>
<td>0.3407</td>
<td>4.9284</td>
<td>0.3276</td>
<td>5.0588</td>
<td>0.2925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>4.6349</td>
<td>0.3370</td>
<td>4.7958</td>
<td>0.2837</td>
<td>4.8917</td>
<td>0.2465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>4.4514</td>
<td>0.3171</td>
<td>4.6152</td>
<td>0.2476</td>
<td>4.6810</td>
<td>0.2168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>4.3041</td>
<td>0.2808</td>
<td>4.3995</td>
<td>0.2225</td>
<td>4.4778</td>
<td>0.1800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>4.0874</td>
<td>0.2718</td>
<td>4.1884</td>
<td>0.2123</td>
<td>4.2533</td>
<td>0.1516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>3.9011</td>
<td>0.2420</td>
<td>3.9631</td>
<td>0.1577</td>
<td>3.9988</td>
<td>0.1468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>3.6859</td>
<td>0.2470</td>
<td>3.7222</td>
<td>0.2011</td>
<td>3.7647</td>
<td>0.1594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>3.3689</td>
<td>0.2394</td>
<td>3.4945</td>
<td>0.1822</td>
<td>3.5291</td>
<td>0.1844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>3.1349</td>
<td>0.2861</td>
<td>3.2133</td>
<td>0.2306</td>
<td>3.2556</td>
<td>0.1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>2.8028</td>
<td>0.3192</td>
<td>2.8927</td>
<td>0.2416</td>
<td>2.9355</td>
<td>0.2186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>2.4692</td>
<td>0.3168</td>
<td>2.5394</td>
<td>0.2526</td>
<td>2.5917</td>
<td>0.2230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>2.0728</td>
<td>0.2965</td>
<td>2.1477</td>
<td>0.2668</td>
<td>2.1986</td>
<td>0.2524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>1.6280</td>
<td>0.2919</td>
<td>1.7119</td>
<td>0.2847</td>
<td>1.7543</td>
<td>0.2438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>1.1711</td>
<td>0.3228</td>
<td>1.2445</td>
<td>0.2866</td>
<td>1.2853</td>
<td>0.2922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.7309</td>
<td>0.3033</td>
<td>0.7913</td>
<td>0.2683</td>
<td>0.8241</td>
<td>0.2693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.2771</td>
<td>0.2263</td>
<td>0.3059</td>
<td>0.2227</td>
<td>0.3267</td>
<td>0.2293</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>(r/R = 0.004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ (deg.)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>44</td>
</tr>
</tbody>
</table>

s/d = 30
<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>3.8386</td>
<td>0.0697</td>
</tr>
<tr>
<td>52</td>
<td>4.1161</td>
<td>0.0579</td>
</tr>
<tr>
<td>56</td>
<td>4.3661</td>
<td>0.0433</td>
</tr>
<tr>
<td>60</td>
<td>4.5912</td>
<td>0.0489</td>
</tr>
<tr>
<td>64</td>
<td>4.8221</td>
<td>0.0421</td>
</tr>
<tr>
<td>68</td>
<td>5.0350</td>
<td>0.0436</td>
</tr>
<tr>
<td>72</td>
<td>5.2086</td>
<td>0.0380</td>
</tr>
<tr>
<td>76</td>
<td>5.3317</td>
<td>0.0587</td>
</tr>
<tr>
<td>78</td>
<td>5.3824</td>
<td>0.0699</td>
</tr>
<tr>
<td>80</td>
<td>5.4434</td>
<td>0.0999</td>
</tr>
<tr>
<td>82</td>
<td>5.5169</td>
<td>0.1243</td>
</tr>
<tr>
<td>84</td>
<td>5.6274</td>
<td>0.1967</td>
</tr>
<tr>
<td>86</td>
<td>5.8429</td>
<td>0.2721</td>
</tr>
<tr>
<td>88</td>
<td>5.9452</td>
<td>0.2875</td>
</tr>
<tr>
<td>90</td>
<td>5.7876</td>
<td>0.3223</td>
</tr>
<tr>
<td>92</td>
<td>5.6441</td>
<td>0.2749</td>
</tr>
<tr>
<td>94</td>
<td>5.5613</td>
<td>0.2563</td>
</tr>
<tr>
<td>96</td>
<td>5.5436</td>
<td>0.2658</td>
</tr>
<tr>
<td>100</td>
<td>5.4992</td>
<td>0.2680</td>
</tr>
<tr>
<td>104</td>
<td>5.4438</td>
<td>0.2642</td>
</tr>
<tr>
<td>108</td>
<td>5.3695</td>
<td>0.2581</td>
</tr>
<tr>
<td>112</td>
<td>5.2763</td>
<td>0.2748</td>
</tr>
<tr>
<td>116</td>
<td>5.2111</td>
<td>0.2605</td>
</tr>
<tr>
<td>120</td>
<td>5.0778</td>
<td>0.2645</td>
</tr>
<tr>
<td>124</td>
<td>4.9092</td>
<td>0.2337</td>
</tr>
<tr>
<td>128</td>
<td>4.6908</td>
<td>0.2052</td>
</tr>
<tr>
<td>132</td>
<td>4.4353</td>
<td>0.1698</td>
</tr>
<tr>
<td>136</td>
<td>4.1803</td>
<td>0.2067</td>
</tr>
<tr>
<td>140</td>
<td>3.9119</td>
<td>0.2114</td>
</tr>
<tr>
<td>144</td>
<td>3.6736</td>
<td>0.2293</td>
</tr>
<tr>
<td>148</td>
<td>3.3997</td>
<td>0.2214</td>
</tr>
<tr>
<td>152</td>
<td>3.0768</td>
<td>0.2488</td>
</tr>
<tr>
<td>156</td>
<td>2.7157</td>
<td>0.2850</td>
</tr>
<tr>
<td>160</td>
<td>2.4331</td>
<td>0.2750</td>
</tr>
<tr>
<td>164</td>
<td>2.0180</td>
<td>0.2819</td>
</tr>
<tr>
<td>168</td>
<td>1.5719</td>
<td>0.2865</td>
</tr>
<tr>
<td>172</td>
<td>1.1803</td>
<td>0.2927</td>
</tr>
<tr>
<td>176</td>
<td>0.7590</td>
<td>0.2601</td>
</tr>
<tr>
<td>180</td>
<td>0.2964</td>
<td>0.2264</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(u_m)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0650</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1269</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2573</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.4300</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6140</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7684</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9614</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1425</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3179</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.4791</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.6229</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.7654</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.9026</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.0498</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.2011</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.3539</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.5058</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.6461</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.7681</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.8776</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2.9878</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.1017</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.2278</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.3548</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.4646</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.5617</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.6501</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.7302</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3.8031</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.8860</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>3.9661</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.0506</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.1306</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.1919</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.2457</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.2915</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.3252</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.3718</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.4064</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.4411</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.4743</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.5037</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.5366</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.5397</td>
<td></td>
</tr>
</tbody>
</table>

\(s/d = 30 \)
Figure 7: Ensemble-averaged velocity at s/d = 30
Figure 8: Streamwise velocity fluctuation at s/d = 30
Centerline view
Figure 9: Streamwise velocity fluctuation at s/d = 30
Near-wall view
Figure 10: Streamwise turbulence intensity, u'/\bar{u}, at $s/d = 30$

Note: The peaks appear lower than the actual data due to smoothing by the plotting package. The peak turbulence intensity is 1.25, at 164° for $r/R = 0.986$.
<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0679</td>
<td>0.0169</td>
<td>0.0394</td>
<td>0.0138</td>
<td>0.0181</td>
<td>0.0168</td>
</tr>
<tr>
<td>6</td>
<td>0.0885</td>
<td>0.0151</td>
<td>0.0598</td>
<td>0.0170</td>
<td>0.0410</td>
<td>0.0201</td>
</tr>
<tr>
<td>12</td>
<td>0.1145</td>
<td>0.0199</td>
<td>0.0935</td>
<td>0.0230</td>
<td>0.0848</td>
<td>0.0377</td>
</tr>
<tr>
<td>16</td>
<td>0.1376</td>
<td>0.0148</td>
<td>0.1130</td>
<td>0.0189</td>
<td>0.1150</td>
<td>0.0305</td>
</tr>
<tr>
<td>20</td>
<td>0.1429</td>
<td>0.0135</td>
<td>0.1223</td>
<td>0.0151</td>
<td>0.1232</td>
<td>0.0228</td>
</tr>
<tr>
<td>24</td>
<td>0.1522</td>
<td>0.0122</td>
<td>0.1308</td>
<td>0.0146</td>
<td>0.1389</td>
<td>0.0224</td>
</tr>
<tr>
<td>28</td>
<td>0.1633</td>
<td>0.0091</td>
<td>0.1450</td>
<td>0.0148</td>
<td>0.1604</td>
<td>0.0194</td>
</tr>
<tr>
<td>32</td>
<td>0.1749</td>
<td>0.0109</td>
<td>0.1647</td>
<td>0.0118</td>
<td>0.1901</td>
<td>0.0219</td>
</tr>
<tr>
<td>36</td>
<td>0.1875</td>
<td>0.0106</td>
<td>0.1750</td>
<td>0.0132</td>
<td>0.2098</td>
<td>0.0217</td>
</tr>
<tr>
<td>40</td>
<td>0.1899</td>
<td>0.0102</td>
<td>0.1797</td>
<td>0.0131</td>
<td>0.2172</td>
<td>0.0213</td>
</tr>
<tr>
<td>44</td>
<td>0.1968</td>
<td>0.0099</td>
<td>0.1898</td>
<td>0.0134</td>
<td>0.2318</td>
<td>0.0195</td>
</tr>
<tr>
<td>48</td>
<td>0.2150</td>
<td>0.0122</td>
<td>0.2106</td>
<td>0.0153</td>
<td>0.2637</td>
<td>0.0235</td>
</tr>
<tr>
<td>52</td>
<td>0.2199</td>
<td>0.0114</td>
<td>0.2178</td>
<td>0.0137</td>
<td>0.2747</td>
<td>0.0221</td>
</tr>
<tr>
<td>56</td>
<td>0.2194</td>
<td>0.0108</td>
<td>0.2156</td>
<td>0.0140</td>
<td>0.2697</td>
<td>0.0227</td>
</tr>
<tr>
<td>60</td>
<td>0.2229</td>
<td>0.0097</td>
<td>0.2211</td>
<td>0.0123</td>
<td>0.2809</td>
<td>0.0218</td>
</tr>
<tr>
<td>64</td>
<td>0.2305</td>
<td>0.0067</td>
<td>0.2301</td>
<td>0.0098</td>
<td>0.2999</td>
<td>0.0199</td>
</tr>
<tr>
<td>68</td>
<td>0.2315</td>
<td>0.0064</td>
<td>0.2312</td>
<td>0.0091</td>
<td>0.3011</td>
<td>0.0190</td>
</tr>
<tr>
<td>72</td>
<td>0.2255</td>
<td>0.0081</td>
<td>0.2235</td>
<td>0.0100</td>
<td>0.2840</td>
<td>0.0196</td>
</tr>
<tr>
<td>76</td>
<td>0.2247</td>
<td>0.0087</td>
<td>0.2214</td>
<td>0.0107</td>
<td>0.2783</td>
<td>0.0194</td>
</tr>
<tr>
<td>80</td>
<td>0.2252</td>
<td>0.0080</td>
<td>0.2243</td>
<td>0.0098</td>
<td>0.2847</td>
<td>0.0174</td>
</tr>
<tr>
<td>84</td>
<td>0.2215</td>
<td>0.0091</td>
<td>0.2164</td>
<td>0.0116</td>
<td>0.2694</td>
<td>0.0188</td>
</tr>
<tr>
<td>88</td>
<td>0.2060</td>
<td>0.0105</td>
<td>0.1994</td>
<td>0.0106</td>
<td>0.2449</td>
<td>0.0149</td>
</tr>
<tr>
<td>92</td>
<td>0.1986</td>
<td>0.0078</td>
<td>0.1910</td>
<td>0.0084</td>
<td>0.2327</td>
<td>0.0124</td>
</tr>
<tr>
<td>96</td>
<td>0.1953</td>
<td>0.0070</td>
<td>0.1869</td>
<td>0.0096</td>
<td>0.2268</td>
<td>0.0132</td>
</tr>
<tr>
<td>98</td>
<td>0.1924</td>
<td>0.0062</td>
<td>0.1825</td>
<td>0.0103</td>
<td>0.2211</td>
<td>0.0149</td>
</tr>
<tr>
<td>100</td>
<td>0.1887</td>
<td>0.0085</td>
<td>0.1766</td>
<td>0.0111</td>
<td>0.2126</td>
<td>0.0186</td>
</tr>
<tr>
<td>102</td>
<td>0.1913</td>
<td>0.0049</td>
<td>0.1826</td>
<td>0.0084</td>
<td>0.2112</td>
<td>0.0509</td>
</tr>
<tr>
<td>104</td>
<td>0.2424</td>
<td>0.1590</td>
<td>0.2549</td>
<td>0.1910</td>
<td>0.3006</td>
<td>0.2537</td>
</tr>
<tr>
<td>106</td>
<td>0.3962</td>
<td>0.2483</td>
<td>0.5145</td>
<td>0.3567</td>
<td>0.6439</td>
<td>0.4667</td>
</tr>
<tr>
<td>108</td>
<td>0.5324</td>
<td>0.2237</td>
<td>0.6467</td>
<td>0.2803</td>
<td>0.8915</td>
<td>0.4358</td>
</tr>
<tr>
<td>110</td>
<td>0.5551</td>
<td>0.1949</td>
<td>0.6454</td>
<td>0.2625</td>
<td>0.6907</td>
<td>0.3570</td>
</tr>
<tr>
<td>112</td>
<td>0.5107</td>
<td>0.1917</td>
<td>0.5990</td>
<td>0.2353</td>
<td>0.6210</td>
<td>0.3077</td>
</tr>
<tr>
<td>114</td>
<td>0.5041</td>
<td>0.1830</td>
<td>0.5345</td>
<td>0.2224</td>
<td>0.7654</td>
<td>0.3078</td>
</tr>
<tr>
<td>116</td>
<td>0.4791</td>
<td>0.1796</td>
<td>0.5499</td>
<td>0.2339</td>
<td>0.7430</td>
<td>0.2945</td>
</tr>
<tr>
<td>120</td>
<td>0.4520</td>
<td>0.1747</td>
<td>0.5205</td>
<td>0.2097</td>
<td>0.7248</td>
<td>0.3055</td>
</tr>
<tr>
<td>124</td>
<td>0.4275</td>
<td>0.1641</td>
<td>0.4888</td>
<td>0.2135</td>
<td>0.6820</td>
<td>0.2944</td>
</tr>
<tr>
<td>128</td>
<td>0.3805</td>
<td>0.1546</td>
<td>0.4320</td>
<td>0.1871</td>
<td>0.6063</td>
<td>0.2814</td>
</tr>
<tr>
<td>132</td>
<td>0.3639</td>
<td>0.1451</td>
<td>0.3944</td>
<td>0.1796</td>
<td>0.5307</td>
<td>0.2398</td>
</tr>
<tr>
<td>136</td>
<td>0.3162</td>
<td>0.1311</td>
<td>0.3397</td>
<td>0.1647</td>
<td>0.4722</td>
<td>0.2415</td>
</tr>
<tr>
<td>140</td>
<td>0.2832</td>
<td>0.1135</td>
<td>0.2922</td>
<td>0.1453</td>
<td>0.4088</td>
<td>0.2155</td>
</tr>
<tr>
<td>144</td>
<td>0.2388</td>
<td>0.0828</td>
<td>0.2479</td>
<td>0.1210</td>
<td>0.3345</td>
<td>0.1945</td>
</tr>
<tr>
<td>148</td>
<td>0.2010</td>
<td>0.0707</td>
<td>0.2067</td>
<td>0.1023</td>
<td>0.2408</td>
<td>0.1476</td>
</tr>
<tr>
<td>152</td>
<td>0.1675</td>
<td>0.0573</td>
<td>0.1611</td>
<td>0.0751</td>
<td>0.1847</td>
<td>0.1256</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(u)</td>
<td>(u')</td>
<td>(\bar{u})</td>
<td>(u')</td>
<td>(\bar{u})</td>
<td>(u')</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>156</td>
<td>0.1508</td>
<td>0.0517</td>
<td>0.1234</td>
<td>0.0626</td>
<td>0.1241</td>
<td>0.0885</td>
</tr>
<tr>
<td>160</td>
<td>0.1187</td>
<td>0.0351</td>
<td>0.0920</td>
<td>0.0403</td>
<td>0.0826</td>
<td>0.0630</td>
</tr>
<tr>
<td>164</td>
<td>0.0926</td>
<td>0.0241</td>
<td>0.0641</td>
<td>0.0279</td>
<td>0.0459</td>
<td>0.0353</td>
</tr>
<tr>
<td>168</td>
<td>0.0754</td>
<td>0.0183</td>
<td>0.0458</td>
<td>0.0166</td>
<td>0.0257</td>
<td>0.0205</td>
</tr>
<tr>
<td>172</td>
<td>0.0639</td>
<td>0.0105</td>
<td>0.0361</td>
<td>0.0078</td>
<td>0.0141</td>
<td>0.0101</td>
</tr>
<tr>
<td>176</td>
<td>0.0613</td>
<td>0.0070</td>
<td>0.0341</td>
<td>0.0050</td>
<td>0.0112</td>
<td>0.0052</td>
</tr>
<tr>
<td>180</td>
<td>0.0669</td>
<td>0.0080</td>
<td>0.0393</td>
<td>0.0064</td>
<td>0.0161</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(u)</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.0120</td>
<td>0.0170</td>
<td>0.0132</td>
<td>0.0252</td>
<td>0.0170</td>
<td>0.0425</td>
</tr>
<tr>
<td>8</td>
<td>0.0372</td>
<td>0.0268</td>
<td>0.0401</td>
<td>0.0291</td>
<td>0.0902</td>
<td>0.0840</td>
</tr>
<tr>
<td>12</td>
<td>0.0976</td>
<td>0.0508</td>
<td>0.1057</td>
<td>0.0490</td>
<td>0.2657</td>
<td>0.1313</td>
</tr>
<tr>
<td>16</td>
<td>0.1435</td>
<td>0.0434</td>
<td>0.1635</td>
<td>0.0569</td>
<td>0.3847</td>
<td>0.1155</td>
</tr>
<tr>
<td>20</td>
<td>0.1611</td>
<td>0.0354</td>
<td>0.1774</td>
<td>0.0447</td>
<td>0.4358</td>
<td>0.1021</td>
</tr>
<tr>
<td>24</td>
<td>0.1797</td>
<td>0.0353</td>
<td>0.1999</td>
<td>0.0394</td>
<td>0.5069</td>
<td>0.0943</td>
</tr>
<tr>
<td>28</td>
<td>0.2097</td>
<td>0.0352</td>
<td>0.2362</td>
<td>0.0381</td>
<td>0.5867</td>
<td>0.0807</td>
</tr>
<tr>
<td>32</td>
<td>0.2575</td>
<td>0.0341</td>
<td>0.3016</td>
<td>0.0404</td>
<td>0.6783</td>
<td>0.0610</td>
</tr>
<tr>
<td>36</td>
<td>0.2907</td>
<td>0.0362</td>
<td>0.3309</td>
<td>0.0382</td>
<td>0.7215</td>
<td>0.0578</td>
</tr>
<tr>
<td>40</td>
<td>0.3022</td>
<td>0.0335</td>
<td>0.3466</td>
<td>0.0372</td>
<td>0.7394</td>
<td>0.0523</td>
</tr>
<tr>
<td>44</td>
<td>0.3258</td>
<td>0.0331</td>
<td>0.3750</td>
<td>0.0375</td>
<td>0.7732</td>
<td>0.0500</td>
</tr>
<tr>
<td>48</td>
<td>0.3697</td>
<td>0.0318</td>
<td>0.4269</td>
<td>0.0382</td>
<td>0.8384</td>
<td>0.0490</td>
</tr>
<tr>
<td>52</td>
<td>0.3857</td>
<td>0.0317</td>
<td>0.4451</td>
<td>0.0396</td>
<td>0.8674</td>
<td>0.0491</td>
</tr>
<tr>
<td>56</td>
<td>0.3817</td>
<td>0.0323</td>
<td>0.4405</td>
<td>0.0349</td>
<td>0.8576</td>
<td>0.0479</td>
</tr>
<tr>
<td>60</td>
<td>0.3962</td>
<td>0.0323</td>
<td>0.4567</td>
<td>0.0373</td>
<td>0.9767</td>
<td>0.0468</td>
</tr>
<tr>
<td>64</td>
<td>0.4215</td>
<td>0.0312</td>
<td>0.4950</td>
<td>0.0415</td>
<td>0.9100</td>
<td>0.0475</td>
</tr>
<tr>
<td>68</td>
<td>0.4265</td>
<td>0.0308</td>
<td>0.4945</td>
<td>0.0401</td>
<td>0.9155</td>
<td>0.0456</td>
</tr>
<tr>
<td>72</td>
<td>0.4012</td>
<td>0.0325</td>
<td>0.4687</td>
<td>0.0369</td>
<td>0.8858</td>
<td>0.0435</td>
</tr>
<tr>
<td>76</td>
<td>0.3890</td>
<td>0.0303</td>
<td>0.4599</td>
<td>0.0333</td>
<td>0.8731</td>
<td>0.0404</td>
</tr>
<tr>
<td>80</td>
<td>0.3976</td>
<td>0.0287</td>
<td>0.4722</td>
<td>0.0344</td>
<td>0.8859</td>
<td>0.0392</td>
</tr>
<tr>
<td>84</td>
<td>0.3784</td>
<td>0.0252</td>
<td>0.4448</td>
<td>0.0304</td>
<td>0.8613</td>
<td>0.0383</td>
</tr>
<tr>
<td>88</td>
<td>0.3487</td>
<td>0.0213</td>
<td>0.4092</td>
<td>0.0260</td>
<td>0.8163</td>
<td>0.0358</td>
</tr>
<tr>
<td>92</td>
<td>0.3275</td>
<td>0.0221</td>
<td>0.3843</td>
<td>0.0291</td>
<td>0.7852</td>
<td>0.0350</td>
</tr>
<tr>
<td>96</td>
<td>0.3155</td>
<td>0.0217</td>
<td>0.3690</td>
<td>0.0297</td>
<td>0.7663</td>
<td>0.0361</td>
</tr>
<tr>
<td>98</td>
<td>0.3052</td>
<td>0.0216</td>
<td>0.3550</td>
<td>0.0267</td>
<td>0.7513</td>
<td>0.0379</td>
</tr>
<tr>
<td>100</td>
<td>0.2944</td>
<td>0.0263</td>
<td>0.3416</td>
<td>0.0316</td>
<td>0.7327</td>
<td>0.0419</td>
</tr>
<tr>
<td>102</td>
<td>0.2979</td>
<td>0.0887</td>
<td>0.3458</td>
<td>0.1358</td>
<td>0.7365</td>
<td>0.1261</td>
</tr>
<tr>
<td>104</td>
<td>0.4547</td>
<td>0.4180</td>
<td>0.4528</td>
<td>0.3597</td>
<td>0.9042</td>
<td>0.4893</td>
</tr>
</tbody>
</table>

<p>| (s/d = 44) |
|---|---|---|---|---|---|---|
| (\theta) | (u) | (u') | (\bar{u}) | (u') | (\bar{u}) | (u') |
| deg. | m/sec | m/sec | m/sec | m/sec | m/sec | m/sec |
| 4 | 0.0120 | 0.0170 | 0.0132 | 0.0252 | 0.0170 | 0.0425 |
| 8 | 0.0372 | 0.0268 | 0.0401 | 0.0291 | 0.0902 | 0.0840 |
| 12 | 0.0976 | 0.0508 | 0.1057 | 0.0490 | 0.2657 | 0.1313 |
| 16 | 0.1435 | 0.0434 | 0.1635 | 0.0569 | 0.3847 | 0.1155 |
| 20 | 0.1611 | 0.0354 | 0.1774 | 0.0447 | 0.4358 | 0.1021 |
| 24 | 0.1797 | 0.0353 | 0.1999 | 0.0394 | 0.5069 | 0.0943 |
| 28 | 0.2097 | 0.0352 | 0.2362 | 0.0381 | 0.5867 | 0.0807 |</p>
<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>106</td>
<td>0.8857</td>
<td>0.6026</td>
<td>0.9176</td>
<td>0.6649</td>
<td>1.5414</td>
<td>0.8430</td>
</tr>
<tr>
<td>108</td>
<td>1.1421</td>
<td>0.5167</td>
<td>1.2536</td>
<td>0.5847</td>
<td>2.0079</td>
<td>0.7134</td>
</tr>
<tr>
<td>110</td>
<td>1.1625</td>
<td>0.4379</td>
<td>1.2336</td>
<td>0.4619</td>
<td>1.9946</td>
<td>0.6403</td>
</tr>
<tr>
<td>112</td>
<td>1.0661</td>
<td>0.3901</td>
<td>1.1672</td>
<td>0.4382</td>
<td>1.6954</td>
<td>0.6097</td>
</tr>
<tr>
<td>114</td>
<td>0.9992</td>
<td>0.3930</td>
<td>1.1289</td>
<td>0.4413</td>
<td>1.7707</td>
<td>0.5622</td>
</tr>
<tr>
<td>116</td>
<td>0.9804</td>
<td>0.3759</td>
<td>1.0503</td>
<td>0.4384</td>
<td>1.7904</td>
<td>0.6326</td>
</tr>
<tr>
<td>120</td>
<td>0.9366</td>
<td>0.3624</td>
<td>1.0411</td>
<td>0.4056</td>
<td>1.7114</td>
<td>0.5993</td>
</tr>
<tr>
<td>124</td>
<td>0.8601</td>
<td>0.3752</td>
<td>0.9290</td>
<td>0.3785</td>
<td>1.6133</td>
<td>0.5513</td>
</tr>
<tr>
<td>128</td>
<td>0.7832</td>
<td>0.3364</td>
<td>0.8652</td>
<td>0.3637</td>
<td>1.5037</td>
<td>0.5277</td>
</tr>
<tr>
<td>132</td>
<td>0.7115</td>
<td>0.3430</td>
<td>0.7741</td>
<td>0.3312</td>
<td>1.3089</td>
<td>0.4739</td>
</tr>
<tr>
<td>136</td>
<td>0.6264</td>
<td>0.2907</td>
<td>0.6980</td>
<td>0.3144</td>
<td>1.2445</td>
<td>0.4469</td>
</tr>
<tr>
<td>140</td>
<td>0.5450</td>
<td>0.2882</td>
<td>0.5878</td>
<td>0.3066</td>
<td>1.1051</td>
<td>0.4276</td>
</tr>
<tr>
<td>144</td>
<td>0.4543</td>
<td>0.2542</td>
<td>0.4946</td>
<td>0.2581</td>
<td>0.9531</td>
<td>0.3917</td>
</tr>
<tr>
<td>148</td>
<td>0.3452</td>
<td>0.2209</td>
<td>0.3784</td>
<td>0.2266</td>
<td>0.7641</td>
<td>0.3678</td>
</tr>
<tr>
<td>152</td>
<td>0.2398</td>
<td>0.1676</td>
<td>0.2821</td>
<td>0.1882</td>
<td>0.5678</td>
<td>0.3223</td>
</tr>
<tr>
<td>156</td>
<td>0.1605</td>
<td>0.1305</td>
<td>0.2048</td>
<td>0.1691</td>
<td>0.4294</td>
<td>0.2941</td>
</tr>
<tr>
<td>160</td>
<td>0.1022</td>
<td>0.0922</td>
<td>0.1165</td>
<td>0.1087</td>
<td>0.2684</td>
<td>0.2334</td>
</tr>
<tr>
<td>164</td>
<td>0.0464</td>
<td>0.0523</td>
<td>0.0558</td>
<td>0.0742</td>
<td>0.1431</td>
<td>0.1627</td>
</tr>
<tr>
<td>168</td>
<td>0.0199</td>
<td>0.0239</td>
<td>0.0184</td>
<td>0.0253</td>
<td>0.0494</td>
<td>0.0798</td>
</tr>
<tr>
<td>172</td>
<td>0.0073</td>
<td>0.0106</td>
<td>0.0058</td>
<td>0.0104</td>
<td>0.0131</td>
<td>0.0324</td>
</tr>
<tr>
<td>176</td>
<td>0.0046</td>
<td>0.0043</td>
<td>0.0035</td>
<td>0.0059</td>
<td>0.0027</td>
<td>0.0071</td>
</tr>
<tr>
<td>180</td>
<td>0.0091</td>
<td>0.0061</td>
<td>0.0079</td>
<td>0.0063</td>
<td>0.0080</td>
<td>0.0096</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.0324</td>
<td>0.0662</td>
<td>0.1517</td>
<td>0.1868</td>
<td>0.1760</td>
<td>0.2203</td>
</tr>
<tr>
<td>8</td>
<td>0.1675</td>
<td>0.1230</td>
<td>0.5666</td>
<td>0.2027</td>
<td>0.6532</td>
<td>0.2772</td>
</tr>
<tr>
<td>12</td>
<td>0.4471</td>
<td>0.1809</td>
<td>0.9525</td>
<td>0.2115</td>
<td>1.1394</td>
<td>0.2322</td>
</tr>
<tr>
<td>16</td>
<td>0.6054</td>
<td>0.1335</td>
<td>1.1330</td>
<td>0.1637</td>
<td>1.3798</td>
<td>0.1818</td>
</tr>
<tr>
<td>20</td>
<td>0.6874</td>
<td>0.0947</td>
<td>1.3518</td>
<td>0.1562</td>
<td>1.7091</td>
<td>0.1466</td>
</tr>
<tr>
<td>24</td>
<td>0.7557</td>
<td>0.0932</td>
<td>1.5421</td>
<td>0.1628</td>
<td>2.0057</td>
<td>0.1321</td>
</tr>
<tr>
<td>28</td>
<td>0.8294</td>
<td>0.0965</td>
<td>1.6942</td>
<td>0.1627</td>
<td>2.2698</td>
<td>0.1378</td>
</tr>
<tr>
<td>32</td>
<td>0.9292</td>
<td>0.0867</td>
<td>1.8833</td>
<td>0.1605</td>
<td>2.5607</td>
<td>0.1370</td>
</tr>
<tr>
<td>36</td>
<td>0.9904</td>
<td>0.0775</td>
<td>2.0363</td>
<td>0.1575</td>
<td>2.8223</td>
<td>0.1507</td>
</tr>
<tr>
<td>40</td>
<td>1.0278</td>
<td>0.0728</td>
<td>2.1139</td>
<td>0.1576</td>
<td>3.0111</td>
<td>0.1564</td>
</tr>
<tr>
<td>44</td>
<td>1.0667</td>
<td>0.0710</td>
<td>2.2146</td>
<td>0.1585</td>
<td>3.2037</td>
<td>0.1615</td>
</tr>
<tr>
<td>48</td>
<td>1.1458</td>
<td>0.0675</td>
<td>2.3611</td>
<td>0.1539</td>
<td>3.4128</td>
<td>0.1782</td>
</tr>
<tr>
<td>52</td>
<td>1.1826</td>
<td>0.0675</td>
<td>2.4481</td>
<td>0.1378</td>
<td>3.5804</td>
<td>0.1869</td>
</tr>
</tbody>
</table>

s/d = 44
<table>
<thead>
<tr>
<th>θ deg.</th>
<th>\dot{u} m/sec</th>
<th>u' m/sec</th>
<th>\dot{u} m/sec</th>
<th>u' m/sec</th>
<th>\dot{u} m/sec</th>
<th>u' m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>1.1826</td>
<td>0.0665</td>
<td>2.4660</td>
<td>0.1360</td>
<td>3.6999</td>
<td>0.1829</td>
</tr>
<tr>
<td>60</td>
<td>1.2025</td>
<td>0.0645</td>
<td>2.4977</td>
<td>0.1303</td>
<td>3.8072</td>
<td>0.1882</td>
</tr>
<tr>
<td>64</td>
<td>1.2392</td>
<td>0.0626</td>
<td>2.5737</td>
<td>0.1307</td>
<td>3.9256</td>
<td>0.1926</td>
</tr>
<tr>
<td>68</td>
<td>1.2522</td>
<td>0.0629</td>
<td>2.6085</td>
<td>0.1262</td>
<td>4.0121</td>
<td>0.1994</td>
</tr>
<tr>
<td>72</td>
<td>1.2175</td>
<td>0.0558</td>
<td>2.5874</td>
<td>0.1224</td>
<td>4.0438</td>
<td>0.1922</td>
</tr>
<tr>
<td>76</td>
<td>1.2023</td>
<td>0.0528</td>
<td>2.5762</td>
<td>0.1192</td>
<td>4.0637</td>
<td>0.1876</td>
</tr>
<tr>
<td>80</td>
<td>1.2133</td>
<td>0.0529</td>
<td>2.5989</td>
<td>0.1130</td>
<td>4.1087</td>
<td>0.1756</td>
</tr>
<tr>
<td>84</td>
<td>1.1858</td>
<td>0.0519</td>
<td>2.5755</td>
<td>0.1106</td>
<td>4.1202</td>
<td>0.1748</td>
</tr>
<tr>
<td>88</td>
<td>1.1302</td>
<td>0.0523</td>
<td>2.4952</td>
<td>0.1095</td>
<td>4.0717</td>
<td>0.1825</td>
</tr>
<tr>
<td>92</td>
<td>1.0886</td>
<td>0.0493</td>
<td>2.4268</td>
<td>0.1141</td>
<td>4.0150</td>
<td>0.1885</td>
</tr>
<tr>
<td>96</td>
<td>1.0643</td>
<td>0.0452</td>
<td>2.3809</td>
<td>0.1171</td>
<td>3.9688</td>
<td>0.2075</td>
</tr>
<tr>
<td>98</td>
<td>1.0461</td>
<td>0.0459</td>
<td>2.3584</td>
<td>0.1284</td>
<td>3.9527</td>
<td>0.2676</td>
</tr>
<tr>
<td>100</td>
<td>1.0257</td>
<td>0.0564</td>
<td>2.3458</td>
<td>0.1863</td>
<td>3.9960</td>
<td>0.3967</td>
</tr>
<tr>
<td>102</td>
<td>1.0181</td>
<td>0.1077</td>
<td>2.4015</td>
<td>0.4307</td>
<td>4.0803</td>
<td>0.5719</td>
</tr>
<tr>
<td>104</td>
<td>1.2060</td>
<td>0.5633</td>
<td>2.5811</td>
<td>0.6970</td>
<td>4.0503</td>
<td>0.7338</td>
</tr>
<tr>
<td>106</td>
<td>1.8435</td>
<td>0.9368</td>
<td>3.0566</td>
<td>0.8900</td>
<td>4.0327</td>
<td>0.7855</td>
</tr>
<tr>
<td>108</td>
<td>2.4041</td>
<td>0.8467</td>
<td>3.4520</td>
<td>0.7341</td>
<td>4.1308</td>
<td>0.6442</td>
</tr>
<tr>
<td>110</td>
<td>2.5028</td>
<td>0.6670</td>
<td>3.6132</td>
<td>0.6264</td>
<td>4.1439</td>
<td>0.5615</td>
</tr>
<tr>
<td>112</td>
<td>2.4170</td>
<td>0.6626</td>
<td>3.5184</td>
<td>0.6255</td>
<td>4.1458</td>
<td>0.4927</td>
</tr>
<tr>
<td>114</td>
<td>2.3022</td>
<td>0.6674</td>
<td>3.5371</td>
<td>0.6340</td>
<td>4.0591</td>
<td>0.5401</td>
</tr>
<tr>
<td>116</td>
<td>2.2432</td>
<td>0.6729</td>
<td>3.4228</td>
<td>0.6203</td>
<td>4.0482</td>
<td>0.5029</td>
</tr>
<tr>
<td>120</td>
<td>2.2070</td>
<td>0.6548</td>
<td>3.2797</td>
<td>0.6412</td>
<td>3.8741</td>
<td>0.5011</td>
</tr>
<tr>
<td>124</td>
<td>2.0683</td>
<td>0.6151</td>
<td>3.1391</td>
<td>0.6368</td>
<td>3.7211</td>
<td>0.4816</td>
</tr>
<tr>
<td>128</td>
<td>1.9162</td>
<td>0.5940</td>
<td>3.0258</td>
<td>0.5923</td>
<td>3.5924</td>
<td>0.4979</td>
</tr>
<tr>
<td>132</td>
<td>1.7515</td>
<td>0.5639</td>
<td>2.8029</td>
<td>0.5749</td>
<td>3.3636</td>
<td>0.4703</td>
</tr>
<tr>
<td>136</td>
<td>1.6410</td>
<td>0.5497</td>
<td>2.6442</td>
<td>0.5516</td>
<td>3.2182</td>
<td>0.4544</td>
</tr>
<tr>
<td>140</td>
<td>1.4515</td>
<td>0.4973</td>
<td>2.4764</td>
<td>0.5440</td>
<td>2.9711</td>
<td>0.4452</td>
</tr>
<tr>
<td>144</td>
<td>1.2762</td>
<td>0.4863</td>
<td>2.2044</td>
<td>0.5283</td>
<td>2.7366</td>
<td>0.4145</td>
</tr>
<tr>
<td>148</td>
<td>1.1000</td>
<td>0.4266</td>
<td>1.9766</td>
<td>0.4827</td>
<td>2.4576</td>
<td>0.4157</td>
</tr>
<tr>
<td>152</td>
<td>0.8741</td>
<td>0.4065</td>
<td>1.7075</td>
<td>0.4639</td>
<td>2.1639</td>
<td>0.4141</td>
</tr>
<tr>
<td>156</td>
<td>0.6715</td>
<td>0.3726</td>
<td>1.4717</td>
<td>0.4135</td>
<td>1.9133</td>
<td>0.3663</td>
</tr>
<tr>
<td>160</td>
<td>0.4760</td>
<td>0.3132</td>
<td>1.1796</td>
<td>0.3852</td>
<td>1.5824</td>
<td>0.3563</td>
</tr>
<tr>
<td>164</td>
<td>0.2585</td>
<td>0.2523</td>
<td>0.8549</td>
<td>0.3689</td>
<td>1.2611</td>
<td>0.3266</td>
</tr>
<tr>
<td>168</td>
<td>0.1268</td>
<td>0.1635</td>
<td>0.5624</td>
<td>0.3275</td>
<td>0.8801</td>
<td>0.3096</td>
</tr>
<tr>
<td>172</td>
<td>0.0297</td>
<td>0.0592</td>
<td>0.2632</td>
<td>0.2537</td>
<td>0.5481</td>
<td>0.2928</td>
</tr>
<tr>
<td>176</td>
<td>0.0062</td>
<td>0.0135</td>
<td>0.0595</td>
<td>0.0968</td>
<td>0.2069</td>
<td>0.2039</td>
</tr>
<tr>
<td>180</td>
<td>0.0172</td>
<td>0.0187</td>
<td>0.0401</td>
<td>0.0524</td>
<td>0.0316</td>
<td>0.0524</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>r/R = 0.737</td>
<td></td>
<td>r/R = 0.603</td>
<td></td>
<td>r/R = 0.470</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>-------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>4</td>
<td>0.0885</td>
<td>0.0315</td>
<td>0.0070</td>
<td>0.0105</td>
<td>0.0050</td>
<td>0.0078</td>
</tr>
<tr>
<td>8</td>
<td>0.0534</td>
<td>0.0850</td>
<td>0.0131</td>
<td>0.0276</td>
<td>0.0290</td>
<td>0.0590</td>
</tr>
<tr>
<td>12</td>
<td>1.0468</td>
<td>0.2725</td>
<td>0.6281</td>
<td>0.3728</td>
<td>0.2761</td>
<td>0.2824</td>
</tr>
<tr>
<td>16</td>
<td>1.3727</td>
<td>0.1959</td>
<td>1.2855</td>
<td>0.2300</td>
<td>1.1794</td>
<td>0.2269</td>
</tr>
<tr>
<td>20</td>
<td>1.7895</td>
<td>0.1390</td>
<td>1.7556</td>
<td>0.1403</td>
<td>1.7037</td>
<td>0.1484</td>
</tr>
<tr>
<td>24</td>
<td>2.0970</td>
<td>0.1156</td>
<td>2.0925</td>
<td>0.1091</td>
<td>2.0709</td>
<td>0.1112</td>
</tr>
<tr>
<td>28</td>
<td>2.4110</td>
<td>0.1002</td>
<td>2.4119</td>
<td>0.0979</td>
<td>2.3924</td>
<td>0.1014</td>
</tr>
<tr>
<td>32</td>
<td>2.7576</td>
<td>0.0968</td>
<td>2.7561</td>
<td>0.0926</td>
<td>2.7581</td>
<td>0.0911</td>
</tr>
<tr>
<td>36</td>
<td>3.0909</td>
<td>0.0828</td>
<td>3.0961</td>
<td>0.0800</td>
<td>3.0888</td>
<td>0.0770</td>
</tr>
<tr>
<td>40</td>
<td>3.3628</td>
<td>0.0776</td>
<td>3.3824</td>
<td>0.0695</td>
<td>3.3816</td>
<td>0.0597</td>
</tr>
<tr>
<td>44</td>
<td>3.6138</td>
<td>0.0788</td>
<td>3.6493</td>
<td>0.0617</td>
<td>3.6497</td>
<td>0.0590</td>
</tr>
<tr>
<td>48</td>
<td>3.9276</td>
<td>0.0748</td>
<td>3.9768</td>
<td>0.0571</td>
<td>3.9765</td>
<td>0.0562</td>
</tr>
<tr>
<td>52</td>
<td>4.2056</td>
<td>0.0862</td>
<td>4.2753</td>
<td>0.0570</td>
<td>4.2845</td>
<td>0.0580</td>
</tr>
<tr>
<td>56</td>
<td>4.3954</td>
<td>0.0994</td>
<td>4.4960</td>
<td>0.0584</td>
<td>4.5070</td>
<td>0.0464</td>
</tr>
<tr>
<td>60</td>
<td>4.5703</td>
<td>0.1078</td>
<td>4.6900</td>
<td>0.0584</td>
<td>4.7205</td>
<td>0.0564</td>
</tr>
<tr>
<td>64</td>
<td>4.7625</td>
<td>0.1162</td>
<td>4.9231</td>
<td>0.0571</td>
<td>4.9566</td>
<td>0.0617</td>
</tr>
<tr>
<td>68</td>
<td>4.9590</td>
<td>0.1221</td>
<td>5.1353</td>
<td>0.0660</td>
<td>5.1808</td>
<td>0.0518</td>
</tr>
<tr>
<td>72</td>
<td>5.0682</td>
<td>0.1279</td>
<td>5.2695</td>
<td>0.0574</td>
<td>5.2871</td>
<td>0.0486</td>
</tr>
<tr>
<td>76</td>
<td>5.1747</td>
<td>0.1307</td>
<td>5.3754</td>
<td>0.0599</td>
<td>5.4235</td>
<td>0.0586</td>
</tr>
<tr>
<td>80</td>
<td>5.2762</td>
<td>0.1309</td>
<td>5.5219</td>
<td>0.0762</td>
<td>5.5754</td>
<td>0.0346</td>
</tr>
<tr>
<td>84</td>
<td>5.3544</td>
<td>0.1390</td>
<td>5.6261</td>
<td>0.0587</td>
<td>5.6841</td>
<td>0.0574</td>
</tr>
<tr>
<td>88</td>
<td>5.3583</td>
<td>0.1445</td>
<td>5.6593</td>
<td>0.0688</td>
<td>5.7430</td>
<td>0.0447</td>
</tr>
<tr>
<td>92</td>
<td>5.3563</td>
<td>0.1598</td>
<td>5.7072</td>
<td>0.0823</td>
<td>5.7922</td>
<td>0.0484</td>
</tr>
<tr>
<td>96</td>
<td>5.4148</td>
<td>0.2008</td>
<td>5.7574</td>
<td>0.1389</td>
<td>5.8401</td>
<td>0.0994</td>
</tr>
<tr>
<td>100</td>
<td>5.4177</td>
<td>0.2614</td>
<td>5.7388</td>
<td>0.1927</td>
<td>5.8261</td>
<td>0.1308</td>
</tr>
<tr>
<td>104</td>
<td>5.4058</td>
<td>0.3432</td>
<td>5.6761</td>
<td>0.2335</td>
<td>5.7786</td>
<td>0.1877</td>
</tr>
<tr>
<td>108</td>
<td>5.3163</td>
<td>0.4190</td>
<td>5.5796</td>
<td>0.3126</td>
<td>5.7355</td>
<td>0.2545</td>
</tr>
<tr>
<td>112</td>
<td>5.0815</td>
<td>0.6030</td>
<td>5.4226</td>
<td>0.4548</td>
<td>5.6615</td>
<td>0.3645</td>
</tr>
<tr>
<td>116</td>
<td>4.7672</td>
<td>0.6295</td>
<td>5.2393</td>
<td>0.5362</td>
<td>5.6126</td>
<td>0.4604</td>
</tr>
<tr>
<td>120</td>
<td>4.6493</td>
<td>0.5425</td>
<td>5.0045</td>
<td>0.5013</td>
<td>5.3347</td>
<td>0.4807</td>
</tr>
<tr>
<td>124</td>
<td>4.6082</td>
<td>0.4752</td>
<td>4.8748</td>
<td>0.4402</td>
<td>5.1652</td>
<td>0.3988</td>
</tr>
<tr>
<td>128</td>
<td>4.5306</td>
<td>0.4079</td>
<td>4.8374</td>
<td>0.4214</td>
<td>5.0798</td>
<td>0.3617</td>
</tr>
<tr>
<td>132</td>
<td>4.4953</td>
<td>0.4181</td>
<td>4.7938</td>
<td>0.3767</td>
<td>5.0222</td>
<td>0.3457</td>
</tr>
<tr>
<td>136</td>
<td>4.4253</td>
<td>0.3997</td>
<td>4.7369</td>
<td>0.3415</td>
<td>4.9318</td>
<td>0.3364</td>
</tr>
<tr>
<td>140</td>
<td>4.3010</td>
<td>0.4249</td>
<td>4.5980</td>
<td>0.3610</td>
<td>4.8179</td>
<td>0.3370</td>
</tr>
<tr>
<td>144</td>
<td>4.1668</td>
<td>0.4124</td>
<td>4.4165</td>
<td>0.3873</td>
<td>4.6565</td>
<td>0.3266</td>
</tr>
<tr>
<td>148</td>
<td>3.9532</td>
<td>0.3680</td>
<td>4.2294</td>
<td>0.3672</td>
<td>4.4694</td>
<td>0.3168</td>
</tr>
<tr>
<td>152</td>
<td>3.7664</td>
<td>0.3873</td>
<td>4.0485</td>
<td>0.3623</td>
<td>4.2283</td>
<td>0.3114</td>
</tr>
<tr>
<td></td>
<td>3.5444</td>
<td>0.3910</td>
<td>3.8037</td>
<td>0.3206</td>
<td>4.0040</td>
<td>0.3105</td>
</tr>
<tr>
<td></td>
<td>3.3220</td>
<td>0.3603</td>
<td>3.5618</td>
<td>0.3268</td>
<td>3.7544</td>
<td>0.3002</td>
</tr>
<tr>
<td></td>
<td>3.0580</td>
<td>0.3503</td>
<td>3.2835</td>
<td>0.3226</td>
<td>3.4862</td>
<td>0.2935</td>
</tr>
<tr>
<td></td>
<td>2.7884</td>
<td>0.3611</td>
<td>2.9972</td>
<td>0.2989</td>
<td>3.1943</td>
<td>0.2607</td>
</tr>
<tr>
<td></td>
<td>2.5277</td>
<td>0.3232</td>
<td>2.6753</td>
<td>0.3002</td>
<td>2.8322</td>
<td>0.2802</td>
</tr>
<tr>
<td>θ deg.</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>156</td>
<td>2.1837</td>
<td>0.3144</td>
<td>2.3866</td>
<td>0.2893</td>
<td>2.5039</td>
<td>0.2513</td>
</tr>
<tr>
<td>160</td>
<td>1.8452</td>
<td>0.3145</td>
<td>2.0209</td>
<td>0.2851</td>
<td>2.1755</td>
<td>0.2633</td>
</tr>
<tr>
<td>164</td>
<td>1.4908</td>
<td>0.2799</td>
<td>1.6438</td>
<td>0.2648</td>
<td>1.7883</td>
<td>0.2344</td>
</tr>
<tr>
<td>168</td>
<td>1.1228</td>
<td>0.2775</td>
<td>1.2411</td>
<td>0.2382</td>
<td>1.3799</td>
<td>0.2413</td>
</tr>
<tr>
<td>172</td>
<td>0.7508</td>
<td>0.2625</td>
<td>0.8931</td>
<td>0.2269</td>
<td>0.9867</td>
<td>0.2322</td>
</tr>
<tr>
<td>176</td>
<td>0.3337</td>
<td>0.2307</td>
<td>0.4792</td>
<td>0.2439</td>
<td>0.5959</td>
<td>0.2159</td>
</tr>
<tr>
<td>180</td>
<td>0.0510</td>
<td>0.0739</td>
<td>0.1000</td>
<td>0.1199</td>
<td>0.1430</td>
<td>0.1402</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0034</td>
<td>0.0073</td>
<td>0.0028</td>
<td>0.0034</td>
<td>0.0089</td>
<td>0.0039</td>
</tr>
<tr>
<td>8</td>
<td>0.0953</td>
<td>0.0923</td>
<td>0.1665</td>
<td>0.0943</td>
<td>0.0876</td>
<td>0.0472</td>
</tr>
<tr>
<td>12</td>
<td>0.3724</td>
<td>0.2215</td>
<td>0.6451</td>
<td>0.1395</td>
<td>0.6456</td>
<td>0.0839</td>
</tr>
<tr>
<td>16</td>
<td>1.1067</td>
<td>0.2131</td>
<td>1.1435</td>
<td>0.1744</td>
<td>1.1687</td>
<td>0.1082</td>
</tr>
<tr>
<td>20</td>
<td>1.6283</td>
<td>0.1526</td>
<td>1.6145</td>
<td>0.1437</td>
<td>1.6629</td>
<td>0.1404</td>
</tr>
<tr>
<td>24</td>
<td>2.0033</td>
<td>0.1190</td>
<td>1.9770</td>
<td>0.1236</td>
<td>2.0012</td>
<td>0.1364</td>
</tr>
<tr>
<td>28</td>
<td>2.3484</td>
<td>0.0981</td>
<td>2.3354</td>
<td>0.1065</td>
<td>2.3418</td>
<td>0.1082</td>
</tr>
<tr>
<td>32</td>
<td>2.7098</td>
<td>0.0887</td>
<td>2.7001</td>
<td>0.0890</td>
<td>2.7272</td>
<td>0.0909</td>
</tr>
<tr>
<td>36</td>
<td>3.0523</td>
<td>0.0783</td>
<td>3.0553</td>
<td>0.0776</td>
<td>3.0967</td>
<td>0.0761</td>
</tr>
<tr>
<td>40</td>
<td>3.3502</td>
<td>0.0651</td>
<td>3.3541</td>
<td>0.0636</td>
<td>3.3966</td>
<td>0.0645</td>
</tr>
<tr>
<td>44</td>
<td>3.6133</td>
<td>0.0585</td>
<td>3.6275</td>
<td>0.0534</td>
<td>3.6990</td>
<td>0.0614</td>
</tr>
<tr>
<td>48</td>
<td>3.9515</td>
<td>0.0504</td>
<td>3.9538</td>
<td>0.0520</td>
<td>4.0242</td>
<td>0.0610</td>
</tr>
<tr>
<td>52</td>
<td>4.2540</td>
<td>0.0478</td>
<td>4.2548</td>
<td>0.0425</td>
<td>4.3224</td>
<td>0.0528</td>
</tr>
<tr>
<td>56</td>
<td>4.4724</td>
<td>0.0508</td>
<td>4.4778</td>
<td>0.0504</td>
<td>4.5342</td>
<td>0.0497</td>
</tr>
<tr>
<td>60</td>
<td>4.6633</td>
<td>0.0500</td>
<td>4.6878</td>
<td>0.0479</td>
<td>4.7682</td>
<td>0.0399</td>
</tr>
<tr>
<td>64</td>
<td>4.9177</td>
<td>0.0494</td>
<td>4.9197</td>
<td>0.0463</td>
<td>5.0148</td>
<td>0.0474</td>
</tr>
<tr>
<td>68</td>
<td>5.1360</td>
<td>0.0543</td>
<td>5.1507</td>
<td>0.0549</td>
<td>5.2096</td>
<td>0.0450</td>
</tr>
<tr>
<td>72</td>
<td>5.2591</td>
<td>0.0318</td>
<td>5.2648</td>
<td>0.0378</td>
<td>5.3599</td>
<td>0.0532</td>
</tr>
<tr>
<td>76</td>
<td>5.3855</td>
<td>0.0352</td>
<td>5.4019</td>
<td>0.0423</td>
<td>5.5011</td>
<td>0.0280</td>
</tr>
<tr>
<td>80</td>
<td>5.5594</td>
<td>0.0377</td>
<td>5.5734</td>
<td>0.0289</td>
<td>5.6622</td>
<td>0.0357</td>
</tr>
<tr>
<td>84</td>
<td>5.6506</td>
<td>0.0407</td>
<td>5.6716</td>
<td>0.0453</td>
<td>5.7843</td>
<td>0.0540</td>
</tr>
<tr>
<td>88</td>
<td>5.7263</td>
<td>0.0464</td>
<td>5.7526</td>
<td>0.0322</td>
<td>5.8620</td>
<td>0.0280</td>
</tr>
<tr>
<td>92</td>
<td>5.7786</td>
<td>0.0245</td>
<td>5.7825</td>
<td>0.0303</td>
<td>5.8765</td>
<td>0.0195</td>
</tr>
<tr>
<td>96</td>
<td>5.8047</td>
<td>0.0783</td>
<td>5.8270</td>
<td>0.0841</td>
<td>5.8934</td>
<td>0.0572</td>
</tr>
<tr>
<td>98</td>
<td>5.8067</td>
<td>0.1119</td>
<td>5.8260</td>
<td>0.1126</td>
<td>5.9134</td>
<td>0.0812</td>
</tr>
<tr>
<td>100</td>
<td>5.7825</td>
<td>0.1649</td>
<td>5.8144</td>
<td>0.1439</td>
<td>5.9168</td>
<td>0.1237</td>
</tr>
<tr>
<td>102</td>
<td>5.7748</td>
<td>0.2305</td>
<td>5.8619</td>
<td>0.2219</td>
<td>5.9570</td>
<td>0.1907</td>
</tr>
<tr>
<td>104</td>
<td>5.8543</td>
<td>0.3252</td>
<td>5.9983</td>
<td>0.3054</td>
<td>6.1290</td>
<td>0.2986</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>r/R = 0.337</td>
<td>r/R = 0.203</td>
<td>r/R = 0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>106</td>
<td>5.8227</td>
<td>0.4172</td>
<td>6.0069</td>
<td>0.3782</td>
<td>6.2211</td>
<td>0.3483</td>
</tr>
<tr>
<td>108</td>
<td>5.5471</td>
<td>0.4213</td>
<td>5.6966</td>
<td>0.3846</td>
<td>5.6966</td>
<td>0.3501</td>
</tr>
<tr>
<td>110</td>
<td>5.3145</td>
<td>0.3324</td>
<td>5.4896</td>
<td>0.2910</td>
<td>5.5977</td>
<td>0.2761</td>
</tr>
<tr>
<td>112</td>
<td>5.1928</td>
<td>0.3056</td>
<td>5.3801</td>
<td>0.2650</td>
<td>5.4856</td>
<td>0.2534</td>
</tr>
<tr>
<td>114</td>
<td>5.1612</td>
<td>0.2868</td>
<td>5.2971</td>
<td>0.2533</td>
<td>5.4352</td>
<td>0.2268</td>
</tr>
<tr>
<td>116</td>
<td>5.0901</td>
<td>0.2914</td>
<td>5.2512</td>
<td>0.2570</td>
<td>5.3712</td>
<td>0.2329</td>
</tr>
<tr>
<td>120</td>
<td>4.9942</td>
<td>0.2883</td>
<td>5.1096</td>
<td>0.2557</td>
<td>5.2327</td>
<td>0.2397</td>
</tr>
<tr>
<td>124</td>
<td>4.8021</td>
<td>0.2780</td>
<td>4.9450</td>
<td>0.2556</td>
<td>5.0781</td>
<td>0.2203</td>
</tr>
<tr>
<td>128</td>
<td>4.5895</td>
<td>0.2770</td>
<td>4.7309</td>
<td>0.2542</td>
<td>4.8862</td>
<td>0.2298</td>
</tr>
<tr>
<td>132</td>
<td>4.3592</td>
<td>0.2813</td>
<td>4.5000</td>
<td>0.2511</td>
<td>4.6287</td>
<td>0.2287</td>
</tr>
<tr>
<td>136</td>
<td>4.1404</td>
<td>0.2640</td>
<td>4.2390</td>
<td>0.2449</td>
<td>4.3841</td>
<td>0.2194</td>
</tr>
<tr>
<td>140</td>
<td>3.8972</td>
<td>0.2685</td>
<td>3.9911</td>
<td>0.2422</td>
<td>4.1243</td>
<td>0.2161</td>
</tr>
<tr>
<td>144</td>
<td>3.5946</td>
<td>0.2557</td>
<td>3.6979</td>
<td>0.2297</td>
<td>3.8392</td>
<td>0.2089</td>
</tr>
<tr>
<td>148</td>
<td>3.2920</td>
<td>0.2573</td>
<td>3.3930</td>
<td>0.2227</td>
<td>3.5093</td>
<td>0.1918</td>
</tr>
<tr>
<td>152</td>
<td>2.9939</td>
<td>0.2229</td>
<td>3.0697</td>
<td>0.2078</td>
<td>3.1715</td>
<td>0.1985</td>
</tr>
<tr>
<td>156</td>
<td>2.6303</td>
<td>0.2503</td>
<td>2.7204</td>
<td>0.2081</td>
<td>2.8216</td>
<td>0.1973</td>
</tr>
<tr>
<td>160</td>
<td>2.2829</td>
<td>0.2283</td>
<td>2.3692</td>
<td>0.2045</td>
<td>2.4679</td>
<td>0.1802</td>
</tr>
<tr>
<td>164</td>
<td>1.9014</td>
<td>0.2133</td>
<td>1.9774</td>
<td>0.1912</td>
<td>2.0581</td>
<td>0.1838</td>
</tr>
<tr>
<td>168</td>
<td>1.4714</td>
<td>0.2067</td>
<td>1.5760</td>
<td>0.1790</td>
<td>1.6365</td>
<td>0.1681</td>
</tr>
<tr>
<td>172</td>
<td>1.0937</td>
<td>0.1917</td>
<td>1.1659</td>
<td>0.1772</td>
<td>1.2344</td>
<td>0.1665</td>
</tr>
<tr>
<td>176</td>
<td>0.6787</td>
<td>0.1980</td>
<td>0.7642</td>
<td>0.1687</td>
<td>0.8102</td>
<td>0.1605</td>
</tr>
<tr>
<td>180</td>
<td>0.1974</td>
<td>0.1482</td>
<td>0.2501</td>
<td>0.1542</td>
<td>0.2926</td>
<td>0.1555</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(u_m) (m/sec)</td>
<td>θ (deg.)</td>
<td>(u_m) (m/sec)</td>
<td>θ (deg.)</td>
<td>(u_m) (m/sec)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0610</td>
<td>90</td>
<td>4.6306</td>
<td>178</td>
<td>0.2130</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0669</td>
<td>92</td>
<td>4.6340</td>
<td>180</td>
<td>0.0916</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0858</td>
<td>94</td>
<td>4.6470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2128</td>
<td>96</td>
<td>4.6503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.4628</td>
<td>98</td>
<td>4.6403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7362</td>
<td>100</td>
<td>4.6238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9702</td>
<td>102</td>
<td>4.6077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1908</td>
<td>104</td>
<td>4.5708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3971</td>
<td>106</td>
<td>4.5633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.5783</td>
<td>108</td>
<td>4.5133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.7300</td>
<td>110</td>
<td>4.4450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.8725</td>
<td>112</td>
<td>4.3778</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.0116</td>
<td>114</td>
<td>4.3304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.1483</td>
<td>116</td>
<td>4.2695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.2953</td>
<td>118</td>
<td>4.2076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.4522</td>
<td>120</td>
<td>4.1425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.6036</td>
<td>122</td>
<td>4.0606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.7346</td>
<td>124</td>
<td>3.9881</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.8546</td>
<td>126</td>
<td>3.9148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.9616</td>
<td>128</td>
<td>3.8149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.0555</td>
<td>130</td>
<td>3.7078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.1771</td>
<td>132</td>
<td>3.6081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.3147</td>
<td>134</td>
<td>3.5120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.4423</td>
<td>136</td>
<td>3.4102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.5688</td>
<td>138</td>
<td>3.2966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.6725</td>
<td>140</td>
<td>3.1850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.7580</td>
<td>142</td>
<td>3.0609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.8309</td>
<td>144</td>
<td>2.9274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3.8987</td>
<td>146</td>
<td>2.7944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.9809</td>
<td>148</td>
<td>2.6590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.0741</td>
<td>150</td>
<td>2.5110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.1585</td>
<td>152</td>
<td>2.3685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.2451</td>
<td>154</td>
<td>2.2159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.3104</td>
<td>156</td>
<td>2.0763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.3580</td>
<td>158</td>
<td>1.9201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.3876</td>
<td>160</td>
<td>1.7551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.4212</td>
<td>162</td>
<td>1.5980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.4655</td>
<td>164</td>
<td>1.4134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.5162</td>
<td>166</td>
<td>1.2270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.5670</td>
<td>168</td>
<td>1.0551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.6040</td>
<td>170</td>
<td>0.8909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.6262</td>
<td>172</td>
<td>0.7215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.6325</td>
<td>174</td>
<td>0.5478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.6324</td>
<td>176</td>
<td>0.3773</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 11: Ensemble-averaged velocity at s/d = 44
Figure 12: Streamwise velocity fluctuation at s/d = 44
Figure 13: Streamwise turbulence intensity, u' / \bar{u}, at $s/d = 44$

Note: The peaks appear lower than the actual data due to smoothing by the plotting package. The peak turbulence intensity is 1.30, at 164° for $r/R = 0.990$.
I. CROSS-WIRE DATA

SPRE Operating Point
Nozzle Inlet Geometry

\((\theta, \bar{u})\) \((\theta, u')\) \((\theta, \bar{v})\) \((\theta, v')\) \((\theta, \bar{u}\bar{v}')\)

Ambient Conditions

<table>
<thead>
<tr>
<th>Axial Station</th>
<th>T (°C)</th>
<th>P (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>28.24</td>
<td>0.983</td>
</tr>
<tr>
<td>16</td>
<td>27.20</td>
<td>0.986</td>
</tr>
<tr>
<td>30</td>
<td>27.45</td>
<td>0.992</td>
</tr>
<tr>
<td>44</td>
<td>28.22</td>
<td>0.989</td>
</tr>
</tbody>
</table>

Note that the data are tabulated at every 4 degrees of crank position except within \(\pm 10\) degrees of transition, for which the resolution is every 2 degrees.

II. SUPPLEMENTAL FIGURES

In order to supplement the three-dimensional figures which appear in the main body of the thesis, additional figures generated from the cross-wire data have been included after the tabulated data for each of the four axial stations. At each station, smoothed plots are provided of the streamwise and radial rms-velocity components, in addition to unsmoothed plots of the Reynolds shear stress.
CROSS-WIRE DATA

SPRE \hspace{1cm} s/d = 0.33

\[r/R = 0.800 \]

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{v}) m/sec</th>
<th>(v') m/sec</th>
<th>(-\bar{u}\bar{v}') m²/sec²</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4228</td>
<td>0.1442</td>
<td>-0.0037</td>
<td>0.0510</td>
<td>-0.0004</td>
</tr>
<tr>
<td>8</td>
<td>0.7592</td>
<td>0.1309</td>
<td>0.0295</td>
<td>0.0573</td>
<td>-0.0018</td>
</tr>
<tr>
<td>12</td>
<td>1.0543</td>
<td>0.1224</td>
<td>0.0476</td>
<td>0.0716</td>
<td>0.0020</td>
</tr>
<tr>
<td>14</td>
<td>1.2319</td>
<td>0.1234</td>
<td>0.0660</td>
<td>0.0591</td>
<td>0.0018</td>
</tr>
<tr>
<td>16</td>
<td>1.4369</td>
<td>0.1124</td>
<td>0.0754</td>
<td>0.0539</td>
<td>0.0000</td>
</tr>
<tr>
<td>18</td>
<td>1.6428</td>
<td>0.1044</td>
<td>0.0936</td>
<td>0.0653</td>
<td>0.0015</td>
</tr>
<tr>
<td>20</td>
<td>1.8385</td>
<td>0.1037</td>
<td>0.1082</td>
<td>0.0542</td>
<td>0.0009</td>
</tr>
<tr>
<td>22</td>
<td>2.0077</td>
<td>0.1299</td>
<td>0.1301</td>
<td>0.0813</td>
<td>0.0039</td>
</tr>
<tr>
<td>24</td>
<td>2.1336</td>
<td>0.1211</td>
<td>0.1404</td>
<td>0.0710</td>
<td>0.0029</td>
</tr>
<tr>
<td>26</td>
<td>2.2679</td>
<td>0.1385</td>
<td>0.1355</td>
<td>0.0891</td>
<td>0.0056</td>
</tr>
<tr>
<td>28</td>
<td>2.4336</td>
<td>0.1403</td>
<td>0.1627</td>
<td>0.0994</td>
<td>0.0057</td>
</tr>
<tr>
<td>30</td>
<td>2.6012</td>
<td>0.1561</td>
<td>0.1706</td>
<td>0.1159</td>
<td>0.0057</td>
</tr>
<tr>
<td>32</td>
<td>2.7859</td>
<td>0.1758</td>
<td>0.1716</td>
<td>0.1056</td>
<td>0.0089</td>
</tr>
<tr>
<td>36</td>
<td>3.1658</td>
<td>0.1686</td>
<td>0.1972</td>
<td>0.1414</td>
<td>0.0070</td>
</tr>
<tr>
<td>40</td>
<td>3.4388</td>
<td>0.2097</td>
<td>0.2112</td>
<td>0.1824</td>
<td>0.0169</td>
</tr>
<tr>
<td>44</td>
<td>3.6419</td>
<td>0.2239</td>
<td>0.2313</td>
<td>0.1953</td>
<td>0.0173</td>
</tr>
<tr>
<td>48</td>
<td>3.9453</td>
<td>0.2142</td>
<td>0.2472</td>
<td>0.1836</td>
<td>0.0085</td>
</tr>
<tr>
<td>52</td>
<td>4.2239</td>
<td>0.1738</td>
<td>0.2153</td>
<td>0.1892</td>
<td>0.0059</td>
</tr>
<tr>
<td>56</td>
<td>4.3971</td>
<td>0.1723</td>
<td>0.2403</td>
<td>0.1425</td>
<td>0.0076</td>
</tr>
<tr>
<td>60</td>
<td>4.5231</td>
<td>0.1764</td>
<td>0.2434</td>
<td>0.1584</td>
<td>0.0071</td>
</tr>
<tr>
<td>64</td>
<td>4.7320</td>
<td>0.1825</td>
<td>0.2496</td>
<td>0.1729</td>
<td>0.0204</td>
</tr>
<tr>
<td>68</td>
<td>4.8728</td>
<td>0.1861</td>
<td>0.2542</td>
<td>0.2051</td>
<td>0.0224</td>
</tr>
<tr>
<td>72</td>
<td>4.9824</td>
<td>0.1969</td>
<td>0.2824</td>
<td>0.1399</td>
<td>0.0096</td>
</tr>
<tr>
<td>76</td>
<td>5.0919</td>
<td>0.1369</td>
<td>0.3099</td>
<td>0.1414</td>
<td>0.0146</td>
</tr>
<tr>
<td>80</td>
<td>5.1970</td>
<td>0.1510</td>
<td>0.3071</td>
<td>0.1392</td>
<td>0.0160</td>
</tr>
<tr>
<td>84</td>
<td>5.2939</td>
<td>0.1026</td>
<td>0.3170</td>
<td>0.1155</td>
<td>0.0106</td>
</tr>
<tr>
<td>88</td>
<td>5.2917</td>
<td>0.0739</td>
<td>0.2946</td>
<td>0.0746</td>
<td>0.0044</td>
</tr>
<tr>
<td>92</td>
<td>5.3002</td>
<td>0.1313</td>
<td>0.3098</td>
<td>0.1397</td>
<td>0.0176</td>
</tr>
<tr>
<td>96</td>
<td>5.2889</td>
<td>0.0953</td>
<td>0.3048</td>
<td>0.0954</td>
<td>0.0086</td>
</tr>
<tr>
<td>100</td>
<td>5.2613</td>
<td>0.0634</td>
<td>0.3048</td>
<td>0.0666</td>
<td>0.0039</td>
</tr>
<tr>
<td>104</td>
<td>5.2201</td>
<td>0.1126</td>
<td>0.2949</td>
<td>0.1165</td>
<td>0.0129</td>
</tr>
<tr>
<td>108</td>
<td>5.1174</td>
<td>0.0987</td>
<td>0.3022</td>
<td>0.1037</td>
<td>0.0100</td>
</tr>
<tr>
<td>112</td>
<td>5.0316</td>
<td>0.1373</td>
<td>0.2963</td>
<td>0.1446</td>
<td>0.0195</td>
</tr>
<tr>
<td>116</td>
<td>4.9070</td>
<td>0.1231</td>
<td>0.2786</td>
<td>0.1256</td>
<td>0.0152</td>
</tr>
<tr>
<td>120</td>
<td>4.7480</td>
<td>0.1185</td>
<td>0.3032</td>
<td>0.1249</td>
<td>0.0146</td>
</tr>
<tr>
<td>124</td>
<td>4.5449</td>
<td>0.1097</td>
<td>0.2526</td>
<td>0.1118</td>
<td>0.0121</td>
</tr>
<tr>
<td>θ</td>
<td>(\ddot{u})</td>
<td>(u')</td>
<td>(\ddot{v})</td>
<td>(v')</td>
<td>(-u'v')</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>128</td>
<td>4.3999</td>
<td>0.1006</td>
<td>0.2249</td>
<td>0.1050</td>
<td>0.0105</td>
</tr>
<tr>
<td>132</td>
<td>4.1969</td>
<td>0.0728</td>
<td>0.2592</td>
<td>0.0749</td>
<td>0.0047</td>
</tr>
<tr>
<td>136</td>
<td>3.9586</td>
<td>0.1116</td>
<td>0.2533</td>
<td>0.1179</td>
<td>0.0130</td>
</tr>
<tr>
<td>140</td>
<td>3.6870</td>
<td>0.0887</td>
<td>0.2196</td>
<td>0.0945</td>
<td>0.0083</td>
</tr>
<tr>
<td>144</td>
<td>3.4194</td>
<td>0.0704</td>
<td>0.2176</td>
<td>0.0728</td>
<td>0.0050</td>
</tr>
<tr>
<td>148</td>
<td>3.1314</td>
<td>0.0618</td>
<td>0.2043</td>
<td>0.0690</td>
<td>0.0041</td>
</tr>
<tr>
<td>152</td>
<td>2.7973</td>
<td>0.0831</td>
<td>0.2004</td>
<td>0.0866</td>
<td>0.0072</td>
</tr>
<tr>
<td>156</td>
<td>2.4577</td>
<td>0.0473</td>
<td>0.1785</td>
<td>0.0484</td>
<td>0.0022</td>
</tr>
<tr>
<td>160</td>
<td>2.1253</td>
<td>0.0461</td>
<td>0.1586</td>
<td>0.0470</td>
<td>0.0021</td>
</tr>
<tr>
<td>164</td>
<td>1.7501</td>
<td>0.0232</td>
<td>0.1476</td>
<td>0.0236</td>
<td>0.0004</td>
</tr>
<tr>
<td>168</td>
<td>1.3544</td>
<td>0.0451</td>
<td>0.1389</td>
<td>0.0477</td>
<td>0.0021</td>
</tr>
<tr>
<td>172</td>
<td>0.9781</td>
<td>0.0345</td>
<td>0.1214</td>
<td>0.0368</td>
<td>0.0012</td>
</tr>
<tr>
<td>176</td>
<td>0.5921</td>
<td>0.0295</td>
<td>0.0954</td>
<td>0.0301</td>
<td>0.0009</td>
</tr>
<tr>
<td>180</td>
<td>0.2999</td>
<td>0.0232</td>
<td>0.0361</td>
<td>0.0240</td>
<td>0.0006</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>(\dot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\dot{v}) (m/sec)</td>
<td>(v') (m/sec)</td>
<td>(-\overline{uu}') (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.3664</td>
<td>0.1058</td>
<td>-0.0049</td>
<td>0.0500</td>
<td>-0.0011</td>
</tr>
<tr>
<td>6</td>
<td>0.7135</td>
<td>0.1282</td>
<td>0.0232</td>
<td>0.0676</td>
<td>-0.0002</td>
</tr>
<tr>
<td>12</td>
<td>1.0306</td>
<td>0.1337</td>
<td>0.0456</td>
<td>0.0724</td>
<td>-0.0009</td>
</tr>
<tr>
<td>14</td>
<td>1.2113</td>
<td>0.1191</td>
<td>0.0588</td>
<td>0.0694</td>
<td>-0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.4199</td>
<td>0.1096</td>
<td>0.0736</td>
<td>0.0607</td>
<td>-0.0013</td>
</tr>
<tr>
<td>18</td>
<td>1.6272</td>
<td>0.0877</td>
<td>0.0780</td>
<td>0.0596</td>
<td>-0.0001</td>
</tr>
<tr>
<td>20</td>
<td>1.8303</td>
<td>0.1073</td>
<td>0.0962</td>
<td>0.0733</td>
<td>0.0012</td>
</tr>
<tr>
<td>22</td>
<td>2.0003</td>
<td>0.1187</td>
<td>0.1177</td>
<td>0.0968</td>
<td>0.0029</td>
</tr>
<tr>
<td>24</td>
<td>2.1644</td>
<td>0.1338</td>
<td>0.1530</td>
<td>0.0911</td>
<td>0.0024</td>
</tr>
<tr>
<td>26</td>
<td>2.3055</td>
<td>0.1386</td>
<td>0.1360</td>
<td>0.1063</td>
<td>0.0039</td>
</tr>
<tr>
<td>28</td>
<td>2.4821</td>
<td>0.1385</td>
<td>0.1576</td>
<td>0.1161</td>
<td>0.0049</td>
</tr>
<tr>
<td>30</td>
<td>2.6330</td>
<td>0.1660</td>
<td>0.1761</td>
<td>0.1742</td>
<td>0.0155</td>
</tr>
<tr>
<td>32</td>
<td>2.8140</td>
<td>0.1590</td>
<td>0.1841</td>
<td>0.1544</td>
<td>0.0078</td>
</tr>
<tr>
<td>34</td>
<td>3.1767</td>
<td>0.1732</td>
<td>0.2194</td>
<td>0.1853</td>
<td>0.0134</td>
</tr>
<tr>
<td>40</td>
<td>3.4420</td>
<td>0.1616</td>
<td>0.2321</td>
<td>0.1970</td>
<td>0.0020</td>
</tr>
<tr>
<td>44</td>
<td>3.6626</td>
<td>0.1792</td>
<td>0.2125</td>
<td>0.2370</td>
<td>0.0109</td>
</tr>
<tr>
<td>48</td>
<td>3.9808</td>
<td>0.1829</td>
<td>0.2513</td>
<td>0.2599</td>
<td>0.0106</td>
</tr>
<tr>
<td>52</td>
<td>4.2332</td>
<td>0.1763</td>
<td>0.2617</td>
<td>0.2461</td>
<td>0.0106</td>
</tr>
<tr>
<td>56</td>
<td>4.3857</td>
<td>0.1564</td>
<td>0.2837</td>
<td>0.2238</td>
<td>0.0095</td>
</tr>
<tr>
<td>60</td>
<td>4.5485</td>
<td>0.1330</td>
<td>0.2641</td>
<td>0.2152</td>
<td>0.0127</td>
</tr>
<tr>
<td>64</td>
<td>4.7357</td>
<td>0.1910</td>
<td>0.2670</td>
<td>0.2274</td>
<td>0.0231</td>
</tr>
<tr>
<td>68</td>
<td>4.9162</td>
<td>0.1487</td>
<td>0.2844</td>
<td>0.1901</td>
<td>0.0150</td>
</tr>
<tr>
<td>72</td>
<td>5.0091</td>
<td>0.1193</td>
<td>0.2673</td>
<td>0.1696</td>
<td>0.0128</td>
</tr>
<tr>
<td>76</td>
<td>5.0969</td>
<td>0.0775</td>
<td>0.3031</td>
<td>0.1254</td>
<td>0.0059</td>
</tr>
<tr>
<td>80</td>
<td>5.2002</td>
<td>0.0469</td>
<td>0.3442</td>
<td>0.0815</td>
<td>0.0009</td>
</tr>
<tr>
<td>84</td>
<td>5.2828</td>
<td>0.1057</td>
<td>0.3296</td>
<td>0.1208</td>
<td>0.0105</td>
</tr>
<tr>
<td>88</td>
<td>5.2798</td>
<td>0.0716</td>
<td>0.3181</td>
<td>0.0784</td>
<td>0.0050</td>
</tr>
<tr>
<td>92</td>
<td>5.2775</td>
<td>0.0628</td>
<td>0.3175</td>
<td>0.0687</td>
<td>0.0039</td>
</tr>
<tr>
<td>96</td>
<td>5.2500</td>
<td>0.1074</td>
<td>0.3012</td>
<td>0.1141</td>
<td>0.0119</td>
</tr>
<tr>
<td>100</td>
<td>5.2424</td>
<td>0.0846</td>
<td>0.3103</td>
<td>0.0876</td>
<td>0.0073</td>
</tr>
<tr>
<td>104</td>
<td>5.1926</td>
<td>0.1193</td>
<td>0.3168</td>
<td>0.1235</td>
<td>0.0143</td>
</tr>
<tr>
<td>108</td>
<td>5.0849</td>
<td>0.1313</td>
<td>0.3046</td>
<td>0.1343</td>
<td>0.0173</td>
</tr>
<tr>
<td>112</td>
<td>4.9860</td>
<td>0.1141</td>
<td>0.2708</td>
<td>0.1169</td>
<td>0.0131</td>
</tr>
<tr>
<td>116</td>
<td>4.8816</td>
<td>0.0756</td>
<td>0.3060</td>
<td>0.0788</td>
<td>0.0056</td>
</tr>
<tr>
<td>120</td>
<td>4.7343</td>
<td>0.0743</td>
<td>0.2906</td>
<td>0.0772</td>
<td>0.0056</td>
</tr>
<tr>
<td>124</td>
<td>4.5563</td>
<td>0.0957</td>
<td>0.2685</td>
<td>0.0974</td>
<td>0.0092</td>
</tr>
<tr>
<td>128</td>
<td>4.4088</td>
<td>0.0346</td>
<td>0.2319</td>
<td>0.0341</td>
<td>0.0011</td>
</tr>
<tr>
<td>132</td>
<td>4.1696</td>
<td>0.0568</td>
<td>0.2538</td>
<td>0.0623</td>
<td>0.0034</td>
</tr>
<tr>
<td>136</td>
<td>3.9854</td>
<td>0.1157</td>
<td>0.2620</td>
<td>0.1224</td>
<td>0.0141</td>
</tr>
<tr>
<td>140</td>
<td>3.6878</td>
<td>0.0928</td>
<td>0.2196</td>
<td>0.0972</td>
<td>0.0090</td>
</tr>
<tr>
<td>144</td>
<td>3.4086</td>
<td>0.0670</td>
<td>0.2059</td>
<td>0.0699</td>
<td>0.0045</td>
</tr>
<tr>
<td>148</td>
<td>3.1444</td>
<td>0.0700</td>
<td>0.2075</td>
<td>0.0721</td>
<td>0.0048</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\ddot{u}v'$ (m^2/sec^2)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>152</td>
<td>2.8076</td>
<td>0.0660</td>
<td>0.1923</td>
<td>0.0716</td>
<td>0.0046</td>
</tr>
<tr>
<td>156</td>
<td>2.4864</td>
<td>0.0684</td>
<td>0.1760</td>
<td>0.0709</td>
<td>0.0047</td>
</tr>
<tr>
<td>160</td>
<td>2.1528</td>
<td>0.0452</td>
<td>0.1414</td>
<td>0.0487</td>
<td>0.0022</td>
</tr>
<tr>
<td>164</td>
<td>1.7861</td>
<td>0.0485</td>
<td>0.1391</td>
<td>0.0508</td>
<td>0.0024</td>
</tr>
<tr>
<td>168</td>
<td>1.4137</td>
<td>0.0461</td>
<td>0.1197</td>
<td>0.0487</td>
<td>0.0021</td>
</tr>
<tr>
<td>172</td>
<td>1.0693</td>
<td>0.0461</td>
<td>0.1015</td>
<td>0.0483</td>
<td>0.0022</td>
</tr>
<tr>
<td>176</td>
<td>0.6740</td>
<td>0.0433</td>
<td>0.0842</td>
<td>0.0462</td>
<td>0.0020</td>
</tr>
<tr>
<td>180</td>
<td>0.3251</td>
<td>0.0183</td>
<td>0.0396</td>
<td>0.0191</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 0.33$

$r/R = 0.600$

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>\ddot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\ddot{u}v'$ (m^2/sec^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3247</td>
<td>0.1047</td>
<td>0.0036</td>
<td>0.0552</td>
<td>-0.0011</td>
</tr>
<tr>
<td>8</td>
<td>0.6328</td>
<td>0.1357</td>
<td>0.0164</td>
<td>0.0622</td>
<td>-0.0016</td>
</tr>
<tr>
<td>12</td>
<td>0.9604</td>
<td>0.1196</td>
<td>0.0452</td>
<td>0.0771</td>
<td>-0.0003</td>
</tr>
<tr>
<td>14</td>
<td>1.1696</td>
<td>0.1264</td>
<td>0.0578</td>
<td>0.0743</td>
<td>-0.0017</td>
</tr>
<tr>
<td>16</td>
<td>1.3719</td>
<td>0.1234</td>
<td>0.0733</td>
<td>0.0808</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>1.5950</td>
<td>0.1071</td>
<td>0.0856</td>
<td>0.0725</td>
<td>-0.0010</td>
</tr>
<tr>
<td>20</td>
<td>1.8077</td>
<td>0.1153</td>
<td>0.1157</td>
<td>0.1029</td>
<td>0.0022</td>
</tr>
<tr>
<td>22</td>
<td>1.9792</td>
<td>0.1172</td>
<td>0.1177</td>
<td>0.1146</td>
<td>0.0018</td>
</tr>
<tr>
<td>24</td>
<td>2.1155</td>
<td>0.1280</td>
<td>0.1421</td>
<td>0.1207</td>
<td>0.0001</td>
</tr>
<tr>
<td>26</td>
<td>2.3120</td>
<td>0.1361</td>
<td>0.1693</td>
<td>0.1488</td>
<td>0.0061</td>
</tr>
<tr>
<td>28</td>
<td>2.4598</td>
<td>0.1394</td>
<td>0.1735</td>
<td>0.1568</td>
<td>0.0058</td>
</tr>
<tr>
<td>30</td>
<td>2.6511</td>
<td>0.1614</td>
<td>0.1940</td>
<td>0.1955</td>
<td>0.0179</td>
</tr>
<tr>
<td>32</td>
<td>2.8592</td>
<td>0.1580</td>
<td>0.1854</td>
<td>0.2201</td>
<td>0.0077</td>
</tr>
<tr>
<td>36</td>
<td>3.2352</td>
<td>0.1646</td>
<td>0.2062</td>
<td>0.2200</td>
<td>0.0142</td>
</tr>
<tr>
<td>40</td>
<td>3.4552</td>
<td>0.1906</td>
<td>0.2383</td>
<td>0.2542</td>
<td>0.0155</td>
</tr>
<tr>
<td>44</td>
<td>3.7004</td>
<td>0.1828</td>
<td>0.2862</td>
<td>0.2898</td>
<td>0.0155</td>
</tr>
<tr>
<td>48</td>
<td>3.9645</td>
<td>0.1900</td>
<td>0.2803</td>
<td>0.3293</td>
<td>0.0245</td>
</tr>
<tr>
<td>52</td>
<td>4.2599</td>
<td>0.1238</td>
<td>0.2808</td>
<td>0.2867</td>
<td>0.0056</td>
</tr>
<tr>
<td>56</td>
<td>4.4090</td>
<td>0.1246</td>
<td>0.3097</td>
<td>0.2657</td>
<td>0.0071</td>
</tr>
<tr>
<td>60</td>
<td>4.5489</td>
<td>0.1259</td>
<td>0.2727</td>
<td>0.2558</td>
<td>0.0092</td>
</tr>
<tr>
<td>64</td>
<td>4.7591</td>
<td>0.1189</td>
<td>0.2574</td>
<td>0.2644</td>
<td>0.0144</td>
</tr>
<tr>
<td>68</td>
<td>4.9289</td>
<td>0.1272</td>
<td>0.2411</td>
<td>0.2222</td>
<td>0.0117</td>
</tr>
<tr>
<td>72</td>
<td>5.0243</td>
<td>0.1016</td>
<td>0.2785</td>
<td>0.1822</td>
<td>0.0085</td>
</tr>
<tr>
<td>76</td>
<td>5.1025</td>
<td>0.1065</td>
<td>0.2929</td>
<td>0.1606</td>
<td>0.0084</td>
</tr>
<tr>
<td>80</td>
<td>5.2054</td>
<td>0.0559</td>
<td>0.3193</td>
<td>0.0976</td>
<td>0.0021</td>
</tr>
<tr>
<td>84</td>
<td>5.2799</td>
<td>0.1010</td>
<td>0.3284</td>
<td>0.1151</td>
<td>0.0097</td>
</tr>
<tr>
<td>88</td>
<td>5.2733</td>
<td>0.0681</td>
<td>0.3215</td>
<td>0.0772</td>
<td>0.0045</td>
</tr>
</tbody>
</table>

52
<table>
<thead>
<tr>
<th>θ</th>
<th>ǔ</th>
<th>u'</th>
<th>ǔ̇</th>
<th>ǔ̇v</th>
<th>-ǔ̇v̇</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>92</td>
<td>5.2454</td>
<td>0.0622</td>
<td>0.3134</td>
<td>0.0668</td>
<td>0.0038</td>
</tr>
<tr>
<td>96</td>
<td>5.2403</td>
<td>0.0847</td>
<td>0.3212</td>
<td>0.0866</td>
<td>0.0071</td>
</tr>
<tr>
<td>100</td>
<td>5.2360</td>
<td>0.1144</td>
<td>0.3349</td>
<td>0.1196</td>
<td>0.0136</td>
</tr>
<tr>
<td>104</td>
<td>5.1743</td>
<td>0.1056</td>
<td>0.3301</td>
<td>0.1099</td>
<td>0.0113</td>
</tr>
<tr>
<td>108</td>
<td>5.0931</td>
<td>0.0861</td>
<td>0.3355</td>
<td>0.0888</td>
<td>0.0074</td>
</tr>
<tr>
<td>112</td>
<td>4.9929</td>
<td>0.0975</td>
<td>0.3098</td>
<td>0.0997</td>
<td>0.0094</td>
</tr>
<tr>
<td>116</td>
<td>4.8570</td>
<td>0.0998</td>
<td>0.3093</td>
<td>0.1049</td>
<td>0.0101</td>
</tr>
<tr>
<td>120</td>
<td>4.7171</td>
<td>0.0608</td>
<td>0.3012</td>
<td>0.0637</td>
<td>0.0038</td>
</tr>
<tr>
<td>124</td>
<td>4.5468</td>
<td>0.0768</td>
<td>0.2864</td>
<td>0.0785</td>
<td>0.0060</td>
</tr>
<tr>
<td>128</td>
<td>4.3906</td>
<td>0.0892</td>
<td>0.2402</td>
<td>0.0932</td>
<td>0.0083</td>
</tr>
<tr>
<td>132</td>
<td>4.1755</td>
<td>0.0856</td>
<td>0.2858</td>
<td>0.0878</td>
<td>0.0074</td>
</tr>
<tr>
<td>136</td>
<td>3.9325</td>
<td>0.0489</td>
<td>0.2534</td>
<td>0.0497</td>
<td>0.0024</td>
</tr>
<tr>
<td>140</td>
<td>3.6858</td>
<td>0.0810</td>
<td>0.2369</td>
<td>0.0830</td>
<td>0.0067</td>
</tr>
<tr>
<td>144</td>
<td>3.4045</td>
<td>0.0689</td>
<td>0.2253</td>
<td>0.0731</td>
<td>0.0049</td>
</tr>
<tr>
<td>148</td>
<td>3.1231</td>
<td>0.0787</td>
<td>0.2017</td>
<td>0.0794</td>
<td>0.0061</td>
</tr>
<tr>
<td>152</td>
<td>2.7993</td>
<td>0.0572</td>
<td>0.2005</td>
<td>0.0591</td>
<td>0.0034</td>
</tr>
<tr>
<td>156</td>
<td>2.4755</td>
<td>0.0552</td>
<td>0.1762</td>
<td>0.0529</td>
<td>0.0027</td>
</tr>
<tr>
<td>160</td>
<td>2.1530</td>
<td>0.0648</td>
<td>0.1570</td>
<td>0.0675</td>
<td>0.0044</td>
</tr>
<tr>
<td>164</td>
<td>1.7975</td>
<td>0.0368</td>
<td>0.1485</td>
<td>0.0382</td>
<td>0.0014</td>
</tr>
<tr>
<td>168</td>
<td>1.4301</td>
<td>0.0394</td>
<td>0.1197</td>
<td>0.0408</td>
<td>0.0016</td>
</tr>
<tr>
<td>172</td>
<td>1.0619</td>
<td>0.0387</td>
<td>0.1018</td>
<td>0.0410</td>
<td>0.0016</td>
</tr>
<tr>
<td>176</td>
<td>0.6959</td>
<td>0.0214</td>
<td>0.0721</td>
<td>0.0213</td>
<td>0.0004</td>
</tr>
<tr>
<td>180</td>
<td>0.3402</td>
<td>0.0215</td>
<td>0.0377</td>
<td>0.0224</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

SPRE

s/d = 0.33
r/R = 0.467

<table>
<thead>
<tr>
<th>θ</th>
<th>ǔ</th>
<th>u'</th>
<th>ǔ̇</th>
<th>ǔ̇v</th>
<th>-ǔ̇v̇</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.3077</td>
<td>0.1003</td>
<td>-0.0018</td>
<td>0.0520</td>
<td>-0.0012</td>
</tr>
<tr>
<td>8</td>
<td>0.5992</td>
<td>0.1233</td>
<td>0.0275</td>
<td>0.0735</td>
<td>0.0001</td>
</tr>
<tr>
<td>12</td>
<td>0.9130</td>
<td>0.1111</td>
<td>0.0502</td>
<td>0.0765</td>
<td>-0.0011</td>
</tr>
<tr>
<td>14</td>
<td>1.1134</td>
<td>0.1174</td>
<td>0.0620</td>
<td>0.0764</td>
<td>-0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.3268</td>
<td>0.1192</td>
<td>0.0898</td>
<td>0.0867</td>
<td>0.0016</td>
</tr>
<tr>
<td>18</td>
<td>1.5445</td>
<td>0.1019</td>
<td>0.0884</td>
<td>0.0721</td>
<td>-0.0013</td>
</tr>
<tr>
<td>20</td>
<td>1.7668</td>
<td>0.1209</td>
<td>0.1102</td>
<td>0.0940</td>
<td>0.0018</td>
</tr>
<tr>
<td>22</td>
<td>1.9459</td>
<td>0.1239</td>
<td>0.1202</td>
<td>0.0929</td>
<td>-0.0014</td>
</tr>
<tr>
<td>24</td>
<td>2.1224</td>
<td>0.1452</td>
<td>0.1291</td>
<td>0.1156</td>
<td>-0.0009</td>
</tr>
<tr>
<td>26</td>
<td>2.2980</td>
<td>0.1469</td>
<td>0.1561</td>
<td>0.1475</td>
<td>0.0014</td>
</tr>
<tr>
<td>28</td>
<td>2.4670</td>
<td>0.1382</td>
<td>0.1779</td>
<td>0.1667</td>
<td>0.0048</td>
</tr>
<tr>
<td>30</td>
<td>2.6483</td>
<td>0.1636</td>
<td>0.1920</td>
<td>0.1778</td>
<td>0.0087</td>
</tr>
<tr>
<td>32</td>
<td>2.8451</td>
<td>0.1655</td>
<td>0.1974</td>
<td>0.2098</td>
<td>0.0092</td>
</tr>
</tbody>
</table>

53
<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-u'v' (m^2/sec^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3.2210</td>
<td>0.1626</td>
<td>0.2130</td>
<td>0.2619</td>
<td>0.0153</td>
</tr>
<tr>
<td>40</td>
<td>3.4582</td>
<td>0.1400</td>
<td>0.2215</td>
<td>0.2982</td>
<td>0.0078</td>
</tr>
<tr>
<td>44</td>
<td>3.7065</td>
<td>0.1582</td>
<td>0.3072</td>
<td>0.3052</td>
<td>0.0112</td>
</tr>
<tr>
<td>48</td>
<td>4.0185</td>
<td>0.1723</td>
<td>0.3064</td>
<td>0.2903</td>
<td>0.0102</td>
</tr>
<tr>
<td>52</td>
<td>4.2603</td>
<td>0.1622</td>
<td>0.3171</td>
<td>0.3344</td>
<td>0.0119</td>
</tr>
<tr>
<td>56</td>
<td>4.4426</td>
<td>0.1552</td>
<td>0.3230</td>
<td>0.3078</td>
<td>0.0175</td>
</tr>
<tr>
<td>60</td>
<td>4.5764</td>
<td>0.1230</td>
<td>0.2668</td>
<td>0.3289</td>
<td>0.0129</td>
</tr>
<tr>
<td>64</td>
<td>4.7881</td>
<td>0.1621</td>
<td>0.3165</td>
<td>0.3505</td>
<td>0.0327</td>
</tr>
<tr>
<td>68</td>
<td>4.9385</td>
<td>0.1181</td>
<td>0.3041</td>
<td>0.2548</td>
<td>0.0130</td>
</tr>
<tr>
<td>72</td>
<td>5.0391</td>
<td>0.1063</td>
<td>0.2746</td>
<td>0.1971</td>
<td>0.0048</td>
</tr>
<tr>
<td>76</td>
<td>5.1194</td>
<td>0.1077</td>
<td>0.3098</td>
<td>0.1835</td>
<td>0.0108</td>
</tr>
<tr>
<td>80</td>
<td>5.1940</td>
<td>0.1377</td>
<td>0.3236</td>
<td>0.1682</td>
<td>0.0183</td>
</tr>
<tr>
<td>84</td>
<td>5.2898</td>
<td>0.0780</td>
<td>0.3435</td>
<td>0.1056</td>
<td>0.0058</td>
</tr>
<tr>
<td>88</td>
<td>5.2962</td>
<td>0.0867</td>
<td>0.3494</td>
<td>0.0877</td>
<td>0.0065</td>
</tr>
<tr>
<td>92</td>
<td>5.2733</td>
<td>0.0679</td>
<td>0.3534</td>
<td>0.0716</td>
<td>0.0045</td>
</tr>
<tr>
<td>96</td>
<td>5.2376</td>
<td>0.0946</td>
<td>0.3301</td>
<td>0.0979</td>
<td>0.0091</td>
</tr>
<tr>
<td>100</td>
<td>5.2203</td>
<td>0.0588</td>
<td>0.3405</td>
<td>0.0620</td>
<td>0.0035</td>
</tr>
<tr>
<td>104</td>
<td>5.1854</td>
<td>0.1146</td>
<td>0.3419</td>
<td>0.1222</td>
<td>0.0136</td>
</tr>
<tr>
<td>108</td>
<td>5.0933</td>
<td>0.0951</td>
<td>0.3489</td>
<td>0.1012</td>
<td>0.0095</td>
</tr>
<tr>
<td>112</td>
<td>4.9914</td>
<td>0.0921</td>
<td>0.3297</td>
<td>0.0958</td>
<td>0.0087</td>
</tr>
<tr>
<td>116</td>
<td>4.8546</td>
<td>0.0327</td>
<td>0.3130</td>
<td>0.0337</td>
<td>0.0008</td>
</tr>
<tr>
<td>120</td>
<td>4.7185</td>
<td>0.0521</td>
<td>0.3294</td>
<td>0.0534</td>
<td>0.0027</td>
</tr>
<tr>
<td>124</td>
<td>4.5527</td>
<td>0.0893</td>
<td>0.3168</td>
<td>0.0935</td>
<td>0.0083</td>
</tr>
<tr>
<td>128</td>
<td>4.4054</td>
<td>0.0818</td>
<td>0.2813</td>
<td>0.0665</td>
<td>0.0070</td>
</tr>
<tr>
<td>132</td>
<td>4.1717</td>
<td>0.0633</td>
<td>0.3045</td>
<td>0.0595</td>
<td>0.0037</td>
</tr>
<tr>
<td>136</td>
<td>3.9359</td>
<td>0.1226</td>
<td>0.2787</td>
<td>0.1294</td>
<td>0.0158</td>
</tr>
<tr>
<td>140</td>
<td>3.6786</td>
<td>0.0583</td>
<td>0.2557</td>
<td>0.0604</td>
<td>0.0035</td>
</tr>
<tr>
<td>144</td>
<td>3.4224</td>
<td>0.1010</td>
<td>0.2630</td>
<td>0.1050</td>
<td>0.0105</td>
</tr>
<tr>
<td>148</td>
<td>3.1210</td>
<td>0.0586</td>
<td>0.2140</td>
<td>0.0635</td>
<td>0.0036</td>
</tr>
<tr>
<td>152</td>
<td>2.8110</td>
<td>0.0364</td>
<td>0.2299</td>
<td>0.1008</td>
<td>0.0097</td>
</tr>
<tr>
<td>156</td>
<td>2.4899</td>
<td>0.0292</td>
<td>0.1982</td>
<td>0.0312</td>
<td>0.0006</td>
</tr>
<tr>
<td>160</td>
<td>2.1554</td>
<td>0.0442</td>
<td>0.1741</td>
<td>0.0462</td>
<td>0.0020</td>
</tr>
<tr>
<td>164</td>
<td>1.7940</td>
<td>0.0699</td>
<td>0.1576</td>
<td>0.0748</td>
<td>0.0052</td>
</tr>
<tr>
<td>168</td>
<td>1.4339</td>
<td>0.0541</td>
<td>0.1309</td>
<td>0.0566</td>
<td>0.0030</td>
</tr>
<tr>
<td>172</td>
<td>1.0594</td>
<td>0.0244</td>
<td>0.1013</td>
<td>0.0249</td>
<td>0.0006</td>
</tr>
<tr>
<td>176</td>
<td>0.7006</td>
<td>0.0456</td>
<td>0.0748</td>
<td>0.0474</td>
<td>0.0021</td>
</tr>
<tr>
<td>180</td>
<td>0.3438</td>
<td>0.0185</td>
<td>0.0390</td>
<td>0.0185</td>
<td>0.0004</td>
</tr>
</tbody>
</table>
\begin{tabular}{cccccc}
\textbf{SPRE} & \textbf{s/d} = 0.33 & \\
\textbf{r/R = 0.333} & \\
\hline
\textbf{\(\theta\)} & \textbf{\(\ddot{u}\)} & \textbf{u'} & \textbf{\(\ddot{v}\)} & \textbf{v'} & \textbf{-\(\ddot{u}\)\(\ddot{v}\)} \\
\textbf{deg.} & \textbf{m/sec} & \textbf{m/sec} & \textbf{m/sec} & \textbf{m/sec} & \textbf{m^2/sec^2} \\
4 & 0.2765 & 0.0917 & 0.0106 & 0.0495 & 0.0003 \\
8 & 0.5441 & 0.1181 & 0.0241 & 0.0652 & 0.0006 \\
12 & 0.8879 & 0.1116 & 0.0552 & 0.0724 & -0.0015 \\
14 & 1.0798 & 0.1082 & 0.0724 & 0.0880 & 0.0020 \\
16 & 1.2649 & 0.1122 & 0.0910 & 0.0772 & -0.0006 \\
18 & 1.5066 & 0.1055 & 0.0964 & 0.0716 & -0.0018 \\
20 & 1.7443 & 0.1197 & 0.1046 & 0.0998 & 0.0023 \\
22 & 1.9078 & 0.1123 & 0.1194 & 0.1014 & 0.0008 \\
24 & 2.1076 & 0.1368 & 0.1370 & 0.1370 & -0.0001 \\
26 & 2.2837 & 0.1514 & 0.1729 & 0.1667 & 0.0065 \\
28 & 2.4455 & 0.1636 & 0.1946 & 0.2047 & 0.0143 \\
30 & 2.6364 & 0.1511 & 0.1799 & 0.1980 & 0.0052 \\
32 & 2.8121 & 0.1670 & 0.2002 & 0.2111 & 0.0010 \\
36 & 3.2031 & 0.1723 & 0.2196 & 0.2630 & 0.0034 \\
40 & 3.4561 & 0.1590 & 0.2212 & 0.2825 & 0.0058 \\
44 & 3.7039 & 0.1710 & 0.2452 & 0.2973 & 0.0051 \\
48 & 4.0023 & 0.1548 & 0.2659 & 0.3514 & 0.0043 \\
52 & 4.2537 & 0.1353 & -0.2960 & 0.3183 & -0.0010 \\
56 & 4.4219 & 0.1468 & 0.3265 & 0.3456 & 0.0136 \\
60 & 4.5761 & 0.1266 & 0.3452 & 0.3380 & 0.0071 \\
64 & 4.7592 & 0.1043 & 0.2448 & 0.3461 & 0.0026 \\
68 & 4.9344 & 0.1148 & 0.2454 & 0.2656 & 0.0054 \\
72 & 5.0235 & 0.1139 & 0.2724 & 0.2250 & 0.0122 \\
76 & 5.0866 & 0.1018 & 0.2967 & 0.1809 & 0.0101 \\
80 & 5.1816 & 0.0859 & 0.3311 & 0.1231 & 0.0071 \\
84 & 5.2461 & 0.0657 & 0.3400 & 0.0835 & 0.0046 \\
88 & 5.2542 & 0.0943 & 0.3444 & 0.1024 & 0.0094 \\
92 & 5.2485 & 0.1339 & 0.3463 & 0.1413 & 0.0188 \\
96 & 5.2397 & 0.0399 & 0.3396 & 0.0417 & 0.0017 \\
100 & 5.2159 & 0.1483 & 0.3329 & 0.1559 & 0.0228 \\
104 & 5.1651 & 0.1175 & 0.3584 & 0.1223 & 0.0142 \\
108 & 5.0851 & 0.0913 & 0.3520 & 0.0956 & 0.0087 \\
112 & 4.9681 & 0.0902 & 0.3509 & 0.0939 & 0.0083 \\
116 & 4.8316 & 0.1136 & 0.3394 & 0.1185 & 0.0134 \\
120 & 4.7105 & 0.0858 & 0.3297 & 0.0943 & 0.0080 \\
124 & 4.5350 & 0.0930 & 0.3312 & 0.0984 & 0.0089 \\
128 & 4.4106 & 0.0874 & 0.2623 & 0.0816 & 0.0080 \\
132 & 4.1578 & 0.0475 & 0.3016 & 0.0489 & 0.0023 \\
136 & 3.9079 & 0.0909 & 0.2683 & 0.0931 & 0.0082 \\
140 & 3.6807 & 0.0714 & 0.2474 & 0.0716 & 0.0050 \\
144 & 3.3966 & 0.0563 & 0.2417 & 0.0587 & 0.0033 \\
148 & 3.1047 & 0.0627 & 0.2283 & 0.0648 & 0.0039 \\
152 & 2.7924 & 0.0412 & 0.2179 & 0.0431 & 0.0017 \\
55 & \\
\end{tabular}
<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>̇u (m/sec)</th>
<th>u' (m/sec)</th>
<th>̇v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-u'v' (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>2.4764</td>
<td>0.0353</td>
<td>0.1981</td>
<td>0.0367</td>
<td>0.0012</td>
</tr>
<tr>
<td>160</td>
<td>2.1530</td>
<td>0.0246</td>
<td>0.1623</td>
<td>0.0237</td>
<td>0.0005</td>
</tr>
<tr>
<td>164</td>
<td>1.7885</td>
<td>0.0499</td>
<td>0.1531</td>
<td>0.0527</td>
<td>0.0026</td>
</tr>
<tr>
<td>168</td>
<td>1.4209</td>
<td>0.0369</td>
<td>0.1188</td>
<td>0.0380</td>
<td>0.0013</td>
</tr>
<tr>
<td>172</td>
<td>1.0622</td>
<td>0.0436</td>
<td>0.1024</td>
<td>0.0457</td>
<td>0.0020</td>
</tr>
<tr>
<td>176</td>
<td>0.6963</td>
<td>0.0184</td>
<td>0.0705</td>
<td>0.0186</td>
<td>0.0003</td>
</tr>
<tr>
<td>180</td>
<td>0.3390</td>
<td>0.0177</td>
<td>0.0333</td>
<td>0.0181</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

SPRE

s/d = 0.33

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>̇u (m/sec)</th>
<th>u' (m/sec)</th>
<th>̇v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-u'v' (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2680</td>
<td>0.0819</td>
<td>0.0239</td>
<td>0.0517</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>0.5104</td>
<td>0.1170</td>
<td>0.0326</td>
<td>0.0698</td>
<td>0.0029</td>
</tr>
<tr>
<td>12</td>
<td>0.6276</td>
<td>0.1070</td>
<td>0.0584</td>
<td>0.0719</td>
<td>0.0012</td>
</tr>
<tr>
<td>14</td>
<td>1.0172</td>
<td>0.1009</td>
<td>0.0570</td>
<td>0.0707</td>
<td>-0.0001</td>
</tr>
<tr>
<td>16</td>
<td>1.2379</td>
<td>0.1052</td>
<td>0.0929</td>
<td>0.1064</td>
<td>0.0042</td>
</tr>
<tr>
<td>18</td>
<td>1.4832</td>
<td>0.1082</td>
<td>0.1036</td>
<td>0.0944</td>
<td>0.0017</td>
</tr>
<tr>
<td>20</td>
<td>1.6854</td>
<td>0.1141</td>
<td>0.1082</td>
<td>0.0875</td>
<td>0.0008</td>
</tr>
<tr>
<td>22</td>
<td>1.9022</td>
<td>0.1199</td>
<td>0.1217</td>
<td>0.1123</td>
<td>0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.1114</td>
<td>0.1404</td>
<td>0.1246</td>
<td>0.1522</td>
<td>0.0009</td>
</tr>
<tr>
<td>26</td>
<td>2.2640</td>
<td>0.1750</td>
<td>0.1690</td>
<td>0.1858</td>
<td>0.0054</td>
</tr>
<tr>
<td>28</td>
<td>2.4391</td>
<td>0.1743</td>
<td>0.1794</td>
<td>0.2013</td>
<td>0.0081</td>
</tr>
<tr>
<td>30</td>
<td>2.5989</td>
<td>0.1865</td>
<td>0.2095</td>
<td>0.2315</td>
<td>0.0128</td>
</tr>
<tr>
<td>32</td>
<td>2.7805</td>
<td>0.1969</td>
<td>0.2058</td>
<td>0.2629</td>
<td>0.0104</td>
</tr>
<tr>
<td>36</td>
<td>3.2043</td>
<td>0.1662</td>
<td>0.2020</td>
<td>0.2893</td>
<td>0.0150</td>
</tr>
<tr>
<td>40</td>
<td>3.4770</td>
<td>0.1621</td>
<td>0.2499</td>
<td>0.3464</td>
<td>0.0038</td>
</tr>
<tr>
<td>44</td>
<td>3.7060</td>
<td>0.1558</td>
<td>0.2290</td>
<td>0.3558</td>
<td>0.0104</td>
</tr>
<tr>
<td>48</td>
<td>3.9969</td>
<td>0.1696</td>
<td>0.2845</td>
<td>0.3588</td>
<td>0.0108</td>
</tr>
<tr>
<td>52</td>
<td>4.2757</td>
<td>0.1491</td>
<td>0.3202</td>
<td>0.3576</td>
<td>0.0084</td>
</tr>
<tr>
<td>56</td>
<td>4.4136</td>
<td>0.1386</td>
<td>0.2454</td>
<td>0.3219</td>
<td>0.0023</td>
</tr>
<tr>
<td>60</td>
<td>4.5846</td>
<td>0.1172</td>
<td>0.2317</td>
<td>0.3103</td>
<td>0.0078</td>
</tr>
<tr>
<td>64</td>
<td>4.7613</td>
<td>0.1329</td>
<td>0.2139</td>
<td>0.3182</td>
<td>0.0164</td>
</tr>
<tr>
<td>68</td>
<td>4.9276</td>
<td>0.1133</td>
<td>0.2564</td>
<td>0.2924</td>
<td>0.0095</td>
</tr>
<tr>
<td>72</td>
<td>5.0105</td>
<td>0.1192</td>
<td>0.2538</td>
<td>0.2613</td>
<td>0.0142</td>
</tr>
<tr>
<td>76</td>
<td>5.0777</td>
<td>0.0543</td>
<td>0.2921</td>
<td>0.1591</td>
<td>0.0009</td>
</tr>
<tr>
<td>80</td>
<td>5.1797</td>
<td>0.1556</td>
<td>0.3236</td>
<td>0.1873</td>
<td>0.0259</td>
</tr>
<tr>
<td>84</td>
<td>5.2435</td>
<td>0.0804</td>
<td>0.3327</td>
<td>0.0973</td>
<td>0.0083</td>
</tr>
<tr>
<td>88</td>
<td>5.2331</td>
<td>0.1066</td>
<td>0.3237</td>
<td>0.1112</td>
<td>0.0114</td>
</tr>
<tr>
<td>92</td>
<td>5.2386</td>
<td>0.1216</td>
<td>0.3433</td>
<td>0.1263</td>
<td>0.0152</td>
</tr>
<tr>
<td>96</td>
<td>5.2107</td>
<td>0.1115</td>
<td>0.3168</td>
<td>0.1150</td>
<td>0.0127</td>
</tr>
<tr>
<td>100</td>
<td>5.2147</td>
<td>0.0769</td>
<td>0.3287</td>
<td>0.0802</td>
<td>0.0060</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u'v' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>104</td>
<td>5.1763</td>
<td>0.1182</td>
<td>0.3744</td>
<td>0.1231</td>
<td>0.0143</td>
</tr>
<tr>
<td>108</td>
<td>5.0511</td>
<td>0.0952</td>
<td>0.3239</td>
<td>0.0984</td>
<td>0.0093</td>
</tr>
<tr>
<td>112</td>
<td>4.9579</td>
<td>0.0600</td>
<td>0.3419</td>
<td>0.0590</td>
<td>0.0032</td>
</tr>
<tr>
<td>116</td>
<td>4.8284</td>
<td>0.0595</td>
<td>0.3376</td>
<td>0.0626</td>
<td>0.0036</td>
</tr>
<tr>
<td>120</td>
<td>4.7044</td>
<td>0.0704</td>
<td>0.3185</td>
<td>0.0735</td>
<td>0.0049</td>
</tr>
<tr>
<td>124</td>
<td>4.5092</td>
<td>0.0844</td>
<td>0.2968</td>
<td>0.0842</td>
<td>0.0067</td>
</tr>
<tr>
<td>128</td>
<td>4.3919</td>
<td>0.0810</td>
<td>0.2494</td>
<td>0.0833</td>
<td>0.0067</td>
</tr>
<tr>
<td>132</td>
<td>4.1503</td>
<td>0.0681</td>
<td>0.2926</td>
<td>0.0687</td>
<td>0.0045</td>
</tr>
<tr>
<td>136</td>
<td>3.9165</td>
<td>0.0709</td>
<td>0.2659</td>
<td>0.0759</td>
<td>0.0051</td>
</tr>
<tr>
<td>140</td>
<td>3.6631</td>
<td>0.0726</td>
<td>0.2254</td>
<td>0.0765</td>
<td>0.0055</td>
</tr>
<tr>
<td>144</td>
<td>3.3889</td>
<td>0.0626</td>
<td>0.2377</td>
<td>0.0660</td>
<td>0.0041</td>
</tr>
<tr>
<td>148</td>
<td>3.0958</td>
<td>0.0723</td>
<td>0.2069</td>
<td>0.0742</td>
<td>0.0052</td>
</tr>
<tr>
<td>152</td>
<td>2.7793</td>
<td>0.0708</td>
<td>0.1977</td>
<td>0.0733</td>
<td>0.0051</td>
</tr>
<tr>
<td>156</td>
<td>2.4644</td>
<td>0.0728</td>
<td>0.1863</td>
<td>0.0755</td>
<td>0.0054</td>
</tr>
<tr>
<td>160</td>
<td>2.1457</td>
<td>0.0629</td>
<td>0.1568</td>
<td>0.0655</td>
<td>0.0041</td>
</tr>
<tr>
<td>164</td>
<td>1.7800</td>
<td>0.0312</td>
<td>0.1478</td>
<td>0.0314</td>
<td>0.0009</td>
</tr>
<tr>
<td>168</td>
<td>1.4234</td>
<td>0.0272</td>
<td>0.1225</td>
<td>0.0276</td>
<td>0.0007</td>
</tr>
<tr>
<td>172</td>
<td>1.0645</td>
<td>0.0486</td>
<td>0.1069</td>
<td>0.0514</td>
<td>0.0025</td>
</tr>
<tr>
<td>176</td>
<td>0.6995</td>
<td>0.0346</td>
<td>0.0737</td>
<td>0.0359</td>
<td>0.0012</td>
</tr>
<tr>
<td>180</td>
<td>0.3433</td>
<td>0.0193</td>
<td>0.0338</td>
<td>0.0194</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-u'v' (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2841</td>
<td>0.0974</td>
<td>0.0335</td>
<td>0.0692</td>
<td>0.0043</td>
</tr>
<tr>
<td>8</td>
<td>0.5308</td>
<td>0.1203</td>
<td>0.0391</td>
<td>0.0788</td>
<td>0.0043</td>
</tr>
<tr>
<td>12</td>
<td>0.8414</td>
<td>0.1055</td>
<td>0.0658</td>
<td>0.0767</td>
<td>0.0037</td>
</tr>
<tr>
<td>14</td>
<td>1.0189</td>
<td>0.1084</td>
<td>0.0852</td>
<td>0.0864</td>
<td>0.0035</td>
</tr>
<tr>
<td>16</td>
<td>1.2365</td>
<td>0.0996</td>
<td>0.0919</td>
<td>0.0860</td>
<td>0.0040</td>
</tr>
<tr>
<td>18</td>
<td>1.4489</td>
<td>0.1105</td>
<td>0.1012</td>
<td>0.0770</td>
<td>0.0035</td>
</tr>
<tr>
<td>20</td>
<td>1.6766</td>
<td>0.1064</td>
<td>0.1022</td>
<td>0.0862</td>
<td>0.0035</td>
</tr>
<tr>
<td>22</td>
<td>1.8678</td>
<td>0.1090</td>
<td>0.1053</td>
<td>0.1025</td>
<td>0.0031</td>
</tr>
<tr>
<td>24</td>
<td>2.0961</td>
<td>0.1304</td>
<td>0.1251</td>
<td>0.1381</td>
<td>0.0004</td>
</tr>
<tr>
<td>26</td>
<td>2.2359</td>
<td>0.1449</td>
<td>0.1226</td>
<td>0.1762</td>
<td>0.0036</td>
</tr>
<tr>
<td>28</td>
<td>2.4317</td>
<td>0.1690</td>
<td>0.1519</td>
<td>0.1902</td>
<td>0.0002</td>
</tr>
<tr>
<td>30</td>
<td>2.6295</td>
<td>0.1640</td>
<td>0.1938</td>
<td>0.2010</td>
<td>0.0009</td>
</tr>
<tr>
<td>32</td>
<td>2.7983</td>
<td>0.1758</td>
<td>0.2081</td>
<td>0.2459</td>
<td>0.0020</td>
</tr>
<tr>
<td>36</td>
<td>3.1809</td>
<td>0.1436</td>
<td>0.1836</td>
<td>0.2684</td>
<td>0.0023</td>
</tr>
<tr>
<td>40</td>
<td>3.4778</td>
<td>0.1585</td>
<td>0.1434</td>
<td>0.2874</td>
<td>0.0091</td>
</tr>
<tr>
<td>44</td>
<td>3.6992</td>
<td>0.1635</td>
<td>0.1214</td>
<td>0.3242</td>
<td>0.0065</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\ddot{u})</td>
<td>(u')</td>
<td>(\ddot{v})</td>
<td>(v')</td>
<td>(-\ddot{u}v')</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>48</td>
<td>3.9608</td>
<td>0.1503</td>
<td>0.2113</td>
<td>0.3488</td>
<td>-0.0012</td>
</tr>
<tr>
<td>52</td>
<td>4.2308</td>
<td>0.1265</td>
<td>0.2278</td>
<td>0.3350</td>
<td>0.0053</td>
</tr>
<tr>
<td>56</td>
<td>4.3925</td>
<td>0.1165</td>
<td>0.2230</td>
<td>0.3806</td>
<td>0.0051</td>
</tr>
<tr>
<td>60</td>
<td>4.5378</td>
<td>0.1372</td>
<td>0.2474</td>
<td>0.3732</td>
<td>0.0034</td>
</tr>
<tr>
<td>64</td>
<td>4.7321</td>
<td>0.1326</td>
<td>0.2243</td>
<td>0.3531</td>
<td>0.0166</td>
</tr>
<tr>
<td>68</td>
<td>4.9011</td>
<td>0.1260</td>
<td>0.2555</td>
<td>0.3105</td>
<td>0.0116</td>
</tr>
<tr>
<td>72</td>
<td>4.9761</td>
<td>0.1098</td>
<td>0.2505</td>
<td>0.2421</td>
<td>0.0055</td>
</tr>
<tr>
<td>76</td>
<td>5.0468</td>
<td>0.1116</td>
<td>0.2889</td>
<td>0.1859</td>
<td>0.0117</td>
</tr>
<tr>
<td>80</td>
<td>5.1526</td>
<td>0.1415</td>
<td>0.3305</td>
<td>0.1724</td>
<td>0.0214</td>
</tr>
<tr>
<td>84</td>
<td>5.2159</td>
<td>0.1005</td>
<td>0.3361</td>
<td>0.1144</td>
<td>0.0101</td>
</tr>
<tr>
<td>88</td>
<td>5.2065</td>
<td>0.0476</td>
<td>0.3263</td>
<td>0.0514</td>
<td>0.0021</td>
</tr>
<tr>
<td>92</td>
<td>5.2049</td>
<td>0.0795</td>
<td>0.3326</td>
<td>0.0850</td>
<td>0.0067</td>
</tr>
<tr>
<td>96</td>
<td>5.2008</td>
<td>0.1117</td>
<td>0.3295</td>
<td>0.1168</td>
<td>0.0130</td>
</tr>
<tr>
<td>100</td>
<td>5.1804</td>
<td>0.0834</td>
<td>0.3267</td>
<td>0.0855</td>
<td>0.0068</td>
</tr>
<tr>
<td>104</td>
<td>5.1319</td>
<td>0.1195</td>
<td>0.3558</td>
<td>0.1260</td>
<td>0.0148</td>
</tr>
<tr>
<td>108</td>
<td>5.0413</td>
<td>0.0761</td>
<td>0.3346</td>
<td>0.0796</td>
<td>0.0060</td>
</tr>
<tr>
<td>112</td>
<td>4.9076</td>
<td>0.0972</td>
<td>0.3144</td>
<td>0.1007</td>
<td>0.0096</td>
</tr>
<tr>
<td>116</td>
<td>4.8138</td>
<td>0.1060</td>
<td>0.3414</td>
<td>0.1127</td>
<td>0.0118</td>
</tr>
<tr>
<td>120</td>
<td>4.6694</td>
<td>0.0995</td>
<td>0.3037</td>
<td>0.1066</td>
<td>0.0104</td>
</tr>
<tr>
<td>124</td>
<td>4.4744</td>
<td>0.0939</td>
<td>0.2822</td>
<td>0.0980</td>
<td>0.0083</td>
</tr>
<tr>
<td>128</td>
<td>4.3596</td>
<td>0.0675</td>
<td>0.2348</td>
<td>0.0709</td>
<td>0.0048</td>
</tr>
<tr>
<td>132</td>
<td>4.1212</td>
<td>0.0949</td>
<td>0.2770</td>
<td>0.0985</td>
<td>0.0092</td>
</tr>
<tr>
<td>136</td>
<td>3.8993</td>
<td>0.0697</td>
<td>0.2623</td>
<td>0.0688</td>
<td>0.0046</td>
</tr>
<tr>
<td>140</td>
<td>3.6543</td>
<td>0.0839</td>
<td>0.2326</td>
<td>0.0876</td>
<td>0.0073</td>
</tr>
<tr>
<td>144</td>
<td>3.3636</td>
<td>0.0593</td>
<td>0.2246</td>
<td>0.0612</td>
<td>0.0036</td>
</tr>
<tr>
<td>148</td>
<td>3.0873</td>
<td>0.0500</td>
<td>0.2112</td>
<td>0.0551</td>
<td>0.0025</td>
</tr>
<tr>
<td>152</td>
<td>2.7623</td>
<td>0.0634</td>
<td>0.1914</td>
<td>0.0654</td>
<td>0.0040</td>
</tr>
<tr>
<td>156</td>
<td>2.4553</td>
<td>0.0926</td>
<td>0.1848</td>
<td>0.0982</td>
<td>0.0090</td>
</tr>
<tr>
<td>160</td>
<td>2.1314</td>
<td>0.0268</td>
<td>0.1512</td>
<td>0.0274</td>
<td>0.0007</td>
</tr>
<tr>
<td>164</td>
<td>1.7689</td>
<td>0.0514</td>
<td>0.1400</td>
<td>0.0526</td>
<td>0.0026</td>
</tr>
<tr>
<td>168</td>
<td>1.4200</td>
<td>0.0473</td>
<td>0.1219</td>
<td>0.0491</td>
<td>0.0023</td>
</tr>
<tr>
<td>172</td>
<td>1.0522</td>
<td>0.0233</td>
<td>0.0976</td>
<td>0.0231</td>
<td>0.0005</td>
</tr>
<tr>
<td>176</td>
<td>0.6964</td>
<td>0.0342</td>
<td>0.0703</td>
<td>0.0358</td>
<td>0.0012</td>
</tr>
<tr>
<td>180</td>
<td>0.3429</td>
<td>0.0196</td>
<td>0.0348</td>
<td>0.0198</td>
<td>0.0004</td>
</tr>
</tbody>
</table>
Figure 14: Streamwise velocity fluctuation at s/d = 0.33 (smoothed)
Figure 15: Radial velocity fluctuation at s/d = 0.33 (smoothed)
Figure 16: Reynolds shear stress at s/d = 0.33 (not smoothed)
CROSS-WIRE DATA

SPRE \(s/d = 16 \)

\[r/R = 0.800 \]

<table>
<thead>
<tr>
<th>(\theta) (deg.)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{v}) (m/sec)</th>
<th>(v') (m/sec)</th>
<th>(-u'v') m(^2)/sec(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4461</td>
<td>0.1531</td>
<td>-0.0060</td>
<td>0.0566</td>
<td>0.0010</td>
</tr>
<tr>
<td>8</td>
<td>0.6037</td>
<td>0.1336</td>
<td>0.0199</td>
<td>0.0735</td>
<td>-0.0004</td>
</tr>
<tr>
<td>12</td>
<td>1.1030</td>
<td>0.1234</td>
<td>0.0571</td>
<td>0.0703</td>
<td>0.0006</td>
</tr>
<tr>
<td>16</td>
<td>1.5007</td>
<td>0.1087</td>
<td>0.0841</td>
<td>0.0581</td>
<td>0.0010</td>
</tr>
<tr>
<td>20</td>
<td>1.9468</td>
<td>0.1019</td>
<td>0.1167</td>
<td>0.0631</td>
<td>0.0024</td>
</tr>
<tr>
<td>24</td>
<td>2.2698</td>
<td>0.0968</td>
<td>0.1360</td>
<td>0.0679</td>
<td>0.0035</td>
</tr>
<tr>
<td>28</td>
<td>2.5781</td>
<td>0.0911</td>
<td>0.1770</td>
<td>0.0623</td>
<td>0.0028</td>
</tr>
<tr>
<td>32</td>
<td>2.9333</td>
<td>0.1199</td>
<td>0.1995</td>
<td>0.0922</td>
<td>0.0067</td>
</tr>
<tr>
<td>36</td>
<td>3.3227</td>
<td>0.1164</td>
<td>0.2305</td>
<td>0.0816</td>
<td>0.0064</td>
</tr>
<tr>
<td>40</td>
<td>3.5714</td>
<td>0.1280</td>
<td>0.2396</td>
<td>0.1034</td>
<td>0.0089</td>
</tr>
<tr>
<td>44</td>
<td>3.8202</td>
<td>0.1411</td>
<td>0.2781</td>
<td>0.0829</td>
<td>0.0074</td>
</tr>
<tr>
<td>48</td>
<td>4.1732</td>
<td>0.1635</td>
<td>0.2782</td>
<td>0.1156</td>
<td>0.0067</td>
</tr>
<tr>
<td>52</td>
<td>4.4142</td>
<td>0.1395</td>
<td>0.3173</td>
<td>0.0534</td>
<td>0.0034</td>
</tr>
<tr>
<td>56</td>
<td>4.5015</td>
<td>0.1671</td>
<td>0.3336</td>
<td>0.0944</td>
<td>0.0096</td>
</tr>
<tr>
<td>60</td>
<td>4.5817</td>
<td>0.1898</td>
<td>0.3419</td>
<td>0.1083</td>
<td>0.0139</td>
</tr>
<tr>
<td>62</td>
<td>4.6959</td>
<td>0.2362</td>
<td>0.3528</td>
<td>0.1052</td>
<td>0.0124</td>
</tr>
<tr>
<td>64</td>
<td>4.7340</td>
<td>0.3192</td>
<td>0.3514</td>
<td>0.1118</td>
<td>0.0153</td>
</tr>
<tr>
<td>66</td>
<td>4.8223</td>
<td>0.3949</td>
<td>0.3431</td>
<td>0.1590</td>
<td>0.0369</td>
</tr>
<tr>
<td>68</td>
<td>4.9051</td>
<td>0.4097</td>
<td>0.3611</td>
<td>0.1708</td>
<td>0.0382</td>
</tr>
<tr>
<td>66</td>
<td>4.9671</td>
<td>0.4536</td>
<td>0.3851</td>
<td>0.2046</td>
<td>0.0291</td>
</tr>
<tr>
<td>68</td>
<td>5.0518</td>
<td>0.5151</td>
<td>0.3246</td>
<td>0.2530</td>
<td>0.0567</td>
</tr>
<tr>
<td>70</td>
<td>5.1391</td>
<td>0.5232</td>
<td>0.3634</td>
<td>0.2312</td>
<td>0.0421</td>
</tr>
<tr>
<td>72</td>
<td>5.1344</td>
<td>0.5465</td>
<td>0.3595</td>
<td>0.2293</td>
<td>0.0599</td>
</tr>
<tr>
<td>76</td>
<td>5.2278</td>
<td>0.5225</td>
<td>0.3398</td>
<td>0.2256</td>
<td>0.0460</td>
</tr>
<tr>
<td>80</td>
<td>5.3006</td>
<td>0.5411</td>
<td>0.3370</td>
<td>0.2999</td>
<td>0.0743</td>
</tr>
<tr>
<td>84</td>
<td>5.2597</td>
<td>0.5891</td>
<td>0.3349</td>
<td>0.2936</td>
<td>0.0638</td>
</tr>
<tr>
<td>88</td>
<td>5.2434</td>
<td>0.5874</td>
<td>0.3493</td>
<td>0.2908</td>
<td>0.0659</td>
</tr>
<tr>
<td>92</td>
<td>5.2642</td>
<td>0.6368</td>
<td>0.4193</td>
<td>0.3119</td>
<td>0.1043</td>
</tr>
<tr>
<td>96</td>
<td>5.2715</td>
<td>0.5566</td>
<td>0.3542</td>
<td>0.2667</td>
<td>0.0471</td>
</tr>
<tr>
<td>100</td>
<td>5.2955</td>
<td>0.5882</td>
<td>0.3632</td>
<td>0.2820</td>
<td>0.0786</td>
</tr>
<tr>
<td>104</td>
<td>5.3362</td>
<td>0.4626</td>
<td>0.3934</td>
<td>0.1723</td>
<td>0.0142</td>
</tr>
<tr>
<td>108</td>
<td>5.2548</td>
<td>0.4841</td>
<td>0.4154</td>
<td>0.1125</td>
<td>0.0118</td>
</tr>
<tr>
<td>112</td>
<td>5.1616</td>
<td>0.3411</td>
<td>0.4266</td>
<td>0.1247</td>
<td>0.0085</td>
</tr>
<tr>
<td>116</td>
<td>4.9727</td>
<td>0.2973</td>
<td>0.4407</td>
<td>0.0902</td>
<td>0.0128</td>
</tr>
<tr>
<td>120</td>
<td>4.7500</td>
<td>0.2439</td>
<td>0.4476</td>
<td>0.1410</td>
<td>0.0203</td>
</tr>
<tr>
<td>124</td>
<td>4.5686</td>
<td>0.1599</td>
<td>0.4494</td>
<td>0.1320</td>
<td>0.0166</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(\ddot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{v}) (m/sec)</td>
<td>(v') (m/sec)</td>
<td>(-u'v') (m^2/sec^2)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>128</td>
<td>4.3586</td>
<td>0.1254</td>
<td>0.4086</td>
<td>0.0663</td>
<td>-0.0009</td>
</tr>
<tr>
<td>132</td>
<td>4.1215</td>
<td>0.1243</td>
<td>0.4347</td>
<td>0.1115</td>
<td>0.0107</td>
</tr>
<tr>
<td>136</td>
<td>3.9179</td>
<td>0.1056</td>
<td>0.4380</td>
<td>0.0920</td>
<td>0.0079</td>
</tr>
<tr>
<td>140</td>
<td>3.6605</td>
<td>0.1034</td>
<td>0.4228</td>
<td>0.0951</td>
<td>0.0088</td>
</tr>
<tr>
<td>144</td>
<td>3.3768</td>
<td>0.0920</td>
<td>0.3932</td>
<td>0.0922</td>
<td>0.0074</td>
</tr>
<tr>
<td>148</td>
<td>3.0425</td>
<td>0.0626</td>
<td>0.3779</td>
<td>0.0568</td>
<td>0.0028</td>
</tr>
<tr>
<td>152</td>
<td>2.7014</td>
<td>0.0435</td>
<td>0.3563</td>
<td>0.0389</td>
<td>0.0013</td>
</tr>
<tr>
<td>156</td>
<td>2.3705</td>
<td>0.0386</td>
<td>0.3277</td>
<td>0.0338</td>
<td>0.0010</td>
</tr>
<tr>
<td>160</td>
<td>2.0101</td>
<td>0.0624</td>
<td>0.3065</td>
<td>0.0644</td>
<td>0.0038</td>
</tr>
<tr>
<td>164</td>
<td>1.6036</td>
<td>0.0573</td>
<td>0.2730</td>
<td>0.0576</td>
<td>0.0031</td>
</tr>
<tr>
<td>168</td>
<td>1.2065</td>
<td>0.0452</td>
<td>0.2402</td>
<td>0.0423</td>
<td>0.0017</td>
</tr>
<tr>
<td>172</td>
<td>0.8648</td>
<td>0.0336</td>
<td>0.2008</td>
<td>0.0310</td>
<td>0.0008</td>
</tr>
<tr>
<td>176</td>
<td>0.5390</td>
<td>0.0362</td>
<td>0.1612</td>
<td>0.0345</td>
<td>0.0011</td>
</tr>
<tr>
<td>180</td>
<td>0.3578</td>
<td>0.0289</td>
<td>0.0410</td>
<td>0.0276</td>
<td>0.0007</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(\dot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{v}) (m/sec)</td>
<td>(v') (m/sec)</td>
<td>(-\dot{u}\ddot{v}') (m^2/sec^2)</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.3959</td>
<td>0.1283</td>
<td>-0.0041</td>
<td>0.0563</td>
<td>-0.0025</td>
</tr>
<tr>
<td>8</td>
<td>0.7566</td>
<td>0.1304</td>
<td>0.0217</td>
<td>0.0717</td>
<td>0.0022</td>
</tr>
<tr>
<td>12</td>
<td>1.0760</td>
<td>0.1157</td>
<td>0.0432</td>
<td>0.0656</td>
<td>-0.0066</td>
</tr>
<tr>
<td>16</td>
<td>1.4949</td>
<td>0.1023</td>
<td>0.0901</td>
<td>0.0658</td>
<td>0.0044</td>
</tr>
<tr>
<td>20</td>
<td>1.9415</td>
<td>0.1146</td>
<td>0.1185</td>
<td>0.0858</td>
<td>0.0044</td>
</tr>
<tr>
<td>24</td>
<td>2.2792</td>
<td>0.1143</td>
<td>0.1475</td>
<td>0.0798</td>
<td>0.0033</td>
</tr>
<tr>
<td>28</td>
<td>2.6022</td>
<td>0.1089</td>
<td>0.1761</td>
<td>0.0870</td>
<td>0.0054</td>
</tr>
<tr>
<td>32</td>
<td>2.9995</td>
<td>0.0850</td>
<td>0.1976</td>
<td>0.0555</td>
<td>0.0019</td>
</tr>
<tr>
<td>36</td>
<td>3.3719</td>
<td>0.1112</td>
<td>0.2143</td>
<td>0.0923</td>
<td>0.0071</td>
</tr>
<tr>
<td>40</td>
<td>3.6741</td>
<td>0.1123</td>
<td>0.2460</td>
<td>0.0792</td>
<td>0.0049</td>
</tr>
<tr>
<td>44</td>
<td>3.9309</td>
<td>0.1057</td>
<td>0.2643</td>
<td>0.0763</td>
<td>0.0053</td>
</tr>
<tr>
<td>48</td>
<td>4.3261</td>
<td>0.1448</td>
<td>0.2489</td>
<td>0.1288</td>
<td>0.0139</td>
</tr>
<tr>
<td>52</td>
<td>4.5861</td>
<td>0.1121</td>
<td>0.3184</td>
<td>0.0866</td>
<td>0.0062</td>
</tr>
<tr>
<td>54</td>
<td>4.7064</td>
<td>0.1205</td>
<td>0.3323</td>
<td>0.0868</td>
<td>0.0066</td>
</tr>
<tr>
<td>56</td>
<td>4.8065</td>
<td>0.1855</td>
<td>0.3396</td>
<td>0.1369</td>
<td>0.0174</td>
</tr>
<tr>
<td>58</td>
<td>4.8828</td>
<td>0.1976</td>
<td>0.3443</td>
<td>0.1036</td>
<td>0.0110</td>
</tr>
<tr>
<td>60</td>
<td>4.9888</td>
<td>0.2962</td>
<td>0.3348</td>
<td>0.1651</td>
<td>0.0271</td>
</tr>
<tr>
<td>62</td>
<td>5.1037</td>
<td>0.3097</td>
<td>0.3751</td>
<td>0.1806</td>
<td>0.0317</td>
</tr>
<tr>
<td>64</td>
<td>5.1977</td>
<td>0.3501</td>
<td>0.3478</td>
<td>0.1888</td>
<td>0.0342</td>
</tr>
<tr>
<td>66</td>
<td>5.2748</td>
<td>0.3678</td>
<td>0.3749</td>
<td>0.2066</td>
<td>0.0231</td>
</tr>
<tr>
<td>68</td>
<td>5.2406</td>
<td>0.4041</td>
<td>0.3542</td>
<td>0.2247</td>
<td>0.0342</td>
</tr>
<tr>
<td>70</td>
<td>5.2651</td>
<td>0.4778</td>
<td>0.3629</td>
<td>0.2332</td>
<td>0.0577</td>
</tr>
<tr>
<td>72</td>
<td>5.2088</td>
<td>0.5003</td>
<td>0.3387</td>
<td>0.2055</td>
<td>0.0491</td>
</tr>
<tr>
<td>76</td>
<td>5.2243</td>
<td>0.5191</td>
<td>0.3378</td>
<td>0.2562</td>
<td>0.0584</td>
</tr>
<tr>
<td>80</td>
<td>5.4144</td>
<td>0.4708</td>
<td>0.3556</td>
<td>0.2745</td>
<td>0.0557</td>
</tr>
<tr>
<td>84</td>
<td>5.4859</td>
<td>0.4908</td>
<td>0.3739</td>
<td>0.2352</td>
<td>0.0378</td>
</tr>
<tr>
<td>88</td>
<td>5.4460</td>
<td>0.4994</td>
<td>0.3514</td>
<td>0.2629</td>
<td>0.0423</td>
</tr>
<tr>
<td>92</td>
<td>5.4537</td>
<td>0.5293</td>
<td>0.3849</td>
<td>0.2439</td>
<td>0.0360</td>
</tr>
<tr>
<td>96</td>
<td>5.5560</td>
<td>0.5096</td>
<td>0.4061</td>
<td>0.2545</td>
<td>0.0523</td>
</tr>
<tr>
<td>100</td>
<td>5.5789</td>
<td>0.4863</td>
<td>0.3848</td>
<td>0.2151</td>
<td>0.0390</td>
</tr>
<tr>
<td>104</td>
<td>5.6071</td>
<td>0.4080</td>
<td>0.3945</td>
<td>0.1376</td>
<td>0.0076</td>
</tr>
<tr>
<td>108</td>
<td>5.6085</td>
<td>0.2896</td>
<td>0.4071</td>
<td>0.1152</td>
<td>0.0005</td>
</tr>
<tr>
<td>112</td>
<td>5.5781</td>
<td>0.2202</td>
<td>0.3944</td>
<td>0.0800</td>
<td>0.0035</td>
</tr>
<tr>
<td>116</td>
<td>5.4739</td>
<td>0.1394</td>
<td>0.4249</td>
<td>0.0739</td>
<td>0.0007</td>
</tr>
<tr>
<td>120</td>
<td>5.3886</td>
<td>0.1402</td>
<td>0.4785</td>
<td>0.0953</td>
<td>0.0085</td>
</tr>
<tr>
<td>124</td>
<td>5.0791</td>
<td>0.1073</td>
<td>0.4222</td>
<td>0.0889</td>
<td>0.0071</td>
</tr>
<tr>
<td>128</td>
<td>4.8739</td>
<td>0.1324</td>
<td>0.4280</td>
<td>0.1256</td>
<td>0.0150</td>
</tr>
<tr>
<td>132</td>
<td>4.6500</td>
<td>0.0723</td>
<td>0.4170</td>
<td>0.0742</td>
<td>0.0047</td>
</tr>
<tr>
<td>136</td>
<td>4.4494</td>
<td>0.1110</td>
<td>0.3380</td>
<td>0.1129</td>
<td>0.0123</td>
</tr>
<tr>
<td>140</td>
<td>4.1362</td>
<td>0.0692</td>
<td>0.3517</td>
<td>0.0667</td>
<td>0.0041</td>
</tr>
<tr>
<td>144</td>
<td>3.6373</td>
<td>0.1176</td>
<td>0.3399</td>
<td>0.1194</td>
<td>0.0134</td>
</tr>
<tr>
<td>148</td>
<td>3.4866</td>
<td>0.0781</td>
<td>0.3376</td>
<td>0.0766</td>
<td>0.0056</td>
</tr>
<tr>
<td>θ</td>
<td>(u')</td>
<td>(\ddot{u})</td>
<td>(\dddot{v})</td>
<td>(v')</td>
<td>(-\dddot{u}v')</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>152</td>
<td>3.1337</td>
<td>0.0601</td>
<td>0.3227</td>
<td>0.0606</td>
<td>0.0034</td>
</tr>
<tr>
<td>156</td>
<td>2.7725</td>
<td>0.0665</td>
<td>0.2946</td>
<td>0.0659</td>
<td>0.0041</td>
</tr>
<tr>
<td>160</td>
<td>2.4114</td>
<td>0.0701</td>
<td>0.2676</td>
<td>0.0720</td>
<td>0.0047</td>
</tr>
<tr>
<td>164</td>
<td>1.9758</td>
<td>0.0430</td>
<td>0.2533</td>
<td>0.0394</td>
<td>0.0015</td>
</tr>
<tr>
<td>168</td>
<td>1.5457</td>
<td>0.0289</td>
<td>0.2198</td>
<td>0.0305</td>
<td>0.0008</td>
</tr>
<tr>
<td>172</td>
<td>1.1652</td>
<td>0.0541</td>
<td>0.2110</td>
<td>0.0554</td>
<td>0.0029</td>
</tr>
<tr>
<td>176</td>
<td>0.7725</td>
<td>0.0366</td>
<td>0.1651</td>
<td>0.0361</td>
<td>0.0011</td>
</tr>
<tr>
<td>180</td>
<td>0.4245</td>
<td>0.0338</td>
<td>0.0346</td>
<td>0.0247</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>(u')</th>
<th>(\ddot{u})</th>
<th>(\dddot{v})</th>
<th>(v')</th>
<th>(-\dddot{u}v')</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3400</td>
<td>0.1171</td>
<td>-0.0036</td>
<td>0.0496</td>
<td>-0.0012</td>
</tr>
<tr>
<td>8</td>
<td>0.6646</td>
<td>0.1249</td>
<td>0.0194</td>
<td>0.0594</td>
<td>-0.0017</td>
</tr>
<tr>
<td>12</td>
<td>1.0010</td>
<td>0.1302</td>
<td>0.0536</td>
<td>0.0869</td>
<td>0.0004</td>
</tr>
<tr>
<td>16</td>
<td>1.4487</td>
<td>0.1179</td>
<td>0.0915</td>
<td>0.0746</td>
<td>-0.0002</td>
</tr>
<tr>
<td>20</td>
<td>1.8810</td>
<td>0.1041</td>
<td>0.1147</td>
<td>0.0826</td>
<td>-0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.2134</td>
<td>0.1086</td>
<td>0.1348</td>
<td>0.0792</td>
<td>0.0009</td>
</tr>
<tr>
<td>28</td>
<td>2.5658</td>
<td>0.0970</td>
<td>0.1677</td>
<td>0.0542</td>
<td>-0.0005</td>
</tr>
<tr>
<td>32</td>
<td>2.9756</td>
<td>0.0890</td>
<td>0.2065</td>
<td>0.0608</td>
<td>-0.0004</td>
</tr>
<tr>
<td>36</td>
<td>3.3651</td>
<td>0.1069</td>
<td>0.2126</td>
<td>0.0833</td>
<td>0.0033</td>
</tr>
<tr>
<td>40</td>
<td>3.6937</td>
<td>0.1330</td>
<td>0.2560</td>
<td>0.1111</td>
<td>0.0108</td>
</tr>
<tr>
<td>44</td>
<td>3.9772</td>
<td>0.0982</td>
<td>0.2723</td>
<td>0.0807</td>
<td>0.0040</td>
</tr>
<tr>
<td>48</td>
<td>4.3728</td>
<td>0.1219</td>
<td>0.2942</td>
<td>0.1234</td>
<td>0.0144</td>
</tr>
<tr>
<td>52</td>
<td>4.6290</td>
<td>0.1120</td>
<td>0.3089</td>
<td>0.0993</td>
<td>0.0091</td>
</tr>
<tr>
<td>56</td>
<td>4.7919</td>
<td>0.1232</td>
<td>0.3464</td>
<td>0.1157</td>
<td>0.0103</td>
</tr>
<tr>
<td>58</td>
<td>4.8915</td>
<td>0.1208</td>
<td>0.3311</td>
<td>0.0926</td>
<td>0.0060</td>
</tr>
<tr>
<td>60</td>
<td>5.0003</td>
<td>0.1331</td>
<td>0.3446</td>
<td>0.0998</td>
<td>0.0042</td>
</tr>
<tr>
<td>62</td>
<td>5.0568</td>
<td>0.2082</td>
<td>0.3500</td>
<td>0.1754</td>
<td>0.0186</td>
</tr>
<tr>
<td>64</td>
<td>5.1864</td>
<td>0.2008</td>
<td>0.3668</td>
<td>0.1688</td>
<td>0.0174</td>
</tr>
<tr>
<td>66</td>
<td>5.2344</td>
<td>0.2868</td>
<td>0.3655</td>
<td>0.1961</td>
<td>0.0232</td>
</tr>
<tr>
<td>68</td>
<td>5.3282</td>
<td>0.3234</td>
<td>0.3805</td>
<td>0.2485</td>
<td>0.0505</td>
</tr>
<tr>
<td>70</td>
<td>5.4059</td>
<td>0.2559</td>
<td>0.3693</td>
<td>0.1855</td>
<td>0.0175</td>
</tr>
<tr>
<td>72</td>
<td>5.4157</td>
<td>0.2882</td>
<td>0.3807</td>
<td>0.2125</td>
<td>0.0205</td>
</tr>
<tr>
<td>76</td>
<td>5.4886</td>
<td>0.3825</td>
<td>0.3678</td>
<td>0.2563</td>
<td>0.0512</td>
</tr>
<tr>
<td>80</td>
<td>5.5916</td>
<td>0.3749</td>
<td>0.3998</td>
<td>0.2339</td>
<td>0.0352</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-uv' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>84</td>
<td>5.6439</td>
<td>0.4117</td>
<td>0.3894</td>
<td>0.2156</td>
<td>0.0374</td>
</tr>
<tr>
<td>88</td>
<td>5.6832</td>
<td>0.3648</td>
<td>0.3911</td>
<td>0.2612</td>
<td>0.0480</td>
</tr>
<tr>
<td>92</td>
<td>5.6803</td>
<td>0.3998</td>
<td>0.3812</td>
<td>0.2433</td>
<td>0.0500</td>
</tr>
<tr>
<td>96</td>
<td>5.7514</td>
<td>0.3041</td>
<td>0.4095</td>
<td>0.1740</td>
<td>0.0671</td>
</tr>
<tr>
<td>100</td>
<td>5.7519</td>
<td>0.2929</td>
<td>0.3704</td>
<td>0.1548</td>
<td>0.0145</td>
</tr>
<tr>
<td>104</td>
<td>5.7867</td>
<td>0.2282</td>
<td>0.3991</td>
<td>0.1268</td>
<td>0.0037</td>
</tr>
<tr>
<td>108</td>
<td>5.7620</td>
<td>0.1755</td>
<td>0.3578</td>
<td>0.1341</td>
<td>0.0149</td>
</tr>
<tr>
<td>112</td>
<td>5.7745</td>
<td>0.1600</td>
<td>0.4162</td>
<td>0.1602</td>
<td>0.0235</td>
</tr>
<tr>
<td>116</td>
<td>5.6741</td>
<td>0.0990</td>
<td>0.3732</td>
<td>0.0984</td>
<td>0.0094</td>
</tr>
<tr>
<td>120</td>
<td>5.5116</td>
<td>0.1268</td>
<td>0.3575</td>
<td>0.1291</td>
<td>0.0159</td>
</tr>
<tr>
<td>124</td>
<td>5.3976</td>
<td>0.1307</td>
<td>0.4243</td>
<td>0.1384</td>
<td>0.0177</td>
</tr>
<tr>
<td>128</td>
<td>5.1322</td>
<td>0.1089</td>
<td>0.3580</td>
<td>0.1132</td>
<td>0.0118</td>
</tr>
<tr>
<td>132</td>
<td>4.9232</td>
<td>0.1176</td>
<td>0.3531</td>
<td>0.1254</td>
<td>0.0141</td>
</tr>
<tr>
<td>136</td>
<td>4.6792</td>
<td>0.1035</td>
<td>0.3493</td>
<td>0.1059</td>
<td>0.0108</td>
</tr>
<tr>
<td>140</td>
<td>4.4060</td>
<td>0.1118</td>
<td>0.3372</td>
<td>0.1191</td>
<td>0.0132</td>
</tr>
<tr>
<td>144</td>
<td>4.1160</td>
<td>0.0957</td>
<td>0.3005</td>
<td>0.1001</td>
<td>0.0094</td>
</tr>
<tr>
<td>148</td>
<td>3.7994</td>
<td>0.0377</td>
<td>0.2928</td>
<td>0.0390</td>
<td>0.0014</td>
</tr>
<tr>
<td>152</td>
<td>3.4428</td>
<td>0.0473</td>
<td>0.2507</td>
<td>0.0473</td>
<td>0.0021</td>
</tr>
<tr>
<td>156</td>
<td>3.1044</td>
<td>0.0683</td>
<td>0.2279</td>
<td>0.0717</td>
<td>0.0048</td>
</tr>
<tr>
<td>160</td>
<td>2.7371</td>
<td>0.0540</td>
<td>0.2195</td>
<td>0.0551</td>
<td>0.0029</td>
</tr>
<tr>
<td>164</td>
<td>2.3431</td>
<td>0.0878</td>
<td>0.2058</td>
<td>0.0925</td>
<td>0.0081</td>
</tr>
<tr>
<td>168</td>
<td>1.9013</td>
<td>0.0540</td>
<td>0.1665</td>
<td>0.0556</td>
<td>0.0029</td>
</tr>
<tr>
<td>172</td>
<td>1.4979</td>
<td>0.0537</td>
<td>0.1509</td>
<td>0.0561</td>
<td>0.0029</td>
</tr>
<tr>
<td>176</td>
<td>1.0748</td>
<td>0.0326</td>
<td>0.1280</td>
<td>0.0326</td>
<td>0.0010</td>
</tr>
<tr>
<td>180</td>
<td>0.6170</td>
<td>0.0308</td>
<td>0.0881</td>
<td>0.0288</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

SPRE

s/d = 16

$r/R = 0.467$

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-uv' (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2885</td>
<td>0.0957</td>
<td>0.0072</td>
<td>0.0489</td>
<td>-0.0008</td>
</tr>
<tr>
<td>8</td>
<td>0.5994</td>
<td>0.1157</td>
<td>0.0338</td>
<td>0.0626</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>0.9171</td>
<td>0.1223</td>
<td>0.0569</td>
<td>0.0775</td>
<td>-0.0007</td>
</tr>
<tr>
<td>16</td>
<td>1.3598</td>
<td>0.1152</td>
<td>0.1032</td>
<td>0.0891</td>
<td>0.0014</td>
</tr>
<tr>
<td>20</td>
<td>1.8238</td>
<td>0.1177</td>
<td>0.1302</td>
<td>0.0893</td>
<td>0.0025</td>
</tr>
<tr>
<td>24</td>
<td>2.1564</td>
<td>0.1150</td>
<td>0.1470</td>
<td>0.0886</td>
<td>0.0033</td>
</tr>
<tr>
<td>28</td>
<td>2.4953</td>
<td>0.1001</td>
<td>0.1667</td>
<td>0.0766</td>
<td>0.0002</td>
</tr>
<tr>
<td>32</td>
<td>2.9165</td>
<td>0.1161</td>
<td>0.1948</td>
<td>0.0973</td>
<td>0.0050</td>
</tr>
<tr>
<td>36</td>
<td>3.3663</td>
<td>0.1207</td>
<td>0.2489</td>
<td>0.1232</td>
<td>0.0093</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>(\ddot{u}) (m/sec²)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{v}) (m/sec²)</td>
<td>(v') (m/sec)</td>
<td>(-\dddot{u}v') (m²/sec²)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>40</td>
<td>3.6422</td>
<td>0.1403</td>
<td>0.2516</td>
<td>0.1371</td>
<td>0.0153</td>
</tr>
<tr>
<td>44</td>
<td>3.9454</td>
<td>0.1039</td>
<td>0.2574</td>
<td>0.0857</td>
<td>0.0011</td>
</tr>
<tr>
<td>48</td>
<td>4.2960</td>
<td>0.1027</td>
<td>0.2976</td>
<td>0.1053</td>
<td>0.0094</td>
</tr>
<tr>
<td>52</td>
<td>4.6229</td>
<td>0.1026</td>
<td>0.3180</td>
<td>0.0929</td>
<td>0.0066</td>
</tr>
<tr>
<td>54</td>
<td>4.7390</td>
<td>0.0770</td>
<td>0.3285</td>
<td>0.0736</td>
<td>0.0019</td>
</tr>
<tr>
<td>56</td>
<td>4.8534</td>
<td>0.0981</td>
<td>0.3407</td>
<td>0.0982</td>
<td>0.0044</td>
</tr>
<tr>
<td>58</td>
<td>4.9455</td>
<td>0.1462</td>
<td>0.3216</td>
<td>0.1585</td>
<td>0.0133</td>
</tr>
<tr>
<td>60</td>
<td>5.0990</td>
<td>0.1772</td>
<td>0.3844</td>
<td>0.1667</td>
<td>0.0151</td>
</tr>
<tr>
<td>62</td>
<td>5.1822</td>
<td>0.1672</td>
<td>0.3863</td>
<td>0.1495</td>
<td>0.0067</td>
</tr>
<tr>
<td>64</td>
<td>5.2697</td>
<td>0.2324</td>
<td>0.3676</td>
<td>0.1824</td>
<td>0.0180</td>
</tr>
<tr>
<td>66</td>
<td>5.3522</td>
<td>0.2532</td>
<td>0.3829</td>
<td>0.2054</td>
<td>0.0241</td>
</tr>
<tr>
<td>70</td>
<td>5.4424</td>
<td>0.2411</td>
<td>0.3705</td>
<td>0.2310</td>
<td>0.0219</td>
</tr>
<tr>
<td>72</td>
<td>5.4779</td>
<td>0.2374</td>
<td>0.3850</td>
<td>0.1814</td>
<td>0.0082</td>
</tr>
<tr>
<td>76</td>
<td>5.5313</td>
<td>0.2533</td>
<td>0.3856</td>
<td>0.2211</td>
<td>0.0269</td>
</tr>
<tr>
<td>80</td>
<td>5.6663</td>
<td>0.2809</td>
<td>0.4191</td>
<td>0.2047</td>
<td>0.0203</td>
</tr>
<tr>
<td>84</td>
<td>5.6917</td>
<td>0.3367</td>
<td>0.3728</td>
<td>0.2328</td>
<td>0.0367</td>
</tr>
<tr>
<td>88</td>
<td>5.7297</td>
<td>0.2844</td>
<td>0.3752</td>
<td>0.2056</td>
<td>0.0249</td>
</tr>
<tr>
<td>92</td>
<td>5.7733</td>
<td>0.2995</td>
<td>0.4075</td>
<td>0.2558</td>
<td>0.0396</td>
</tr>
<tr>
<td>96</td>
<td>5.8177</td>
<td>0.2320</td>
<td>0.4170</td>
<td>0.1552</td>
<td>0.0147</td>
</tr>
<tr>
<td>100</td>
<td>5.8076</td>
<td>0.2086</td>
<td>0.3768</td>
<td>0.1602</td>
<td>0.0190</td>
</tr>
<tr>
<td>104</td>
<td>5.8230</td>
<td>0.1642</td>
<td>0.4038</td>
<td>0.1662</td>
<td>0.0203</td>
</tr>
<tr>
<td>108</td>
<td>5.8025</td>
<td>0.1210</td>
<td>0.4168</td>
<td>0.1081</td>
<td>0.0106</td>
</tr>
<tr>
<td>112</td>
<td>5.7447</td>
<td>0.1433</td>
<td>0.4037</td>
<td>0.1449</td>
<td>0.0201</td>
</tr>
<tr>
<td>116</td>
<td>5.6198</td>
<td>0.0297</td>
<td>0.3886</td>
<td>0.0273</td>
<td>0.0003</td>
</tr>
<tr>
<td>120</td>
<td>5.4652</td>
<td>0.0963</td>
<td>0.3625</td>
<td>0.0965</td>
<td>0.0086</td>
</tr>
<tr>
<td>124</td>
<td>5.2933</td>
<td>0.0467</td>
<td>0.3903</td>
<td>0.0471</td>
<td>0.0017</td>
</tr>
<tr>
<td>128</td>
<td>5.1837</td>
<td>0.0757</td>
<td>0.4545</td>
<td>0.0768</td>
<td>0.0052</td>
</tr>
<tr>
<td>132</td>
<td>4.9049</td>
<td>0.1421</td>
<td>0.3785</td>
<td>0.1476</td>
<td>0.0207</td>
</tr>
<tr>
<td>136</td>
<td>4.6350</td>
<td>0.1102</td>
<td>0.3279</td>
<td>0.1133</td>
<td>0.0121</td>
</tr>
<tr>
<td>140</td>
<td>4.4015</td>
<td>0.1054</td>
<td>0.3368</td>
<td>0.1103</td>
<td>0.0115</td>
</tr>
<tr>
<td>144</td>
<td>4.1696</td>
<td>0.1079</td>
<td>0.2099</td>
<td>0.1113</td>
<td>0.0119</td>
</tr>
<tr>
<td>148</td>
<td>3.7784</td>
<td>0.1026</td>
<td>0.2675</td>
<td>0.1051</td>
<td>0.0106</td>
</tr>
<tr>
<td>152</td>
<td>3.4460</td>
<td>0.1026</td>
<td>0.2522</td>
<td>0.1039</td>
<td>0.0105</td>
</tr>
<tr>
<td>156</td>
<td>3.1197</td>
<td>0.0479</td>
<td>0.2055</td>
<td>0.0487</td>
<td>0.0022</td>
</tr>
<tr>
<td>160</td>
<td>2.7527</td>
<td>0.0665</td>
<td>0.2009</td>
<td>0.0689</td>
<td>0.0045</td>
</tr>
<tr>
<td>164</td>
<td>2.3657</td>
<td>0.0688</td>
<td>0.1702</td>
<td>0.0673</td>
<td>0.0043</td>
</tr>
<tr>
<td>168</td>
<td>1.9424</td>
<td>0.0593</td>
<td>0.1360</td>
<td>0.0638</td>
<td>0.0037</td>
</tr>
<tr>
<td>172</td>
<td>1.5651</td>
<td>0.0179</td>
<td>0.1150</td>
<td>0.0164</td>
<td>0.0002</td>
</tr>
<tr>
<td>176</td>
<td>1.1662</td>
<td>0.0386</td>
<td>0.0929</td>
<td>0.0404</td>
<td>0.0015</td>
</tr>
<tr>
<td>180</td>
<td>0.7099</td>
<td>0.0295</td>
<td>0.0612</td>
<td>0.0245</td>
<td>0.0006</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\ddot{u}v'$ (m2/sec2)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4</td>
<td>0.2750</td>
<td>0.0749</td>
<td>0.0082</td>
<td>0.0514</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.5532</td>
<td>0.1104</td>
<td>0.0055</td>
<td>0.0647</td>
<td>0.0001</td>
</tr>
<tr>
<td>12</td>
<td>0.8841</td>
<td>0.1245</td>
<td>0.0522</td>
<td>0.0647</td>
<td>0.0008</td>
</tr>
<tr>
<td>16</td>
<td>1.3282</td>
<td>0.1140</td>
<td>0.0939</td>
<td>0.0643</td>
<td>0.0014</td>
</tr>
<tr>
<td>20</td>
<td>1.7686</td>
<td>0.1119</td>
<td>0.1225</td>
<td>0.0948</td>
<td>0.0025</td>
</tr>
<tr>
<td>24</td>
<td>2.1348</td>
<td>0.0989</td>
<td>0.1459</td>
<td>0.0738</td>
<td>-0.0004</td>
</tr>
<tr>
<td>28</td>
<td>2.4811</td>
<td>0.1038</td>
<td>0.1674</td>
<td>0.0960</td>
<td>0.0033</td>
</tr>
<tr>
<td>32</td>
<td>2.8873</td>
<td>0.0888</td>
<td>0.2021</td>
<td>0.0732</td>
<td>0.0007</td>
</tr>
<tr>
<td>36</td>
<td>3.3309</td>
<td>0.1192</td>
<td>0.2316</td>
<td>0.0979</td>
<td>0.0071</td>
</tr>
<tr>
<td>40</td>
<td>3.6259</td>
<td>0.0932</td>
<td>0.2355</td>
<td>0.0764</td>
<td>0.0030</td>
</tr>
<tr>
<td>44</td>
<td>3.9425</td>
<td>0.0897</td>
<td>0.2615</td>
<td>0.0799</td>
<td>0.0032</td>
</tr>
<tr>
<td>48</td>
<td>4.3287</td>
<td>0.0784</td>
<td>0.2786</td>
<td>0.0796</td>
<td>0.0055</td>
</tr>
<tr>
<td>52</td>
<td>4.6301</td>
<td>0.0978</td>
<td>0.3197</td>
<td>0.0923</td>
<td>0.0062</td>
</tr>
<tr>
<td>56</td>
<td>4.7453</td>
<td>0.0930</td>
<td>0.3278</td>
<td>0.0928</td>
<td>0.0043</td>
</tr>
<tr>
<td>60</td>
<td>4.8557</td>
<td>0.1103</td>
<td>0.3403</td>
<td>0.1130</td>
<td>0.0056</td>
</tr>
<tr>
<td>64</td>
<td>4.9339</td>
<td>0.1442</td>
<td>0.3333</td>
<td>0.1477</td>
<td>0.0094</td>
</tr>
<tr>
<td>68</td>
<td>5.0646</td>
<td>0.1653</td>
<td>0.3273</td>
<td>0.1608</td>
<td>0.0123</td>
</tr>
<tr>
<td>72</td>
<td>5.2050</td>
<td>0.1862</td>
<td>0.3843</td>
<td>0.2204</td>
<td>0.0233</td>
</tr>
<tr>
<td>76</td>
<td>5.3171</td>
<td>0.1798</td>
<td>0.3647</td>
<td>0.1888</td>
<td>0.0085</td>
</tr>
<tr>
<td>80</td>
<td>5.3953</td>
<td>0.1887</td>
<td>0.3491</td>
<td>0.2004</td>
<td>0.0111</td>
</tr>
<tr>
<td>84</td>
<td>5.4580</td>
<td>0.2062</td>
<td>0.3878</td>
<td>0.2018</td>
<td>0.0101</td>
</tr>
<tr>
<td>88</td>
<td>5.5044</td>
<td>0.1760</td>
<td>0.3942</td>
<td>0.2006</td>
<td>0.0078</td>
</tr>
<tr>
<td>92</td>
<td>5.5085</td>
<td>0.1950</td>
<td>0.3518</td>
<td>0.1783</td>
<td>0.0049</td>
</tr>
<tr>
<td>96</td>
<td>5.5685</td>
<td>0.2130</td>
<td>0.3826</td>
<td>0.2173</td>
<td>0.0061</td>
</tr>
<tr>
<td>100</td>
<td>5.6426</td>
<td>0.2533</td>
<td>0.3763</td>
<td>0.2336</td>
<td>0.0030</td>
</tr>
<tr>
<td>104</td>
<td>5.6793</td>
<td>0.2253</td>
<td>0.3866</td>
<td>0.2200</td>
<td>0.0163</td>
</tr>
<tr>
<td>108</td>
<td>5.7677</td>
<td>0.2515</td>
<td>0.3738</td>
<td>0.2142</td>
<td>0.0187</td>
</tr>
<tr>
<td>112</td>
<td>5.8558</td>
<td>0.2114</td>
<td>0.3917</td>
<td>0.1597</td>
<td>0.0136</td>
</tr>
<tr>
<td>116</td>
<td>5.8652</td>
<td>0.1518</td>
<td>0.3908</td>
<td>0.1278</td>
<td>0.0080</td>
</tr>
<tr>
<td>120</td>
<td>5.8212</td>
<td>0.1086</td>
<td>0.3865</td>
<td>0.1003</td>
<td>0.0076</td>
</tr>
<tr>
<td>124</td>
<td>5.7888</td>
<td>0.1076</td>
<td>0.3819</td>
<td>0.1143</td>
<td>0.0103</td>
</tr>
<tr>
<td>128</td>
<td>5.7251</td>
<td>0.0812</td>
<td>0.3824</td>
<td>0.0789</td>
<td>0.0058</td>
</tr>
<tr>
<td>132</td>
<td>5.6333</td>
<td>0.0655</td>
<td>0.3566</td>
<td>0.0683</td>
<td>0.0043</td>
</tr>
<tr>
<td>136</td>
<td>5.4829</td>
<td>0.0520</td>
<td>0.3424</td>
<td>0.0551</td>
<td>0.0026</td>
</tr>
<tr>
<td>140</td>
<td>5.3853</td>
<td>0.1119</td>
<td>0.4304</td>
<td>0.1167</td>
<td>0.0128</td>
</tr>
<tr>
<td>144</td>
<td>5.1793</td>
<td>0.0956</td>
<td>0.3142</td>
<td>0.0988</td>
<td>0.0093</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0044</td>
</tr>
<tr>
<td>θ</td>
<td>\tilde{u}</td>
<td>u'</td>
<td>\tilde{v}</td>
<td>v'</td>
<td>$-\bar{u}'\bar{v}'$</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec 2</td>
</tr>
<tr>
<td>148</td>
<td>3.8075</td>
<td>0.1122</td>
<td>0.2753</td>
<td>0.1157</td>
<td>0.0128</td>
</tr>
<tr>
<td>152</td>
<td>3.4559</td>
<td>0.1035</td>
<td>0.2391</td>
<td>0.1076</td>
<td>0.0111</td>
</tr>
<tr>
<td>156</td>
<td>3.1281</td>
<td>0.0910</td>
<td>0.2075</td>
<td>0.0950</td>
<td>0.0085</td>
</tr>
<tr>
<td>160</td>
<td>2.7745</td>
<td>0.0512</td>
<td>0.1933</td>
<td>0.0520</td>
<td>0.0025</td>
</tr>
<tr>
<td>164</td>
<td>2.3627</td>
<td>0.0593</td>
<td>0.1544</td>
<td>0.0602</td>
<td>0.0035</td>
</tr>
<tr>
<td>168</td>
<td>1.9742</td>
<td>0.0354</td>
<td>0.1433</td>
<td>0.0372</td>
<td>0.0013</td>
</tr>
<tr>
<td>172</td>
<td>1.5846</td>
<td>0.0572</td>
<td>0.1146</td>
<td>0.0585</td>
<td>0.0033</td>
</tr>
<tr>
<td>176</td>
<td>1.1839</td>
<td>0.0505</td>
<td>0.0825</td>
<td>0.0520</td>
<td>0.0026</td>
</tr>
<tr>
<td>180</td>
<td>0.7397</td>
<td>0.0295</td>
<td>0.0525</td>
<td>0.0280</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 16$

$r/R = 0.200$

<table>
<thead>
<tr>
<th>θ</th>
<th>\tilde{u}</th>
<th>u'</th>
<th>\tilde{v}</th>
<th>v'</th>
<th>$-\bar{u}'\bar{v}'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec 2</td>
</tr>
<tr>
<td>4</td>
<td>0.2581</td>
<td>0.0747</td>
<td>0.0135</td>
<td>0.0502</td>
<td>0.0012</td>
</tr>
<tr>
<td>8</td>
<td>0.5406</td>
<td>0.1208</td>
<td>0.0423</td>
<td>0.0796</td>
<td>0.0037</td>
</tr>
<tr>
<td>12</td>
<td>0.8655</td>
<td>0.1202</td>
<td>0.0585</td>
<td>0.0855</td>
<td>0.0027</td>
</tr>
<tr>
<td>16</td>
<td>1.3002</td>
<td>0.0964</td>
<td>0.1156</td>
<td>0.0841</td>
<td>0.0016</td>
</tr>
<tr>
<td>20</td>
<td>1.7517</td>
<td>0.1178</td>
<td>0.1306</td>
<td>0.0903</td>
<td>0.0036</td>
</tr>
<tr>
<td>24</td>
<td>2.0978</td>
<td>0.1142</td>
<td>0.1365</td>
<td>0.0889</td>
<td>0.0038</td>
</tr>
<tr>
<td>28</td>
<td>2.4436</td>
<td>0.1025</td>
<td>0.1646</td>
<td>0.0900</td>
<td>0.0039</td>
</tr>
<tr>
<td>32</td>
<td>2.8839</td>
<td>0.1040</td>
<td>0.1997</td>
<td>0.0950</td>
<td>0.0040</td>
</tr>
<tr>
<td>36</td>
<td>3.3141</td>
<td>0.1152</td>
<td>0.2245</td>
<td>0.1024</td>
<td>0.0074</td>
</tr>
<tr>
<td>40</td>
<td>3.6296</td>
<td>0.1025</td>
<td>0.2461</td>
<td>0.0925</td>
<td>0.0049</td>
</tr>
<tr>
<td>44</td>
<td>3.9391</td>
<td>0.0955</td>
<td>0.2702</td>
<td>0.0856</td>
<td>0.0043</td>
</tr>
<tr>
<td>48</td>
<td>4.3095</td>
<td>0.1089</td>
<td>0.2791</td>
<td>0.1111</td>
<td>0.0116</td>
</tr>
<tr>
<td>52</td>
<td>4.6123</td>
<td>0.1164</td>
<td>0.3193</td>
<td>0.1215</td>
<td>0.0121</td>
</tr>
<tr>
<td>54</td>
<td>4.7259</td>
<td>0.0939</td>
<td>0.3230</td>
<td>0.0891</td>
<td>0.0039</td>
</tr>
<tr>
<td>56</td>
<td>4.8315</td>
<td>0.1119</td>
<td>0.3143</td>
<td>0.1308</td>
<td>0.0072</td>
</tr>
<tr>
<td>58</td>
<td>4.9372</td>
<td>0.1316</td>
<td>0.3314</td>
<td>0.1386</td>
<td>0.0066</td>
</tr>
<tr>
<td>60</td>
<td>5.0475</td>
<td>0.1884</td>
<td>0.3403</td>
<td>0.1829</td>
<td>0.0138</td>
</tr>
<tr>
<td>62</td>
<td>5.1949</td>
<td>0.1613</td>
<td>0.3543</td>
<td>0.1851</td>
<td>0.0076</td>
</tr>
<tr>
<td>64</td>
<td>5.3256</td>
<td>0.1582</td>
<td>0.3627</td>
<td>0.1917</td>
<td>0.0092</td>
</tr>
<tr>
<td>66</td>
<td>5.4059</td>
<td>0.1674</td>
<td>0.3647</td>
<td>0.2020</td>
<td>0.0019</td>
</tr>
<tr>
<td>68</td>
<td>5.4983</td>
<td>0.2243</td>
<td>0.3909</td>
<td>0.2427</td>
<td>0.0268</td>
</tr>
<tr>
<td>70</td>
<td>5.4850</td>
<td>0.1975</td>
<td>0.4156</td>
<td>0.2045</td>
<td>-0.0005</td>
</tr>
<tr>
<td>72</td>
<td>5.5086</td>
<td>0.2057</td>
<td>0.3728</td>
<td>0.2289</td>
<td>0.0128</td>
</tr>
<tr>
<td>76</td>
<td>5.6063</td>
<td>0.2362</td>
<td>0.3818</td>
<td>0.2366</td>
<td>0.0132</td>
</tr>
<tr>
<td>80</td>
<td>5.6385</td>
<td>0.2452</td>
<td>0.3680</td>
<td>0.2232</td>
<td>0.0146</td>
</tr>
<tr>
<td>θ</td>
<td>̇u</td>
<td>u'</td>
<td>̇v</td>
<td>v'</td>
<td>-u'v'</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>84</td>
<td>5.7790</td>
<td>0.1969</td>
<td>0.3778</td>
<td>0.2070</td>
<td>0.0051</td>
</tr>
<tr>
<td>88</td>
<td>5.8187</td>
<td>0.2362</td>
<td>0.3852</td>
<td>0.2380</td>
<td>0.0210</td>
</tr>
<tr>
<td>92</td>
<td>5.8154</td>
<td>0.2267</td>
<td>0.3881</td>
<td>0.1988</td>
<td>0.0180</td>
</tr>
<tr>
<td>96</td>
<td>5.8870</td>
<td>0.1753</td>
<td>0.3906</td>
<td>0.1705</td>
<td>0.0095</td>
</tr>
<tr>
<td>100</td>
<td>5.8774</td>
<td>0.1383</td>
<td>0.3974</td>
<td>0.1307</td>
<td>0.0107</td>
</tr>
<tr>
<td>104</td>
<td>5.8155</td>
<td>0.1169</td>
<td>0.3764</td>
<td>0.0954</td>
<td>0.0070</td>
</tr>
<tr>
<td>108</td>
<td>5.7804</td>
<td>0.1132</td>
<td>0.3832</td>
<td>0.1046</td>
<td>0.0099</td>
</tr>
<tr>
<td>112</td>
<td>5.7139</td>
<td>0.0797</td>
<td>0.3761</td>
<td>0.0744</td>
<td>0.0051</td>
</tr>
<tr>
<td>116</td>
<td>5.6317</td>
<td>0.1227</td>
<td>0.3763</td>
<td>0.1287</td>
<td>0.0157</td>
</tr>
<tr>
<td>120</td>
<td>5.4691</td>
<td>0.1057</td>
<td>0.3427</td>
<td>0.1098</td>
<td>0.0115</td>
</tr>
<tr>
<td>124</td>
<td>5.3524</td>
<td>0.0414</td>
<td>0.4009</td>
<td>0.0433</td>
<td>0.0017</td>
</tr>
<tr>
<td>128</td>
<td>5.1120</td>
<td>0.1236</td>
<td>0.3625</td>
<td>0.1296</td>
<td>0.0160</td>
</tr>
<tr>
<td>132</td>
<td>4.9026</td>
<td>0.0864</td>
<td>0.3379</td>
<td>0.0876</td>
<td>0.0073</td>
</tr>
<tr>
<td>136</td>
<td>4.6705</td>
<td>0.0864</td>
<td>0.3553</td>
<td>0.0897</td>
<td>0.0075</td>
</tr>
<tr>
<td>140</td>
<td>4.3925</td>
<td>0.1019</td>
<td>0.3091</td>
<td>0.1015</td>
<td>0.0099</td>
</tr>
<tr>
<td>144</td>
<td>4.1990</td>
<td>0.0586</td>
<td>0.1812</td>
<td>0.0600</td>
<td>0.0032</td>
</tr>
<tr>
<td>148</td>
<td>3.6077</td>
<td>0.0943</td>
<td>0.2630</td>
<td>0.0950</td>
<td>0.0087</td>
</tr>
<tr>
<td>152</td>
<td>3.4612</td>
<td>0.1000</td>
<td>0.2463</td>
<td>0.1038</td>
<td>0.0102</td>
</tr>
<tr>
<td>156</td>
<td>3.1358</td>
<td>0.0418</td>
<td>0.1892</td>
<td>0.0390</td>
<td>0.0013</td>
</tr>
<tr>
<td>160</td>
<td>2.7790</td>
<td>0.0644</td>
<td>0.1880</td>
<td>0.0671</td>
<td>0.0043</td>
</tr>
<tr>
<td>164</td>
<td>2.3738</td>
<td>0.0604</td>
<td>0.1529</td>
<td>0.0585</td>
<td>0.0033</td>
</tr>
<tr>
<td>168</td>
<td>1.9695</td>
<td>0.0552</td>
<td>0.1283</td>
<td>0.0556</td>
<td>0.0030</td>
</tr>
<tr>
<td>172</td>
<td>1.5864</td>
<td>0.0425</td>
<td>0.0955</td>
<td>0.0448</td>
<td>0.0019</td>
</tr>
<tr>
<td>176</td>
<td>1.1946</td>
<td>0.0374</td>
<td>0.0760</td>
<td>0.0379</td>
<td>0.0013</td>
</tr>
<tr>
<td>180</td>
<td>0.7614</td>
<td>0.0348</td>
<td>0.0494</td>
<td>0.0312</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

SPRE

s/d = 16

r/R = 0.000

<table>
<thead>
<tr>
<th>θ</th>
<th>̇u</th>
<th>u'</th>
<th>̇v</th>
<th>v'</th>
<th>-u'v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.2611</td>
<td>0.0887</td>
<td>0.0277</td>
<td>0.0521</td>
<td>0.0025</td>
</tr>
<tr>
<td>8</td>
<td>0.5208</td>
<td>0.1081</td>
<td>0.0416</td>
<td>0.0664</td>
<td>0.0025</td>
</tr>
<tr>
<td>12</td>
<td>0.8470</td>
<td>0.1097</td>
<td>0.0706</td>
<td>0.0831</td>
<td>0.0038</td>
</tr>
<tr>
<td>16</td>
<td>1.2799</td>
<td>0.1014</td>
<td>0.1028</td>
<td>0.0865</td>
<td>0.0036</td>
</tr>
<tr>
<td>20</td>
<td>1.7498</td>
<td>0.1158</td>
<td>0.1409</td>
<td>0.0916</td>
<td>0.0052</td>
</tr>
<tr>
<td>24</td>
<td>2.1023</td>
<td>0.1003</td>
<td>0.1562</td>
<td>0.0757</td>
<td>0.0022</td>
</tr>
<tr>
<td>28</td>
<td>2.4488</td>
<td>0.1018</td>
<td>0.1808</td>
<td>0.0866</td>
<td>0.0050</td>
</tr>
<tr>
<td>32</td>
<td>2.8850</td>
<td>0.1157</td>
<td>0.1895</td>
<td>0.1121</td>
<td>0.0079</td>
</tr>
</tbody>
</table>

70
<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{v}</th>
<th>v'</th>
<th>$-\ddot{u}\ddot{v}'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3.3075</td>
<td>0.1101</td>
<td>0.2178</td>
<td>0.1178</td>
<td>0.0089</td>
</tr>
<tr>
<td>40</td>
<td>3.6200</td>
<td>0.1003</td>
<td>0.2449</td>
<td>0.0932</td>
<td>0.0058</td>
</tr>
<tr>
<td>44</td>
<td>3.9137</td>
<td>0.1142</td>
<td>0.2504</td>
<td>0.1099</td>
<td>0.0072</td>
</tr>
<tr>
<td>48</td>
<td>4.2762</td>
<td>0.1248</td>
<td>0.2650</td>
<td>0.1250</td>
<td>0.0148</td>
</tr>
<tr>
<td>52</td>
<td>4.6005</td>
<td>0.1148</td>
<td>0.3105</td>
<td>0.1194</td>
<td>0.0114</td>
</tr>
<tr>
<td>54</td>
<td>4.7152</td>
<td>0.1180</td>
<td>0.3121</td>
<td>0.1096</td>
<td>0.0086</td>
</tr>
<tr>
<td>56</td>
<td>4.7907</td>
<td>0.1208</td>
<td>0.3154</td>
<td>0.1150</td>
<td>0.0055</td>
</tr>
<tr>
<td>58</td>
<td>4.9060</td>
<td>0.1245</td>
<td>0.3168</td>
<td>0.1433</td>
<td>0.0050</td>
</tr>
<tr>
<td>60</td>
<td>5.0734</td>
<td>0.1795</td>
<td>0.3312</td>
<td>0.1963</td>
<td>0.0170</td>
</tr>
<tr>
<td>62</td>
<td>5.1813</td>
<td>0.2284</td>
<td>0.3741</td>
<td>0.2287</td>
<td>0.0303</td>
</tr>
<tr>
<td>64</td>
<td>5.2912</td>
<td>0.1741</td>
<td>0.3539</td>
<td>0.2013</td>
<td>0.0073</td>
</tr>
<tr>
<td>66</td>
<td>5.3894</td>
<td>0.1662</td>
<td>0.3547</td>
<td>0.2152</td>
<td>0.0046</td>
</tr>
<tr>
<td>68</td>
<td>5.4489</td>
<td>0.2016</td>
<td>0.3923</td>
<td>0.2332</td>
<td>0.0091</td>
</tr>
<tr>
<td>70</td>
<td>5.4832</td>
<td>0.2074</td>
<td>0.3688</td>
<td>0.2707</td>
<td>0.0107</td>
</tr>
<tr>
<td>72</td>
<td>5.4942</td>
<td>0.2113</td>
<td>0.3759</td>
<td>0.2307</td>
<td>0.0078</td>
</tr>
<tr>
<td>74</td>
<td>5.5555</td>
<td>0.2243</td>
<td>0.3775</td>
<td>0.2408</td>
<td>0.0061</td>
</tr>
<tr>
<td>76</td>
<td>5.6830</td>
<td>0.2126</td>
<td>0.3980</td>
<td>0.2298</td>
<td>0.0088</td>
</tr>
<tr>
<td>78</td>
<td>5.7422</td>
<td>0.2166</td>
<td>0.4146</td>
<td>0.2160</td>
<td>-0.0038</td>
</tr>
<tr>
<td>80</td>
<td>5.7627</td>
<td>0.2334</td>
<td>0.4318</td>
<td>0.2205</td>
<td>0.0046</td>
</tr>
<tr>
<td>82</td>
<td>5.8317</td>
<td>0.1849</td>
<td>0.3903</td>
<td>0.1950</td>
<td>0.0130</td>
</tr>
<tr>
<td>84</td>
<td>5.8729</td>
<td>0.1585</td>
<td>0.3875</td>
<td>0.1445</td>
<td>0.0044</td>
</tr>
<tr>
<td>86</td>
<td>5.8610</td>
<td>0.1262</td>
<td>0.4005</td>
<td>0.1143</td>
<td>0.0063</td>
</tr>
<tr>
<td>90</td>
<td>5.8194</td>
<td>0.1509</td>
<td>0.3741</td>
<td>0.1520</td>
<td>0.0183</td>
</tr>
<tr>
<td>92</td>
<td>5.7719</td>
<td>0.0750</td>
<td>0.3763</td>
<td>0.0626</td>
<td>0.0028</td>
</tr>
<tr>
<td>94</td>
<td>5.6960</td>
<td>0.0825</td>
<td>0.3681</td>
<td>0.0747</td>
<td>0.0048</td>
</tr>
<tr>
<td>96</td>
<td>5.5912</td>
<td>0.1041</td>
<td>0.3593</td>
<td>0.1107</td>
<td>0.0112</td>
</tr>
<tr>
<td>98</td>
<td>5.4485</td>
<td>0.1081</td>
<td>0.3467</td>
<td>0.1159</td>
<td>0.0122</td>
</tr>
<tr>
<td>100</td>
<td>5.3169</td>
<td>0.0861</td>
<td>0.3918</td>
<td>0.0897</td>
<td>0.0076</td>
</tr>
<tr>
<td>102</td>
<td>5.0682</td>
<td>0.1097</td>
<td>0.3605</td>
<td>0.1127</td>
<td>0.0122</td>
</tr>
<tr>
<td>104</td>
<td>4.8643</td>
<td>0.1038</td>
<td>0.3094</td>
<td>0.1060</td>
<td>0.0108</td>
</tr>
<tr>
<td>106</td>
<td>4.6429</td>
<td>0.1065</td>
<td>0.3292</td>
<td>0.1080</td>
<td>0.0113</td>
</tr>
<tr>
<td>108</td>
<td>4.3832</td>
<td>0.1274</td>
<td>0.2879</td>
<td>0.1313</td>
<td>0.0165</td>
</tr>
<tr>
<td>110</td>
<td>4.1720</td>
<td>0.0822</td>
<td>0.1759</td>
<td>0.0853</td>
<td>0.0069</td>
</tr>
<tr>
<td>112</td>
<td>3.7840</td>
<td>0.0570</td>
<td>0.2451</td>
<td>0.0571</td>
<td>0.0032</td>
</tr>
<tr>
<td>114</td>
<td>3.4413</td>
<td>0.0575</td>
<td>0.2254</td>
<td>0.0573</td>
<td>0.0031</td>
</tr>
<tr>
<td>116</td>
<td>3.1240</td>
<td>0.0719</td>
<td>0.1812</td>
<td>0.0730</td>
<td>0.0052</td>
</tr>
<tr>
<td>118</td>
<td>2.7656</td>
<td>0.0194</td>
<td>0.1759</td>
<td>0.0242</td>
<td>0.0003</td>
</tr>
<tr>
<td>120</td>
<td>2.3757</td>
<td>0.0695</td>
<td>0.1344</td>
<td>0.0704</td>
<td>0.0048</td>
</tr>
<tr>
<td>122</td>
<td>1.9757</td>
<td>0.0307</td>
<td>0.1066</td>
<td>0.0311</td>
<td>0.0008</td>
</tr>
<tr>
<td>124</td>
<td>1.5881</td>
<td>0.0396</td>
<td>0.0829</td>
<td>0.0430</td>
<td>0.0015</td>
</tr>
<tr>
<td>126</td>
<td>1.1862</td>
<td>0.0477</td>
<td>0.0539</td>
<td>0.0318</td>
<td>0.0012</td>
</tr>
<tr>
<td>128</td>
<td>0.7476</td>
<td>0.0710</td>
<td>0.0216</td>
<td>0.0455</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

71
Figure 17: Streamwise velocity fluctuation at s/d = 16 (smoothed)
Figure 18: Radial velocity fluctuation at s/d = 16 (smoothed)
Figure 19: Reynolds shear stress at s/d = 16
(not smoothed)
CROSS-WIRE DATA

SPRE

s/d = 30

r/R = 0.800

<table>
<thead>
<tr>
<th>θ</th>
<th>̇u</th>
<th>u'</th>
<th>̇v</th>
<th>v'</th>
<th>-u̇v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>4</td>
<td>0.4472</td>
<td>0.1582</td>
<td>-0.0025</td>
<td>0.0535</td>
<td>-0.0011</td>
</tr>
<tr>
<td>8</td>
<td>0.7544</td>
<td>0.1270</td>
<td>0.0274</td>
<td>0.0669</td>
<td>-0.0005</td>
</tr>
<tr>
<td>12</td>
<td>1.0445</td>
<td>0.1160</td>
<td>0.0577</td>
<td>0.0860</td>
<td>0.0095</td>
</tr>
<tr>
<td>16</td>
<td>1.4388</td>
<td>0.0938</td>
<td>0.0931</td>
<td>0.0586</td>
<td>-0.0004</td>
</tr>
<tr>
<td>20</td>
<td>1.8399</td>
<td>0.0938</td>
<td>0.0931</td>
<td>0.0596</td>
<td>0.0009</td>
</tr>
<tr>
<td>24</td>
<td>2.1327</td>
<td>0.1146</td>
<td>0.1385</td>
<td>0.0616</td>
<td>0.0029</td>
</tr>
<tr>
<td>28</td>
<td>2.4290</td>
<td>0.0903</td>
<td>0.1701</td>
<td>0.0688</td>
<td>0.0027</td>
</tr>
<tr>
<td>32</td>
<td>2.8059</td>
<td>0.0981</td>
<td>0.1860</td>
<td>0.0640</td>
<td>0.0033</td>
</tr>
<tr>
<td>36</td>
<td>3.1315</td>
<td>0.1085</td>
<td>0.2165</td>
<td>0.0666</td>
<td>0.0046</td>
</tr>
<tr>
<td>40</td>
<td>3.3870</td>
<td>0.1258</td>
<td>0.2459</td>
<td>0.0810</td>
<td>0.0079</td>
</tr>
<tr>
<td>44</td>
<td>3.6244</td>
<td>0.1351</td>
<td>0.2737</td>
<td>0.0955</td>
<td>0.0083</td>
</tr>
<tr>
<td>48</td>
<td>3.9006</td>
<td>0.1346</td>
<td>0.2773</td>
<td>0.0763</td>
<td>0.0045</td>
</tr>
<tr>
<td>52</td>
<td>4.1960</td>
<td>0.1853</td>
<td>0.2861</td>
<td>0.1106</td>
<td>0.0108</td>
</tr>
<tr>
<td>56</td>
<td>4.3019</td>
<td>0.1799</td>
<td>0.3192</td>
<td>0.1227</td>
<td>0.0139</td>
</tr>
<tr>
<td>60</td>
<td>4.4351</td>
<td>0.2046</td>
<td>0.3273</td>
<td>0.1448</td>
<td>0.0216</td>
</tr>
<tr>
<td>64</td>
<td>4.6238</td>
<td>0.2201</td>
<td>0.3492</td>
<td>0.1487</td>
<td>0.0210</td>
</tr>
<tr>
<td>68</td>
<td>4.7714</td>
<td>0.1791</td>
<td>0.3776</td>
<td>0.0681</td>
<td>0.0034</td>
</tr>
<tr>
<td>72</td>
<td>4.8289</td>
<td>0.2047</td>
<td>0.3839</td>
<td>0.0906</td>
<td>0.0103</td>
</tr>
<tr>
<td>76</td>
<td>4.8715</td>
<td>0.2504</td>
<td>0.3936</td>
<td>0.1358</td>
<td>0.0228</td>
</tr>
<tr>
<td>78</td>
<td>4.9140</td>
<td>0.2240</td>
<td>0.3836</td>
<td>0.1153</td>
<td>0.0131</td>
</tr>
<tr>
<td>80</td>
<td>5.0142</td>
<td>0.3122</td>
<td>0.3897</td>
<td>0.1009</td>
<td>0.0107</td>
</tr>
<tr>
<td>82</td>
<td>5.0818</td>
<td>0.4065</td>
<td>0.3973</td>
<td>0.1581</td>
<td>0.0263</td>
</tr>
<tr>
<td>84</td>
<td>5.1231</td>
<td>0.4484</td>
<td>0.4279</td>
<td>0.1875</td>
<td>0.0367</td>
</tr>
<tr>
<td>86</td>
<td>4.9455</td>
<td>0.5751</td>
<td>0.3840</td>
<td>0.3075</td>
<td>0.0641</td>
</tr>
<tr>
<td>88</td>
<td>4.7351</td>
<td>0.6579</td>
<td>0.3104</td>
<td>0.4027</td>
<td>0.1484</td>
</tr>
<tr>
<td>90</td>
<td>4.6422</td>
<td>0.6116</td>
<td>0.2807</td>
<td>0.4068</td>
<td>0.1354</td>
</tr>
<tr>
<td>92</td>
<td>4.6668</td>
<td>0.5325</td>
<td>0.2957</td>
<td>0.3523</td>
<td>0.0930</td>
</tr>
<tr>
<td>94</td>
<td>4.7180</td>
<td>0.4917</td>
<td>0.3233</td>
<td>0.3044</td>
<td>0.0707</td>
</tr>
<tr>
<td>96</td>
<td>4.7995</td>
<td>0.4838</td>
<td>0.3631</td>
<td>0.3202</td>
<td>0.0937</td>
</tr>
<tr>
<td>100</td>
<td>4.7353</td>
<td>0.4552</td>
<td>0.3163</td>
<td>0.2706</td>
<td>0.0570</td>
</tr>
<tr>
<td>104</td>
<td>4.6991</td>
<td>0.4284</td>
<td>0.3210</td>
<td>0.2749</td>
<td>0.0595</td>
</tr>
<tr>
<td>108</td>
<td>4.5892</td>
<td>0.5144</td>
<td>0.3401</td>
<td>0.3204</td>
<td>0.0905</td>
</tr>
<tr>
<td>112</td>
<td>4.5499</td>
<td>0.4457</td>
<td>0.3238</td>
<td>0.2846</td>
<td>0.0610</td>
</tr>
<tr>
<td>116</td>
<td>4.4230</td>
<td>0.5059</td>
<td>0.3149</td>
<td>0.3024</td>
<td>0.0775</td>
</tr>
<tr>
<td>120</td>
<td>4.2926</td>
<td>0.5235</td>
<td>0.2835</td>
<td>0.3092</td>
<td>0.0912</td>
</tr>
<tr>
<td>124</td>
<td>4.1227</td>
<td>0.4207</td>
<td>0.2570</td>
<td>0.2898</td>
<td>0.0598</td>
</tr>
<tr>
<td>θ deg.</td>
<td>(\ddot{u}) m/sec</td>
<td>(u') m/sec</td>
<td>(\ddot{v}) m/sec</td>
<td>(v') m/sec</td>
<td>-(u'v') m²/sec²</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>128</td>
<td>3.9200</td>
<td>0.4239</td>
<td>0.2444</td>
<td>0.2749</td>
<td>0.0460</td>
</tr>
<tr>
<td>132</td>
<td>3.6889</td>
<td>0.3998</td>
<td>0.2488</td>
<td>0.2404</td>
<td>0.0385</td>
</tr>
<tr>
<td>136</td>
<td>3.5521</td>
<td>0.4076</td>
<td>0.2630</td>
<td>0.2528</td>
<td>0.0394</td>
</tr>
<tr>
<td>140</td>
<td>3.3526</td>
<td>0.4202</td>
<td>0.2975</td>
<td>0.2298</td>
<td>0.0467</td>
</tr>
<tr>
<td>144</td>
<td>3.0497</td>
<td>0.4540</td>
<td>0.2254</td>
<td>0.2527</td>
<td>0.0624</td>
</tr>
<tr>
<td>148</td>
<td>2.7508</td>
<td>0.4011</td>
<td>0.2815</td>
<td>0.1981</td>
<td>0.0334</td>
</tr>
<tr>
<td>152</td>
<td>2.4668</td>
<td>0.4130</td>
<td>0.2304</td>
<td>0.2402</td>
<td>0.0458</td>
</tr>
<tr>
<td>156</td>
<td>2.1376</td>
<td>0.3857</td>
<td>0.1768</td>
<td>0.2169</td>
<td>0.0250</td>
</tr>
<tr>
<td>160</td>
<td>1.8145</td>
<td>0.4095</td>
<td>0.1697</td>
<td>0.2122</td>
<td>0.0348</td>
</tr>
<tr>
<td>164</td>
<td>1.5397</td>
<td>0.4012</td>
<td>0.1809</td>
<td>0.2064</td>
<td>0.0394</td>
</tr>
<tr>
<td>168</td>
<td>1.2162</td>
<td>0.3091</td>
<td>0.1131</td>
<td>0.1846</td>
<td>0.0208</td>
</tr>
<tr>
<td>172</td>
<td>0.9114</td>
<td>0.2678</td>
<td>0.0838</td>
<td>0.1390</td>
<td>0.0164</td>
</tr>
<tr>
<td>176</td>
<td>0.5792</td>
<td>0.2265</td>
<td>0.0709</td>
<td>0.1168</td>
<td>0.0139</td>
</tr>
<tr>
<td>180</td>
<td>0.3661</td>
<td>0.1253</td>
<td>0.0339</td>
<td>0.0697</td>
<td>0.0025</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>\dot{u} (m/sec)</td>
<td>v (m/sec)</td>
<td>v' (m/sec)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>4</td>
<td>0.4109</td>
<td>0.1408</td>
<td>0.0047</td>
<td>0.0561</td>
<td>-0.0021</td>
</tr>
<tr>
<td>8</td>
<td>0.7039</td>
<td>0.1299</td>
<td>0.0242</td>
<td>0.0648</td>
<td>-0.0025</td>
</tr>
<tr>
<td>12</td>
<td>1.0161</td>
<td>0.1249</td>
<td>0.0620</td>
<td>0.0759</td>
<td>0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.4378</td>
<td>0.1165</td>
<td>0.0909</td>
<td>0.0737</td>
<td>0.0017</td>
</tr>
<tr>
<td>20</td>
<td>1.8398</td>
<td>0.1045</td>
<td>0.1286</td>
<td>0.0655</td>
<td>0.0007</td>
</tr>
<tr>
<td>24</td>
<td>2.1562</td>
<td>0.1076</td>
<td>0.1421</td>
<td>0.0736</td>
<td>0.0035</td>
</tr>
<tr>
<td>28</td>
<td>2.4580</td>
<td>0.0902</td>
<td>0.1694</td>
<td>0.0698</td>
<td>0.0028</td>
</tr>
<tr>
<td>32</td>
<td>2.8609</td>
<td>0.1289</td>
<td>0.2092</td>
<td>0.1047</td>
<td>0.0097</td>
</tr>
<tr>
<td>36</td>
<td>3.2070</td>
<td>0.1290</td>
<td>0.2233</td>
<td>0.1074</td>
<td>0.0107</td>
</tr>
<tr>
<td>40</td>
<td>3.4558</td>
<td>0.0905</td>
<td>0.2455</td>
<td>0.0680</td>
<td>0.0032</td>
</tr>
<tr>
<td>44</td>
<td>3.7183</td>
<td>0.0871</td>
<td>0.2666</td>
<td>0.0430</td>
<td>0.0018</td>
</tr>
<tr>
<td>48</td>
<td>4.0906</td>
<td>0.1407</td>
<td>0.2639</td>
<td>0.1142</td>
<td>0.0053</td>
</tr>
<tr>
<td>52</td>
<td>4.3386</td>
<td>0.1126</td>
<td>0.3064</td>
<td>0.1071</td>
<td>0.0109</td>
</tr>
<tr>
<td>56</td>
<td>4.4911</td>
<td>0.1213</td>
<td>0.3360</td>
<td>0.0582</td>
<td>0.0044</td>
</tr>
<tr>
<td>60</td>
<td>4.6867</td>
<td>0.1480</td>
<td>0.3445</td>
<td>0.1057</td>
<td>0.0101</td>
</tr>
<tr>
<td>64</td>
<td>4.9277</td>
<td>0.1506</td>
<td>0.3727</td>
<td>0.0821</td>
<td>0.0079</td>
</tr>
<tr>
<td>68</td>
<td>5.1311</td>
<td>0.1954</td>
<td>0.4234</td>
<td>0.1234</td>
<td>0.0143</td>
</tr>
<tr>
<td>72</td>
<td>5.2337</td>
<td>0.1359</td>
<td>0.4305</td>
<td>0.0576</td>
<td>0.0018</td>
</tr>
<tr>
<td>76</td>
<td>5.3096</td>
<td>0.1571</td>
<td>0.4167</td>
<td>0.1068</td>
<td>0.0079</td>
</tr>
<tr>
<td>78</td>
<td>5.3586</td>
<td>0.2285</td>
<td>0.4073</td>
<td>0.1420</td>
<td>0.0153</td>
</tr>
<tr>
<td>80</td>
<td>5.4683</td>
<td>0.2669</td>
<td>0.4014</td>
<td>0.1232</td>
<td>0.0159</td>
</tr>
<tr>
<td>82</td>
<td>5.4239</td>
<td>0.3299</td>
<td>0.4037</td>
<td>0.1166</td>
<td>0.0103</td>
</tr>
<tr>
<td>84</td>
<td>5.3493</td>
<td>0.4357</td>
<td>0.3664</td>
<td>0.2189</td>
<td>0.0507</td>
</tr>
<tr>
<td>86</td>
<td>5.1744</td>
<td>0.5865</td>
<td>0.3393</td>
<td>0.3148</td>
<td>0.0777</td>
</tr>
<tr>
<td>88</td>
<td>5.0382</td>
<td>0.6124</td>
<td>0.4138</td>
<td>0.3660</td>
<td>0.1106</td>
</tr>
<tr>
<td>90</td>
<td>4.9143</td>
<td>0.5336</td>
<td>0.3138</td>
<td>0.3727</td>
<td>0.0854</td>
</tr>
<tr>
<td>92</td>
<td>4.9120</td>
<td>0.5395</td>
<td>0.2899</td>
<td>0.3211</td>
<td>0.0888</td>
</tr>
<tr>
<td>94</td>
<td>5.0180</td>
<td>0.4704</td>
<td>0.3674</td>
<td>0.3098</td>
<td>0.0746</td>
</tr>
<tr>
<td>96</td>
<td>5.0239</td>
<td>0.4544</td>
<td>0.3291</td>
<td>0.2903</td>
<td>0.0650</td>
</tr>
<tr>
<td>100</td>
<td>5.0056</td>
<td>0.4808</td>
<td>0.3487</td>
<td>0.2767</td>
<td>0.0704</td>
</tr>
<tr>
<td>104</td>
<td>4.9230</td>
<td>0.4966</td>
<td>0.3165</td>
<td>0.3008</td>
<td>0.0673</td>
</tr>
<tr>
<td>108</td>
<td>4.8070</td>
<td>0.4502</td>
<td>0.3430</td>
<td>0.2756</td>
<td>0.0617</td>
</tr>
<tr>
<td>112</td>
<td>4.7497</td>
<td>0.4147</td>
<td>0.3147</td>
<td>0.2862</td>
<td>0.0471</td>
</tr>
<tr>
<td>116</td>
<td>4.6833</td>
<td>0.4316</td>
<td>0.3279</td>
<td>0.2749</td>
<td>0.0524</td>
</tr>
<tr>
<td>120</td>
<td>4.5307</td>
<td>0.4391</td>
<td>0.3197</td>
<td>0.2884</td>
<td>0.0735</td>
</tr>
<tr>
<td>124</td>
<td>4.3468</td>
<td>0.4324</td>
<td>0.2880</td>
<td>0.2624</td>
<td>0.0636</td>
</tr>
<tr>
<td>128</td>
<td>4.1470</td>
<td>0.3838</td>
<td>0.2858</td>
<td>0.2563</td>
<td>0.0421</td>
</tr>
<tr>
<td>132</td>
<td>3.9336</td>
<td>0.4292</td>
<td>0.2963</td>
<td>0.2224</td>
<td>0.0468</td>
</tr>
<tr>
<td>136</td>
<td>3.7714</td>
<td>0.3997</td>
<td>0.2510</td>
<td>0.2536</td>
<td>0.0434</td>
</tr>
<tr>
<td>140</td>
<td>3.5997</td>
<td>0.4218</td>
<td>0.2911</td>
<td>0.2294</td>
<td>0.0414</td>
</tr>
<tr>
<td>144</td>
<td>3.2831</td>
<td>0.4232</td>
<td>0.2461</td>
<td>0.2546</td>
<td>0.0617</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>ĵ (m/sec)</td>
<td>ū' (m/sec)</td>
<td>ĵ (m/sec)</td>
<td>ū (m/sec)</td>
<td>-ū\uj</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>148</td>
<td>3.0355</td>
<td>0.4353</td>
<td>0.2657</td>
<td>0.2334</td>
<td>0.0418</td>
</tr>
<tr>
<td>152</td>
<td>2.7352</td>
<td>0.4206</td>
<td>0.2647</td>
<td>0.2677</td>
<td>0.0525</td>
</tr>
<tr>
<td>156</td>
<td>2.4566</td>
<td>0.3939</td>
<td>0.2337</td>
<td>0.2562</td>
<td>0.0401</td>
</tr>
<tr>
<td>160</td>
<td>2.1026</td>
<td>0.4061</td>
<td>0.2163</td>
<td>0.2311</td>
<td>0.0333</td>
</tr>
<tr>
<td>164</td>
<td>1.6702</td>
<td>0.3546</td>
<td>0.1306</td>
<td>0.2282</td>
<td>0.0349</td>
</tr>
<tr>
<td>168</td>
<td>1.2737</td>
<td>0.3310</td>
<td>0.0979</td>
<td>0.1960</td>
<td>0.0307</td>
</tr>
<tr>
<td>172</td>
<td>0.9657</td>
<td>0.2723</td>
<td>0.1003</td>
<td>0.1736</td>
<td>0.0241</td>
</tr>
<tr>
<td>176</td>
<td>0.6303</td>
<td>0.2107</td>
<td>0.0566</td>
<td>0.1091</td>
<td>0.0086</td>
</tr>
<tr>
<td>180</td>
<td>0.3866</td>
<td>0.1415</td>
<td>0.0338</td>
<td>0.0731</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

SPRE

\(\text{s/d} = 30\)

\(r/R = 0.600\)

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>ĵ (m/sec)</th>
<th>ū' (m/sec)</th>
<th>ĵ (m/sec)</th>
<th>ū (m/sec)</th>
<th>-ū\uj</th>
<th>v' (m/sec)</th>
<th>v (m/sec)</th>
<th>-ū\uj (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3650</td>
<td>0.1316</td>
<td>-0.0073</td>
<td>0.0557</td>
<td>-0.0029</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.6694</td>
<td>0.1213</td>
<td>0.0179</td>
<td>0.0685</td>
<td>-0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.9861</td>
<td>0.1203</td>
<td>0.0539</td>
<td>0.0723</td>
<td>-0.0015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.4051</td>
<td>0.1216</td>
<td>0.0875</td>
<td>0.0738</td>
<td>-0.0015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.6319</td>
<td>0.1068</td>
<td>0.1152</td>
<td>0.0779</td>
<td>-0.0005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.1395</td>
<td>0.1162</td>
<td>0.1418</td>
<td>0.0779</td>
<td>0.0012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.4491</td>
<td>0.1038</td>
<td>0.1685</td>
<td>0.0661</td>
<td>0.0014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.6609</td>
<td>0.1028</td>
<td>0.2015</td>
<td>0.0721</td>
<td>0.0021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3.2251</td>
<td>0.0933</td>
<td>0.2211</td>
<td>0.0887</td>
<td>0.0034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.5078</td>
<td>0.1193</td>
<td>0.2559</td>
<td>0.0855</td>
<td>0.0063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.7683</td>
<td>0.0968</td>
<td>0.2589</td>
<td>0.0896</td>
<td>0.0063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>4.1780</td>
<td>0.1364</td>
<td>0.2437</td>
<td>0.1093</td>
<td>0.0064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>4.4356</td>
<td>0.1049</td>
<td>0.3255</td>
<td>0.0880</td>
<td>0.0075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4.6548</td>
<td>0.1070</td>
<td>0.3436</td>
<td>0.0909</td>
<td>0.0081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.8532</td>
<td>0.0960</td>
<td>0.3370</td>
<td>0.0747</td>
<td>0.0051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>5.1479</td>
<td>0.1193</td>
<td>0.3777</td>
<td>0.1099</td>
<td>0.0110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>5.3912</td>
<td>0.1070</td>
<td>0.4063</td>
<td>0.1065</td>
<td>0.0101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>5.4700</td>
<td>0.0697</td>
<td>0.3679</td>
<td>0.0464</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>5.6279</td>
<td>0.1050</td>
<td>0.3775</td>
<td>0.0765</td>
<td>0.0054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>5.6728</td>
<td>0.1595</td>
<td>0.3805</td>
<td>0.1168</td>
<td>0.0127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5.7562</td>
<td>0.1910</td>
<td>0.4000</td>
<td>0.1192</td>
<td>0.0123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>5.7906</td>
<td>0.2297</td>
<td>0.3895</td>
<td>0.1344</td>
<td>0.0146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>5.7150</td>
<td>0.3691</td>
<td>0.3873</td>
<td>0.2368</td>
<td>0.0406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>5.6220</td>
<td>0.4726</td>
<td>0.3722</td>
<td>0.2503</td>
<td>0.0486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>u</td>
<td>u'</td>
<td>v</td>
<td>v'</td>
<td>-u*v'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m/sec)</td>
<td>(m/sec)</td>
<td>(m/sec)</td>
<td>(m/sec)</td>
<td>(m²/sec²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>5.4040</td>
<td>0.5532</td>
<td>0.3188</td>
<td>0.3458</td>
<td>0.0930</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>5.3587</td>
<td>0.4818</td>
<td>0.3353</td>
<td>0.3343</td>
<td>0.0729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>5.3024</td>
<td>0.4633</td>
<td>0.3308</td>
<td>0.2844</td>
<td>0.0634</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>5.3414</td>
<td>0.4463</td>
<td>0.3621</td>
<td>0.2837</td>
<td>0.0624</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>5.3836</td>
<td>0.4195</td>
<td>0.3845</td>
<td>0.2549</td>
<td>0.0536</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.3918</td>
<td>0.4136</td>
<td>0.3696</td>
<td>0.2237</td>
<td>0.0382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>5.3321</td>
<td>0.4444</td>
<td>0.3858</td>
<td>0.2900</td>
<td>0.0670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>5.2162</td>
<td>0.4244</td>
<td>0.3928</td>
<td>0.2644</td>
<td>0.0523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>5.1269</td>
<td>0.4493</td>
<td>0.3680</td>
<td>0.2748</td>
<td>0.0569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>4.9577</td>
<td>0.4806</td>
<td>0.3507</td>
<td>0.2899</td>
<td>0.0758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>4.8443</td>
<td>0.4096</td>
<td>0.3427</td>
<td>0.2785</td>
<td>0.0733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>4.6796</td>
<td>0.3906</td>
<td>0.3377</td>
<td>0.2583</td>
<td>0.0546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>4.4502</td>
<td>0.3622</td>
<td>0.3001</td>
<td>0.2330</td>
<td>0.0376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>4.3230</td>
<td>0.3554</td>
<td>0.2856</td>
<td>0.2131</td>
<td>0.0372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>4.0886</td>
<td>0.3996</td>
<td>0.2809</td>
<td>0.2277</td>
<td>0.0487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>3.9401</td>
<td>0.3682</td>
<td>0.2885</td>
<td>0.2303</td>
<td>0.0316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>3.7346</td>
<td>0.3717</td>
<td>0.2574</td>
<td>0.1675</td>
<td>0.0259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>3.4596</td>
<td>0.3160</td>
<td>0.2778</td>
<td>0.2022</td>
<td>0.0235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>3.0764</td>
<td>0.4170</td>
<td>0.2518</td>
<td>0.2349</td>
<td>0.0345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>2.7873</td>
<td>0.3501</td>
<td>0.2119</td>
<td>0.1939</td>
<td>0.0320</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>2.3643</td>
<td>0.4025</td>
<td>0.2126</td>
<td>0.2083</td>
<td>0.0302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>1.8936</td>
<td>0.3794</td>
<td>0.1527</td>
<td>0.2207</td>
<td>0.0379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>1.5529</td>
<td>0.3106</td>
<td>0.1557</td>
<td>0.1878</td>
<td>0.0283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>1.1514</td>
<td>0.2891</td>
<td>0.0929</td>
<td>0.1830</td>
<td>0.0183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.7916</td>
<td>0.2502</td>
<td>0.0760</td>
<td>0.1377</td>
<td>0.0132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.4450</td>
<td>0.1506</td>
<td>0.0450</td>
<td>0.0755</td>
<td>0.0041</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRE

s/d = 30

r/R = 0.467

<table>
<thead>
<tr>
<th>θ</th>
<th>u</th>
<th>u'</th>
<th>v</th>
<th>v'</th>
<th>-u*v'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m/sec)</td>
<td>(m/sec)</td>
<td>(m/sec)</td>
<td>(m/sec)</td>
<td>(m²/sec²)</td>
</tr>
<tr>
<td>4</td>
<td>0.3205</td>
<td>0.1028</td>
<td>0.0114</td>
<td>0.0528</td>
<td>0.0001</td>
</tr>
<tr>
<td>8</td>
<td>0.6029</td>
<td>0.1402</td>
<td>0.0245</td>
<td>0.0750</td>
<td>-0.0017</td>
</tr>
<tr>
<td>12</td>
<td>0.9175</td>
<td>0.1278</td>
<td>0.0618</td>
<td>0.0791</td>
<td>-0.0033</td>
</tr>
<tr>
<td>16</td>
<td>1.3359</td>
<td>0.1191</td>
<td>0.0797</td>
<td>0.0806</td>
<td>-0.0024</td>
</tr>
<tr>
<td>20</td>
<td>1.7636</td>
<td>0.1066</td>
<td>0.1237</td>
<td>0.0790</td>
<td>-0.0006</td>
</tr>
<tr>
<td>24</td>
<td>2.0766</td>
<td>0.1117</td>
<td>0.1384</td>
<td>0.0828</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

79
<table>
<thead>
<tr>
<th>θ</th>
<th>u''</th>
<th>u'</th>
<th>v'</th>
<th>v''</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>28</td>
<td>2.4099</td>
<td>0.1283</td>
<td>0.1762</td>
<td>0.1042</td>
</tr>
<tr>
<td>32</td>
<td>2.6077</td>
<td>0.1130</td>
<td>0.2062</td>
<td>0.0737</td>
</tr>
<tr>
<td>36</td>
<td>3.1927</td>
<td>0.0989</td>
<td>0.2146</td>
<td>0.0821</td>
</tr>
<tr>
<td>40</td>
<td>3.4773</td>
<td>0.0751</td>
<td>0.2397</td>
<td>0.0621</td>
</tr>
<tr>
<td>44</td>
<td>3.7743</td>
<td>0.1043</td>
<td>0.2634</td>
<td>0.0713</td>
</tr>
<tr>
<td>48</td>
<td>4.1665</td>
<td>0.1303</td>
<td>0.2346</td>
<td>0.1212</td>
</tr>
<tr>
<td>52</td>
<td>4.4197</td>
<td>0.0966</td>
<td>0.3165</td>
<td>0.0852</td>
</tr>
<tr>
<td>56</td>
<td>4.6201</td>
<td>0.1139</td>
<td>0.3175</td>
<td>0.1053</td>
</tr>
<tr>
<td>60</td>
<td>4.8697</td>
<td>0.1077</td>
<td>0.3365</td>
<td>0.0970</td>
</tr>
<tr>
<td>64</td>
<td>5.2193</td>
<td>0.1193</td>
<td>0.4151</td>
<td>0.1015</td>
</tr>
<tr>
<td>68</td>
<td>5.3653</td>
<td>0.0639</td>
<td>0.3660</td>
<td>0.0555</td>
</tr>
<tr>
<td>72</td>
<td>5.4971</td>
<td>0.1156</td>
<td>0.3638</td>
<td>0.1192</td>
</tr>
<tr>
<td>76</td>
<td>5.6428</td>
<td>0.1086</td>
<td>0.3760</td>
<td>0.0946</td>
</tr>
<tr>
<td>78</td>
<td>5.7177</td>
<td>0.1610</td>
<td>0.3866</td>
<td>0.1443</td>
</tr>
<tr>
<td>80</td>
<td>5.7893</td>
<td>0.1341</td>
<td>0.3900</td>
<td>0.1062</td>
</tr>
<tr>
<td>82</td>
<td>5.7946</td>
<td>0.1907</td>
<td>0.3814</td>
<td>0.1524</td>
</tr>
<tr>
<td>84</td>
<td>5.8187</td>
<td>0.3063</td>
<td>0.3866</td>
<td>0.2234</td>
</tr>
<tr>
<td>86</td>
<td>5.8584</td>
<td>0.3754</td>
<td>0.3724</td>
<td>0.2145</td>
</tr>
<tr>
<td>88</td>
<td>5.7459</td>
<td>0.4571</td>
<td>0.3397</td>
<td>0.3329</td>
</tr>
<tr>
<td>90</td>
<td>5.6090</td>
<td>0.4564</td>
<td>0.3303</td>
<td>0.2596</td>
</tr>
<tr>
<td>92</td>
<td>5.5576</td>
<td>0.4334</td>
<td>0.3283</td>
<td>0.2617</td>
</tr>
<tr>
<td>94</td>
<td>5.5854</td>
<td>0.4331</td>
<td>0.3920</td>
<td>0.2611</td>
</tr>
<tr>
<td>96</td>
<td>5.6153</td>
<td>0.4196</td>
<td>0.4119</td>
<td>0.3042</td>
</tr>
<tr>
<td>100</td>
<td>5.5797</td>
<td>0.4401</td>
<td>0.3515</td>
<td>0.2347</td>
</tr>
<tr>
<td>104</td>
<td>5.5452</td>
<td>0.3628</td>
<td>0.3805</td>
<td>0.2372</td>
</tr>
<tr>
<td>108</td>
<td>5.4114</td>
<td>0.4168</td>
<td>0.3451</td>
<td>0.2550</td>
</tr>
<tr>
<td>112</td>
<td>5.3362</td>
<td>0.4060</td>
<td>0.4009</td>
<td>0.2467</td>
</tr>
<tr>
<td>116</td>
<td>5.2502</td>
<td>0.4208</td>
<td>0.3734</td>
<td>0.2740</td>
</tr>
<tr>
<td>120</td>
<td>5.0956</td>
<td>0.3748</td>
<td>0.3556</td>
<td>0.2410</td>
</tr>
<tr>
<td>124</td>
<td>4.9263</td>
<td>0.3393</td>
<td>0.3459</td>
<td>0.1888</td>
</tr>
<tr>
<td>128</td>
<td>4.7605</td>
<td>0.3185</td>
<td>0.3219</td>
<td>0.2321</td>
</tr>
<tr>
<td>132</td>
<td>4.5040</td>
<td>0.3321</td>
<td>0.2790</td>
<td>0.2447</td>
</tr>
<tr>
<td>136</td>
<td>4.3394</td>
<td>0.2771</td>
<td>0.2771</td>
<td>0.1941</td>
</tr>
<tr>
<td>140</td>
<td>4.1706</td>
<td>0.2583</td>
<td>0.2654</td>
<td>0.1366</td>
</tr>
<tr>
<td>144</td>
<td>3.9240</td>
<td>0.2671</td>
<td>0.2714</td>
<td>0.1715</td>
</tr>
<tr>
<td>148</td>
<td>3.6300</td>
<td>0.2655</td>
<td>0.2810</td>
<td>0.1886</td>
</tr>
<tr>
<td>152</td>
<td>3.2796</td>
<td>0.3353</td>
<td>0.2571</td>
<td>0.1635</td>
</tr>
<tr>
<td>156</td>
<td>3.0164</td>
<td>0.2520</td>
<td>0.2362</td>
<td>0.1860</td>
</tr>
<tr>
<td>160</td>
<td>2.6084</td>
<td>0.2833</td>
<td>0.2028</td>
<td>0.1808</td>
</tr>
<tr>
<td>164</td>
<td>2.1309</td>
<td>0.3147</td>
<td>0.1706</td>
<td>0.2369</td>
</tr>
<tr>
<td>168</td>
<td>1.7169</td>
<td>0.2874</td>
<td>0.1544</td>
<td>0.2041</td>
</tr>
<tr>
<td>172</td>
<td>1.2689</td>
<td>0.2771</td>
<td>0.0909</td>
<td>0.1870</td>
</tr>
<tr>
<td>176</td>
<td>0.8284</td>
<td>0.2428</td>
<td>0.0773</td>
<td>0.1459</td>
</tr>
<tr>
<td>180</td>
<td>0.4829</td>
<td>0.1578</td>
<td>0.0467</td>
<td>0.0908</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{v} (m/sec)</td>
<td>v' (m/sec)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4</td>
<td>0.2747</td>
<td>0.0773</td>
<td>0.0170</td>
<td>0.0517</td>
</tr>
<tr>
<td>8</td>
<td>0.5389</td>
<td>0.1138</td>
<td>0.0285</td>
<td>0.0682</td>
</tr>
<tr>
<td>12</td>
<td>0.8817</td>
<td>0.1210</td>
<td>0.0633</td>
<td>0.0840</td>
</tr>
<tr>
<td>16</td>
<td>1.3005</td>
<td>0.0945</td>
<td>0.0960</td>
<td>0.0818</td>
</tr>
<tr>
<td>20</td>
<td>1.7403</td>
<td>0.1124</td>
<td>0.1198</td>
<td>0.0792</td>
</tr>
<tr>
<td>24</td>
<td>2.0697</td>
<td>0.1188</td>
<td>0.1536</td>
<td>0.0833</td>
</tr>
<tr>
<td>28</td>
<td>2.3738</td>
<td>0.1108</td>
<td>0.1681</td>
<td>0.0928</td>
</tr>
<tr>
<td>32</td>
<td>2.7912</td>
<td>0.1058</td>
<td>0.1855</td>
<td>0.0879</td>
</tr>
<tr>
<td>36</td>
<td>3.1939</td>
<td>0.0943</td>
<td>0.2100</td>
<td>0.0706</td>
</tr>
<tr>
<td>40</td>
<td>3.4889</td>
<td>0.0876</td>
<td>0.2487</td>
<td>0.0714</td>
</tr>
<tr>
<td>44</td>
<td>3.7725</td>
<td>0.0831</td>
<td>0.2567</td>
<td>0.0649</td>
</tr>
<tr>
<td>48</td>
<td>4.1719</td>
<td>0.1179</td>
<td>0.2444</td>
<td>0.1276</td>
</tr>
<tr>
<td>52</td>
<td>4.4498</td>
<td>0.1189</td>
<td>0.3099</td>
<td>0.1253</td>
</tr>
<tr>
<td>56</td>
<td>4.6827</td>
<td>0.1145</td>
<td>0.3444</td>
<td>0.1134</td>
</tr>
<tr>
<td>60</td>
<td>4.9046</td>
<td>0.1151</td>
<td>0.3318</td>
<td>0.1143</td>
</tr>
<tr>
<td>64</td>
<td>5.2017</td>
<td>0.1096</td>
<td>0.3805</td>
<td>0.1047</td>
</tr>
<tr>
<td>68</td>
<td>5.4455</td>
<td>0.1390</td>
<td>0.4014</td>
<td>0.1439</td>
</tr>
<tr>
<td>72</td>
<td>5.5465</td>
<td>0.0993</td>
<td>0.3555</td>
<td>0.1028</td>
</tr>
<tr>
<td>76</td>
<td>5.6672</td>
<td>0.1239</td>
<td>0.3551</td>
<td>0.1247</td>
</tr>
<tr>
<td>80</td>
<td>5.7597</td>
<td>0.1519</td>
<td>0.3862</td>
<td>0.1455</td>
</tr>
<tr>
<td>84</td>
<td>5.8211</td>
<td>0.1324</td>
<td>0.3661</td>
<td>0.1035</td>
</tr>
<tr>
<td>88</td>
<td>5.9025</td>
<td>0.1654</td>
<td>0.3943</td>
<td>0.1561</td>
</tr>
<tr>
<td>92</td>
<td>5.9333</td>
<td>0.2447</td>
<td>0.3880</td>
<td>0.1710</td>
</tr>
<tr>
<td>96</td>
<td>6.0092</td>
<td>0.3272</td>
<td>0.4001</td>
<td>0.2218</td>
</tr>
<tr>
<td>100</td>
<td>6.0573</td>
<td>0.3902</td>
<td>0.3616</td>
<td>0.2618</td>
</tr>
<tr>
<td>104</td>
<td>5.8480</td>
<td>0.4349</td>
<td>0.3715</td>
<td>0.2927</td>
</tr>
<tr>
<td>108</td>
<td>5.8083</td>
<td>0.3824</td>
<td>0.3515</td>
<td>0.2687</td>
</tr>
<tr>
<td>112</td>
<td>5.8178</td>
<td>0.3973</td>
<td>0.3839</td>
<td>0.2616</td>
</tr>
<tr>
<td>116</td>
<td>5.8178</td>
<td>0.3463</td>
<td>0.3870</td>
<td>0.2521</td>
</tr>
<tr>
<td>120</td>
<td>5.7328</td>
<td>0.3474</td>
<td>0.3677</td>
<td>0.2247</td>
</tr>
<tr>
<td>124</td>
<td>5.5789</td>
<td>0.3620</td>
<td>0.3716</td>
<td>0.2202</td>
</tr>
<tr>
<td>128</td>
<td>5.5170</td>
<td>0.3550</td>
<td>0.3846</td>
<td>0.2094</td>
</tr>
<tr>
<td>132</td>
<td>5.3807</td>
<td>0.3737</td>
<td>0.3638</td>
<td>0.2389</td>
</tr>
<tr>
<td>136</td>
<td>5.2974</td>
<td>0.3395</td>
<td>0.3757</td>
<td>0.2324</td>
</tr>
<tr>
<td>140</td>
<td>5.1116</td>
<td>0.3253</td>
<td>0.3737</td>
<td>0.2380</td>
</tr>
<tr>
<td>144</td>
<td>4.9624</td>
<td>0.2361</td>
<td>0.3321</td>
<td>0.2502</td>
</tr>
<tr>
<td>148</td>
<td>4.7395</td>
<td>0.2370</td>
<td>0.3175</td>
<td>0.1765</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s/d = 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRE

$r/R = 0.333$
<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{v})</th>
<th>(v')</th>
<th>(-\ddot{u}v')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>152</td>
<td>3.4052</td>
<td>0.2553</td>
<td>0.2371</td>
<td>0.1921</td>
<td>0.0020</td>
</tr>
<tr>
<td>156</td>
<td>3.0659</td>
<td>0.2561</td>
<td>0.1755</td>
<td>0.1859</td>
<td>0.0163</td>
</tr>
<tr>
<td>160</td>
<td>2.6861</td>
<td>0.2671</td>
<td>0.1967</td>
<td>0.1783</td>
<td>0.0083</td>
</tr>
<tr>
<td>164</td>
<td>2.2303</td>
<td>0.2563</td>
<td>0.1636</td>
<td>0.1890</td>
<td>0.0098</td>
</tr>
<tr>
<td>168</td>
<td>1.8339</td>
<td>0.2664</td>
<td>0.1318</td>
<td>0.1964</td>
<td>0.0133</td>
</tr>
<tr>
<td>172</td>
<td>1.3825</td>
<td>0.2690</td>
<td>0.1189</td>
<td>0.1872</td>
<td>0.0141</td>
</tr>
<tr>
<td>176</td>
<td>0.9456</td>
<td>0.2342</td>
<td>0.0931</td>
<td>0.1566</td>
<td>0.0156</td>
</tr>
<tr>
<td>180</td>
<td>0.5111</td>
<td>0.1592</td>
<td>0.0438</td>
<td>0.0904</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

SPRE

s/d = 30

r/R = 0.200

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{v})</th>
<th>(v')</th>
<th>(-\ddot{u}v')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>4</td>
<td>0.2644</td>
<td>0.0753</td>
<td>0.0218</td>
<td>0.0501</td>
<td>0.0014</td>
</tr>
<tr>
<td>8</td>
<td>0.5110</td>
<td>0.1216</td>
<td>0.0313</td>
<td>0.0718</td>
<td>0.0021</td>
</tr>
<tr>
<td>12</td>
<td>0.8520</td>
<td>0.1118</td>
<td>0.0763</td>
<td>0.0810</td>
<td>0.0009</td>
</tr>
<tr>
<td>16</td>
<td>1.2527</td>
<td>0.0999</td>
<td>0.1060</td>
<td>0.0696</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>1.6710</td>
<td>0.1106</td>
<td>0.1252</td>
<td>0.0908</td>
<td>0.0042</td>
</tr>
<tr>
<td>24</td>
<td>2.0262</td>
<td>0.1026</td>
<td>0.1525</td>
<td>0.0835</td>
<td>0.0021</td>
</tr>
<tr>
<td>28</td>
<td>2.3639</td>
<td>0.1014</td>
<td>0.1676</td>
<td>0.0984</td>
<td>0.0037</td>
</tr>
<tr>
<td>32</td>
<td>2.7835</td>
<td>0.1051</td>
<td>0.2009</td>
<td>0.0932</td>
<td>0.0038</td>
</tr>
<tr>
<td>36</td>
<td>3.1659</td>
<td>0.1183</td>
<td>0.2291</td>
<td>0.1118</td>
<td>0.0085</td>
</tr>
<tr>
<td>40</td>
<td>3.4537</td>
<td>0.0819</td>
<td>0.2481</td>
<td>0.0693</td>
<td>0.0013</td>
</tr>
<tr>
<td>44</td>
<td>3.7378</td>
<td>0.1271</td>
<td>0.2473</td>
<td>0.1182</td>
<td>0.0119</td>
</tr>
<tr>
<td>48</td>
<td>4.1524</td>
<td>0.1244</td>
<td>0.2592</td>
<td>0.1066</td>
<td>0.0040</td>
</tr>
<tr>
<td>52</td>
<td>4.4225</td>
<td>0.0867</td>
<td>0.3147</td>
<td>0.0892</td>
<td>0.0056</td>
</tr>
<tr>
<td>56</td>
<td>4.6485</td>
<td>0.0717</td>
<td>0.3371</td>
<td>0.0652</td>
<td>0.0028</td>
</tr>
<tr>
<td>60</td>
<td>4.8774</td>
<td>0.0702</td>
<td>0.3293</td>
<td>0.0583</td>
<td>0.0027</td>
</tr>
<tr>
<td>64</td>
<td>5.1664</td>
<td>0.0890</td>
<td>0.3643</td>
<td>0.0805</td>
<td>0.0054</td>
</tr>
<tr>
<td>68</td>
<td>5.4158</td>
<td>0.1679</td>
<td>0.3952</td>
<td>0.1714</td>
<td>0.0274</td>
</tr>
<tr>
<td>72</td>
<td>5.5226</td>
<td>0.0764</td>
<td>0.3542</td>
<td>0.0715</td>
<td>0.0043</td>
</tr>
<tr>
<td>76</td>
<td>5.6409</td>
<td>0.1197</td>
<td>0.3632</td>
<td>0.1274</td>
<td>0.0128</td>
</tr>
<tr>
<td>80</td>
<td>5.7144</td>
<td>0.0962</td>
<td>0.3622</td>
<td>0.1045</td>
<td>0.0048</td>
</tr>
<tr>
<td>82</td>
<td>5.7977</td>
<td>0.1372</td>
<td>0.3539</td>
<td>0.1307</td>
<td>0.0072</td>
</tr>
<tr>
<td>84</td>
<td>5.8813</td>
<td>0.2007</td>
<td>0.3614</td>
<td>0.1842</td>
<td>0.0219</td>
</tr>
<tr>
<td>86</td>
<td>5.9653</td>
<td>0.1950</td>
<td>0.3516</td>
<td>0.1764</td>
<td>0.0147</td>
</tr>
<tr>
<td>88</td>
<td>6.1590</td>
<td>0.3250</td>
<td>0.3889</td>
<td>0.2476</td>
<td>0.0399</td>
</tr>
<tr>
<td>90</td>
<td>6.2116</td>
<td>0.3061</td>
<td>0.3591</td>
<td>0.2553</td>
<td>0.0237</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\overline{u\cdot v}'$ (m²/sec²)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>90</td>
<td>6.0627</td>
<td>0.4075</td>
<td>0.3777</td>
<td>0.2748</td>
<td>0.0455</td>
</tr>
<tr>
<td>92</td>
<td>5.9538</td>
<td>0.3101</td>
<td>0.3984</td>
<td>0.2157</td>
<td>0.0236</td>
</tr>
<tr>
<td>94</td>
<td>5.8587</td>
<td>0.3355</td>
<td>0.3580</td>
<td>0.2512</td>
<td>0.0267</td>
</tr>
<tr>
<td>96</td>
<td>5.9027</td>
<td>0.2877</td>
<td>0.3970</td>
<td>0.2233</td>
<td>0.0239</td>
</tr>
<tr>
<td>100</td>
<td>5.8501</td>
<td>0.3174</td>
<td>0.3812</td>
<td>0.2174</td>
<td>0.0209</td>
</tr>
<tr>
<td>104</td>
<td>5.7968</td>
<td>0.3006</td>
<td>0.3835</td>
<td>0.2048</td>
<td>0.0144</td>
</tr>
<tr>
<td>108</td>
<td>5.6861</td>
<td>0.2882</td>
<td>0.3488</td>
<td>0.1988</td>
<td>0.0154</td>
</tr>
<tr>
<td>112</td>
<td>5.6043</td>
<td>0.3274</td>
<td>0.3608</td>
<td>0.2593</td>
<td>0.0259</td>
</tr>
<tr>
<td>116</td>
<td>5.4799</td>
<td>0.2893</td>
<td>0.3526</td>
<td>0.2218</td>
<td>0.0116</td>
</tr>
<tr>
<td>120</td>
<td>5.3979</td>
<td>0.2773</td>
<td>0.3274</td>
<td>0.1911</td>
<td>0.0109</td>
</tr>
<tr>
<td>124</td>
<td>5.2439</td>
<td>0.2864</td>
<td>0.3370</td>
<td>0.2234</td>
<td>0.0288</td>
</tr>
<tr>
<td>128</td>
<td>5.0158</td>
<td>0.2725</td>
<td>0.3193</td>
<td>0.2182</td>
<td>0.0251</td>
</tr>
<tr>
<td>132</td>
<td>4.7339</td>
<td>0.2206</td>
<td>0.2782</td>
<td>0.1725</td>
<td>0.0168</td>
</tr>
<tr>
<td>136</td>
<td>4.4914</td>
<td>0.1946</td>
<td>0.2864</td>
<td>0.1538</td>
<td>0.0151</td>
</tr>
<tr>
<td>140</td>
<td>4.2754</td>
<td>0.1929</td>
<td>0.2455</td>
<td>0.1491</td>
<td>0.0152</td>
</tr>
<tr>
<td>144</td>
<td>3.9894</td>
<td>0.2034</td>
<td>0.2318</td>
<td>0.1471</td>
<td>0.0077</td>
</tr>
<tr>
<td>148</td>
<td>3.7441</td>
<td>0.2105</td>
<td>0.2297</td>
<td>0.1507</td>
<td>0.0167</td>
</tr>
<tr>
<td>152</td>
<td>3.4030</td>
<td>0.2226</td>
<td>0.2122</td>
<td>0.1478</td>
<td>0.0019</td>
</tr>
<tr>
<td>156</td>
<td>3.0378</td>
<td>0.2683</td>
<td>0.1620</td>
<td>0.1734</td>
<td>0.0125</td>
</tr>
<tr>
<td>160</td>
<td>2.6719</td>
<td>0.2713</td>
<td>0.1521</td>
<td>0.1942</td>
<td>0.0096</td>
</tr>
<tr>
<td>164</td>
<td>2.2520</td>
<td>0.2536</td>
<td>0.1275</td>
<td>0.1957</td>
<td>0.0120</td>
</tr>
<tr>
<td>168</td>
<td>1.8411</td>
<td>0.2625</td>
<td>0.0801</td>
<td>0.2016</td>
<td>0.0133</td>
</tr>
<tr>
<td>172</td>
<td>1.4337</td>
<td>0.2665</td>
<td>0.1012</td>
<td>0.1655</td>
<td>0.0120</td>
</tr>
<tr>
<td>176</td>
<td>0.9965</td>
<td>0.2252</td>
<td>0.0821</td>
<td>0.1574</td>
<td>0.0122</td>
</tr>
<tr>
<td>180</td>
<td>0.5649</td>
<td>0.1622</td>
<td>0.0312</td>
<td>0.0837</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

SPRE

r/R = 0.000

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>\ddot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\overline{u\cdot v}'$ (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2584</td>
<td>0.0752</td>
<td>0.0222</td>
<td>0.0513</td>
<td>0.0018</td>
</tr>
<tr>
<td>8</td>
<td>0.5016</td>
<td>0.1182</td>
<td>0.0451</td>
<td>0.0760</td>
<td>0.0042</td>
</tr>
<tr>
<td>12</td>
<td>0.8136</td>
<td>0.1166</td>
<td>0.0764</td>
<td>0.0872</td>
<td>0.0043</td>
</tr>
<tr>
<td>16</td>
<td>1.2239</td>
<td>0.1025</td>
<td>0.0952</td>
<td>0.0878</td>
<td>0.0030</td>
</tr>
<tr>
<td>20</td>
<td>1.6723</td>
<td>0.0854</td>
<td>0.1348</td>
<td>0.0890</td>
<td>0.0024</td>
</tr>
<tr>
<td>24</td>
<td>1.9864</td>
<td>0.1060</td>
<td>0.1445</td>
<td>0.0866</td>
<td>0.0036</td>
</tr>
<tr>
<td>28</td>
<td>2.3326</td>
<td>0.1074</td>
<td>0.1647</td>
<td>0.1007</td>
<td>0.0055</td>
</tr>
<tr>
<td>32</td>
<td>2.7505</td>
<td>0.0916</td>
<td>0.1979</td>
<td>0.0886</td>
<td>0.0042</td>
</tr>
<tr>
<td>36</td>
<td>3.1388</td>
<td>0.0914</td>
<td>0.2129</td>
<td>0.0812</td>
<td>0.0040</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\dot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\ddot{u}\dot{v}$ (m2/sec2)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>40</td>
<td>3.4487</td>
<td>0.1080</td>
<td>0.2485</td>
<td>0.1007</td>
<td>0.0071</td>
</tr>
<tr>
<td>44</td>
<td>3.7207</td>
<td>0.0863</td>
<td>0.2510</td>
<td>0.0834</td>
<td>0.0047</td>
</tr>
<tr>
<td>48</td>
<td>4.1216</td>
<td>0.1263</td>
<td>0.2347</td>
<td>0.1297</td>
<td>0.0071</td>
</tr>
<tr>
<td>52</td>
<td>4.3848</td>
<td>0.0905</td>
<td>0.3076</td>
<td>0.0946</td>
<td>0.0067</td>
</tr>
<tr>
<td>56</td>
<td>4.6113</td>
<td>0.0744</td>
<td>0.3164</td>
<td>0.0730</td>
<td>0.0034</td>
</tr>
<tr>
<td>60</td>
<td>4.8446</td>
<td>0.1154</td>
<td>0.3150</td>
<td>0.1187</td>
<td>0.0118</td>
</tr>
<tr>
<td>64</td>
<td>5.1395</td>
<td>0.1000</td>
<td>0.3536</td>
<td>0.0986</td>
<td>0.0079</td>
</tr>
<tr>
<td>68</td>
<td>5.3685</td>
<td>0.0965</td>
<td>0.3668</td>
<td>0.1046</td>
<td>0.0086</td>
</tr>
<tr>
<td>72</td>
<td>5.4744</td>
<td>0.0824</td>
<td>0.3235</td>
<td>0.0780</td>
<td>0.0052</td>
</tr>
<tr>
<td>76</td>
<td>5.6074</td>
<td>0.0835</td>
<td>0.3393</td>
<td>0.0778</td>
<td>0.0033</td>
</tr>
<tr>
<td>78</td>
<td>5.6860</td>
<td>0.1027</td>
<td>0.3495</td>
<td>0.1000</td>
<td>0.0049</td>
</tr>
<tr>
<td>80</td>
<td>5.7940</td>
<td>0.1374</td>
<td>0.3668</td>
<td>0.1593</td>
<td>0.0121</td>
</tr>
<tr>
<td>82</td>
<td>5.8741</td>
<td>0.1792</td>
<td>0.3751</td>
<td>0.1688</td>
<td>0.0124</td>
</tr>
<tr>
<td>84</td>
<td>5.9850</td>
<td>0.2422</td>
<td>0.3616</td>
<td>0.1728</td>
<td>0.0133</td>
</tr>
<tr>
<td>86</td>
<td>6.1766</td>
<td>0.2992</td>
<td>0.3565</td>
<td>0.2316</td>
<td>0.0191</td>
</tr>
<tr>
<td>88</td>
<td>6.2618</td>
<td>0.3130</td>
<td>0.3575</td>
<td>0.2350</td>
<td>0.0140</td>
</tr>
<tr>
<td>90</td>
<td>6.1204</td>
<td>0.3879</td>
<td>0.3537</td>
<td>0.2201</td>
<td>0.0203</td>
</tr>
<tr>
<td>92</td>
<td>5.9615</td>
<td>0.3266</td>
<td>0.3672</td>
<td>0.2422</td>
<td>0.0113</td>
</tr>
<tr>
<td>94</td>
<td>5.8811</td>
<td>0.3143</td>
<td>0.3546</td>
<td>0.2508</td>
<td>0.0193</td>
</tr>
<tr>
<td>96</td>
<td>5.8453</td>
<td>0.2822</td>
<td>0.3577</td>
<td>0.2005</td>
<td>-0.0131</td>
</tr>
<tr>
<td>100</td>
<td>5.8362</td>
<td>0.2909</td>
<td>0.3682</td>
<td>0.2112</td>
<td>0.0063</td>
</tr>
<tr>
<td>104</td>
<td>5.7415</td>
<td>0.2763</td>
<td>0.3646</td>
<td>0.2096</td>
<td>-0.0020</td>
</tr>
<tr>
<td>108</td>
<td>5.6736</td>
<td>0.2805</td>
<td>0.3434</td>
<td>0.2105</td>
<td>0.0114</td>
</tr>
<tr>
<td>112</td>
<td>5.5963</td>
<td>0.2922</td>
<td>0.3443</td>
<td>0.2149</td>
<td>0.0019</td>
</tr>
<tr>
<td>116</td>
<td>5.5247</td>
<td>0.3121</td>
<td>0.3363</td>
<td>0.2130</td>
<td>0.0063</td>
</tr>
<tr>
<td>120</td>
<td>5.3931</td>
<td>0.2772</td>
<td>0.3658</td>
<td>0.2241</td>
<td>0.0076</td>
</tr>
<tr>
<td>124</td>
<td>5.2336</td>
<td>0.2391</td>
<td>0.3494</td>
<td>0.1755</td>
<td>0.0061</td>
</tr>
<tr>
<td>128</td>
<td>4.9574</td>
<td>0.2266</td>
<td>0.2810</td>
<td>0.1574</td>
<td>0.0076</td>
</tr>
<tr>
<td>132</td>
<td>4.6761</td>
<td>0.2311</td>
<td>0.2367</td>
<td>0.1748</td>
<td>0.0152</td>
</tr>
<tr>
<td>136</td>
<td>4.3907</td>
<td>0.2411</td>
<td>0.2384</td>
<td>0.1527</td>
<td>0.0142</td>
</tr>
<tr>
<td>140</td>
<td>4.1317</td>
<td>0.2048</td>
<td>0.1760</td>
<td>0.1269</td>
<td>-0.0004</td>
</tr>
<tr>
<td>144</td>
<td>3.8399</td>
<td>0.2667</td>
<td>0.1968</td>
<td>0.1619</td>
<td>-0.0044</td>
</tr>
<tr>
<td>148</td>
<td>3.5455</td>
<td>0.2333</td>
<td>0.1876</td>
<td>0.1465</td>
<td>0.0056</td>
</tr>
<tr>
<td>152</td>
<td>3.1437</td>
<td>0.2955</td>
<td>0.1624</td>
<td>0.2093</td>
<td>0.0054</td>
</tr>
<tr>
<td>156</td>
<td>2.8431</td>
<td>0.2996</td>
<td>0.1350</td>
<td>0.1843</td>
<td>0.0026</td>
</tr>
<tr>
<td>160</td>
<td>2.5168</td>
<td>0.3121</td>
<td>0.1037</td>
<td>0.2007</td>
<td>-0.0016</td>
</tr>
<tr>
<td>164</td>
<td>2.1393</td>
<td>0.2584</td>
<td>0.0892</td>
<td>0.1633</td>
<td>-0.0019</td>
</tr>
<tr>
<td>168</td>
<td>1.7057</td>
<td>0.2821</td>
<td>0.0718</td>
<td>0.1772</td>
<td>0.0026</td>
</tr>
<tr>
<td>172</td>
<td>1.4133</td>
<td>0.2532</td>
<td>0.0859</td>
<td>0.1836</td>
<td>-0.0006</td>
</tr>
<tr>
<td>176</td>
<td>0.9781</td>
<td>0.2090</td>
<td>0.0792</td>
<td>0.1334</td>
<td>0.0006</td>
</tr>
<tr>
<td>180</td>
<td>0.5599</td>
<td>0.1656</td>
<td>0.0313</td>
<td>0.0918</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

84
Figure 20: Streamwise velocity fluctuation at s/d = 30 (smoothed)
Figure 21: Radial velocity fluctuation at $s/d = 30$ (smoothed)
Figure 22: Reynolds shear stress at s/d = 30 (not smoothed)
CROSS-WIRE DATA

SPRE

\(s/d = 44 \)

\(r/R = 0.800 \)

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{v}) m/sec</th>
<th>(v') m/sec</th>
<th>(-\ddot{u}v') m²/sec²</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4522</td>
<td>0.1425</td>
<td>-0.0103</td>
<td>0.0561</td>
<td>-0.0009</td>
</tr>
<tr>
<td>8</td>
<td>0.7957</td>
<td>0.1309</td>
<td>0.0183</td>
<td>0.0651</td>
<td>-0.0009</td>
</tr>
<tr>
<td>12</td>
<td>1.1081</td>
<td>0.1198</td>
<td>0.0588</td>
<td>0.0680</td>
<td>-0.0003</td>
</tr>
<tr>
<td>16</td>
<td>1.4820</td>
<td>0.1282</td>
<td>0.0882</td>
<td>0.0767</td>
<td>0.0033</td>
</tr>
<tr>
<td>20</td>
<td>1.8827</td>
<td>0.1033</td>
<td>0.1051</td>
<td>0.0649</td>
<td>0.0018</td>
</tr>
<tr>
<td>24</td>
<td>2.2207</td>
<td>0.1111</td>
<td>0.1416</td>
<td>0.0670</td>
<td>0.0035</td>
</tr>
<tr>
<td>28</td>
<td>2.5357</td>
<td>0.1106</td>
<td>0.1664</td>
<td>0.0657</td>
<td>0.0039</td>
</tr>
<tr>
<td>32</td>
<td>2.8830</td>
<td>0.1169</td>
<td>0.1849</td>
<td>0.0844</td>
<td>0.0063</td>
</tr>
<tr>
<td>36</td>
<td>3.2464</td>
<td>0.1201</td>
<td>0.2193</td>
<td>0.0788</td>
<td>0.0067</td>
</tr>
<tr>
<td>40</td>
<td>3.5073</td>
<td>0.1037</td>
<td>0.2400</td>
<td>0.0424</td>
<td>0.0015</td>
</tr>
<tr>
<td>44</td>
<td>3.7303</td>
<td>0.1397</td>
<td>0.2462</td>
<td>0.1031</td>
<td>0.0093</td>
</tr>
<tr>
<td>48</td>
<td>4.0460</td>
<td>0.1724</td>
<td>0.2845</td>
<td>0.1063</td>
<td>0.0120</td>
</tr>
<tr>
<td>52</td>
<td>4.3070</td>
<td>0.1700</td>
<td>0.2719</td>
<td>0.1032</td>
<td>0.0085</td>
</tr>
<tr>
<td>56</td>
<td>4.4893</td>
<td>0.1749</td>
<td>0.3250</td>
<td>0.1399</td>
<td>0.0195</td>
</tr>
<tr>
<td>60</td>
<td>4.6331</td>
<td>0.2121</td>
<td>0.3291</td>
<td>0.1610</td>
<td>0.0268</td>
</tr>
<tr>
<td>64</td>
<td>4.8253</td>
<td>0.2185</td>
<td>0.3565</td>
<td>0.1403</td>
<td>0.0199</td>
</tr>
<tr>
<td>68</td>
<td>4.9683</td>
<td>0.1760</td>
<td>0.3700</td>
<td>0.0591</td>
<td>0.0034</td>
</tr>
<tr>
<td>72</td>
<td>5.0692</td>
<td>0.1872</td>
<td>0.3762</td>
<td>0.0934</td>
<td>0.0080</td>
</tr>
<tr>
<td>76</td>
<td>5.1513</td>
<td>0.2192</td>
<td>0.3943</td>
<td>0.1427</td>
<td>0.0217</td>
</tr>
<tr>
<td>80</td>
<td>5.2289</td>
<td>0.2130</td>
<td>0.4039</td>
<td>0.1211</td>
<td>0.0162</td>
</tr>
<tr>
<td>84</td>
<td>5.2998</td>
<td>0.2046</td>
<td>0.4281</td>
<td>0.1093</td>
<td>0.0150</td>
</tr>
<tr>
<td>88</td>
<td>5.2533</td>
<td>0.2104</td>
<td>0.4011</td>
<td>0.1163</td>
<td>0.0132</td>
</tr>
<tr>
<td>92</td>
<td>5.2287</td>
<td>0.2094</td>
<td>0.4191</td>
<td>0.1091</td>
<td>0.0111</td>
</tr>
<tr>
<td>96</td>
<td>5.1776</td>
<td>0.2287</td>
<td>0.4165</td>
<td>0.0921</td>
<td>0.0104</td>
</tr>
<tr>
<td>98</td>
<td>5.1492</td>
<td>0.3066</td>
<td>0.3917</td>
<td>0.1197</td>
<td>0.0157</td>
</tr>
<tr>
<td>100</td>
<td>5.1589</td>
<td>0.4313</td>
<td>0.3912</td>
<td>0.1399</td>
<td>0.0191</td>
</tr>
<tr>
<td>102</td>
<td>5.1818</td>
<td>0.5525</td>
<td>0.3824</td>
<td>0.1668</td>
<td>0.0355</td>
</tr>
<tr>
<td>104</td>
<td>5.0879</td>
<td>0.6209</td>
<td>0.3474</td>
<td>0.3430</td>
<td>0.0860</td>
</tr>
<tr>
<td>106</td>
<td>4.7442</td>
<td>0.7768</td>
<td>0.3365</td>
<td>0.4172</td>
<td>0.1789</td>
</tr>
<tr>
<td>108</td>
<td>4.6660</td>
<td>0.6386</td>
<td>0.2398</td>
<td>0.3881</td>
<td>0.1310</td>
</tr>
<tr>
<td>110</td>
<td>4.6148</td>
<td>0.5137</td>
<td>0.2615</td>
<td>0.3532</td>
<td>0.1121</td>
</tr>
<tr>
<td>112</td>
<td>4.6831</td>
<td>0.4254</td>
<td>0.3242</td>
<td>0.2943</td>
<td>0.0664</td>
</tr>
<tr>
<td>114</td>
<td>4.6592</td>
<td>0.4379</td>
<td>0.3254</td>
<td>0.2791</td>
<td>0.0768</td>
</tr>
<tr>
<td>116</td>
<td>4.5754</td>
<td>0.4624</td>
<td>0.2874</td>
<td>0.2827</td>
<td>0.0737</td>
</tr>
<tr>
<td>120</td>
<td>4.4687</td>
<td>0.4630</td>
<td>0.2729</td>
<td>0.2650</td>
<td>0.0762</td>
</tr>
<tr>
<td>124</td>
<td>4.2101</td>
<td>0.4240</td>
<td>0.2624</td>
<td>0.2669</td>
<td>0.0427</td>
</tr>
<tr>
<td>ϑ</td>
<td>u</td>
<td>u'</td>
<td>v</td>
<td>v'</td>
<td>-u'v'</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>128</td>
<td>4.0531</td>
<td>0.4195</td>
<td>0.2258</td>
<td>0.2700</td>
<td>0.0436</td>
</tr>
<tr>
<td>132</td>
<td>3.8974</td>
<td>0.4415</td>
<td>0.2521</td>
<td>0.2726</td>
<td>0.0435</td>
</tr>
<tr>
<td>136</td>
<td>3.6958</td>
<td>0.4080</td>
<td>0.2669</td>
<td>0.3071</td>
<td>0.0567</td>
</tr>
<tr>
<td>140</td>
<td>3.3610</td>
<td>0.4096</td>
<td>0.2051</td>
<td>0.2699</td>
<td>0.0449</td>
</tr>
<tr>
<td>144</td>
<td>3.1637</td>
<td>0.3974</td>
<td>0.2426</td>
<td>0.2445</td>
<td>0.0366</td>
</tr>
<tr>
<td>148</td>
<td>2.8658</td>
<td>0.3741</td>
<td>0.2129</td>
<td>0.2125</td>
<td>0.0358</td>
</tr>
<tr>
<td>152</td>
<td>2.5217</td>
<td>0.3492</td>
<td>0.1610</td>
<td>0.2194</td>
<td>0.0413</td>
</tr>
<tr>
<td>156</td>
<td>2.1675</td>
<td>0.3270</td>
<td>0.1354</td>
<td>0.1948</td>
<td>0.0295</td>
</tr>
<tr>
<td>160</td>
<td>1.9183</td>
<td>0.3058</td>
<td>0.1341</td>
<td>0.1750</td>
<td>0.0232</td>
</tr>
<tr>
<td>164</td>
<td>1.5690</td>
<td>0.3181</td>
<td>0.1265</td>
<td>0.1602</td>
<td>0.0282</td>
</tr>
<tr>
<td>168</td>
<td>1.2111</td>
<td>0.2461</td>
<td>0.0918</td>
<td>0.1262</td>
<td>0.0133</td>
</tr>
<tr>
<td>172</td>
<td>0.8839</td>
<td>0.2358</td>
<td>0.0754</td>
<td>0.1085</td>
<td>0.0119</td>
</tr>
<tr>
<td>176</td>
<td>0.5250</td>
<td>0.1957</td>
<td>0.0462</td>
<td>0.0795</td>
<td>0.0068</td>
</tr>
<tr>
<td>180</td>
<td>0.3196</td>
<td>0.1044</td>
<td>0.0283</td>
<td>0.0470</td>
<td>0.0025</td>
</tr>
<tr>
<td>θ</td>
<td>̅u</td>
<td>u'</td>
<td>̅v</td>
<td>v'</td>
<td>-u'v'</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.3766</td>
<td>0.1397</td>
<td>-0.0151</td>
<td>0.0553</td>
<td>-0.0021</td>
</tr>
<tr>
<td>8</td>
<td>0.7355</td>
<td>0.1431</td>
<td>0.0141</td>
<td>0.0584</td>
<td>-0.0014</td>
</tr>
<tr>
<td>12</td>
<td>1.0757</td>
<td>0.1198</td>
<td>0.0465</td>
<td>0.0726</td>
<td>-0.0017</td>
</tr>
<tr>
<td>16</td>
<td>1.4597</td>
<td>0.1127</td>
<td>0.0767</td>
<td>0.0755</td>
<td>0.0008</td>
</tr>
<tr>
<td>20</td>
<td>1.8821</td>
<td>0.1109</td>
<td>0.1042</td>
<td>0.0629</td>
<td>0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.2217</td>
<td>0.1189</td>
<td>0.1329</td>
<td>0.0827</td>
<td>0.0040</td>
</tr>
<tr>
<td>28</td>
<td>2.5460</td>
<td>0.1085</td>
<td>0.1539</td>
<td>0.0742</td>
<td>0.0041</td>
</tr>
<tr>
<td>32</td>
<td>2.9246</td>
<td>0.0878</td>
<td>0.1835</td>
<td>0.0526</td>
<td>0.0006</td>
</tr>
<tr>
<td>36</td>
<td>3.3112</td>
<td>0.1389</td>
<td>0.2108</td>
<td>0.1248</td>
<td>0.0134</td>
</tr>
<tr>
<td>40</td>
<td>3.6087</td>
<td>0.1087</td>
<td>0.2412</td>
<td>0.0747</td>
<td>0.0045</td>
</tr>
<tr>
<td>44</td>
<td>3.8658</td>
<td>0.1003</td>
<td>0.2642</td>
<td>0.0679</td>
<td>0.0043</td>
</tr>
<tr>
<td>48</td>
<td>4.2126</td>
<td>0.1276</td>
<td>0.2320</td>
<td>0.0908</td>
<td>0.0010</td>
</tr>
<tr>
<td>52</td>
<td>4.4675</td>
<td>0.1130</td>
<td>0.2933</td>
<td>0.0925</td>
<td>0.0089</td>
</tr>
<tr>
<td>56</td>
<td>4.7120</td>
<td>0.1567</td>
<td>0.3454</td>
<td>0.1407</td>
<td>0.0191</td>
</tr>
<tr>
<td>60</td>
<td>4.8585</td>
<td>0.1547</td>
<td>0.3190</td>
<td>0.1206</td>
<td>0.0136</td>
</tr>
<tr>
<td>64</td>
<td>5.1076</td>
<td>0.1377</td>
<td>0.3571</td>
<td>0.0915</td>
<td>0.0094</td>
</tr>
<tr>
<td>68</td>
<td>5.3232</td>
<td>0.1637</td>
<td>0.3979</td>
<td>0.1017</td>
<td>0.0107</td>
</tr>
<tr>
<td>72</td>
<td>5.4630</td>
<td>0.1336</td>
<td>0.4082</td>
<td>0.0870</td>
<td>0.0058</td>
</tr>
<tr>
<td>76</td>
<td>5.5169</td>
<td>0.1786</td>
<td>0.3834</td>
<td>0.1473</td>
<td>0.0172</td>
</tr>
<tr>
<td>80</td>
<td>5.5942</td>
<td>0.1305</td>
<td>0.3719</td>
<td>0.0796</td>
<td>0.0031</td>
</tr>
<tr>
<td>84</td>
<td>5.6733</td>
<td>0.1483</td>
<td>0.3888</td>
<td>0.0750</td>
<td>0.0037</td>
</tr>
<tr>
<td>88</td>
<td>5.6932</td>
<td>0.1843</td>
<td>0.3894</td>
<td>0.1176</td>
<td>0.0118</td>
</tr>
<tr>
<td>92</td>
<td>5.6883</td>
<td>0.1717</td>
<td>0.4000</td>
<td>0.0962</td>
<td>0.0076</td>
</tr>
<tr>
<td>96</td>
<td>5.6972</td>
<td>0.2291</td>
<td>0.3965</td>
<td>0.1491</td>
<td>0.0212</td>
</tr>
<tr>
<td>98</td>
<td>5.7133</td>
<td>0.3063</td>
<td>0.4051</td>
<td>0.1901</td>
<td>0.0306</td>
</tr>
<tr>
<td>100</td>
<td>5.6726</td>
<td>0.3401</td>
<td>0.3867</td>
<td>0.1378</td>
<td>0.0193</td>
</tr>
<tr>
<td>102</td>
<td>5.5948</td>
<td>0.4601</td>
<td>0.3803</td>
<td>0.2083</td>
<td>0.0349</td>
</tr>
<tr>
<td>104</td>
<td>5.4581</td>
<td>0.6025</td>
<td>0.3901</td>
<td>0.2974</td>
<td>0.1059</td>
</tr>
<tr>
<td>106</td>
<td>5.1104</td>
<td>0.6002</td>
<td>0.3209</td>
<td>0.4185</td>
<td>0.1155</td>
</tr>
<tr>
<td>108</td>
<td>4.8957</td>
<td>0.6338</td>
<td>0.2876</td>
<td>0.3847</td>
<td>0.1139</td>
</tr>
<tr>
<td>110</td>
<td>4.9102</td>
<td>0.5478</td>
<td>0.2430</td>
<td>0.3369</td>
<td>0.1038</td>
</tr>
<tr>
<td>112</td>
<td>4.8994</td>
<td>0.4832</td>
<td>0.3146</td>
<td>0.2620</td>
<td>0.0711</td>
</tr>
<tr>
<td>114</td>
<td>4.8174</td>
<td>0.4246</td>
<td>0.3317</td>
<td>0.2927</td>
<td>0.0663</td>
</tr>
<tr>
<td>116</td>
<td>4.7651</td>
<td>0.4045</td>
<td>0.3048</td>
<td>0.2931</td>
<td>0.0566</td>
</tr>
<tr>
<td>120</td>
<td>4.5942</td>
<td>0.4164</td>
<td>0.2925</td>
<td>0.2520</td>
<td>0.0581</td>
</tr>
<tr>
<td>124</td>
<td>4.4716</td>
<td>0.3863</td>
<td>0.2704</td>
<td>0.2635</td>
<td>0.0507</td>
</tr>
<tr>
<td>128</td>
<td>4.2346</td>
<td>0.4365</td>
<td>0.2310</td>
<td>0.3004</td>
<td>0.0717</td>
</tr>
<tr>
<td>132</td>
<td>4.0133</td>
<td>0.3669</td>
<td>0.2301</td>
<td>0.2485</td>
<td>0.0278</td>
</tr>
<tr>
<td>136</td>
<td>3.8312</td>
<td>0.3737</td>
<td>0.2419</td>
<td>0.2521</td>
<td>0.0434</td>
</tr>
<tr>
<td>140</td>
<td>3.5161</td>
<td>0.3429</td>
<td>0.2024</td>
<td>0.2321</td>
<td>0.0356</td>
</tr>
<tr>
<td>144</td>
<td>3.3057</td>
<td>0.3730</td>
<td>0.2387</td>
<td>0.2108</td>
<td>0.0428</td>
</tr>
<tr>
<td>148</td>
<td>3.0008</td>
<td>0.3249</td>
<td>0.1779</td>
<td>0.2033</td>
<td>0.0326</td>
</tr>
<tr>
<td>152</td>
<td>2.6712</td>
<td>0.3288</td>
<td>0.1782</td>
<td>0.2081</td>
<td>0.0332</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u'v' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>156</td>
<td>2.3349</td>
<td>0.3079</td>
<td>0.1734</td>
<td>0.1962</td>
<td>0.0330</td>
</tr>
<tr>
<td>160</td>
<td>2.0123</td>
<td>0.2822</td>
<td>0.1305</td>
<td>0.2123</td>
<td>0.0315</td>
</tr>
<tr>
<td>164</td>
<td>1.6478</td>
<td>0.2675</td>
<td>0.1025</td>
<td>0.1660</td>
<td>0.0252</td>
</tr>
<tr>
<td>168</td>
<td>1.3010</td>
<td>0.2525</td>
<td>0.1131</td>
<td>0.1468</td>
<td>0.0164</td>
</tr>
<tr>
<td>172</td>
<td>0.9278</td>
<td>0.2192</td>
<td>0.0653</td>
<td>0.1027</td>
<td>0.0093</td>
</tr>
<tr>
<td>176</td>
<td>0.5821</td>
<td>0.1910</td>
<td>0.0465</td>
<td>0.0819</td>
<td>0.0092</td>
</tr>
<tr>
<td>180</td>
<td>0.3475</td>
<td>0.1065</td>
<td>0.0279</td>
<td>0.0546</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

SPRE

r/R = 0.600

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-u'v' (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3368</td>
<td>0.1126</td>
<td>-0.0088</td>
<td>0.0536</td>
<td>-0.0018</td>
</tr>
<tr>
<td>8</td>
<td>0.6816</td>
<td>0.1334</td>
<td>0.0160</td>
<td>0.0654</td>
<td>-0.0016</td>
</tr>
<tr>
<td>12</td>
<td>1.0089</td>
<td>0.1206</td>
<td>0.0424</td>
<td>0.0774</td>
<td>-0.0011</td>
</tr>
<tr>
<td>16</td>
<td>1.4312</td>
<td>0.1155</td>
<td>0.0742</td>
<td>0.0727</td>
<td>-0.0013</td>
</tr>
<tr>
<td>20</td>
<td>1.8617</td>
<td>0.1215</td>
<td>0.1090</td>
<td>0.0864</td>
<td>-0.0007</td>
</tr>
<tr>
<td>24</td>
<td>2.2087</td>
<td>0.1158</td>
<td>0.1301</td>
<td>0.0986</td>
<td>0.0039</td>
</tr>
<tr>
<td>28</td>
<td>2.5492</td>
<td>0.1132</td>
<td>0.1513</td>
<td>0.0805</td>
<td>0.0027</td>
</tr>
<tr>
<td>32</td>
<td>2.9236</td>
<td>0.1019</td>
<td>0.1989</td>
<td>0.0620</td>
<td>0.0014</td>
</tr>
<tr>
<td>36</td>
<td>3.3001</td>
<td>0.0885</td>
<td>0.2152</td>
<td>0.0820</td>
<td>0.0037</td>
</tr>
<tr>
<td>40</td>
<td>3.5957</td>
<td>0.1172</td>
<td>0.2285</td>
<td>0.1041</td>
<td>0.0073</td>
</tr>
<tr>
<td>44</td>
<td>3.8861</td>
<td>0.0986</td>
<td>0.2487</td>
<td>0.0907</td>
<td>0.0061</td>
</tr>
<tr>
<td>48</td>
<td>4.2718</td>
<td>0.1144</td>
<td>0.2305</td>
<td>0.1041</td>
<td>0.0057</td>
</tr>
<tr>
<td>52</td>
<td>4.5285</td>
<td>0.0944</td>
<td>0.3101</td>
<td>0.0913</td>
<td>0.0060</td>
</tr>
<tr>
<td>56</td>
<td>4.7805</td>
<td>0.1315</td>
<td>0.3390</td>
<td>0.1329</td>
<td>0.0147</td>
</tr>
<tr>
<td>60</td>
<td>4.9927</td>
<td>0.1202</td>
<td>0.3470</td>
<td>0.1250</td>
<td>0.0136</td>
</tr>
<tr>
<td>64</td>
<td>5.2216</td>
<td>0.1287</td>
<td>0.3615</td>
<td>0.1092</td>
<td>0.0123</td>
</tr>
<tr>
<td>68</td>
<td>5.4791</td>
<td>0.0756</td>
<td>0.3899</td>
<td>0.0683</td>
<td>0.0036</td>
</tr>
<tr>
<td>72</td>
<td>5.5878</td>
<td>0.0909</td>
<td>0.3588</td>
<td>0.0875</td>
<td>0.0059</td>
</tr>
<tr>
<td>76</td>
<td>5.6943</td>
<td>0.0959</td>
<td>0.3517</td>
<td>0.0784</td>
<td>0.0060</td>
</tr>
<tr>
<td>80</td>
<td>5.8294</td>
<td>0.1315</td>
<td>0.3603</td>
<td>0.1161</td>
<td>0.0119</td>
</tr>
<tr>
<td>84</td>
<td>5.9651</td>
<td>0.1630</td>
<td>0.3813</td>
<td>0.1533</td>
<td>0.0218</td>
</tr>
<tr>
<td>88</td>
<td>6.0096</td>
<td>0.1081</td>
<td>0.3823</td>
<td>0.0712</td>
<td>0.0044</td>
</tr>
<tr>
<td>92</td>
<td>6.0451</td>
<td>0.1357</td>
<td>0.3838</td>
<td>0.1134</td>
<td>0.0117</td>
</tr>
<tr>
<td>96</td>
<td>6.0782</td>
<td>0.1682</td>
<td>0.3786</td>
<td>0.1238</td>
<td>0.0141</td>
</tr>
<tr>
<td>100</td>
<td>6.0531</td>
<td>0.2026</td>
<td>0.3825</td>
<td>0.0788</td>
<td>0.0051</td>
</tr>
<tr>
<td>102</td>
<td>6.0032</td>
<td>0.2818</td>
<td>0.3779</td>
<td>0.1289</td>
<td>0.0156</td>
</tr>
</tbody>
</table>

s/d = 44
<table>
<thead>
<tr>
<th>θ</th>
<th>u</th>
<th>u'</th>
<th>v</th>
<th>v'</th>
<th>-uv'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>104</td>
<td>5.7473</td>
<td>0.4379</td>
<td>0.3715</td>
<td>0.2661</td>
<td>0.0550</td>
</tr>
<tr>
<td>106</td>
<td>5.5184</td>
<td>0.5940</td>
<td>0.3721</td>
<td>0.3302</td>
<td>0.1067</td>
</tr>
<tr>
<td>108</td>
<td>5.2933</td>
<td>0.5320</td>
<td>0.2848</td>
<td>0.3494</td>
<td>0.1014</td>
</tr>
<tr>
<td>110</td>
<td>5.1873</td>
<td>0.4744</td>
<td>0.2970</td>
<td>0.2801</td>
<td>0.0503</td>
</tr>
<tr>
<td>112</td>
<td>5.1791</td>
<td>0.4059</td>
<td>0.3874</td>
<td>0.2928</td>
<td>0.0585</td>
</tr>
<tr>
<td>114</td>
<td>5.0902</td>
<td>0.3955</td>
<td>0.3299</td>
<td>0.2567</td>
<td>0.0566</td>
</tr>
<tr>
<td>116</td>
<td>5.0281</td>
<td>0.3967</td>
<td>0.3605</td>
<td>0.2660</td>
<td>0.0517</td>
</tr>
<tr>
<td>120</td>
<td>4.8540</td>
<td>0.4199</td>
<td>0.3362</td>
<td>0.2551</td>
<td>0.0522</td>
</tr>
<tr>
<td>124</td>
<td>4.7375</td>
<td>0.4294</td>
<td>0.3268</td>
<td>0.2882</td>
<td>0.0705</td>
</tr>
<tr>
<td>128</td>
<td>4.5353</td>
<td>0.3511</td>
<td>0.3172</td>
<td>0.2511</td>
<td>0.0392</td>
</tr>
<tr>
<td>132</td>
<td>4.2885</td>
<td>0.3635</td>
<td>0.2951</td>
<td>0.2784</td>
<td>0.0583</td>
</tr>
<tr>
<td>136</td>
<td>4.0664</td>
<td>0.3393</td>
<td>0.2521</td>
<td>0.2350</td>
<td>0.0313</td>
</tr>
<tr>
<td>140</td>
<td>3.7926</td>
<td>0.3397</td>
<td>0.2351</td>
<td>0.2323</td>
<td>0.0359</td>
</tr>
<tr>
<td>144</td>
<td>3.5485</td>
<td>0.3311</td>
<td>0.2581</td>
<td>0.2136</td>
<td>0.0341</td>
</tr>
<tr>
<td>148</td>
<td>3.2446</td>
<td>0.2997</td>
<td>0.2215</td>
<td>0.2257</td>
<td>0.0298</td>
</tr>
<tr>
<td>152</td>
<td>2.8621</td>
<td>0.3358</td>
<td>0.1908</td>
<td>0.2114</td>
<td>0.0382</td>
</tr>
<tr>
<td>156</td>
<td>2.5617</td>
<td>0.2588</td>
<td>0.1812</td>
<td>0.1726</td>
<td>0.0189</td>
</tr>
<tr>
<td>160</td>
<td>2.1643</td>
<td>0.2805</td>
<td>0.1361</td>
<td>0.1867</td>
<td>0.0276</td>
</tr>
<tr>
<td>164</td>
<td>1.8231</td>
<td>0.2545</td>
<td>0.1142</td>
<td>0.1479</td>
<td>0.0201</td>
</tr>
<tr>
<td>168</td>
<td>1.4367</td>
<td>0.2177</td>
<td>0.1085</td>
<td>0.1520</td>
<td>0.0190</td>
</tr>
<tr>
<td>172</td>
<td>1.0746</td>
<td>0.2070</td>
<td>0.0823</td>
<td>0.1184</td>
<td>0.0112</td>
</tr>
<tr>
<td>176</td>
<td>0.6787</td>
<td>0.1862</td>
<td>0.0586</td>
<td>0.0950</td>
<td>0.0097</td>
</tr>
<tr>
<td>180</td>
<td>0.3800</td>
<td>0.1135</td>
<td>0.0343</td>
<td>0.0593</td>
<td>0.0042</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ</th>
<th>u</th>
<th>u'</th>
<th>v</th>
<th>v'</th>
<th>-uv'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.3056</td>
<td>0.0956</td>
<td>0.0038</td>
<td>0.0527</td>
<td>-0.0008</td>
</tr>
<tr>
<td>8</td>
<td>0.6161</td>
<td>0.1133</td>
<td>0.0154</td>
<td>0.0786</td>
<td>0.0001</td>
</tr>
<tr>
<td>12</td>
<td>0.9797</td>
<td>0.1336</td>
<td>0.0468</td>
<td>0.0751</td>
<td>0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.3836</td>
<td>0.1178</td>
<td>0.0817</td>
<td>0.0753</td>
<td>-0.0014</td>
</tr>
<tr>
<td>20</td>
<td>1.8341</td>
<td>0.1303</td>
<td>0.1105</td>
<td>0.0920</td>
<td>0.0030</td>
</tr>
<tr>
<td>24</td>
<td>2.2036</td>
<td>0.1277</td>
<td>0.1429</td>
<td>0.0890</td>
<td>0.0011</td>
</tr>
<tr>
<td>28</td>
<td>2.5305</td>
<td>0.1204</td>
<td>0.1625</td>
<td>0.0961</td>
<td>0.0034</td>
</tr>
<tr>
<td>32</td>
<td>2.9152</td>
<td>0.0962</td>
<td>0.1959</td>
<td>0.0743</td>
<td>-0.0003</td>
</tr>
<tr>
<td>36</td>
<td>3.3242</td>
<td>0.1130</td>
<td>0.2205</td>
<td>0.0986</td>
<td>0.0049</td>
</tr>
<tr>
<td>40</td>
<td>3.6276</td>
<td>0.1201</td>
<td>0.2537</td>
<td>0.1042</td>
<td>0.0066</td>
</tr>
<tr>
<td>44</td>
<td>3.9263</td>
<td>0.0934</td>
<td>0.2564</td>
<td>0.0887</td>
<td>0.0037</td>
</tr>
<tr>
<td>48</td>
<td>4.2970</td>
<td>0.0946</td>
<td>0.2312</td>
<td>0.0843</td>
<td>0.0050</td>
</tr>
<tr>
<td>52</td>
<td>4.5842</td>
<td>0.1076</td>
<td>0.3178</td>
<td>0.1035</td>
<td>0.0084</td>
</tr>
</tbody>
</table>

r/R = 0.467

s/d = 44
<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\bar{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\bar{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\bar{u}\bar{v}'$ (m2/sec2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4.8104</td>
<td>0.0845</td>
<td>0.3101</td>
<td>0.0797</td>
<td>0.0041</td>
</tr>
<tr>
<td>60</td>
<td>5.0541</td>
<td>0.1114</td>
<td>0.3483</td>
<td>0.1121</td>
<td>0.0103</td>
</tr>
<tr>
<td>64</td>
<td>5.3401</td>
<td>0.1001</td>
<td>0.3961</td>
<td>0.0935</td>
<td>0.0073</td>
</tr>
<tr>
<td>68</td>
<td>5.5347</td>
<td>0.0869</td>
<td>0.3576</td>
<td>0.0802</td>
<td>0.0048</td>
</tr>
<tr>
<td>72</td>
<td>5.6648</td>
<td>0.0672</td>
<td>0.3468</td>
<td>0.0658</td>
<td>0.0036</td>
</tr>
<tr>
<td>76</td>
<td>5.8058</td>
<td>0.1163</td>
<td>0.3738</td>
<td>0.1145</td>
<td>0.0121</td>
</tr>
<tr>
<td>80</td>
<td>5.9636</td>
<td>0.1216</td>
<td>0.3783</td>
<td>0.1227</td>
<td>0.0128</td>
</tr>
<tr>
<td>84</td>
<td>6.0882</td>
<td>0.0927</td>
<td>0.3845</td>
<td>0.0933</td>
<td>0.0081</td>
</tr>
<tr>
<td>88</td>
<td>6.1584</td>
<td>0.0672</td>
<td>0.4009</td>
<td>0.0579</td>
<td>0.0027</td>
</tr>
<tr>
<td>92</td>
<td>6.2206</td>
<td>0.1527</td>
<td>0.4049</td>
<td>0.1440</td>
<td>0.0200</td>
</tr>
<tr>
<td>96</td>
<td>6.2290</td>
<td>0.1199</td>
<td>0.3926</td>
<td>0.0901</td>
<td>0.0056</td>
</tr>
<tr>
<td>98</td>
<td>6.2016</td>
<td>0.2243</td>
<td>0.3771</td>
<td>0.1893</td>
<td>0.0300</td>
</tr>
<tr>
<td>100</td>
<td>6.1673</td>
<td>0.2247</td>
<td>0.3658</td>
<td>0.1657</td>
<td>0.0183</td>
</tr>
<tr>
<td>102</td>
<td>6.0698</td>
<td>0.2853</td>
<td>0.3712</td>
<td>0.2071</td>
<td>0.0240</td>
</tr>
<tr>
<td>104</td>
<td>6.0420</td>
<td>0.3569</td>
<td>0.3620</td>
<td>0.2736</td>
<td>0.0434</td>
</tr>
<tr>
<td>106</td>
<td>6.0827</td>
<td>0.4551</td>
<td>0.4105</td>
<td>0.3467</td>
<td>0.0799</td>
</tr>
<tr>
<td>108</td>
<td>5.7450</td>
<td>0.5014</td>
<td>0.3478</td>
<td>0.3159</td>
<td>0.0840</td>
</tr>
<tr>
<td>110</td>
<td>5.5130</td>
<td>0.4016</td>
<td>0.3216</td>
<td>0.2880</td>
<td>0.0610</td>
</tr>
<tr>
<td>112</td>
<td>5.3613</td>
<td>0.3571</td>
<td>0.3579</td>
<td>0.2487</td>
<td>0.0278</td>
</tr>
<tr>
<td>114</td>
<td>5.3778</td>
<td>0.3114</td>
<td>0.3743</td>
<td>0.2449</td>
<td>0.0170</td>
</tr>
<tr>
<td>116</td>
<td>5.2977</td>
<td>0.3538</td>
<td>0.3618</td>
<td>0.2282</td>
<td>0.0261</td>
</tr>
<tr>
<td>120</td>
<td>5.1242</td>
<td>0.3628</td>
<td>0.3394</td>
<td>0.2713</td>
<td>0.0498</td>
</tr>
<tr>
<td>124</td>
<td>4.9753</td>
<td>0.3573</td>
<td>0.3615</td>
<td>0.2389</td>
<td>0.0418</td>
</tr>
<tr>
<td>128</td>
<td>4.7732</td>
<td>0.3359</td>
<td>0.3228</td>
<td>0.2350</td>
<td>0.0328</td>
</tr>
<tr>
<td>132</td>
<td>4.5402</td>
<td>0.3080</td>
<td>0.2923</td>
<td>0.2400</td>
<td>0.0418</td>
</tr>
<tr>
<td>136</td>
<td>4.3106</td>
<td>0.2991</td>
<td>0.2567</td>
<td>0.2080</td>
<td>0.0341</td>
</tr>
<tr>
<td>140</td>
<td>3.9680</td>
<td>0.3467</td>
<td>0.2236</td>
<td>0.2387</td>
<td>0.0379</td>
</tr>
<tr>
<td>144</td>
<td>3.7548</td>
<td>0.3207</td>
<td>0.2361</td>
<td>0.2261</td>
<td>0.0285</td>
</tr>
<tr>
<td>148</td>
<td>3.4093</td>
<td>0.3207</td>
<td>0.2024</td>
<td>0.2104</td>
<td>0.0352</td>
</tr>
<tr>
<td>152</td>
<td>3.0723</td>
<td>0.2583</td>
<td>0.2154</td>
<td>0.1667</td>
<td>0.0199</td>
</tr>
<tr>
<td>156</td>
<td>2.7081</td>
<td>0.2636</td>
<td>0.1929</td>
<td>0.1942</td>
<td>0.0216</td>
</tr>
<tr>
<td>160</td>
<td>2.3470</td>
<td>0.2626</td>
<td>0.1428</td>
<td>0.1747</td>
<td>0.0191</td>
</tr>
<tr>
<td>164</td>
<td>1.9850</td>
<td>0.2446</td>
<td>0.1511</td>
<td>0.1637</td>
<td>0.0239</td>
</tr>
<tr>
<td>168</td>
<td>1.5479</td>
<td>0.2395</td>
<td>0.1041</td>
<td>0.1365</td>
<td>0.0166</td>
</tr>
<tr>
<td>172</td>
<td>1.1941</td>
<td>0.2064</td>
<td>0.0983</td>
<td>0.1294</td>
<td>0.0138</td>
</tr>
<tr>
<td>176</td>
<td>0.7893</td>
<td>0.1743</td>
<td>0.0512</td>
<td>0.0980</td>
<td>0.0077</td>
</tr>
<tr>
<td>180</td>
<td>0.4362</td>
<td>0.1118</td>
<td>0.0371</td>
<td>0.0675</td>
<td>0.0036</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{v}</th>
<th>v'</th>
<th>$-u'\ddot{v}'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>4</td>
<td>0.2980</td>
<td>0.0961</td>
<td>0.0060</td>
<td>0.0623</td>
<td>-0.0002</td>
</tr>
<tr>
<td>8</td>
<td>0.5851</td>
<td>0.1277</td>
<td>0.0270</td>
<td>0.0745</td>
<td>0.0008</td>
</tr>
<tr>
<td>12</td>
<td>0.9228</td>
<td>0.1259</td>
<td>0.0450</td>
<td>0.0780</td>
<td>0.0003</td>
</tr>
<tr>
<td>16</td>
<td>1.3440</td>
<td>0.1076</td>
<td>0.0768</td>
<td>0.0867</td>
<td>-0.0010</td>
</tr>
<tr>
<td>20</td>
<td>1.7855</td>
<td>0.1235</td>
<td>0.1020</td>
<td>0.0776</td>
<td>0.0011</td>
</tr>
<tr>
<td>24</td>
<td>2.1405</td>
<td>0.1013</td>
<td>0.1288</td>
<td>0.0761</td>
<td>-0.0012</td>
</tr>
<tr>
<td>28</td>
<td>2.4729</td>
<td>0.1337</td>
<td>0.1519</td>
<td>0.0983</td>
<td>-0.0040</td>
</tr>
<tr>
<td>32</td>
<td>2.8825</td>
<td>0.1116</td>
<td>0.1811</td>
<td>0.0815</td>
<td>0.0017</td>
</tr>
<tr>
<td>36</td>
<td>3.2880</td>
<td>0.1125</td>
<td>0.2149</td>
<td>0.0954</td>
<td>0.0036</td>
</tr>
<tr>
<td>40</td>
<td>3.6037</td>
<td>0.1122</td>
<td>0.2359</td>
<td>0.0994</td>
<td>0.0051</td>
</tr>
<tr>
<td>44</td>
<td>3.8780</td>
<td>0.1090</td>
<td>0.2430</td>
<td>0.1083</td>
<td>0.0068</td>
</tr>
<tr>
<td>48</td>
<td>4.2817</td>
<td>0.1071</td>
<td>0.2214</td>
<td>0.1078</td>
<td>0.0047</td>
</tr>
<tr>
<td>52</td>
<td>4.5503</td>
<td>0.0802</td>
<td>0.2998</td>
<td>0.0858</td>
<td>0.0037</td>
</tr>
<tr>
<td>56</td>
<td>4.8024</td>
<td>0.0993</td>
<td>0.3187</td>
<td>0.1002</td>
<td>0.0071</td>
</tr>
<tr>
<td>60</td>
<td>5.0179</td>
<td>0.0854</td>
<td>0.3225</td>
<td>0.0823</td>
<td>0.0056</td>
</tr>
<tr>
<td>64</td>
<td>5.2968</td>
<td>0.1227</td>
<td>0.3547</td>
<td>0.1181</td>
<td>0.0119</td>
</tr>
<tr>
<td>68</td>
<td>5.5242</td>
<td>0.0884</td>
<td>0.3613</td>
<td>0.0900</td>
<td>0.0059</td>
</tr>
<tr>
<td>72</td>
<td>5.6333</td>
<td>0.1090</td>
<td>0.3171</td>
<td>0.1033</td>
<td>0.0099</td>
</tr>
<tr>
<td>76</td>
<td>5.7861</td>
<td>0.1135</td>
<td>0.3537</td>
<td>0.1161</td>
<td>0.0121</td>
</tr>
<tr>
<td>80</td>
<td>5.9292</td>
<td>0.0630</td>
<td>0.3374</td>
<td>0.0630</td>
<td>0.0027</td>
</tr>
<tr>
<td>84</td>
<td>6.0984</td>
<td>0.1438</td>
<td>0.3695</td>
<td>0.1455</td>
<td>0.0020</td>
</tr>
<tr>
<td>88</td>
<td>6.1428</td>
<td>0.1120</td>
<td>0.3602</td>
<td>0.1128</td>
<td>0.0120</td>
</tr>
<tr>
<td>92</td>
<td>6.2027</td>
<td>0.1223</td>
<td>0.3700</td>
<td>0.1222</td>
<td>0.0139</td>
</tr>
<tr>
<td>96</td>
<td>6.1962</td>
<td>0.1525</td>
<td>0.3513</td>
<td>0.1481</td>
<td>0.0175</td>
</tr>
<tr>
<td>98</td>
<td>6.2168</td>
<td>0.1729</td>
<td>0.3581</td>
<td>0.1613</td>
<td>0.0177</td>
</tr>
<tr>
<td>100</td>
<td>6.1968</td>
<td>0.1972</td>
<td>0.3691</td>
<td>0.1343</td>
<td>0.0137</td>
</tr>
<tr>
<td>102</td>
<td>6.1620</td>
<td>0.2520</td>
<td>0.3571</td>
<td>0.1754</td>
<td>0.0207</td>
</tr>
<tr>
<td>104</td>
<td>6.2130</td>
<td>0.3580</td>
<td>0.3546</td>
<td>0.2467</td>
<td>0.0353</td>
</tr>
<tr>
<td>106</td>
<td>6.2164</td>
<td>0.4265</td>
<td>0.3521</td>
<td>0.3470</td>
<td>0.0607</td>
</tr>
<tr>
<td>108</td>
<td>6.0122</td>
<td>0.4175</td>
<td>0.3408</td>
<td>0.2937</td>
<td>0.0425</td>
</tr>
<tr>
<td>110</td>
<td>5.7198</td>
<td>0.3354</td>
<td>0.3342</td>
<td>0.2311</td>
<td>0.0257</td>
</tr>
<tr>
<td>112</td>
<td>5.5931</td>
<td>0.3162</td>
<td>0.3344</td>
<td>0.2463</td>
<td>0.0262</td>
</tr>
<tr>
<td>114</td>
<td>5.5333</td>
<td>0.2996</td>
<td>0.3364</td>
<td>0.2363</td>
<td>0.0257</td>
</tr>
<tr>
<td>116</td>
<td>5.5100</td>
<td>0.2992</td>
<td>0.3446</td>
<td>0.2471</td>
<td>0.0313</td>
</tr>
<tr>
<td>120</td>
<td>5.3121</td>
<td>0.3528</td>
<td>0.3436</td>
<td>0.2108</td>
<td>0.0359</td>
</tr>
<tr>
<td>124</td>
<td>5.1467</td>
<td>0.3558</td>
<td>0.3376</td>
<td>0.2371</td>
<td>0.0463</td>
</tr>
<tr>
<td>128</td>
<td>4.8953</td>
<td>0.3636</td>
<td>0.3278</td>
<td>0.2625</td>
<td>0.0578</td>
</tr>
<tr>
<td>132</td>
<td>4.6968</td>
<td>0.2877</td>
<td>0.2978</td>
<td>0.2355</td>
<td>0.0385</td>
</tr>
<tr>
<td>136</td>
<td>4.4358</td>
<td>0.3146</td>
<td>0.2653</td>
<td>0.2264</td>
<td>0.0339</td>
</tr>
<tr>
<td>140</td>
<td>4.1994</td>
<td>0.2948</td>
<td>0.2653</td>
<td>0.2266</td>
<td>0.0341</td>
</tr>
<tr>
<td>144</td>
<td>3.8511</td>
<td>0.2805</td>
<td>0.2196</td>
<td>0.2174</td>
<td>0.0288</td>
</tr>
<tr>
<td>148</td>
<td>3.5329</td>
<td>0.2688</td>
<td>0.1932</td>
<td>0.1822</td>
<td>0.0218</td>
</tr>
<tr>
<td>θ</td>
<td>\ddot{u}</td>
<td>u'</td>
<td>\ddot{v}</td>
<td>v'</td>
<td>$-\overline{u'v'}$</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>152</td>
<td>3.1972</td>
<td>0.2271</td>
<td>0.1826</td>
<td>0.1656</td>
<td>0.0121</td>
</tr>
<tr>
<td>156</td>
<td>2.8405</td>
<td>0.2531</td>
<td>0.1619</td>
<td>0.1697</td>
<td>0.0156</td>
</tr>
<tr>
<td>160</td>
<td>2.4740</td>
<td>0.2461</td>
<td>0.1686</td>
<td>0.1882</td>
<td>0.0228</td>
</tr>
<tr>
<td>164</td>
<td>2.0768</td>
<td>0.2065</td>
<td>0.1444</td>
<td>0.1491</td>
<td>0.0116</td>
</tr>
<tr>
<td>168</td>
<td>1.6524</td>
<td>0.1949</td>
<td>0.1027</td>
<td>0.1413</td>
<td>0.0086</td>
</tr>
<tr>
<td>172</td>
<td>1.2388</td>
<td>0.1797</td>
<td>0.0779</td>
<td>0.1283</td>
<td>0.0096</td>
</tr>
<tr>
<td>176</td>
<td>0.8439</td>
<td>0.1576</td>
<td>0.0453</td>
<td>0.1000</td>
<td>0.0050</td>
</tr>
<tr>
<td>180</td>
<td>0.4782</td>
<td>0.1216</td>
<td>0.0369</td>
<td>0.0616</td>
<td>0.0038</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 44$

$r/R = 0.200$

<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{v}</th>
<th>v'</th>
<th>$-\overline{u'v'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>4</td>
<td>0.3218</td>
<td>0.1214</td>
<td>0.0325</td>
<td>0.0732</td>
<td>0.0046</td>
</tr>
<tr>
<td>8</td>
<td>0.5633</td>
<td>0.1298</td>
<td>0.0233</td>
<td>0.0869</td>
<td>0.0021</td>
</tr>
<tr>
<td>12</td>
<td>0.8923</td>
<td>0.1143</td>
<td>0.0540</td>
<td>0.0778</td>
<td>0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.3195</td>
<td>0.1234</td>
<td>0.0843</td>
<td>0.0902</td>
<td>0.0012</td>
</tr>
<tr>
<td>20</td>
<td>1.7432</td>
<td>0.1054</td>
<td>0.1108</td>
<td>0.0799</td>
<td>0.0014</td>
</tr>
<tr>
<td>24</td>
<td>2.1165</td>
<td>0.1017</td>
<td>0.1356</td>
<td>0.0731</td>
<td>0.0004</td>
</tr>
<tr>
<td>28</td>
<td>2.4421</td>
<td>0.1052</td>
<td>0.1751</td>
<td>0.0843</td>
<td>0.0009</td>
</tr>
<tr>
<td>32</td>
<td>2.8522</td>
<td>0.1049</td>
<td>0.1798</td>
<td>0.0824</td>
<td>0.0019</td>
</tr>
<tr>
<td>36</td>
<td>3.2515</td>
<td>0.1219</td>
<td>0.2000</td>
<td>0.0948</td>
<td>0.0066</td>
</tr>
<tr>
<td>40</td>
<td>3.5736</td>
<td>0.0832</td>
<td>0.2270</td>
<td>0.0709</td>
<td>0.0019</td>
</tr>
<tr>
<td>44</td>
<td>3.8768</td>
<td>0.0984</td>
<td>0.2572</td>
<td>0.0947</td>
<td>0.0056</td>
</tr>
<tr>
<td>48</td>
<td>4.2647</td>
<td>0.0957</td>
<td>0.2361</td>
<td>0.1059</td>
<td>0.0016</td>
</tr>
<tr>
<td>52</td>
<td>4.5458</td>
<td>0.0932</td>
<td>0.3048</td>
<td>0.0939</td>
<td>0.0064</td>
</tr>
<tr>
<td>56</td>
<td>4.7973</td>
<td>0.1328</td>
<td>0.3237</td>
<td>0.1424</td>
<td>0.0164</td>
</tr>
<tr>
<td>60</td>
<td>5.0154</td>
<td>0.1470</td>
<td>0.3313</td>
<td>0.1588</td>
<td>0.0215</td>
</tr>
<tr>
<td>64</td>
<td>5.2706</td>
<td>0.0861</td>
<td>0.3343</td>
<td>0.0849</td>
<td>0.0050</td>
</tr>
<tr>
<td>68</td>
<td>5.5352</td>
<td>0.0501</td>
<td>0.3746</td>
<td>0.0497</td>
<td>0.0004</td>
</tr>
<tr>
<td>72</td>
<td>5.6319</td>
<td>0.1000</td>
<td>0.3190</td>
<td>0.1039</td>
<td>0.0088</td>
</tr>
<tr>
<td>76</td>
<td>5.7749</td>
<td>0.0711</td>
<td>0.3408</td>
<td>0.0731</td>
<td>0.0042</td>
</tr>
<tr>
<td>80</td>
<td>5.9385</td>
<td>0.0685</td>
<td>0.3451</td>
<td>0.0661</td>
<td>0.0035</td>
</tr>
<tr>
<td>84</td>
<td>6.0947</td>
<td>0.0611</td>
<td>0.3558</td>
<td>0.0630</td>
<td>0.0032</td>
</tr>
<tr>
<td>88</td>
<td>6.1608</td>
<td>0.1058</td>
<td>0.3795</td>
<td>0.1090</td>
<td>0.0110</td>
</tr>
<tr>
<td>92</td>
<td>6.2119</td>
<td>0.1235</td>
<td>0.3697</td>
<td>0.1335</td>
<td>0.0147</td>
</tr>
<tr>
<td>96</td>
<td>6.2149</td>
<td>0.1487</td>
<td>0.3599</td>
<td>0.1450</td>
<td>0.0166</td>
</tr>
<tr>
<td>98</td>
<td>6.1963</td>
<td>0.1532</td>
<td>0.3512</td>
<td>0.1535</td>
<td>0.0141</td>
</tr>
<tr>
<td>100</td>
<td>6.2010</td>
<td>0.2004</td>
<td>0.3370</td>
<td>0.1685</td>
<td>0.0183</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\overline{uv}'$ (m2/sec2)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>102</td>
<td>6.2352</td>
<td>0.2600</td>
<td>0.3406</td>
<td>0.1930</td>
<td>0.0241</td>
</tr>
<tr>
<td>104</td>
<td>6.4041</td>
<td>0.3608</td>
<td>0.3786</td>
<td>0.2667</td>
<td>0.0368</td>
</tr>
<tr>
<td>106</td>
<td>6.4804</td>
<td>0.3351</td>
<td>0.3592</td>
<td>0.2978</td>
<td>0.0343</td>
</tr>
<tr>
<td>108</td>
<td>6.0446</td>
<td>0.2972</td>
<td>0.3394</td>
<td>0.2234</td>
<td>0.0282</td>
</tr>
<tr>
<td>110</td>
<td>5.8585</td>
<td>0.2578</td>
<td>0.3531</td>
<td>0.2041</td>
<td>0.0101</td>
</tr>
<tr>
<td>112</td>
<td>5.7088</td>
<td>0.2823</td>
<td>0.3437</td>
<td>0.2206</td>
<td>0.0323</td>
</tr>
<tr>
<td>114</td>
<td>5.6487</td>
<td>0.2825</td>
<td>0.2949</td>
<td>0.2258</td>
<td>0.0260</td>
</tr>
<tr>
<td>116</td>
<td>5.6085</td>
<td>0.2753</td>
<td>0.3206</td>
<td>0.1828</td>
<td>0.0213</td>
</tr>
<tr>
<td>120</td>
<td>5.4756</td>
<td>0.2732</td>
<td>0.3307</td>
<td>0.2191</td>
<td>0.0275</td>
</tr>
<tr>
<td>124</td>
<td>5.2777</td>
<td>0.2567</td>
<td>0.3026</td>
<td>0.2376</td>
<td>0.0294</td>
</tr>
<tr>
<td>128</td>
<td>5.0670</td>
<td>0.2517</td>
<td>0.2683</td>
<td>0.1695</td>
<td>0.0226</td>
</tr>
<tr>
<td>132</td>
<td>4.8251</td>
<td>0.2449</td>
<td>0.2233</td>
<td>0.1848</td>
<td>0.0136</td>
</tr>
<tr>
<td>136</td>
<td>4.6104</td>
<td>0.2408</td>
<td>0.2402</td>
<td>0.2007</td>
<td>0.0157</td>
</tr>
<tr>
<td>140</td>
<td>3.9821</td>
<td>0.2246</td>
<td>0.1864</td>
<td>0.1701</td>
<td>0.0148</td>
</tr>
<tr>
<td>144</td>
<td>3.6059</td>
<td>0.2000</td>
<td>0.1871</td>
<td>0.1963</td>
<td>0.0144</td>
</tr>
<tr>
<td>148</td>
<td>3.2497</td>
<td>0.2062</td>
<td>0.1515</td>
<td>0.1625</td>
<td>0.0096</td>
</tr>
<tr>
<td>152</td>
<td>2.9425</td>
<td>0.2132</td>
<td>0.1484</td>
<td>0.1612</td>
<td>0.0112</td>
</tr>
<tr>
<td>156</td>
<td>2.5362</td>
<td>0.1946</td>
<td>0.0860</td>
<td>0.1311</td>
<td>0.0087</td>
</tr>
<tr>
<td>160</td>
<td>2.1672</td>
<td>0.1736</td>
<td>0.0847</td>
<td>0.1218</td>
<td>0.0095</td>
</tr>
<tr>
<td>164</td>
<td>1.7292</td>
<td>0.1407</td>
<td>0.0504</td>
<td>0.0934</td>
<td>0.0022</td>
</tr>
<tr>
<td>168</td>
<td>1.3276</td>
<td>0.1200</td>
<td>0.0324</td>
<td>0.0633</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 44$

$r/R = 0.000$

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\ddot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\overline{uv}'$ (m2/sec2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3839</td>
<td>0.1349</td>
<td>0.0627</td>
<td>0.0720</td>
<td>0.0057</td>
</tr>
<tr>
<td>8</td>
<td>0.6103</td>
<td>0.1281</td>
<td>0.0546</td>
<td>0.0854</td>
<td>0.0042</td>
</tr>
<tr>
<td>12</td>
<td>0.8879</td>
<td>0.1053</td>
<td>0.0674</td>
<td>0.0825</td>
<td>0.0014</td>
</tr>
<tr>
<td>16</td>
<td>1.2943</td>
<td>0.1036</td>
<td>0.0970</td>
<td>0.0940</td>
<td>0.0023</td>
</tr>
<tr>
<td>20</td>
<td>1.7137</td>
<td>0.1019</td>
<td>0.1288</td>
<td>0.0889</td>
<td>0.0031</td>
</tr>
<tr>
<td>24</td>
<td>2.0703</td>
<td>0.1117</td>
<td>0.1373</td>
<td>0.0920</td>
<td>0.0038</td>
</tr>
<tr>
<td>28</td>
<td>2.4149</td>
<td>0.1082</td>
<td>0.1388</td>
<td>0.0883</td>
<td>0.0038</td>
</tr>
<tr>
<td>32</td>
<td>2.8266</td>
<td>0.0890</td>
<td>0.1837</td>
<td>0.0845</td>
<td>0.0023</td>
</tr>
<tr>
<td>36</td>
<td>3.2417</td>
<td>0.1077</td>
<td>0.2113</td>
<td>0.0984</td>
<td>0.0065</td>
</tr>
<tr>
<td>40</td>
<td>3.5675</td>
<td>0.0928</td>
<td>0.2212</td>
<td>0.0986</td>
<td>0.0040</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\bar{u}'\ddot{v}'$ (m2/sec2)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>44</td>
<td>3.6608</td>
<td>0.0822</td>
<td>0.2443</td>
<td>0.0774</td>
<td>0.0033</td>
</tr>
<tr>
<td>48</td>
<td>4.2567</td>
<td>0.0905</td>
<td>0.2126</td>
<td>0.0933</td>
<td>0.0017</td>
</tr>
<tr>
<td>50</td>
<td>5.2549</td>
<td>0.1162</td>
<td>0.2763</td>
<td>0.1145</td>
<td>0.0106</td>
</tr>
<tr>
<td>56</td>
<td>4.7839</td>
<td>0.0997</td>
<td>0.3043</td>
<td>0.1090</td>
<td>0.0082</td>
</tr>
<tr>
<td>60</td>
<td>5.0038</td>
<td>0.0617</td>
<td>0.3078</td>
<td>0.0580</td>
<td>0.0024</td>
</tr>
<tr>
<td>64</td>
<td>5.2806</td>
<td>0.1253</td>
<td>0.3439</td>
<td>0.1349</td>
<td>0.0146</td>
</tr>
<tr>
<td>68</td>
<td>5.5157</td>
<td>0.1079</td>
<td>0.3566</td>
<td>0.1236</td>
<td>0.0116</td>
</tr>
<tr>
<td>72</td>
<td>5.6445</td>
<td>0.1084</td>
<td>0.3154</td>
<td>0.1105</td>
<td>0.0110</td>
</tr>
<tr>
<td>76</td>
<td>5.7890</td>
<td>0.0822</td>
<td>0.3354</td>
<td>0.0832</td>
<td>0.0053</td>
</tr>
<tr>
<td>80</td>
<td>5.9464</td>
<td>0.1384</td>
<td>0.3315</td>
<td>0.1488</td>
<td>0.0188</td>
</tr>
<tr>
<td>84</td>
<td>6.0788</td>
<td>0.0946</td>
<td>0.3368</td>
<td>0.0953</td>
<td>0.0086</td>
</tr>
<tr>
<td>88</td>
<td>6.1579</td>
<td>0.1264</td>
<td>0.3538</td>
<td>0.1344</td>
<td>0.0159</td>
</tr>
<tr>
<td>92</td>
<td>6.1951</td>
<td>0.0987</td>
<td>0.3322</td>
<td>0.0955</td>
<td>0.0070</td>
</tr>
<tr>
<td>96</td>
<td>6.2159</td>
<td>0.1457</td>
<td>0.3407</td>
<td>0.1430</td>
<td>0.0148</td>
</tr>
<tr>
<td>98</td>
<td>6.2116</td>
<td>0.1568</td>
<td>0.3357</td>
<td>0.1380</td>
<td>0.0114</td>
</tr>
<tr>
<td>100</td>
<td>6.2340</td>
<td>0.1790</td>
<td>0.3510</td>
<td>0.1723</td>
<td>0.0127</td>
</tr>
<tr>
<td>102</td>
<td>6.2778</td>
<td>0.2720</td>
<td>0.3592</td>
<td>0.2363</td>
<td>0.0216</td>
</tr>
<tr>
<td>104</td>
<td>6.5112</td>
<td>0.4084</td>
<td>0.3821</td>
<td>0.3192</td>
<td>0.0664</td>
</tr>
<tr>
<td>106</td>
<td>6.5550</td>
<td>0.3946</td>
<td>0.3594</td>
<td>0.2485</td>
<td>0.0029</td>
</tr>
<tr>
<td>108</td>
<td>6.2652</td>
<td>0.3738</td>
<td>0.3288</td>
<td>0.2531</td>
<td>0.0285</td>
</tr>
<tr>
<td>110</td>
<td>5.9013</td>
<td>0.2955</td>
<td>0.2964</td>
<td>0.2094</td>
<td>0.0077</td>
</tr>
<tr>
<td>112</td>
<td>5.7703</td>
<td>0.2838</td>
<td>0.3259</td>
<td>0.2064</td>
<td>0.0062</td>
</tr>
<tr>
<td>114</td>
<td>5.7274</td>
<td>0.2442</td>
<td>0.3221</td>
<td>0.2104</td>
<td>-0.0012</td>
</tr>
<tr>
<td>116</td>
<td>5.6787</td>
<td>0.2510</td>
<td>0.3289</td>
<td>0.2202</td>
<td>0.0018</td>
</tr>
<tr>
<td>120</td>
<td>5.5319</td>
<td>0.2705</td>
<td>0.3210</td>
<td>0.2043</td>
<td>0.0054</td>
</tr>
<tr>
<td>124</td>
<td>5.3399</td>
<td>0.2302</td>
<td>0.3212</td>
<td>0.1922</td>
<td>0.0043</td>
</tr>
<tr>
<td>128</td>
<td>5.1066</td>
<td>0.2464</td>
<td>0.2975</td>
<td>0.2122</td>
<td>0.0041</td>
</tr>
<tr>
<td>132</td>
<td>4.8893</td>
<td>0.2452</td>
<td>0.2719</td>
<td>0.2035</td>
<td>0.0154</td>
</tr>
<tr>
<td>136</td>
<td>4.5900</td>
<td>0.2266</td>
<td>0.2309</td>
<td>0.1790</td>
<td>0.0125</td>
</tr>
<tr>
<td>140</td>
<td>4.3280</td>
<td>0.2341</td>
<td>0.2165</td>
<td>0.1891</td>
<td>0.0140</td>
</tr>
<tr>
<td>144</td>
<td>4.0434</td>
<td>0.2199</td>
<td>0.1938</td>
<td>0.1919</td>
<td>0.0047</td>
</tr>
<tr>
<td>148</td>
<td>3.6807</td>
<td>0.2092</td>
<td>0.2216</td>
<td>0.1866</td>
<td>0.0058</td>
</tr>
<tr>
<td>152</td>
<td>3.3379</td>
<td>0.2166</td>
<td>0.1729</td>
<td>0.1783</td>
<td>0.0068</td>
</tr>
<tr>
<td>156</td>
<td>2.9843</td>
<td>0.1988</td>
<td>0.1791</td>
<td>0.1661</td>
<td>0.0052</td>
</tr>
<tr>
<td>160</td>
<td>2.5907</td>
<td>0.1915</td>
<td>0.1396</td>
<td>0.1525</td>
<td>0.0094</td>
</tr>
<tr>
<td>164</td>
<td>2.1900</td>
<td>0.1907</td>
<td>0.1173</td>
<td>0.1423</td>
<td>0.0020</td>
</tr>
<tr>
<td>168</td>
<td>1.7311</td>
<td>0.1866</td>
<td>0.1025</td>
<td>0.1279</td>
<td>0.0021</td>
</tr>
<tr>
<td>172</td>
<td>1.3773</td>
<td>0.1572</td>
<td>0.0756</td>
<td>0.1238</td>
<td>0.0018</td>
</tr>
<tr>
<td>176</td>
<td>0.9349</td>
<td>0.1327</td>
<td>0.0420</td>
<td>0.1049</td>
<td>0.0022</td>
</tr>
<tr>
<td>180</td>
<td>0.5284</td>
<td>0.1089</td>
<td>0.0245</td>
<td>0.0662</td>
<td>0.0017</td>
</tr>
</tbody>
</table>
Figure 23: Streamwise velocity fluctuation at s/d = 44 (smoothed)
Figure 24: Radial velocity fluctuation at $s/d = 44$ (smoothed)
Figure 25: Reynolds shear stress at s/d = 44 (not smoothed)
PROCESSED DATA

I. Bulk-mean velocity, u_m, friction velocity, u_\ast, skin friction coefficient, c_f, and Couette flow model versus crank position, θ

Note: The symbol in the "model" column indicates which of the Couette flow models, laminar (l) or turbulent (t), was used in processing.

$s/d = 0.33$

<table>
<thead>
<tr>
<th>θ (°)</th>
<th>u_m (m/sec)</th>
<th>u_\ast (m/sec)</th>
<th>c_f</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.518</td>
<td>0.138</td>
<td>0.01653</td>
<td>t</td>
</tr>
<tr>
<td>30</td>
<td>2.303</td>
<td>0.158</td>
<td>0.00941</td>
<td>t</td>
</tr>
<tr>
<td>40</td>
<td>3.001</td>
<td>0.182</td>
<td>0.00735</td>
<td>t</td>
</tr>
<tr>
<td>50</td>
<td>3.703</td>
<td>0.215</td>
<td>0.00674</td>
<td>t</td>
</tr>
<tr>
<td>60</td>
<td>4.130</td>
<td>0.235</td>
<td>0.00648</td>
<td>t</td>
</tr>
<tr>
<td>70</td>
<td>4.605</td>
<td>0.242</td>
<td>0.00552</td>
<td>l</td>
</tr>
<tr>
<td>80</td>
<td>4.812</td>
<td>0.252</td>
<td>0.00548</td>
<td>l</td>
</tr>
<tr>
<td>90</td>
<td>4.808</td>
<td>0.248</td>
<td>0.00532</td>
<td>l</td>
</tr>
<tr>
<td>100</td>
<td>4.746</td>
<td>0.242</td>
<td>0.00520</td>
<td>l</td>
</tr>
<tr>
<td>110</td>
<td>4.533</td>
<td>0.233</td>
<td>0.00528</td>
<td>l</td>
</tr>
<tr>
<td>120</td>
<td>4.186</td>
<td>0.215</td>
<td>0.00528</td>
<td>l</td>
</tr>
<tr>
<td>130</td>
<td>3.732</td>
<td>0.198</td>
<td>0.00563</td>
<td>l</td>
</tr>
<tr>
<td>140</td>
<td>3.164</td>
<td>0.167</td>
<td>0.00557</td>
<td>l</td>
</tr>
<tr>
<td>150</td>
<td>2.457</td>
<td>0.134</td>
<td>0.00595</td>
<td>l</td>
</tr>
</tbody>
</table>

$s/d = 16$

<table>
<thead>
<tr>
<th>θ (°)</th>
<th>u_m (m/sec)</th>
<th>u_\ast (m/sec)</th>
<th>c_f</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.539</td>
<td>0.140</td>
<td>0.01656</td>
<td>l</td>
</tr>
<tr>
<td>30</td>
<td>2.387</td>
<td>0.187</td>
<td>0.01228</td>
<td>l</td>
</tr>
<tr>
<td>40</td>
<td>3.061</td>
<td>0.189</td>
<td>0.00762</td>
<td>l</td>
</tr>
<tr>
<td>50</td>
<td>3.701</td>
<td>0.198</td>
<td>0.00573</td>
<td>l</td>
</tr>
<tr>
<td>60</td>
<td>4.131</td>
<td>0.200</td>
<td>0.00469</td>
<td>l</td>
</tr>
<tr>
<td>70</td>
<td>4.511</td>
<td>0.241</td>
<td>0.00571</td>
<td>t</td>
</tr>
<tr>
<td>80</td>
<td>4.741</td>
<td>0.282</td>
<td>0.00708</td>
<td>t</td>
</tr>
<tr>
<td>90</td>
<td>4.806</td>
<td>0.294</td>
<td>0.00749</td>
<td>t</td>
</tr>
<tr>
<td>100</td>
<td>4.826</td>
<td>0.278</td>
<td>0.00664</td>
<td>t</td>
</tr>
<tr>
<td>110</td>
<td>4.597</td>
<td>0.210</td>
<td>0.00417</td>
<td>t</td>
</tr>
<tr>
<td>120</td>
<td>4.256</td>
<td>0.169</td>
<td>0.00315</td>
<td>t</td>
</tr>
<tr>
<td>130</td>
<td>3.791</td>
<td>0.139</td>
<td>0.00269</td>
<td>t</td>
</tr>
<tr>
<td>140</td>
<td>3.279</td>
<td>0.090</td>
<td>0.00151</td>
<td>l</td>
</tr>
<tr>
<td>150</td>
<td>2.607</td>
<td>0.087</td>
<td>0.00223</td>
<td>l</td>
</tr>
</tbody>
</table>
s/d = 30

<table>
<thead>
<tr>
<th>θ ($^\circ$)</th>
<th>u_m (m/sec)</th>
<th>u_* (m/sec)</th>
<th>c_l</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.479</td>
<td>0.140</td>
<td>0.01792</td>
<td>I</td>
</tr>
<tr>
<td>30</td>
<td>2.201</td>
<td>0.156</td>
<td>0.01005</td>
<td>I</td>
</tr>
<tr>
<td>40</td>
<td>2.878</td>
<td>0.175</td>
<td>0.00740</td>
<td>I</td>
</tr>
<tr>
<td>50</td>
<td>3.465</td>
<td>0.190</td>
<td>0.00602</td>
<td>I</td>
</tr>
<tr>
<td>60</td>
<td>3.886</td>
<td>0.193</td>
<td>0.00493</td>
<td>I</td>
</tr>
<tr>
<td>70</td>
<td>4.246</td>
<td>0.193</td>
<td>0.00413</td>
<td>I</td>
</tr>
<tr>
<td>80</td>
<td>4.441</td>
<td>0.189</td>
<td>0.00362</td>
<td>I</td>
</tr>
<tr>
<td>90</td>
<td>4.518</td>
<td>0.318</td>
<td>0.00991</td>
<td>I</td>
</tr>
<tr>
<td>100</td>
<td>4.548</td>
<td>0.315</td>
<td>0.00959</td>
<td>T</td>
</tr>
<tr>
<td>110</td>
<td>4.321</td>
<td>0.318</td>
<td>0.01083</td>
<td>T</td>
</tr>
<tr>
<td>120</td>
<td>4.080</td>
<td>0.290</td>
<td>0.01010</td>
<td>T</td>
</tr>
<tr>
<td>130</td>
<td>3.667</td>
<td>0.248</td>
<td>0.00915</td>
<td>T</td>
</tr>
<tr>
<td>140</td>
<td>3.176</td>
<td>0.200</td>
<td>0.00793</td>
<td>T</td>
</tr>
<tr>
<td>150</td>
<td>2.517</td>
<td>0.142</td>
<td>0.00637</td>
<td>T</td>
</tr>
<tr>
<td>160</td>
<td>1.849</td>
<td>0.100</td>
<td>0.00585</td>
<td>T</td>
</tr>
<tr>
<td>170</td>
<td>0.995</td>
<td>0.051</td>
<td>0.00525</td>
<td>T</td>
</tr>
</tbody>
</table>

s/d = 44

<table>
<thead>
<tr>
<th>θ ($^\circ$)</th>
<th>u_m (m/sec)</th>
<th>u_* (m/sec)</th>
<th>c_l</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.578</td>
<td>0.147</td>
<td>0.01735</td>
<td>I</td>
</tr>
<tr>
<td>30</td>
<td>2.295</td>
<td>0.170</td>
<td>0.01097</td>
<td>I</td>
</tr>
<tr>
<td>40</td>
<td>2.962</td>
<td>0.180</td>
<td>0.00739</td>
<td>I</td>
</tr>
<tr>
<td>50</td>
<td>3.569</td>
<td>0.189</td>
<td>0.00561</td>
<td>I</td>
</tr>
<tr>
<td>60</td>
<td>3.981</td>
<td>0.192</td>
<td>0.00465</td>
<td>I</td>
</tr>
<tr>
<td>70</td>
<td>4.358</td>
<td>0.200</td>
<td>0.00421</td>
<td>I</td>
</tr>
<tr>
<td>80</td>
<td>4.567</td>
<td>0.195</td>
<td>0.00365</td>
<td>I</td>
</tr>
<tr>
<td>90</td>
<td>4.631</td>
<td>0.188</td>
<td>0.00330</td>
<td>I</td>
</tr>
<tr>
<td>100</td>
<td>4.624</td>
<td>0.182</td>
<td>0.00310</td>
<td>I</td>
</tr>
<tr>
<td>110</td>
<td>4.445</td>
<td>0.390</td>
<td>0.01540</td>
<td>T</td>
</tr>
<tr>
<td>120</td>
<td>4.142</td>
<td>0.298</td>
<td>0.01035</td>
<td>T</td>
</tr>
<tr>
<td>130</td>
<td>3.708</td>
<td>0.267</td>
<td>0.01037</td>
<td>T</td>
</tr>
<tr>
<td>140</td>
<td>3.185</td>
<td>0.220</td>
<td>0.00954</td>
<td>T</td>
</tr>
<tr>
<td>150</td>
<td>2.511</td>
<td>0.156</td>
<td>0.00772</td>
<td>T</td>
</tr>
<tr>
<td>160</td>
<td>1.755</td>
<td>0.103</td>
<td>0.00689</td>
<td>T</td>
</tr>
<tr>
<td>170</td>
<td>0.891</td>
<td>0.040</td>
<td>0.00403</td>
<td>T</td>
</tr>
</tbody>
</table>

II. Processed (θ, u^*, y^*) Data: Experiment and Couette Flow Model
s/d=0.33 Experiment

<table>
<thead>
<tr>
<th>y⁺ (20°)</th>
<th>u⁺ (20°)</th>
<th>y⁺ (40°)</th>
<th>u⁺ (40°)</th>
<th>y⁺ (60°)</th>
<th>u⁺ (60°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.31</td>
<td>0.78</td>
<td>1.73</td>
<td>1.65</td>
<td>2.24</td>
<td>2.29</td>
</tr>
<tr>
<td>1.81</td>
<td>0.96</td>
<td>2.39</td>
<td>2.30</td>
<td>3.08</td>
<td>3.12</td>
</tr>
<tr>
<td>2.30</td>
<td>1.12</td>
<td>3.04</td>
<td>2.71</td>
<td>3.92</td>
<td>3.63</td>
</tr>
<tr>
<td>2.92</td>
<td>1.77</td>
<td>3.86</td>
<td>4.03</td>
<td>4.98</td>
<td>4.83</td>
</tr>
<tr>
<td>3.54</td>
<td>2.34</td>
<td>4.67</td>
<td>4.68</td>
<td>6.03</td>
<td>5.52</td>
</tr>
<tr>
<td>4.78</td>
<td>4.21</td>
<td>6.31</td>
<td>6.80</td>
<td>8.14</td>
<td>7.78</td>
</tr>
<tr>
<td>6.02</td>
<td>5.36</td>
<td>7.94</td>
<td>8.34</td>
<td>10.25</td>
<td>9.57</td>
</tr>
<tr>
<td>9.74</td>
<td>7.98</td>
<td>12.84</td>
<td>12.04</td>
<td>16.58</td>
<td>13.22</td>
</tr>
<tr>
<td>13.46</td>
<td>9.42</td>
<td>17.75</td>
<td>13.97</td>
<td>22.91</td>
<td>15.34</td>
</tr>
<tr>
<td>25.85</td>
<td>11.54</td>
<td>34.09</td>
<td>16.56</td>
<td>44.01</td>
<td>17.57</td>
</tr>
<tr>
<td>50.63</td>
<td>11.74</td>
<td>66.77</td>
<td>17.05</td>
<td>86.21</td>
<td>17.73</td>
</tr>
<tr>
<td>75.41</td>
<td>11.58</td>
<td>99.45</td>
<td>17.16</td>
<td>128.41</td>
<td>17.71</td>
</tr>
<tr>
<td>100.19</td>
<td>11.30</td>
<td>132.13</td>
<td>17.01</td>
<td>170.61</td>
<td>17.56</td>
</tr>
<tr>
<td>124.97</td>
<td>11.25</td>
<td>164.81</td>
<td>17.03</td>
<td>212.81</td>
<td>17.52</td>
</tr>
<tr>
<td>149.75</td>
<td>11.12</td>
<td>197.50</td>
<td>17.11</td>
<td>255.01</td>
<td>17.51</td>
</tr>
<tr>
<td>186.92</td>
<td>11.21</td>
<td>246.52</td>
<td>17.07</td>
<td>318.31</td>
<td>17.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y⁺ (30°)</th>
<th>u⁺ (30°)</th>
<th>y⁺ (50°)</th>
<th>u⁺ (50°)</th>
<th>y⁺ (70°)</th>
<th>u⁺ (70°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>1.17</td>
<td>2.05</td>
<td>2.13</td>
<td>2.30</td>
<td>2.63</td>
</tr>
<tr>
<td>2.07</td>
<td>1.61</td>
<td>2.82</td>
<td>2.96</td>
<td>3.17</td>
<td>3.44</td>
</tr>
<tr>
<td>2.64</td>
<td>1.96</td>
<td>3.59</td>
<td>3.33</td>
<td>4.04</td>
<td>3.94</td>
</tr>
<tr>
<td>3.35</td>
<td>3.08</td>
<td>4.56</td>
<td>4.56</td>
<td>5.13</td>
<td>5.19</td>
</tr>
<tr>
<td>4.06</td>
<td>3.75</td>
<td>5.52</td>
<td>5.39</td>
<td>6.21</td>
<td>6.16</td>
</tr>
<tr>
<td>5.48</td>
<td>5.63</td>
<td>7.45</td>
<td>7.72</td>
<td>8.39</td>
<td>8.48</td>
</tr>
<tr>
<td>11.15</td>
<td>10.13</td>
<td>15.17</td>
<td>12.79</td>
<td>17.08</td>
<td>14.45</td>
</tr>
<tr>
<td>15.41</td>
<td>12.08</td>
<td>20.96</td>
<td>14.88</td>
<td>23.60</td>
<td>16.69</td>
</tr>
<tr>
<td>29.59</td>
<td>14.60</td>
<td>40.27</td>
<td>17.13</td>
<td>45.32</td>
<td>18.77</td>
</tr>
<tr>
<td>57.96</td>
<td>15.26</td>
<td>78.88</td>
<td>17.36</td>
<td>88.78</td>
<td>18.81</td>
</tr>
<tr>
<td>86.34</td>
<td>15.34</td>
<td>117.48</td>
<td>17.44</td>
<td>132.24</td>
<td>18.77</td>
</tr>
<tr>
<td>114.71</td>
<td>15.28</td>
<td>156.09</td>
<td>17.30</td>
<td>175.69</td>
<td>18.60</td>
</tr>
<tr>
<td>143.08</td>
<td>15.32</td>
<td>184.70</td>
<td>17.26</td>
<td>219.15</td>
<td>18.54</td>
</tr>
<tr>
<td>171.45</td>
<td>15.29</td>
<td>233.51</td>
<td>17.27</td>
<td>262.60</td>
<td>18.51</td>
</tr>
<tr>
<td>214.01</td>
<td>15.35</td>
<td>291.22</td>
<td>17.32</td>
<td>327.79</td>
<td>18.57</td>
</tr>
<tr>
<td>80°</td>
<td>100°</td>
<td>120°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>2.40</td>
<td>2.71</td>
<td>2.30</td>
<td>2.71</td>
<td>2.05</td>
<td>2.09</td>
</tr>
<tr>
<td>3.30</td>
<td>3.54</td>
<td>3.17</td>
<td>3.31</td>
<td>2.82</td>
<td>3.05</td>
</tr>
<tr>
<td>4.21</td>
<td>4.11</td>
<td>4.04</td>
<td>3.87</td>
<td>3.59</td>
<td>3.47</td>
</tr>
<tr>
<td>5.34</td>
<td>5.46</td>
<td>5.13</td>
<td>5.14</td>
<td>4.56</td>
<td>4.69</td>
</tr>
<tr>
<td>6.47</td>
<td>6.28</td>
<td>6.21</td>
<td>6.01</td>
<td>5.52</td>
<td>5.43</td>
</tr>
<tr>
<td>8.73</td>
<td>8.80</td>
<td>8.39</td>
<td>8.34</td>
<td>7.45</td>
<td>7.68</td>
</tr>
<tr>
<td>11.00</td>
<td>10.54</td>
<td>10.56</td>
<td>10.20</td>
<td>9.36</td>
<td>9.53</td>
</tr>
<tr>
<td>17.78</td>
<td>14.69</td>
<td>17.08</td>
<td>14.70</td>
<td>15.17</td>
<td>14.10</td>
</tr>
<tr>
<td>24.57</td>
<td>17.19</td>
<td>23.60</td>
<td>17.38</td>
<td>20.96</td>
<td>16.99</td>
</tr>
<tr>
<td>47.20</td>
<td>18.87</td>
<td>45.32</td>
<td>19.76</td>
<td>40.27</td>
<td>19.97</td>
</tr>
<tr>
<td>92.45</td>
<td>18.63</td>
<td>88.76</td>
<td>19.69</td>
<td>78.88</td>
<td>19.94</td>
</tr>
<tr>
<td>137.70</td>
<td>18.61</td>
<td>132.24</td>
<td>19.66</td>
<td>117.48</td>
<td>19.90</td>
</tr>
<tr>
<td>182.95</td>
<td>18.63</td>
<td>175.69</td>
<td>19.46</td>
<td>156.09</td>
<td>19.70</td>
</tr>
<tr>
<td>226.20</td>
<td>18.58</td>
<td>219.15</td>
<td>19.47</td>
<td>194.70</td>
<td>19.67</td>
</tr>
<tr>
<td>273.46</td>
<td>18.58</td>
<td>262.60</td>
<td>19.47</td>
<td>233.31</td>
<td>19.66</td>
</tr>
<tr>
<td>341.33</td>
<td>18.58</td>
<td>327.79</td>
<td>19.46</td>
<td>291.22</td>
<td>19.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90°</th>
<th>110°</th>
<th>130°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>2.36</td>
<td>2.66</td>
<td>2.22</td>
</tr>
<tr>
<td>3.25</td>
<td>3.38</td>
<td>3.05</td>
</tr>
<tr>
<td>4.14</td>
<td>3.96</td>
<td>3.69</td>
</tr>
<tr>
<td>5.25</td>
<td>5.26</td>
<td>4.94</td>
</tr>
<tr>
<td>6.37</td>
<td>6.07</td>
<td>5.98</td>
</tr>
<tr>
<td>8.59</td>
<td>8.43</td>
<td>8.08</td>
</tr>
<tr>
<td>10.82</td>
<td>10.35</td>
<td>10.17</td>
</tr>
<tr>
<td>17.50</td>
<td>14.66</td>
<td>16.44</td>
</tr>
<tr>
<td>24.18</td>
<td>17.28</td>
<td>22.72</td>
</tr>
<tr>
<td>46.45</td>
<td>19.38</td>
<td>43.64</td>
</tr>
<tr>
<td>90.98</td>
<td>19.31</td>
<td>85.48</td>
</tr>
<tr>
<td>135.52</td>
<td>19.28</td>
<td>127.32</td>
</tr>
<tr>
<td>180.05</td>
<td>19.09</td>
<td>169.16</td>
</tr>
<tr>
<td>224.58</td>
<td>19.02</td>
<td>211.00</td>
</tr>
<tr>
<td>269.12</td>
<td>19.02</td>
<td>252.84</td>
</tr>
<tr>
<td>335.92</td>
<td>19.04</td>
<td>315.60</td>
</tr>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>1.59</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>2.79</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>3.54</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>5.79</td>
<td>6.99</td>
<td></td>
</tr>
<tr>
<td>7.29</td>
<td>8.19</td>
<td></td>
</tr>
<tr>
<td>11.79</td>
<td>12.69</td>
<td></td>
</tr>
<tr>
<td>16.26</td>
<td>16.09</td>
<td></td>
</tr>
<tr>
<td>31.28</td>
<td>20.05</td>
<td></td>
</tr>
<tr>
<td>61.27</td>
<td>20.17</td>
<td></td>
</tr>
<tr>
<td>91.25</td>
<td>20.10</td>
<td></td>
</tr>
<tr>
<td>121.24</td>
<td>19.90</td>
<td></td>
</tr>
<tr>
<td>151.23</td>
<td>19.77</td>
<td></td>
</tr>
<tr>
<td>181.22</td>
<td>19.78</td>
<td></td>
</tr>
<tr>
<td>226.20</td>
<td>19.89</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>2.00</td>
<td>1.91</td>
</tr>
<tr>
<td>3.00</td>
<td>2.80</td>
</tr>
<tr>
<td>4.00</td>
<td>3.65</td>
</tr>
<tr>
<td>5.00</td>
<td>4.45</td>
</tr>
<tr>
<td>6.00</td>
<td>5.21</td>
</tr>
<tr>
<td>7.00</td>
<td>5.92</td>
</tr>
<tr>
<td>8.00</td>
<td>6.59</td>
</tr>
<tr>
<td>9.00</td>
<td>7.21</td>
</tr>
<tr>
<td>10.00</td>
<td>7.91</td>
</tr>
<tr>
<td>11.00</td>
<td>8.55</td>
</tr>
<tr>
<td>12.00</td>
<td>9.19</td>
</tr>
<tr>
<td>13.00</td>
<td>9.83</td>
</tr>
<tr>
<td>14.00</td>
<td>10.47</td>
</tr>
<tr>
<td>15.00</td>
<td>11.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s/d=0.33 Model</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>140°</td>
<td>1.59</td>
<td>1.33</td>
</tr>
<tr>
<td>20°</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>150°</td>
<td>1.28</td>
<td>0.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>140°</td>
<td>1.59</td>
<td>1.33</td>
</tr>
<tr>
<td>20°</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>150°</td>
<td>1.28</td>
<td>0.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>

105
<table>
<thead>
<tr>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>3.00</td>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
</tr>
<tr>
<td>4.0</td>
<td>3.99</td>
<td>4.0</td>
<td>3.97</td>
<td>4.0</td>
<td>3.97</td>
</tr>
<tr>
<td>5.0</td>
<td>4.96</td>
<td>5.0</td>
<td>4.92</td>
<td>5.0</td>
<td>4.90</td>
</tr>
<tr>
<td>6.0</td>
<td>5.90</td>
<td>6.0</td>
<td>5.82</td>
<td>6.0</td>
<td>5.79</td>
</tr>
<tr>
<td>7.0</td>
<td>6.81</td>
<td>7.0</td>
<td>6.66</td>
<td>7.0</td>
<td>6.60</td>
</tr>
<tr>
<td>8.0</td>
<td>7.66</td>
<td>8.0</td>
<td>7.43</td>
<td>8.0</td>
<td>7.34</td>
</tr>
<tr>
<td>9.0</td>
<td>8.46</td>
<td>9.0</td>
<td>8.13</td>
<td>9.0</td>
<td>8.00</td>
</tr>
<tr>
<td>10.0</td>
<td>9.19</td>
<td>10.0</td>
<td>8.75</td>
<td>10.0</td>
<td>8.59</td>
</tr>
<tr>
<td>11.0</td>
<td>9.86</td>
<td>11.0</td>
<td>9.32</td>
<td>11.0</td>
<td>9.12</td>
</tr>
<tr>
<td>12.0</td>
<td>10.47</td>
<td>12.0</td>
<td>9.82</td>
<td>12.0</td>
<td>9.59</td>
</tr>
<tr>
<td>13.0</td>
<td>11.03</td>
<td>13.0</td>
<td>10.28</td>
<td>13.0</td>
<td>10.01</td>
</tr>
<tr>
<td>14.0</td>
<td>11.54</td>
<td>14.0</td>
<td>10.69</td>
<td>14.0</td>
<td>10.40</td>
</tr>
<tr>
<td>15.0</td>
<td>12.01</td>
<td>15.0</td>
<td>11.06</td>
<td>15.0</td>
<td>10.75</td>
</tr>
<tr>
<td>16.0</td>
<td>12.44</td>
<td>16.0</td>
<td>11.40</td>
<td>16.0</td>
<td>11.06</td>
</tr>
<tr>
<td>17.0</td>
<td>12.83</td>
<td>17.0</td>
<td>11.72</td>
<td>17.0</td>
<td>11.35</td>
</tr>
<tr>
<td>18.0</td>
<td>13.19</td>
<td>18.0</td>
<td>12.00</td>
<td>18.0</td>
<td>11.62</td>
</tr>
<tr>
<td>19.0</td>
<td>13.52</td>
<td>19.0</td>
<td>12.27</td>
<td>19.0</td>
<td>11.86</td>
</tr>
<tr>
<td>20.0</td>
<td>13.83</td>
<td>20.0</td>
<td>12.51</td>
<td>20.0</td>
<td>12.09</td>
</tr>
<tr>
<td>21.0</td>
<td>14.12</td>
<td>21.0</td>
<td>12.73</td>
<td>21.0</td>
<td>12.30</td>
</tr>
<tr>
<td>22.0</td>
<td>14.39</td>
<td>22.0</td>
<td>12.95</td>
<td>22.0</td>
<td>12.49</td>
</tr>
<tr>
<td>23.0</td>
<td>14.63</td>
<td>23.0</td>
<td>13.14</td>
<td>23.0</td>
<td>12.67</td>
</tr>
<tr>
<td>24.0</td>
<td>14.87</td>
<td>24.0</td>
<td>13.33</td>
<td>24.0</td>
<td>12.84</td>
</tr>
<tr>
<td>25.0</td>
<td>15.09</td>
<td>25.0</td>
<td>13.50</td>
<td>25.0</td>
<td>13.00</td>
</tr>
<tr>
<td>26.0</td>
<td>15.29</td>
<td>26.0</td>
<td>13.66</td>
<td>26.0</td>
<td>13.16</td>
</tr>
<tr>
<td>27.0</td>
<td>15.48</td>
<td>27.0</td>
<td>13.81</td>
<td>27.0</td>
<td>13.30</td>
</tr>
<tr>
<td>28.0</td>
<td>15.67</td>
<td>28.0</td>
<td>13.96</td>
<td>28.0</td>
<td>13.43</td>
</tr>
<tr>
<td>29.0</td>
<td>15.84</td>
<td>29.0</td>
<td>14.10</td>
<td>29.0</td>
<td>13.56</td>
</tr>
<tr>
<td>30.0</td>
<td>16.00</td>
<td>30.0</td>
<td>14.23</td>
<td>30.0</td>
<td>13.68</td>
</tr>
<tr>
<td>31.0</td>
<td>16.16</td>
<td>31.0</td>
<td>14.35</td>
<td>31.0</td>
<td>13.80</td>
</tr>
<tr>
<td>32.0</td>
<td>16.31</td>
<td>32.0</td>
<td>14.47</td>
<td>32.0</td>
<td>13.91</td>
</tr>
<tr>
<td>33.0</td>
<td>16.45</td>
<td>33.0</td>
<td>14.58</td>
<td>33.0</td>
<td>14.02</td>
</tr>
<tr>
<td>34.0</td>
<td>16.58</td>
<td>34.0</td>
<td>14.69</td>
<td>34.0</td>
<td>14.12</td>
</tr>
<tr>
<td>35.0</td>
<td>16.71</td>
<td>35.0</td>
<td>14.79</td>
<td>35.0</td>
<td>14.21</td>
</tr>
<tr>
<td>36.0</td>
<td>16.83</td>
<td>36.0</td>
<td>14.89</td>
<td>36.0</td>
<td>14.31</td>
</tr>
<tr>
<td>37.0</td>
<td>16.95</td>
<td>37.0</td>
<td>14.99</td>
<td>37.0</td>
<td>14.40</td>
</tr>
<tr>
<td>38.0</td>
<td>17.06</td>
<td>38.0</td>
<td>15.08</td>
<td>38.0</td>
<td>14.48</td>
</tr>
<tr>
<td>39.0</td>
<td>17.17</td>
<td>39.0</td>
<td>15.16</td>
<td>39.0</td>
<td>14.57</td>
</tr>
<tr>
<td>40.0</td>
<td>17.27</td>
<td>40.0</td>
<td>15.25</td>
<td>40.0</td>
<td>14.65</td>
</tr>
<tr>
<td>41.0</td>
<td>17.37</td>
<td>41.0</td>
<td>15.33</td>
<td>41.0</td>
<td>14.72</td>
</tr>
<tr>
<td>42.0</td>
<td>17.47</td>
<td>42.0</td>
<td>15.41</td>
<td>42.0</td>
<td>14.80</td>
</tr>
<tr>
<td>43.0</td>
<td>17.56</td>
<td>43.0</td>
<td>15.49</td>
<td>43.0</td>
<td>14.87</td>
</tr>
<tr>
<td>44.0</td>
<td>17.65</td>
<td>44.0</td>
<td>15.56</td>
<td>44.0</td>
<td>14.94</td>
</tr>
<tr>
<td>45.0</td>
<td>17.73</td>
<td>45.0</td>
<td>15.63</td>
<td>45.0</td>
<td>15.01</td>
</tr>
<tr>
<td>46.0</td>
<td>17.82</td>
<td>46.0</td>
<td>15.70</td>
<td>46.0</td>
<td>15.07</td>
</tr>
<tr>
<td>47.0</td>
<td>17.90</td>
<td>47.0</td>
<td>15.77</td>
<td>47.0</td>
<td>15.14</td>
</tr>
<tr>
<td>48.0</td>
<td>17.97</td>
<td>48.0</td>
<td>15.83</td>
<td>48.0</td>
<td>15.20</td>
</tr>
<tr>
<td>49.0</td>
<td>18.05</td>
<td>49.0</td>
<td>15.89</td>
<td>49.0</td>
<td>15.26</td>
</tr>
<tr>
<td>50.0</td>
<td>18.12</td>
<td>50.0</td>
<td>15.96</td>
<td>50.0</td>
<td>15.32</td>
</tr>
<tr>
<td>(y^+)</td>
<td>(u^+)</td>
<td>(y^+)</td>
<td>(u^+)</td>
<td>(y^+)</td>
<td>(u^+)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.01</td>
</tr>
<tr>
<td>3.00</td>
<td>2.99</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.02</td>
</tr>
<tr>
<td>4.00</td>
<td>3.98</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.03</td>
</tr>
<tr>
<td>5.00</td>
<td>4.96</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.04</td>
</tr>
<tr>
<td>6.00</td>
<td>5.95</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.06</td>
</tr>
<tr>
<td>7.00</td>
<td>6.93</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.08</td>
</tr>
<tr>
<td>8.00</td>
<td>7.90</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.11</td>
</tr>
<tr>
<td>9.00</td>
<td>8.88</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.14</td>
</tr>
<tr>
<td>10.00</td>
<td>9.85</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.17</td>
</tr>
<tr>
<td>11.00</td>
<td>10.82</td>
<td>11.00</td>
<td>11.00</td>
<td>11.00</td>
<td>11.20</td>
</tr>
<tr>
<td>12.00</td>
<td>11.79</td>
<td>12.00</td>
<td>12.00</td>
<td>12.00</td>
<td>12.24</td>
</tr>
<tr>
<td>13.00</td>
<td>12.75</td>
<td>13.00</td>
<td>13.00</td>
<td>13.00</td>
<td>13.28</td>
</tr>
<tr>
<td>14.00</td>
<td>13.71</td>
<td>14.00</td>
<td>14.00</td>
<td>14.00</td>
<td>14.33</td>
</tr>
<tr>
<td>15.00</td>
<td>14.66</td>
<td>15.00</td>
<td>15.00</td>
<td>15.00</td>
<td>15.38</td>
</tr>
</tbody>
</table>

70°

80°

90°

100°

110°

120°
<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.02</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>2.00</td>
<td>2.02</td>
<td>2.00</td>
<td>2.09</td>
<td>1.47</td>
<td>0.91</td>
</tr>
<tr>
<td>3.00</td>
<td>3.05</td>
<td>3.00</td>
<td>3.20</td>
<td>3.28</td>
<td>2.41</td>
</tr>
<tr>
<td>4.00</td>
<td>4.08</td>
<td>4.00</td>
<td>4.36</td>
<td>7.92</td>
<td>7.02</td>
</tr>
<tr>
<td>5.00</td>
<td>5.13</td>
<td>5.00</td>
<td>5.56</td>
<td>11.79</td>
<td>9.11</td>
</tr>
<tr>
<td>6.00</td>
<td>6.18</td>
<td>6.00</td>
<td>6.80</td>
<td>24.69</td>
<td>12.03</td>
</tr>
<tr>
<td>7.00</td>
<td>7.25</td>
<td>7.00</td>
<td>8.09</td>
<td>50.49</td>
<td>12.48</td>
</tr>
<tr>
<td>8.00</td>
<td>8.33</td>
<td>8.00</td>
<td>9.42</td>
<td>76.29</td>
<td>12.24</td>
</tr>
<tr>
<td>9.00</td>
<td>9.41</td>
<td>9.00</td>
<td>10.80</td>
<td>102.09</td>
<td>11.87</td>
</tr>
<tr>
<td>10.00</td>
<td>10.51</td>
<td>10.00</td>
<td>12.22</td>
<td>127.90</td>
<td>11.49</td>
</tr>
<tr>
<td>11.00</td>
<td>11.62</td>
<td>11.00</td>
<td>13.69</td>
<td>153.70</td>
<td>11.26</td>
</tr>
<tr>
<td>12.00</td>
<td>12.74</td>
<td>12.00</td>
<td>15.20</td>
<td>192.40</td>
<td>11.37</td>
</tr>
<tr>
<td>13.00</td>
<td>13.86</td>
<td>13.00</td>
<td>16.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>15.00</td>
<td>14.00</td>
<td>18.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>16.15</td>
<td>15.00</td>
<td>20.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

140°

<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.05</td>
<td>1.27</td>
<td>1.30</td>
</tr>
<tr>
<td>2.00</td>
<td>2.04</td>
<td>2.00</td>
<td>2.09</td>
<td>1.96</td>
<td>1.76</td>
</tr>
<tr>
<td>3.00</td>
<td>3.09</td>
<td>3.00</td>
<td>3.14</td>
<td>4.38</td>
<td>4.22</td>
</tr>
<tr>
<td>4.00</td>
<td>4.16</td>
<td>4.00</td>
<td>4.20</td>
<td>10.58</td>
<td>9.35</td>
</tr>
<tr>
<td>5.00</td>
<td>5.25</td>
<td>5.00</td>
<td>5.32</td>
<td>15.75</td>
<td>11.60</td>
</tr>
<tr>
<td>6.00</td>
<td>6.37</td>
<td>6.00</td>
<td>6.51</td>
<td>32.98</td>
<td>13.82</td>
</tr>
<tr>
<td>7.00</td>
<td>7.50</td>
<td>7.00</td>
<td>7.70</td>
<td>67.44</td>
<td>13.87</td>
</tr>
<tr>
<td>8.00</td>
<td>8.65</td>
<td>8.00</td>
<td>8.88</td>
<td>101.91</td>
<td>13.68</td>
</tr>
<tr>
<td>9.00</td>
<td>9.82</td>
<td>9.00</td>
<td>10.12</td>
<td>136.37</td>
<td>13.50</td>
</tr>
<tr>
<td>10.00</td>
<td>11.01</td>
<td>10.00</td>
<td>11.33</td>
<td>170.83</td>
<td>13.60</td>
</tr>
<tr>
<td>11.00</td>
<td>12.23</td>
<td>11.00</td>
<td>12.57</td>
<td>205.29</td>
<td>13.77</td>
</tr>
<tr>
<td>12.00</td>
<td>13.46</td>
<td>12.00</td>
<td>13.83</td>
<td>256.99</td>
<td>14.12</td>
</tr>
<tr>
<td>13.00</td>
<td>14.72</td>
<td>13.00</td>
<td>15.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>15.99</td>
<td>14.00</td>
<td>16.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>17.28</td>
<td>15.00</td>
<td>17.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20°

<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>2.09</td>
<td>2.00</td>
<td>2.14</td>
<td>1.29</td>
<td>1.21</td>
</tr>
<tr>
<td>3.00</td>
<td>3.20</td>
<td>3.00</td>
<td>3.32</td>
<td>1.99</td>
<td>1.60</td>
</tr>
<tr>
<td>4.00</td>
<td>4.36</td>
<td>4.00</td>
<td>4.53</td>
<td>4.42</td>
<td>3.98</td>
</tr>
<tr>
<td>5.00</td>
<td>5.56</td>
<td>5.00</td>
<td>5.80</td>
<td>10.69</td>
<td>9.12</td>
</tr>
<tr>
<td>6.00</td>
<td>6.80</td>
<td>6.00</td>
<td>7.07</td>
<td>15.92</td>
<td>12.04</td>
</tr>
<tr>
<td>7.00</td>
<td>8.09</td>
<td>7.00</td>
<td>8.34</td>
<td>33.33</td>
<td>16.91</td>
</tr>
<tr>
<td>8.00</td>
<td>9.42</td>
<td>8.00</td>
<td>9.73</td>
<td>68.16</td>
<td>18.44</td>
</tr>
<tr>
<td>9.00</td>
<td>10.83</td>
<td>9.00</td>
<td>11.25</td>
<td>103.00</td>
<td>18.52</td>
</tr>
<tr>
<td>10.00</td>
<td>12.24</td>
<td>10.00</td>
<td>12.78</td>
<td>137.83</td>
<td>18.32</td>
</tr>
<tr>
<td>11.00</td>
<td>13.66</td>
<td>11.00</td>
<td>14.32</td>
<td>172.66</td>
<td>17.66</td>
</tr>
<tr>
<td>12.00</td>
<td>15.08</td>
<td>12.00</td>
<td>15.92</td>
<td>207.49</td>
<td>17.00</td>
</tr>
<tr>
<td>13.00</td>
<td>16.54</td>
<td>13.00</td>
<td>17.55</td>
<td>259.74</td>
<td>16.88</td>
</tr>
<tr>
<td></td>
<td>50°</td>
<td></td>
<td>80°</td>
<td></td>
<td>110°</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>1.35</td>
<td>1.34</td>
<td></td>
<td>1.92</td>
<td>2.33</td>
<td>1.43</td>
</tr>
<tr>
<td>2.08</td>
<td>1.82</td>
<td></td>
<td>2.96</td>
<td>3.04</td>
<td>2.21</td>
</tr>
<tr>
<td>4.63</td>
<td>4.26</td>
<td></td>
<td>6.60</td>
<td>5.92</td>
<td>4.91</td>
</tr>
<tr>
<td>11.20</td>
<td>9.62</td>
<td></td>
<td>15.95</td>
<td>11.05</td>
<td>11.88</td>
</tr>
<tr>
<td>16.68</td>
<td>12.73</td>
<td></td>
<td>23.75</td>
<td>13.38</td>
<td>17.69</td>
</tr>
<tr>
<td>34.92</td>
<td>18.72</td>
<td></td>
<td>49.74</td>
<td>16.61</td>
<td>37.04</td>
</tr>
<tr>
<td>71.41</td>
<td>21.37</td>
<td></td>
<td>101.71</td>
<td>18.33</td>
<td>75.74</td>
</tr>
<tr>
<td>107.80</td>
<td>21.65</td>
<td></td>
<td>153.68</td>
<td>18.68</td>
<td>114.44</td>
</tr>
<tr>
<td>144.39</td>
<td>21.58</td>
<td></td>
<td>205.65</td>
<td>19.03</td>
<td>153.14</td>
</tr>
<tr>
<td>180.08</td>
<td>21.38</td>
<td></td>
<td>257.62</td>
<td>19.06</td>
<td>191.84</td>
</tr>
<tr>
<td>217.57</td>
<td>20.76</td>
<td></td>
<td>309.59</td>
<td>18.64</td>
<td>230.55</td>
</tr>
<tr>
<td>272.11</td>
<td>19.44</td>
<td></td>
<td>387.55</td>
<td>18.34</td>
<td>288.60</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td></td>
<td>90°</td>
<td></td>
<td>120°</td>
</tr>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>1.36</td>
<td>1.44</td>
<td></td>
<td>2.00</td>
<td>2.46</td>
<td>1.15</td>
</tr>
<tr>
<td>2.10</td>
<td>1.95</td>
<td></td>
<td>3.09</td>
<td>3.21</td>
<td>1.78</td>
</tr>
<tr>
<td>4.68</td>
<td>4.46</td>
<td></td>
<td>6.88</td>
<td>6.18</td>
<td>3.96</td>
</tr>
<tr>
<td>16.84</td>
<td>13.50</td>
<td></td>
<td>24.76</td>
<td>13.04</td>
<td>14.23</td>
</tr>
<tr>
<td>35.27</td>
<td>20.56</td>
<td></td>
<td>51.85</td>
<td>16.11</td>
<td>29.81</td>
</tr>
<tr>
<td>72.13</td>
<td>23.62</td>
<td></td>
<td>106.03</td>
<td>17.57</td>
<td>60.95</td>
</tr>
<tr>
<td>108.99</td>
<td>24.05</td>
<td></td>
<td>160.22</td>
<td>18.39</td>
<td>92.10</td>
</tr>
<tr>
<td>145.85</td>
<td>23.98</td>
<td></td>
<td>214.40</td>
<td>18.56</td>
<td>123.24</td>
</tr>
<tr>
<td>182.71</td>
<td>23.88</td>
<td></td>
<td>268.58</td>
<td>18.68</td>
<td>154.39</td>
</tr>
<tr>
<td>219.57</td>
<td>23.40</td>
<td></td>
<td>322.76</td>
<td>18.39</td>
<td>185.53</td>
</tr>
<tr>
<td>274.85</td>
<td>22.19</td>
<td></td>
<td>404.04</td>
<td>17.94</td>
<td>232.25</td>
</tr>
<tr>
<td></td>
<td>70°</td>
<td></td>
<td>100°</td>
<td></td>
<td>130°</td>
</tr>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>1.64</td>
<td>1.78</td>
<td></td>
<td>1.90</td>
<td>2.36</td>
<td>0.95</td>
</tr>
<tr>
<td>2.53</td>
<td>2.42</td>
<td></td>
<td>2.92</td>
<td>3.06</td>
<td>1.46</td>
</tr>
<tr>
<td>5.64</td>
<td>5.03</td>
<td></td>
<td>6.51</td>
<td>5.78</td>
<td>3.25</td>
</tr>
<tr>
<td>13.64</td>
<td>10.61</td>
<td></td>
<td>15.73</td>
<td>11.22</td>
<td>7.86</td>
</tr>
<tr>
<td>20.30</td>
<td>13.71</td>
<td></td>
<td>23.41</td>
<td>13.30</td>
<td>11.71</td>
</tr>
<tr>
<td>42.51</td>
<td>18.50</td>
<td></td>
<td>49.03</td>
<td>16.77</td>
<td>24.52</td>
</tr>
<tr>
<td>86.92</td>
<td>20.86</td>
<td></td>
<td>100.26</td>
<td>18.89</td>
<td>50.13</td>
</tr>
<tr>
<td>131.33</td>
<td>21.46</td>
<td></td>
<td>151.50</td>
<td>19.70</td>
<td>75.75</td>
</tr>
<tr>
<td>175.75</td>
<td>21.55</td>
<td></td>
<td>202.73</td>
<td>19.95</td>
<td>101.37</td>
</tr>
<tr>
<td>220.16</td>
<td>21.50</td>
<td></td>
<td>253.96</td>
<td>20.03</td>
<td>126.98</td>
</tr>
<tr>
<td>264.58</td>
<td>21.10</td>
<td></td>
<td>305.20</td>
<td>19.92</td>
<td>152.60</td>
</tr>
<tr>
<td>331.20</td>
<td>20.25</td>
<td></td>
<td>382.05</td>
<td>19.36</td>
<td>191.02</td>
</tr>
</tbody>
</table>
s/d=16 Model

140°

<table>
<thead>
<tr>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>0.90</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>0.95</td>
<td>0.88</td>
<td>2.00</td>
<td>1.92</td>
<td>2.00</td>
<td>1.97</td>
</tr>
<tr>
<td>2.11</td>
<td>2.27</td>
<td>3.00</td>
<td>2.81</td>
<td>3.00</td>
<td>2.94</td>
</tr>
<tr>
<td>5.09</td>
<td>10.54</td>
<td>4.00</td>
<td>3.67</td>
<td>4.00</td>
<td>3.89</td>
</tr>
<tr>
<td>7.58</td>
<td>16.03</td>
<td>5.00</td>
<td>4.49</td>
<td>5.00</td>
<td>4.83</td>
</tr>
<tr>
<td>15.87</td>
<td>30.86</td>
<td>6.00</td>
<td>5.26</td>
<td>6.00</td>
<td>5.75</td>
</tr>
<tr>
<td>32.46</td>
<td>43.41</td>
<td>7.00</td>
<td>5.99</td>
<td>7.00</td>
<td>6.67</td>
</tr>
<tr>
<td>49.05</td>
<td>45.92</td>
<td>8.00</td>
<td>6.68</td>
<td>8.00</td>
<td>7.56</td>
</tr>
<tr>
<td>65.63</td>
<td>45.93</td>
<td>9.00</td>
<td>7.33</td>
<td>9.00</td>
<td>8.45</td>
</tr>
<tr>
<td>82.22</td>
<td>45.89</td>
<td>10.00</td>
<td>7.94</td>
<td>10.00</td>
<td>9.32</td>
</tr>
<tr>
<td>98.81</td>
<td>45.75</td>
<td>11.00</td>
<td>8.51</td>
<td>11.00</td>
<td>10.17</td>
</tr>
<tr>
<td>123.68</td>
<td>45.33</td>
<td>12.00</td>
<td>9.04</td>
<td>12.00</td>
<td>11.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.00</td>
<td>9.52</td>
<td>13.00</td>
<td>11.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.00</td>
<td>9.96</td>
<td>14.00</td>
<td>12.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.00</td>
<td>10.37</td>
<td>15.00</td>
<td>13.46</td>
</tr>
</tbody>
</table>

150°

<table>
<thead>
<tr>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.53</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.91</td>
<td>0.39</td>
<td>2.00</td>
<td>1.97</td>
<td>2.00</td>
<td>1.98</td>
</tr>
<tr>
<td>2.04</td>
<td>0.67</td>
<td>3.00</td>
<td>2.93</td>
<td>3.00</td>
<td>2.96</td>
</tr>
<tr>
<td>4.92</td>
<td>7.02</td>
<td>4.00</td>
<td>3.87</td>
<td>4.00</td>
<td>3.92</td>
</tr>
<tr>
<td>7.33</td>
<td>11.49</td>
<td>5.00</td>
<td>4.80</td>
<td>5.00</td>
<td>4.88</td>
</tr>
<tr>
<td>15.34</td>
<td>24.51</td>
<td>6.00</td>
<td>5.71</td>
<td>6.00</td>
<td>5.82</td>
</tr>
<tr>
<td>31.38</td>
<td>35.58</td>
<td>7.00</td>
<td>6.61</td>
<td>7.00</td>
<td>6.76</td>
</tr>
<tr>
<td>47.41</td>
<td>38.66</td>
<td>8.00</td>
<td>7.49</td>
<td>8.00</td>
<td>7.68</td>
</tr>
<tr>
<td>63.44</td>
<td>38.67</td>
<td>9.00</td>
<td>8.36</td>
<td>9.00</td>
<td>8.60</td>
</tr>
<tr>
<td>79.48</td>
<td>38.66</td>
<td>10.00</td>
<td>9.20</td>
<td>10.00</td>
<td>9.50</td>
</tr>
<tr>
<td>95.51</td>
<td>38.58</td>
<td>11.00</td>
<td>10.04</td>
<td>11.00</td>
<td>10.40</td>
</tr>
<tr>
<td>119.56</td>
<td>38.93</td>
<td>12.00</td>
<td>10.85</td>
<td>12.00</td>
<td>11.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.00</td>
<td>11.65</td>
<td>13.00</td>
<td>12.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.00</td>
<td>12.44</td>
<td>14.00</td>
<td>13.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.00</td>
<td>13.21</td>
<td>15.00</td>
<td>13.88</td>
</tr>
<tr>
<td>(y^+)</td>
<td>(u^+)</td>
<td>(y^+)</td>
<td>(u^+)</td>
<td>(y^+)</td>
<td>(u^+)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.98</td>
<td>3.00</td>
<td>2.99</td>
<td>4.00</td>
<td>3.96</td>
</tr>
<tr>
<td>3.00</td>
<td>2.97</td>
<td>4.00</td>
<td>3.96</td>
<td>5.00</td>
<td>4.89</td>
</tr>
<tr>
<td>4.00</td>
<td>3.94</td>
<td>5.00</td>
<td>4.89</td>
<td>6.00</td>
<td>5.76</td>
</tr>
<tr>
<td>5.00</td>
<td>4.91</td>
<td>6.00</td>
<td>5.76</td>
<td>7.00</td>
<td>6.56</td>
</tr>
<tr>
<td>6.00</td>
<td>5.86</td>
<td>7.00</td>
<td>6.56</td>
<td>8.00</td>
<td>7.28</td>
</tr>
<tr>
<td>7.00</td>
<td>6.82</td>
<td>8.00</td>
<td>7.28</td>
<td>9.00</td>
<td>7.93</td>
</tr>
<tr>
<td>8.00</td>
<td>7.76</td>
<td>10.00</td>
<td>8.50</td>
<td>11.00</td>
<td>9.01</td>
</tr>
<tr>
<td>9.00</td>
<td>8.70</td>
<td>12.00</td>
<td>9.47</td>
<td>13.00</td>
<td>9.88</td>
</tr>
<tr>
<td>10.00</td>
<td>9.62</td>
<td>14.00</td>
<td>10.25</td>
<td>15.00</td>
<td>10.58</td>
</tr>
<tr>
<td>11.00</td>
<td>10.55</td>
<td>15.00</td>
<td>10.58</td>
<td>16.00</td>
<td>10.89</td>
</tr>
<tr>
<td>12.00</td>
<td>11.46</td>
<td>16.00</td>
<td>10.89</td>
<td>17.00</td>
<td>11.16</td>
</tr>
<tr>
<td>13.00</td>
<td>12.36</td>
<td>17.00</td>
<td>11.16</td>
<td>18.00</td>
<td>11.42</td>
</tr>
<tr>
<td>14.00</td>
<td>13.26</td>
<td>18.00</td>
<td>11.42</td>
<td>19.00</td>
<td>11.65</td>
</tr>
<tr>
<td>15.00</td>
<td>14.15</td>
<td>19.00</td>
<td>11.65</td>
<td>20.00</td>
<td>11.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.00</td>
<td>11.87</td>
<td>21.00</td>
<td>12.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.00</td>
<td>12.07</td>
<td>22.00</td>
<td>12.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.00</td>
<td>12.26</td>
<td>23.00</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.00</td>
<td>12.44</td>
<td>24.00</td>
<td>12.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.00</td>
<td>12.60</td>
<td>25.00</td>
<td>12.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.00</td>
<td>12.76</td>
<td>26.00</td>
<td>12.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.00</td>
<td>12.90</td>
<td>27.00</td>
<td>13.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.00</td>
<td>13.04</td>
<td>28.00</td>
<td>13.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.00</td>
<td>13.17</td>
<td>29.00</td>
<td>13.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.00</td>
<td>13.30</td>
<td>30.00</td>
<td>13.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.00</td>
<td>13.41</td>
<td>31.00</td>
<td>13.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.00</td>
<td>13.53</td>
<td>32.00</td>
<td>13.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.00</td>
<td>13.63</td>
<td>33.00</td>
<td>13.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.00</td>
<td>13.74</td>
<td>34.00</td>
<td>13.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.00</td>
<td>13.83</td>
<td>35.00</td>
<td>13.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.00</td>
<td>13.93</td>
<td>36.00</td>
<td>14.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.00</td>
<td>14.02</td>
<td>37.00</td>
<td>14.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.00</td>
<td>14.11</td>
<td>38.00</td>
<td>14.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.00</td>
<td>14.19</td>
<td>39.00</td>
<td>14.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.00</td>
<td>14.27</td>
<td>40.00</td>
<td>14.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.00</td>
<td>14.35</td>
<td>41.00</td>
<td>14.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.00</td>
<td>14.42</td>
<td>42.00</td>
<td>14.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.00</td>
<td>14.49</td>
<td>43.00</td>
<td>14.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.00</td>
<td>14.57</td>
<td>44.00</td>
<td>14.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.00</td>
<td>14.63</td>
<td>45.00</td>
<td>14.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.00</td>
<td>14.70</td>
<td>46.00</td>
<td>14.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46.00</td>
<td>14.76</td>
<td>47.00</td>
<td>14.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.00</td>
<td>14.83</td>
<td>48.00</td>
<td>14.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.00</td>
<td>14.89</td>
<td>49.00</td>
<td>14.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.00</td>
<td>14.94</td>
<td>50.00</td>
<td>15.00</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
</tr>
<tr>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
</tr>
<tr>
<td>5.0</td>
<td>4.88</td>
<td>5.0</td>
<td>4.87</td>
<td>5.0</td>
<td>4.86</td>
</tr>
<tr>
<td>6.0</td>
<td>5.73</td>
<td>6.0</td>
<td>5.72</td>
<td>6.0</td>
<td>5.69</td>
</tr>
<tr>
<td>7.0</td>
<td>6.51</td>
<td>7.0</td>
<td>6.49</td>
<td>7.0</td>
<td>6.45</td>
</tr>
<tr>
<td>8.0</td>
<td>7.20</td>
<td>8.0</td>
<td>7.18</td>
<td>8.0</td>
<td>7.12</td>
</tr>
<tr>
<td>9.0</td>
<td>7.82</td>
<td>9.0</td>
<td>7.79</td>
<td>9.0</td>
<td>7.71</td>
</tr>
<tr>
<td>10.0</td>
<td>8.36</td>
<td>10.0</td>
<td>8.33</td>
<td>10.0</td>
<td>8.23</td>
</tr>
<tr>
<td>11.0</td>
<td>8.85</td>
<td>11.0</td>
<td>8.82</td>
<td>11.0</td>
<td>8.70</td>
</tr>
<tr>
<td>12.0</td>
<td>9.28</td>
<td>12.0</td>
<td>9.24</td>
<td>12.0</td>
<td>9.11</td>
</tr>
<tr>
<td>13.0</td>
<td>9.67</td>
<td>13.0</td>
<td>9.63</td>
<td>13.0</td>
<td>9.48</td>
</tr>
<tr>
<td>14.0</td>
<td>10.02</td>
<td>14.0</td>
<td>9.97</td>
<td>14.0</td>
<td>9.81</td>
</tr>
<tr>
<td>15.0</td>
<td>10.34</td>
<td>15.0</td>
<td>10.29</td>
<td>15.0</td>
<td>10.11</td>
</tr>
<tr>
<td>16.0</td>
<td>10.62</td>
<td>16.0</td>
<td>10.57</td>
<td>16.0</td>
<td>10.38</td>
</tr>
<tr>
<td>17.0</td>
<td>10.89</td>
<td>17.0</td>
<td>10.83</td>
<td>17.0</td>
<td>10.63</td>
</tr>
<tr>
<td>18.0</td>
<td>11.13</td>
<td>18.0</td>
<td>11.07</td>
<td>18.0</td>
<td>10.86</td>
</tr>
<tr>
<td>19.0</td>
<td>11.35</td>
<td>19.0</td>
<td>11.29</td>
<td>19.0</td>
<td>11.07</td>
</tr>
<tr>
<td>20.0</td>
<td>11.56</td>
<td>20.0</td>
<td>11.49</td>
<td>20.0</td>
<td>11.27</td>
</tr>
<tr>
<td>21.0</td>
<td>11.75</td>
<td>21.0</td>
<td>11.68</td>
<td>21.0</td>
<td>11.45</td>
</tr>
<tr>
<td>22.0</td>
<td>11.93</td>
<td>22.0</td>
<td>11.86</td>
<td>22.0</td>
<td>11.62</td>
</tr>
<tr>
<td>23.0</td>
<td>12.09</td>
<td>23.0</td>
<td>12.02</td>
<td>23.0</td>
<td>11.78</td>
</tr>
<tr>
<td>24.0</td>
<td>12.25</td>
<td>24.0</td>
<td>12.18</td>
<td>24.0</td>
<td>11.93</td>
</tr>
<tr>
<td>25.0</td>
<td>12.40</td>
<td>25.0</td>
<td>12.32</td>
<td>25.0</td>
<td>12.07</td>
</tr>
<tr>
<td>26.0</td>
<td>12.54</td>
<td>26.0</td>
<td>12.46</td>
<td>26.0</td>
<td>12.20</td>
</tr>
<tr>
<td>27.0</td>
<td>12.67</td>
<td>27.0</td>
<td>12.59</td>
<td>27.0</td>
<td>12.33</td>
</tr>
<tr>
<td>28.0</td>
<td>12.79</td>
<td>28.0</td>
<td>12.71</td>
<td>28.0</td>
<td>12.45</td>
</tr>
<tr>
<td>29.0</td>
<td>12.91</td>
<td>29.0</td>
<td>12.83</td>
<td>29.0</td>
<td>12.56</td>
</tr>
<tr>
<td>30.0</td>
<td>13.02</td>
<td>30.0</td>
<td>12.94</td>
<td>30.0</td>
<td>12.67</td>
</tr>
<tr>
<td>31.0</td>
<td>13.13</td>
<td>31.0</td>
<td>13.05</td>
<td>31.0</td>
<td>12.77</td>
</tr>
<tr>
<td>32.0</td>
<td>13.23</td>
<td>32.0</td>
<td>13.15</td>
<td>32.0</td>
<td>12.87</td>
</tr>
<tr>
<td>33.0</td>
<td>13.33</td>
<td>33.0</td>
<td>13.25</td>
<td>33.0</td>
<td>12.96</td>
</tr>
<tr>
<td>34.0</td>
<td>13.42</td>
<td>34.0</td>
<td>13.34</td>
<td>34.0</td>
<td>13.05</td>
</tr>
<tr>
<td>35.0</td>
<td>13.51</td>
<td>35.0</td>
<td>13.43</td>
<td>35.0</td>
<td>13.14</td>
</tr>
<tr>
<td>36.0</td>
<td>13.60</td>
<td>36.0</td>
<td>13.51</td>
<td>36.0</td>
<td>13.22</td>
</tr>
<tr>
<td>37.0</td>
<td>13.68</td>
<td>37.0</td>
<td>13.60</td>
<td>37.0</td>
<td>13.30</td>
</tr>
<tr>
<td>38.0</td>
<td>13.76</td>
<td>38.0</td>
<td>13.68</td>
<td>38.0</td>
<td>13.38</td>
</tr>
<tr>
<td>39.0</td>
<td>13.84</td>
<td>39.0</td>
<td>13.75</td>
<td>39.0</td>
<td>13.46</td>
</tr>
<tr>
<td>40.0</td>
<td>13.92</td>
<td>40.0</td>
<td>13.83</td>
<td>40.0</td>
<td>13.53</td>
</tr>
<tr>
<td>41.0</td>
<td>13.99</td>
<td>41.0</td>
<td>13.90</td>
<td>41.0</td>
<td>13.60</td>
</tr>
<tr>
<td>42.0</td>
<td>14.06</td>
<td>42.0</td>
<td>13.97</td>
<td>42.0</td>
<td>13.67</td>
</tr>
<tr>
<td>43.0</td>
<td>14.13</td>
<td>43.0</td>
<td>14.04</td>
<td>43.0</td>
<td>13.73</td>
</tr>
<tr>
<td>44.0</td>
<td>14.19</td>
<td>44.0</td>
<td>14.10</td>
<td>44.0</td>
<td>13.80</td>
</tr>
<tr>
<td>45.0</td>
<td>14.26</td>
<td>45.0</td>
<td>14.16</td>
<td>45.0</td>
<td>13.86</td>
</tr>
<tr>
<td>46.0</td>
<td>14.32</td>
<td>46.0</td>
<td>14.23</td>
<td>46.0</td>
<td>13.92</td>
</tr>
<tr>
<td>47.0</td>
<td>14.38</td>
<td>47.0</td>
<td>14.29</td>
<td>47.0</td>
<td>13.98</td>
</tr>
<tr>
<td>48.0</td>
<td>14.44</td>
<td>48.0</td>
<td>14.34</td>
<td>48.0</td>
<td>14.03</td>
</tr>
<tr>
<td>49.0</td>
<td>14.49</td>
<td>49.0</td>
<td>14.40</td>
<td>49.0</td>
<td>14.09</td>
</tr>
<tr>
<td>50.0</td>
<td>14.55</td>
<td>50.0</td>
<td>14.46</td>
<td>50.0</td>
<td>14.14</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.06</td>
<td>0.93</td>
<td>0.78</td>
</tr>
<tr>
<td>2.00</td>
<td>2.02</td>
<td>2.00</td>
<td>2.25</td>
<td>1.70</td>
<td>1.04</td>
</tr>
<tr>
<td>3.00</td>
<td>3.06</td>
<td>3.00</td>
<td>3.57</td>
<td>2.73</td>
<td>1.82</td>
</tr>
<tr>
<td>4.00</td>
<td>4.10</td>
<td>4.00</td>
<td>5.01</td>
<td>3.24</td>
<td>2.52</td>
</tr>
<tr>
<td>5.00</td>
<td>5.16</td>
<td>5.00</td>
<td>6.58</td>
<td>4.53</td>
<td>4.26</td>
</tr>
<tr>
<td>6.00</td>
<td>6.22</td>
<td>6.00</td>
<td>8.27</td>
<td>5.81</td>
<td>5.34</td>
</tr>
<tr>
<td>7.00</td>
<td>7.31</td>
<td>7.00</td>
<td>10.10</td>
<td>9.67</td>
<td>7.85</td>
</tr>
<tr>
<td>8.00</td>
<td>8.40</td>
<td>8.00</td>
<td>12.04</td>
<td>13.53</td>
<td>9.49</td>
</tr>
<tr>
<td>9.00</td>
<td>9.50</td>
<td>9.00</td>
<td>14.12</td>
<td>26.38</td>
<td>11.60</td>
</tr>
<tr>
<td>10.00</td>
<td>10.62</td>
<td>10.00</td>
<td>16.32</td>
<td>52.10</td>
<td>11.88</td>
</tr>
<tr>
<td>11.00</td>
<td>11.75</td>
<td>11.00</td>
<td>18.64</td>
<td>77.81</td>
<td>11.63</td>
</tr>
<tr>
<td>12.00</td>
<td>12.90</td>
<td>12.00</td>
<td>21.10</td>
<td>103.52</td>
<td>11.35</td>
</tr>
<tr>
<td>13.00</td>
<td>14.05</td>
<td>13.00</td>
<td>23.68</td>
<td>129.24</td>
<td>11.08</td>
</tr>
<tr>
<td>14.00</td>
<td>15.22</td>
<td>14.00</td>
<td>26.38</td>
<td>154.95</td>
<td>11.03</td>
</tr>
<tr>
<td>15.00</td>
<td>16.40</td>
<td>15.00</td>
<td>29.22</td>
<td>193.52</td>
<td>10.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.08</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>2.00</td>
<td>2.06</td>
<td>2.00</td>
<td>2.32</td>
<td>1.89</td>
<td>1.50</td>
</tr>
<tr>
<td>3.00</td>
<td>3.13</td>
<td>3.00</td>
<td>3.71</td>
<td>3.04</td>
<td>2.72</td>
</tr>
<tr>
<td>4.00</td>
<td>4.23</td>
<td>4.00</td>
<td>5.27</td>
<td>3.61</td>
<td>3.69</td>
</tr>
<tr>
<td>5.00</td>
<td>5.36</td>
<td>5.00</td>
<td>6.98</td>
<td>5.04</td>
<td>5.15</td>
</tr>
<tr>
<td>6.00</td>
<td>6.52</td>
<td>6.00</td>
<td>8.85</td>
<td>6.48</td>
<td>6.41</td>
</tr>
<tr>
<td>7.00</td>
<td>7.71</td>
<td>7.00</td>
<td>10.87</td>
<td>10.77</td>
<td>9.45</td>
</tr>
<tr>
<td>8.00</td>
<td>8.92</td>
<td>8.00</td>
<td>13.06</td>
<td>15.07</td>
<td>11.53</td>
</tr>
<tr>
<td>9.00</td>
<td>10.17</td>
<td>9.00</td>
<td>15.40</td>
<td>29.40</td>
<td>14.97</td>
</tr>
<tr>
<td>10.00</td>
<td>11.44</td>
<td>10.00</td>
<td>17.91</td>
<td>58.05</td>
<td>15.96</td>
</tr>
<tr>
<td>11.00</td>
<td>12.74</td>
<td>11.00</td>
<td>20.57</td>
<td>86.70</td>
<td>15.81</td>
</tr>
<tr>
<td>12.00</td>
<td>14.07</td>
<td>12.00</td>
<td>23.39</td>
<td>115.36</td>
<td>15.69</td>
</tr>
<tr>
<td>13.00</td>
<td>15.43</td>
<td>13.00</td>
<td>26.36</td>
<td>144.01</td>
<td>15.42</td>
</tr>
<tr>
<td>14.00</td>
<td>16.82</td>
<td>14.00</td>
<td>29.50</td>
<td>172.66</td>
<td>15.44</td>
</tr>
<tr>
<td>15.00</td>
<td>18.24</td>
<td>15.00</td>
<td>32.79</td>
<td>215.64</td>
<td>15.36</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td></td>
<td>60°</td>
<td></td>
<td>80°</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>y+</td>
<td></td>
<td>y+</td>
<td></td>
<td>y+</td>
</tr>
<tr>
<td></td>
<td>u+</td>
<td></td>
<td>u+</td>
<td></td>
<td>u+</td>
</tr>
<tr>
<td>1.16</td>
<td>1.14</td>
<td>1.28</td>
<td>1.32</td>
<td>1.84</td>
<td>1.30</td>
</tr>
<tr>
<td>2.12</td>
<td>1.83</td>
<td>2.34</td>
<td>2.20</td>
<td>2.88</td>
<td>2.14</td>
</tr>
<tr>
<td>3.41</td>
<td>3.31</td>
<td>3.76</td>
<td>3.64</td>
<td>4.27</td>
<td>3.63</td>
</tr>
<tr>
<td>4.05</td>
<td>4.01</td>
<td>4.47</td>
<td>4.34</td>
<td>4.96</td>
<td>4.30</td>
</tr>
<tr>
<td>5.66</td>
<td>5.52</td>
<td>6.24</td>
<td>5.93</td>
<td>6.70</td>
<td>5.92</td>
</tr>
<tr>
<td>7.26</td>
<td>6.85</td>
<td>8.01</td>
<td>7.38</td>
<td>8.44</td>
<td>7.36</td>
</tr>
<tr>
<td>12.09</td>
<td>10.15</td>
<td>13.33</td>
<td>10.98</td>
<td>13.64</td>
<td>11.10</td>
</tr>
<tr>
<td>16.91</td>
<td>12.60</td>
<td>18.65</td>
<td>13.73</td>
<td>18.85</td>
<td>14.24</td>
</tr>
<tr>
<td>32.98</td>
<td>16.90</td>
<td>36.37</td>
<td>19.50</td>
<td>36.21</td>
<td>21.72</td>
</tr>
<tr>
<td>65.12</td>
<td>18.67</td>
<td>71.82</td>
<td>23.08</td>
<td>70.92</td>
<td>27.25</td>
</tr>
<tr>
<td>97.26</td>
<td>18.77</td>
<td>107.27</td>
<td>23.72</td>
<td>105.63</td>
<td>28.36</td>
</tr>
<tr>
<td>129.40</td>
<td>18.74</td>
<td>142.72</td>
<td>23.85</td>
<td>140.35</td>
<td>28.76</td>
</tr>
<tr>
<td>161.55</td>
<td>18.54</td>
<td>178.16</td>
<td>23.72</td>
<td>175.06</td>
<td>28.68</td>
</tr>
<tr>
<td>193.69</td>
<td>18.56</td>
<td>213.61</td>
<td>23.80</td>
<td>209.77</td>
<td>28.77</td>
</tr>
<tr>
<td>241.90</td>
<td>18.49</td>
<td>266.78</td>
<td>23.79</td>
<td>261.84</td>
<td>28.80</td>
</tr>
<tr>
<td></td>
<td>50°</td>
<td></td>
<td>y+</td>
<td></td>
<td>y+</td>
</tr>
<tr>
<td></td>
<td>u+</td>
<td></td>
<td>u+</td>
<td></td>
<td>u+</td>
</tr>
<tr>
<td>1.26</td>
<td>1.29</td>
<td>1.28</td>
<td>1.34</td>
<td>2.10</td>
<td>2.45</td>
</tr>
<tr>
<td>2.30</td>
<td>2.13</td>
<td>2.34</td>
<td>2.22</td>
<td>3.86</td>
<td>3.82</td>
</tr>
<tr>
<td>3.70</td>
<td>3.59</td>
<td>3.76</td>
<td>3.67</td>
<td>6.19</td>
<td>5.11</td>
</tr>
<tr>
<td>4.40</td>
<td>4.26</td>
<td>4.47</td>
<td>4.39</td>
<td>7.36</td>
<td>5.85</td>
</tr>
<tr>
<td>6.14</td>
<td>5.81</td>
<td>6.24</td>
<td>6.00</td>
<td>10.28</td>
<td>7.40</td>
</tr>
<tr>
<td>7.89</td>
<td>7.22</td>
<td>8.01</td>
<td>7.48</td>
<td>13.20</td>
<td>8.38</td>
</tr>
<tr>
<td>13.12</td>
<td>10.60</td>
<td>13.33</td>
<td>11.15</td>
<td>21.96</td>
<td>10.34</td>
</tr>
<tr>
<td>18.36</td>
<td>13.22</td>
<td>18.65</td>
<td>14.13</td>
<td>30.72</td>
<td>11.28</td>
</tr>
<tr>
<td>35.80</td>
<td>18.22</td>
<td>36.37</td>
<td>20.62</td>
<td>59.93</td>
<td>12.99</td>
</tr>
<tr>
<td>70.70</td>
<td>20.82</td>
<td>71.82</td>
<td>25.35</td>
<td>118.33</td>
<td>14.83</td>
</tr>
<tr>
<td>105.60</td>
<td>21.10</td>
<td>107.27</td>
<td>26.30</td>
<td>176.74</td>
<td>15.92</td>
</tr>
<tr>
<td>140.50</td>
<td>21.14</td>
<td>142.72</td>
<td>26.61</td>
<td>235.15</td>
<td>16.90</td>
</tr>
<tr>
<td>175.39</td>
<td>21.01</td>
<td>178.16</td>
<td>26.45</td>
<td>293.55</td>
<td>17.35</td>
</tr>
<tr>
<td>210.29</td>
<td>21.05</td>
<td>213.61</td>
<td>26.58</td>
<td>351.96</td>
<td>17.96</td>
</tr>
<tr>
<td>262.64</td>
<td>21.00</td>
<td>266.78</td>
<td>26.65</td>
<td>439.57</td>
<td>18.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>100°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>2.08</td>
<td>2.47</td>
<td>1.92</td>
<td>2.23</td>
<td>1.32</td>
<td>1.65</td>
</tr>
<tr>
<td>3.82</td>
<td>3.74</td>
<td>3.52</td>
<td>3.35</td>
<td>2.42</td>
<td>2.51</td>
</tr>
<tr>
<td>6.13</td>
<td>5.18</td>
<td>5.65</td>
<td>4.65</td>
<td>3.89</td>
<td>3.86</td>
</tr>
<tr>
<td>7.29</td>
<td>6.15</td>
<td>6.71</td>
<td>5.68</td>
<td>4.63</td>
<td>4.60</td>
</tr>
<tr>
<td>10.18</td>
<td>7.56</td>
<td>9.37</td>
<td>7.19</td>
<td>6.47</td>
<td>6.24</td>
</tr>
<tr>
<td>13.08</td>
<td>8.90</td>
<td>12.04</td>
<td>8.26</td>
<td>8.30</td>
<td>7.67</td>
</tr>
<tr>
<td>21.75</td>
<td>11.06</td>
<td>20.03</td>
<td>10.39</td>
<td>13.81</td>
<td>10.16</td>
</tr>
<tr>
<td>30.43</td>
<td>12.20</td>
<td>28.02</td>
<td>11.51</td>
<td>19.32</td>
<td>11.75</td>
</tr>
<tr>
<td>59.36</td>
<td>13.63</td>
<td>54.65</td>
<td>13.23</td>
<td>37.69</td>
<td>14.35</td>
</tr>
<tr>
<td>117.22</td>
<td>15.04</td>
<td>107.91</td>
<td>14.55</td>
<td>74.42</td>
<td>16.72</td>
</tr>
<tr>
<td>175.07</td>
<td>16.01</td>
<td>161.18</td>
<td>15.65</td>
<td>111.16</td>
<td>18.54</td>
</tr>
<tr>
<td>232.93</td>
<td>16.75</td>
<td>214.44</td>
<td>16.53</td>
<td>147.89</td>
<td>19.51</td>
</tr>
<tr>
<td>290.78</td>
<td>17.08</td>
<td>267.71</td>
<td>16.99</td>
<td>184.62</td>
<td>19.82</td>
</tr>
<tr>
<td>348.64</td>
<td>17.36</td>
<td>320.97</td>
<td>17.44</td>
<td>221.36</td>
<td>19.99</td>
</tr>
<tr>
<td>435.42</td>
<td>17.46</td>
<td>400.87</td>
<td>17.51</td>
<td>276.46</td>
<td>19.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>2.10</td>
<td>2.29</td>
<td>1.64</td>
<td>1.93</td>
<td>0.94</td>
<td>1.04</td>
</tr>
<tr>
<td>3.86</td>
<td>3.46</td>
<td>3.01</td>
<td>3.12</td>
<td>1.72</td>
<td>1.56</td>
</tr>
<tr>
<td>6.19</td>
<td>4.90</td>
<td>4.83</td>
<td>4.48</td>
<td>2.76</td>
<td>2.75</td>
</tr>
<tr>
<td>7.36</td>
<td>5.55</td>
<td>5.74</td>
<td>5.44</td>
<td>3.29</td>
<td>3.41</td>
</tr>
<tr>
<td>10.28</td>
<td>7.07</td>
<td>8.02</td>
<td>6.94</td>
<td>4.59</td>
<td>4.61</td>
</tr>
<tr>
<td>13.20</td>
<td>8.38</td>
<td>10.29</td>
<td>8.19</td>
<td>5.89</td>
<td>6.20</td>
</tr>
<tr>
<td>21.96</td>
<td>10.28</td>
<td>17.13</td>
<td>10.62</td>
<td>9.81</td>
<td>8.97</td>
</tr>
<tr>
<td>30.72</td>
<td>11.20</td>
<td>23.96</td>
<td>11.83</td>
<td>13.72</td>
<td>10.55</td>
</tr>
<tr>
<td>59.93</td>
<td>12.91</td>
<td>46.73</td>
<td>13.73</td>
<td>26.76</td>
<td>14.75</td>
</tr>
<tr>
<td>118.33</td>
<td>14.19</td>
<td>92.28</td>
<td>15.37</td>
<td>52.84</td>
<td>19.06</td>
</tr>
<tr>
<td>176.74</td>
<td>15.02</td>
<td>137.83</td>
<td>16.53</td>
<td>78.92</td>
<td>21.75</td>
</tr>
<tr>
<td>235.15</td>
<td>15.71</td>
<td>183.39</td>
<td>17.64</td>
<td>105.00</td>
<td>23.19</td>
</tr>
<tr>
<td>293.55</td>
<td>16.17</td>
<td>228.93</td>
<td>18.10</td>
<td>131.08</td>
<td>23.54</td>
</tr>
<tr>
<td>351.96</td>
<td>16.47</td>
<td>274.49</td>
<td>18.50</td>
<td>157.16</td>
<td>23.81</td>
</tr>
<tr>
<td>439.57</td>
<td>16.76</td>
<td>342.81</td>
<td>18.44</td>
<td>196.29</td>
<td>22.98</td>
</tr>
<tr>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.92</td>
<td>2.00</td>
<td>1.97</td>
<td>2.00</td>
<td>1.98</td>
</tr>
<tr>
<td>3.00</td>
<td>2.81</td>
<td>3.00</td>
<td>2.92</td>
<td>3.00</td>
<td>2.96</td>
</tr>
<tr>
<td>4.00</td>
<td>3.67</td>
<td>4.00</td>
<td>3.86</td>
<td>4.00</td>
<td>3.93</td>
</tr>
<tr>
<td>5.00</td>
<td>4.48</td>
<td>5.00</td>
<td>4.78</td>
<td>5.00</td>
<td>4.90</td>
</tr>
<tr>
<td>6.00</td>
<td>5.26</td>
<td>6.00</td>
<td>5.69</td>
<td>6.00</td>
<td>5.85</td>
</tr>
<tr>
<td>7.00</td>
<td>5.99</td>
<td>7.00</td>
<td>6.58</td>
<td>7.00</td>
<td>6.79</td>
</tr>
<tr>
<td>8.00</td>
<td>6.68</td>
<td>8.00</td>
<td>7.45</td>
<td>8.00</td>
<td>7.73</td>
</tr>
<tr>
<td>9.00</td>
<td>7.33</td>
<td>9.00</td>
<td>8.30</td>
<td>9.00</td>
<td>8.66</td>
</tr>
<tr>
<td>10.00</td>
<td>7.93</td>
<td>10.00</td>
<td>9.14</td>
<td>10.00</td>
<td>9.58</td>
</tr>
<tr>
<td>11.00</td>
<td>8.50</td>
<td>11.00</td>
<td>9.96</td>
<td>11.00</td>
<td>10.49</td>
</tr>
<tr>
<td>12.00</td>
<td>9.02</td>
<td>12.00</td>
<td>10.76</td>
<td>12.00</td>
<td>11.40</td>
</tr>
<tr>
<td>13.00</td>
<td>9.51</td>
<td>13.00</td>
<td>11.54</td>
<td>13.00</td>
<td>12.29</td>
</tr>
<tr>
<td>14.00</td>
<td>9.95</td>
<td>14.00</td>
<td>12.31</td>
<td>14.00</td>
<td>13.18</td>
</tr>
<tr>
<td>15.00</td>
<td>10.35</td>
<td>15.00</td>
<td>13.06</td>
<td>15.00</td>
<td>14.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
<th>y+</th>
<th>u+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.94</td>
<td>2.00</td>
<td>1.98</td>
<td>2.00</td>
<td>1.99</td>
</tr>
<tr>
<td>3.00</td>
<td>2.88</td>
<td>3.00</td>
<td>2.95</td>
<td>3.00</td>
<td>2.97</td>
</tr>
<tr>
<td>4.00</td>
<td>3.78</td>
<td>4.00</td>
<td>3.91</td>
<td>4.00</td>
<td>3.95</td>
</tr>
<tr>
<td>5.00</td>
<td>4.66</td>
<td>5.00</td>
<td>4.86</td>
<td>5.00</td>
<td>4.93</td>
</tr>
<tr>
<td>6.00</td>
<td>5.50</td>
<td>6.00</td>
<td>5.80</td>
<td>6.00</td>
<td>5.90</td>
</tr>
<tr>
<td>7.00</td>
<td>6.33</td>
<td>7.00</td>
<td>6.72</td>
<td>7.00</td>
<td>6.86</td>
</tr>
<tr>
<td>8.00</td>
<td>7.12</td>
<td>8.00</td>
<td>7.64</td>
<td>8.00</td>
<td>7.82</td>
</tr>
<tr>
<td>9.00</td>
<td>7.99</td>
<td>9.00</td>
<td>8.54</td>
<td>9.00</td>
<td>8.77</td>
</tr>
<tr>
<td>10.00</td>
<td>8.62</td>
<td>10.00</td>
<td>9.43</td>
<td>10.00</td>
<td>9.71</td>
</tr>
<tr>
<td>11.00</td>
<td>9.33</td>
<td>11.00</td>
<td>10.32</td>
<td>11.00</td>
<td>10.65</td>
</tr>
<tr>
<td>12.00</td>
<td>10.02</td>
<td>12.00</td>
<td>11.19</td>
<td>12.00</td>
<td>11.59</td>
</tr>
<tr>
<td>13.00</td>
<td>10.67</td>
<td>13.00</td>
<td>12.04</td>
<td>13.00</td>
<td>12.51</td>
</tr>
<tr>
<td>14.00</td>
<td>11.30</td>
<td>14.00</td>
<td>12.89</td>
<td>14.00</td>
<td>13.44</td>
</tr>
<tr>
<td>15.00</td>
<td>11.90</td>
<td>15.00</td>
<td>13.73</td>
<td>15.00</td>
<td>14.35</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>2.99</td>
<td>3.00</td>
<td>2.99</td>
<td>3.00</td>
<td>2.99</td>
</tr>
<tr>
<td>4.00</td>
<td>3.98</td>
<td>4.00</td>
<td>3.95</td>
<td>4.00</td>
<td>3.95</td>
</tr>
<tr>
<td>5.00</td>
<td>4.96</td>
<td>5.00</td>
<td>4.88</td>
<td>5.00</td>
<td>4.87</td>
</tr>
<tr>
<td>6.00</td>
<td>5.94</td>
<td>6.00</td>
<td>5.73</td>
<td>6.00</td>
<td>5.72</td>
</tr>
<tr>
<td>7.00</td>
<td>6.92</td>
<td>7.00</td>
<td>6.51</td>
<td>7.00</td>
<td>6.50</td>
</tr>
<tr>
<td>8.00</td>
<td>7.90</td>
<td>8.00</td>
<td>7.20</td>
<td>8.00</td>
<td>7.19</td>
</tr>
<tr>
<td>9.00</td>
<td>8.87</td>
<td>9.00</td>
<td>7.82</td>
<td>9.00</td>
<td>7.80</td>
</tr>
<tr>
<td>10.00</td>
<td>9.84</td>
<td>10.00</td>
<td>8.36</td>
<td>10.00</td>
<td>8.34</td>
</tr>
<tr>
<td>11.00</td>
<td>10.81</td>
<td>11.00</td>
<td>8.85</td>
<td>11.00</td>
<td>8.83</td>
</tr>
<tr>
<td>12.00</td>
<td>11.78</td>
<td>12.00</td>
<td>9.28</td>
<td>12.00</td>
<td>9.26</td>
</tr>
<tr>
<td>13.00</td>
<td>12.74</td>
<td>13.00</td>
<td>9.67</td>
<td>13.00</td>
<td>9.64</td>
</tr>
<tr>
<td>14.00</td>
<td>13.70</td>
<td>14.00</td>
<td>10.02</td>
<td>14.00</td>
<td>9.99</td>
</tr>
<tr>
<td>15.00</td>
<td>14.65</td>
<td>15.00</td>
<td>10.34</td>
<td>15.00</td>
<td>10.30</td>
</tr>
<tr>
<td>16.00</td>
<td>15.60</td>
<td>16.00</td>
<td>10.62</td>
<td>16.00</td>
<td>10.59</td>
</tr>
<tr>
<td>17.00</td>
<td>16.69</td>
<td>17.00</td>
<td>10.69</td>
<td>17.00</td>
<td>10.65</td>
</tr>
<tr>
<td>18.00</td>
<td>17.75</td>
<td>18.00</td>
<td>11.13</td>
<td>18.00</td>
<td>11.09</td>
</tr>
<tr>
<td>19.00</td>
<td>18.75</td>
<td>19.00</td>
<td>11.35</td>
<td>19.00</td>
<td>11.31</td>
</tr>
<tr>
<td>20.00</td>
<td>19.75</td>
<td>20.00</td>
<td>11.56</td>
<td>20.00</td>
<td>11.51</td>
</tr>
<tr>
<td>21.00</td>
<td>20.75</td>
<td>21.00</td>
<td>11.75</td>
<td>21.00</td>
<td>11.70</td>
</tr>
<tr>
<td>22.00</td>
<td>21.75</td>
<td>22.00</td>
<td>11.93</td>
<td>22.00</td>
<td>11.88</td>
</tr>
<tr>
<td>23.00</td>
<td>22.75</td>
<td>23.00</td>
<td>12.09</td>
<td>23.00</td>
<td>12.04</td>
</tr>
<tr>
<td>24.00</td>
<td>23.75</td>
<td>24.00</td>
<td>12.25</td>
<td>24.00</td>
<td>12.20</td>
</tr>
<tr>
<td>25.00</td>
<td>24.75</td>
<td>25.00</td>
<td>12.40</td>
<td>25.00</td>
<td>12.35</td>
</tr>
<tr>
<td>26.00</td>
<td>25.75</td>
<td>26.00</td>
<td>12.54</td>
<td>26.00</td>
<td>12.48</td>
</tr>
<tr>
<td>27.00</td>
<td>26.79</td>
<td>27.00</td>
<td>12.67</td>
<td>27.00</td>
<td>12.61</td>
</tr>
<tr>
<td>28.00</td>
<td>27.79</td>
<td>28.00</td>
<td>12.79</td>
<td>28.00</td>
<td>12.74</td>
</tr>
<tr>
<td>29.00</td>
<td>28.79</td>
<td>29.00</td>
<td>12.91</td>
<td>29.00</td>
<td>12.85</td>
</tr>
<tr>
<td>30.00</td>
<td>29.79</td>
<td>30.00</td>
<td>13.02</td>
<td>30.00</td>
<td>12.97</td>
</tr>
<tr>
<td>31.00</td>
<td>30.79</td>
<td>31.00</td>
<td>13.13</td>
<td>31.00</td>
<td>13.07</td>
</tr>
<tr>
<td>32.00</td>
<td>31.79</td>
<td>32.00</td>
<td>13.23</td>
<td>32.00</td>
<td>13.17</td>
</tr>
<tr>
<td>33.00</td>
<td>32.79</td>
<td>33.00</td>
<td>13.33</td>
<td>33.00</td>
<td>13.27</td>
</tr>
<tr>
<td>34.00</td>
<td>33.79</td>
<td>34.00</td>
<td>13.42</td>
<td>34.00</td>
<td>13.37</td>
</tr>
<tr>
<td>35.00</td>
<td>34.79</td>
<td>35.00</td>
<td>13.51</td>
<td>35.00</td>
<td>13.45</td>
</tr>
<tr>
<td>36.00</td>
<td>35.79</td>
<td>36.00</td>
<td>13.60</td>
<td>36.00</td>
<td>13.54</td>
</tr>
<tr>
<td>37.00</td>
<td>36.79</td>
<td>37.00</td>
<td>13.68</td>
<td>37.00</td>
<td>13.62</td>
</tr>
<tr>
<td>38.00</td>
<td>37.79</td>
<td>38.00</td>
<td>13.76</td>
<td>38.00</td>
<td>13.70</td>
</tr>
<tr>
<td>39.00</td>
<td>38.79</td>
<td>39.00</td>
<td>13.84</td>
<td>39.00</td>
<td>13.78</td>
</tr>
<tr>
<td>40.00</td>
<td>39.79</td>
<td>40.00</td>
<td>13.92</td>
<td>40.00</td>
<td>13.85</td>
</tr>
<tr>
<td>41.00</td>
<td>40.79</td>
<td>41.00</td>
<td>13.99</td>
<td>41.00</td>
<td>13.93</td>
</tr>
<tr>
<td>42.00</td>
<td>41.79</td>
<td>42.00</td>
<td>14.06</td>
<td>42.00</td>
<td>14.00</td>
</tr>
<tr>
<td>43.00</td>
<td>42.79</td>
<td>43.00</td>
<td>14.13</td>
<td>43.00</td>
<td>14.06</td>
</tr>
<tr>
<td>44.00</td>
<td>43.79</td>
<td>44.00</td>
<td>14.19</td>
<td>44.00</td>
<td>14.13</td>
</tr>
<tr>
<td>45.00</td>
<td>44.79</td>
<td>45.00</td>
<td>14.26</td>
<td>45.00</td>
<td>14.19</td>
</tr>
<tr>
<td>46.00</td>
<td>45.79</td>
<td>46.00</td>
<td>14.32</td>
<td>46.00</td>
<td>14.25</td>
</tr>
<tr>
<td>47.00</td>
<td>46.79</td>
<td>47.00</td>
<td>14.38</td>
<td>47.00</td>
<td>14.31</td>
</tr>
<tr>
<td>48.00</td>
<td>47.79</td>
<td>48.00</td>
<td>14.44</td>
<td>48.00</td>
<td>14.37</td>
</tr>
<tr>
<td>49.00</td>
<td>48.79</td>
<td>49.00</td>
<td>14.49</td>
<td>49.00</td>
<td>14.43</td>
</tr>
<tr>
<td>50.00</td>
<td>49.79</td>
<td>50.00</td>
<td>14.55</td>
<td>50.00</td>
<td>14.48</td>
</tr>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
</tr>
<tr>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
</tr>
<tr>
<td>5.0</td>
<td>4.87</td>
<td>5.0</td>
<td>4.86</td>
<td>5.0</td>
<td>4.85</td>
</tr>
<tr>
<td>6.0</td>
<td>5.72</td>
<td>6.0</td>
<td>5.71</td>
<td>6.0</td>
<td>5.69</td>
</tr>
<tr>
<td>7.0</td>
<td>6.49</td>
<td>7.0</td>
<td>6.47</td>
<td>7.0</td>
<td>6.44</td>
</tr>
<tr>
<td>8.0</td>
<td>7.18</td>
<td>8.0</td>
<td>7.15</td>
<td>8.0</td>
<td>7.11</td>
</tr>
<tr>
<td>9.0</td>
<td>7.78</td>
<td>9.0</td>
<td>7.76</td>
<td>9.0</td>
<td>7.69</td>
</tr>
<tr>
<td>10.0</td>
<td>8.32</td>
<td>10.0</td>
<td>8.29</td>
<td>10.0</td>
<td>8.21</td>
</tr>
<tr>
<td>11.0</td>
<td>8.80</td>
<td>11.0</td>
<td>8.76</td>
<td>11.0</td>
<td>8.67</td>
</tr>
<tr>
<td>12.0</td>
<td>9.23</td>
<td>12.0</td>
<td>9.18</td>
<td>12.0</td>
<td>9.08</td>
</tr>
<tr>
<td>13.0</td>
<td>9.61</td>
<td>13.0</td>
<td>9.56</td>
<td>13.0</td>
<td>9.45</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>9.90</td>
<td>14.0</td>
<td>9.78</td>
</tr>
<tr>
<td>15.0</td>
<td>10.27</td>
<td>15.0</td>
<td>10.21</td>
<td>15.0</td>
<td>10.08</td>
</tr>
<tr>
<td>16.0</td>
<td>10.55</td>
<td>16.0</td>
<td>10.49</td>
<td>16.0</td>
<td>10.35</td>
</tr>
<tr>
<td>17.0</td>
<td>10.81</td>
<td>17.0</td>
<td>10.74</td>
<td>17.0</td>
<td>10.60</td>
</tr>
<tr>
<td>18.0</td>
<td>11.05</td>
<td>18.0</td>
<td>10.98</td>
<td>18.0</td>
<td>10.82</td>
</tr>
<tr>
<td>19.0</td>
<td>11.27</td>
<td>19.0</td>
<td>11.19</td>
<td>19.0</td>
<td>11.03</td>
</tr>
<tr>
<td>20.0</td>
<td>11.47</td>
<td>20.0</td>
<td>11.39</td>
<td>20.0</td>
<td>11.23</td>
</tr>
<tr>
<td>21.0</td>
<td>11.66</td>
<td>21.0</td>
<td>11.58</td>
<td>21.0</td>
<td>11.41</td>
</tr>
<tr>
<td>22.0</td>
<td>11.83</td>
<td>22.0</td>
<td>11.75</td>
<td>22.0</td>
<td>11.58</td>
</tr>
<tr>
<td>23.0</td>
<td>12.00</td>
<td>23.0</td>
<td>11.91</td>
<td>23.0</td>
<td>11.74</td>
</tr>
<tr>
<td>24.0</td>
<td>12.15</td>
<td>24.0</td>
<td>12.07</td>
<td>24.0</td>
<td>11.88</td>
</tr>
<tr>
<td>25.0</td>
<td>12.30</td>
<td>25.0</td>
<td>12.21</td>
<td>25.0</td>
<td>12.02</td>
</tr>
<tr>
<td>26.0</td>
<td>12.44</td>
<td>26.0</td>
<td>12.34</td>
<td>26.0</td>
<td>12.16</td>
</tr>
<tr>
<td>27.0</td>
<td>12.56</td>
<td>27.0</td>
<td>12.47</td>
<td>27.0</td>
<td>12.28</td>
</tr>
<tr>
<td>28.0</td>
<td>12.69</td>
<td>28.0</td>
<td>12.59</td>
<td>28.0</td>
<td>12.40</td>
</tr>
<tr>
<td>29.0</td>
<td>12.80</td>
<td>29.0</td>
<td>12.71</td>
<td>29.0</td>
<td>12.51</td>
</tr>
<tr>
<td>30.0</td>
<td>12.92</td>
<td>30.0</td>
<td>12.82</td>
<td>30.0</td>
<td>12.62</td>
</tr>
<tr>
<td>31.0</td>
<td>13.02</td>
<td>31.0</td>
<td>12.93</td>
<td>31.0</td>
<td>12.72</td>
</tr>
<tr>
<td>32.0</td>
<td>13.12</td>
<td>32.0</td>
<td>13.02</td>
<td>32.0</td>
<td>12.82</td>
</tr>
<tr>
<td>33.0</td>
<td>13.22</td>
<td>33.0</td>
<td>13.12</td>
<td>33.0</td>
<td>12.91</td>
</tr>
<tr>
<td>34.0</td>
<td>13.31</td>
<td>34.0</td>
<td>13.21</td>
<td>34.0</td>
<td>13.00</td>
</tr>
<tr>
<td>35.0</td>
<td>13.40</td>
<td>35.0</td>
<td>13.30</td>
<td>35.0</td>
<td>13.09</td>
</tr>
<tr>
<td>36.0</td>
<td>13.49</td>
<td>36.0</td>
<td>13.38</td>
<td>36.0</td>
<td>13.17</td>
</tr>
<tr>
<td>37.0</td>
<td>13.57</td>
<td>37.0</td>
<td>13.47</td>
<td>37.0</td>
<td>13.25</td>
</tr>
<tr>
<td>38.0</td>
<td>13.65</td>
<td>38.0</td>
<td>13.54</td>
<td>38.0</td>
<td>13.33</td>
</tr>
<tr>
<td>39.0</td>
<td>13.73</td>
<td>39.0</td>
<td>13.62</td>
<td>39.0</td>
<td>13.40</td>
</tr>
<tr>
<td>40.0</td>
<td>13.80</td>
<td>40.0</td>
<td>13.69</td>
<td>40.0</td>
<td>13.48</td>
</tr>
<tr>
<td>41.0</td>
<td>13.87</td>
<td>41.0</td>
<td>13.77</td>
<td>41.0</td>
<td>13.55</td>
</tr>
<tr>
<td>42.0</td>
<td>13.94</td>
<td>42.0</td>
<td>13.83</td>
<td>42.0</td>
<td>13.61</td>
</tr>
<tr>
<td>43.0</td>
<td>14.01</td>
<td>43.0</td>
<td>13.90</td>
<td>43.0</td>
<td>13.68</td>
</tr>
<tr>
<td>44.0</td>
<td>14.07</td>
<td>44.0</td>
<td>13.97</td>
<td>44.0</td>
<td>13.74</td>
</tr>
<tr>
<td>45.0</td>
<td>14.14</td>
<td>45.0</td>
<td>14.03</td>
<td>45.0</td>
<td>13.80</td>
</tr>
<tr>
<td>46.0</td>
<td>14.20</td>
<td>46.0</td>
<td>14.09</td>
<td>46.0</td>
<td>13.86</td>
</tr>
<tr>
<td>47.0</td>
<td>14.26</td>
<td>47.0</td>
<td>14.15</td>
<td>47.0</td>
<td>13.92</td>
</tr>
<tr>
<td>48.0</td>
<td>14.31</td>
<td>48.0</td>
<td>14.21</td>
<td>48.0</td>
<td>13.98</td>
</tr>
<tr>
<td>49.0</td>
<td>14.37</td>
<td>49.0</td>
<td>14.26</td>
<td>49.0</td>
<td>14.03</td>
</tr>
<tr>
<td>50.0</td>
<td>14.43</td>
<td>50.0</td>
<td>14.32</td>
<td>50.0</td>
<td>14.09</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
<td>0.16</td>
<td>0.97</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
<td>0.43</td>
<td>0.83</td>
</tr>
<tr>
<td>3.0</td>
<td>2.98</td>
<td>3.0</td>
<td>2.97</td>
<td>0.98</td>
<td>0.64</td>
</tr>
<tr>
<td>4.0</td>
<td>3.93</td>
<td>4.0</td>
<td>3.88</td>
<td>1.53</td>
<td>1.10</td>
</tr>
<tr>
<td>5.0</td>
<td>4.83</td>
<td>5.0</td>
<td>4.71</td>
<td>2.07</td>
<td>1.21</td>
</tr>
<tr>
<td>6.0</td>
<td>5.64</td>
<td>6.0</td>
<td>5.44</td>
<td>3.44</td>
<td>2.96</td>
</tr>
<tr>
<td>7.0</td>
<td>6.36</td>
<td>7.0</td>
<td>6.07</td>
<td>4.81</td>
<td>4.68</td>
</tr>
<tr>
<td>8.0</td>
<td>6.99</td>
<td>8.0</td>
<td>6.61</td>
<td>13.01</td>
<td>9.20</td>
</tr>
<tr>
<td>9.0</td>
<td>7.55</td>
<td>9.0</td>
<td>7.07</td>
<td>26.69</td>
<td>11.63</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>7.48</td>
<td>54.04</td>
<td>12.17</td>
</tr>
<tr>
<td>11.0</td>
<td>8.47</td>
<td>11.0</td>
<td>7.84</td>
<td>81.39</td>
<td>11.94</td>
</tr>
<tr>
<td>12.0</td>
<td>8.85</td>
<td>12.0</td>
<td>8.16</td>
<td>108.74</td>
<td>11.59</td>
</tr>
<tr>
<td>13.0</td>
<td>9.20</td>
<td>13.0</td>
<td>8.44</td>
<td>136.09</td>
<td>11.08</td>
</tr>
<tr>
<td>14.0</td>
<td>9.50</td>
<td>14.0</td>
<td>8.70</td>
<td>163.44</td>
<td>10.98</td>
</tr>
<tr>
<td>15.0</td>
<td>9.78</td>
<td>15.0</td>
<td>8.93</td>
<td>204.46</td>
<td>11.31</td>
</tr>
<tr>
<td>16.0</td>
<td>10.04</td>
<td>16.0</td>
<td>9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>10.27</td>
<td>17.0</td>
<td>9.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>10.48</td>
<td>18.0</td>
<td>9.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>10.68</td>
<td>19.0</td>
<td>9.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>10.86</td>
<td>20.0</td>
<td>9.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>11.03</td>
<td>21.0</td>
<td>9.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>11.19</td>
<td>22.0</td>
<td>10.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>11.34</td>
<td>23.0</td>
<td>10.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>11.48</td>
<td>24.0</td>
<td>10.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>11.61</td>
<td>25.0</td>
<td>10.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>11.74</td>
<td>26.0</td>
<td>10.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>11.86</td>
<td>27.0</td>
<td>10.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>11.97</td>
<td>28.0</td>
<td>10.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>12.07</td>
<td>29.0</td>
<td>10.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>12.18</td>
<td>30.0</td>
<td>10.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>12.27</td>
<td>31.0</td>
<td>11.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>12.37</td>
<td>32.0</td>
<td>11.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>12.46</td>
<td>33.0</td>
<td>11.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>12.54</td>
<td>34.0</td>
<td>11.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>12.63</td>
<td>35.0</td>
<td>11.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>12.71</td>
<td>36.0</td>
<td>11.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>12.78</td>
<td>37.0</td>
<td>11.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>12.86</td>
<td>38.0</td>
<td>11.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td>12.93</td>
<td>39.0</td>
<td>11.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>13.00</td>
<td>40.0</td>
<td>11.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.0</td>
<td>13.07</td>
<td>41.0</td>
<td>11.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.0</td>
<td>13.13</td>
<td>42.0</td>
<td>11.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.0</td>
<td>13.19</td>
<td>43.0</td>
<td>11.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.0</td>
<td>13.25</td>
<td>44.0</td>
<td>11.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.0</td>
<td>13.31</td>
<td>45.0</td>
<td>12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.0</td>
<td>13.37</td>
<td>46.0</td>
<td>12.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.0</td>
<td>13.43</td>
<td>47.0</td>
<td>12.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>13.48</td>
<td>48.0</td>
<td>12.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.0</td>
<td>13.54</td>
<td>49.0</td>
<td>12.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>13.59</td>
<td>50.0</td>
<td>12.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td></td>
<td>60°</td>
<td></td>
<td>80°</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>0.19</td>
<td>1.05</td>
<td>0.21</td>
<td>1.16</td>
<td>0.21</td>
<td>1.15</td>
</tr>
<tr>
<td>0.53</td>
<td>1.00</td>
<td>0.56</td>
<td>1.15</td>
<td>0.57</td>
<td>1.15</td>
</tr>
<tr>
<td>1.20</td>
<td>1.21</td>
<td>1.28</td>
<td>1.46</td>
<td>1.30</td>
<td>1.46</td>
</tr>
<tr>
<td>1.87</td>
<td>1.68</td>
<td>1.99</td>
<td>2.06</td>
<td>2.02</td>
<td>2.04</td>
</tr>
<tr>
<td>2.54</td>
<td>1.93</td>
<td>2.71</td>
<td>2.39</td>
<td>2.75</td>
<td>2.42</td>
</tr>
<tr>
<td>4.21</td>
<td>4.11</td>
<td>4.49</td>
<td>4.57</td>
<td>4.56</td>
<td>4.54</td>
</tr>
<tr>
<td>5.89</td>
<td>5.71</td>
<td>6.28</td>
<td>6.26</td>
<td>6.38</td>
<td>6.22</td>
</tr>
<tr>
<td>15.93</td>
<td>11.74</td>
<td>17.00</td>
<td>13.01</td>
<td>17.26</td>
<td>13.33</td>
</tr>
<tr>
<td>32.68</td>
<td>16.73</td>
<td>34.86</td>
<td>19.83</td>
<td>35.40</td>
<td>21.07</td>
</tr>
<tr>
<td>66.17</td>
<td>18.68</td>
<td>70.58</td>
<td>23.80</td>
<td>71.68</td>
<td>27.06</td>
</tr>
<tr>
<td>99.66</td>
<td>18.79</td>
<td>106.30</td>
<td>24.43</td>
<td>107.96</td>
<td>28.32</td>
</tr>
<tr>
<td>133.15</td>
<td>18.79</td>
<td>142.02</td>
<td>24.59</td>
<td>144.24</td>
<td>28.59</td>
</tr>
<tr>
<td>166.64</td>
<td>18.61</td>
<td>177.75</td>
<td>24.39</td>
<td>180.52</td>
<td>28.51</td>
</tr>
<tr>
<td>200.13</td>
<td>18.63</td>
<td>213.47</td>
<td>24.42</td>
<td>216.80</td>
<td>28.58</td>
</tr>
<tr>
<td>250.36</td>
<td>18.87</td>
<td>267.05</td>
<td>24.83</td>
<td>271.22</td>
<td>29.04</td>
</tr>
<tr>
<td></td>
<td>50°</td>
<td></td>
<td>70°</td>
<td></td>
<td>90°</td>
</tr>
<tr>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>0.20</td>
<td>1.15</td>
<td>0.22</td>
<td>1.15</td>
<td>0.20</td>
<td>1.07</td>
</tr>
<tr>
<td>0.56</td>
<td>1.14</td>
<td>0.59</td>
<td>1.14</td>
<td>0.55</td>
<td>1.03</td>
</tr>
<tr>
<td>1.26</td>
<td>1.45</td>
<td>1.33</td>
<td>1.47</td>
<td>1.25</td>
<td>1.26</td>
</tr>
<tr>
<td>1.96</td>
<td>2.03</td>
<td>2.08</td>
<td>2.08</td>
<td>1.95</td>
<td>1.79</td>
</tr>
<tr>
<td>2.67</td>
<td>2.35</td>
<td>2.82</td>
<td>2.43</td>
<td>2.65</td>
<td>2.10</td>
</tr>
<tr>
<td>4.42</td>
<td>4.57</td>
<td>4.68</td>
<td>4.52</td>
<td>4.40</td>
<td>4.24</td>
</tr>
<tr>
<td>6.18</td>
<td>6.21</td>
<td>6.54</td>
<td>6.19</td>
<td>6.15</td>
<td>5.89</td>
</tr>
<tr>
<td>16.73</td>
<td>12.78</td>
<td>17.70</td>
<td>13.01</td>
<td>16.64</td>
<td>13.07</td>
</tr>
<tr>
<td>34.31</td>
<td>18.55</td>
<td>36.31</td>
<td>20.17</td>
<td>34.13</td>
<td>21.49</td>
</tr>
<tr>
<td>69.48</td>
<td>21.58</td>
<td>73.52</td>
<td>25.11</td>
<td>69.11</td>
<td>28.49</td>
</tr>
<tr>
<td>104.64</td>
<td>21.89</td>
<td>110.73</td>
<td>26.08</td>
<td>104.09</td>
<td>30.20</td>
</tr>
<tr>
<td>139.80</td>
<td>21.96</td>
<td>147.94</td>
<td>26.19</td>
<td>139.06</td>
<td>30.64</td>
</tr>
<tr>
<td>174.97</td>
<td>21.74</td>
<td>185.15</td>
<td>26.10</td>
<td>174.04</td>
<td>30.63</td>
</tr>
<tr>
<td>210.13</td>
<td>21.77</td>
<td>222.36</td>
<td>26.13</td>
<td>209.02</td>
<td>30.69</td>
</tr>
<tr>
<td>262.88</td>
<td>22.12</td>
<td>278.18</td>
<td>26.43</td>
<td>261.49</td>
<td>31.22</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>100°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>1.04</td>
<td>0.32</td>
<td>1.52</td>
<td>0.24</td>
<td>1.29</td>
</tr>
<tr>
<td>0.54</td>
<td>0.97</td>
<td>0.88</td>
<td>1.75</td>
<td>0.65</td>
<td>1.33</td>
</tr>
<tr>
<td>1.21</td>
<td>1.17</td>
<td>1.98</td>
<td>2.43</td>
<td>1.47</td>
<td>1.86</td>
</tr>
<tr>
<td>1.89</td>
<td>1.62</td>
<td>3.09</td>
<td>3.14</td>
<td>2.28</td>
<td>2.48</td>
</tr>
<tr>
<td>2.57</td>
<td>1.88</td>
<td>4.20</td>
<td>3.49</td>
<td>3.10</td>
<td>2.67</td>
</tr>
<tr>
<td>4.26</td>
<td>4.03</td>
<td>6.97</td>
<td>5.74</td>
<td>5.15</td>
<td>5.02</td>
</tr>
<tr>
<td>5.96</td>
<td>5.64</td>
<td>9.75</td>
<td>7.41</td>
<td>7.20</td>
<td>6.60</td>
</tr>
<tr>
<td>16.11</td>
<td>12.89</td>
<td>26.38</td>
<td>11.01</td>
<td>19.47</td>
<td>11.26</td>
</tr>
<tr>
<td>33.04</td>
<td>21.96</td>
<td>54.10</td>
<td>13.00</td>
<td>39.94</td>
<td>13.50</td>
</tr>
<tr>
<td>66.90</td>
<td>29.70</td>
<td>109.54</td>
<td>14.43</td>
<td>80.87</td>
<td>15.10</td>
</tr>
<tr>
<td>100.76</td>
<td>31.19</td>
<td>164.99</td>
<td>15.43</td>
<td>121.80</td>
<td>16.19</td>
</tr>
<tr>
<td>134.63</td>
<td>31.75</td>
<td>220.43</td>
<td>16.17</td>
<td>162.74</td>
<td>17.07</td>
</tr>
<tr>
<td>168.49</td>
<td>31.77</td>
<td>275.88</td>
<td>16.76</td>
<td>203.67</td>
<td>17.71</td>
</tr>
<tr>
<td>202.35</td>
<td>31.95</td>
<td>331.32</td>
<td>17.15</td>
<td>244.60</td>
<td>18.14</td>
</tr>
<tr>
<td>253.14</td>
<td>32.51</td>
<td>414.48</td>
<td>17.56</td>
<td>305.99</td>
<td>18.75</td>
</tr>
<tr>
<td>110°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>1.42</td>
<td>0.29</td>
<td>1.36</td>
<td>0.17</td>
<td>1.17</td>
</tr>
<tr>
<td>1.15</td>
<td>1.65</td>
<td>0.79</td>
<td>1.57</td>
<td>0.46</td>
<td>1.16</td>
</tr>
<tr>
<td>2.60</td>
<td>2.28</td>
<td>1.78</td>
<td>2.12</td>
<td>1.04</td>
<td>1.42</td>
</tr>
<tr>
<td>4.05</td>
<td>2.98</td>
<td>2.77</td>
<td>2.80</td>
<td>1.62</td>
<td>1.86</td>
</tr>
<tr>
<td>5.50</td>
<td>3.16</td>
<td>3.77</td>
<td>3.14</td>
<td>2.20</td>
<td>2.19</td>
</tr>
<tr>
<td>9.13</td>
<td>5.11</td>
<td>6.25</td>
<td>5.33</td>
<td>3.65</td>
<td>4.50</td>
</tr>
<tr>
<td>12.76</td>
<td>6.42</td>
<td>8.73</td>
<td>6.93</td>
<td>5.10</td>
<td>6.25</td>
</tr>
<tr>
<td>34.52</td>
<td>9.26</td>
<td>23.64</td>
<td>10.80</td>
<td>13.81</td>
<td>11.70</td>
</tr>
<tr>
<td>70.80</td>
<td>10.63</td>
<td>48.47</td>
<td>13.01</td>
<td>26.32</td>
<td>14.92</td>
</tr>
<tr>
<td>143.36</td>
<td>11.82</td>
<td>98.15</td>
<td>14.44</td>
<td>57.35</td>
<td>16.92</td>
</tr>
<tr>
<td>215.92</td>
<td>12.50</td>
<td>147.83</td>
<td>15.51</td>
<td>86.37</td>
<td>18.21</td>
</tr>
<tr>
<td>288.49</td>
<td>13.24</td>
<td>197.50</td>
<td>16.32</td>
<td>115.39</td>
<td>19.34</td>
</tr>
<tr>
<td>361.04</td>
<td>13.63</td>
<td>247.18</td>
<td>16.71</td>
<td>144.42</td>
<td>20.00</td>
</tr>
<tr>
<td>433.61</td>
<td>13.95</td>
<td>296.85</td>
<td>17.28</td>
<td>173.44</td>
<td>20.79</td>
</tr>
<tr>
<td>542.45</td>
<td>14.35</td>
<td>371.37</td>
<td>17.78</td>
<td>216.98</td>
<td>21.25</td>
</tr>
<tr>
<td></td>
<td>s/d=44 Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160°</td>
<td>20°</td>
<td>40°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>0.11</td>
<td>1.15</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>0.30</td>
<td>0.89</td>
<td>2.00</td>
<td>1.93</td>
<td>2.00</td>
<td>1.97</td>
</tr>
<tr>
<td>0.69</td>
<td>0.80</td>
<td>3.00</td>
<td>2.84</td>
<td>3.00</td>
<td>2.93</td>
</tr>
<tr>
<td>1.07</td>
<td>0.99</td>
<td>4.00</td>
<td>3.72</td>
<td>4.00</td>
<td>3.87</td>
</tr>
<tr>
<td>1.45</td>
<td>1.13</td>
<td>5.00</td>
<td>4.56</td>
<td>5.00</td>
<td>4.80</td>
</tr>
<tr>
<td>2.41</td>
<td>2.61</td>
<td>6.00</td>
<td>5.37</td>
<td>6.00</td>
<td>5.72</td>
</tr>
<tr>
<td>3.37</td>
<td>4.62</td>
<td>7.00</td>
<td>6.14</td>
<td>7.00</td>
<td>6.62</td>
</tr>
<tr>
<td>9.12</td>
<td>11.45</td>
<td>8.00</td>
<td>6.87</td>
<td>8.00</td>
<td>7.50</td>
</tr>
<tr>
<td>18.70</td>
<td>15.36</td>
<td>9.00</td>
<td>7.57</td>
<td>9.00</td>
<td>8.37</td>
</tr>
<tr>
<td>37.86</td>
<td>17.92</td>
<td>10.00</td>
<td>8.24</td>
<td>10.00</td>
<td>9.22</td>
</tr>
<tr>
<td>57.03</td>
<td>19.62</td>
<td>11.00</td>
<td>8.87</td>
<td>11.00</td>
<td>10.05</td>
</tr>
<tr>
<td>76.19</td>
<td>21.12</td>
<td>12.00</td>
<td>9.46</td>
<td>12.00</td>
<td>10.87</td>
</tr>
<tr>
<td>95.35</td>
<td>22.16</td>
<td>13.00</td>
<td>10.02</td>
<td>13.00</td>
<td>11.68</td>
</tr>
<tr>
<td>114.52</td>
<td>23.00</td>
<td>14.00</td>
<td>10.55</td>
<td>14.00</td>
<td>12.47</td>
</tr>
<tr>
<td>143.26</td>
<td>23.96</td>
<td>15.00</td>
<td>11.04</td>
<td>15.00</td>
<td>13.24</td>
</tr>
<tr>
<td></td>
<td>170°</td>
<td>30°</td>
<td>50°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>0.04</td>
<td>1.72</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>0.12</td>
<td>1.02</td>
<td>2.00</td>
<td>1.96</td>
<td>2.00</td>
<td>1.98</td>
</tr>
<tr>
<td>0.27</td>
<td>0.46</td>
<td>3.00</td>
<td>2.91</td>
<td>3.00</td>
<td>2.95</td>
</tr>
<tr>
<td>0.42</td>
<td>0.31</td>
<td>4.00</td>
<td>3.83</td>
<td>4.00</td>
<td>3.91</td>
</tr>
<tr>
<td>0.56</td>
<td>0.30</td>
<td>5.00</td>
<td>4.74</td>
<td>5.00</td>
<td>4.86</td>
</tr>
<tr>
<td>0.94</td>
<td>0.66</td>
<td>6.00</td>
<td>5.62</td>
<td>6.00</td>
<td>5.80</td>
</tr>
<tr>
<td>1.31</td>
<td>1.58</td>
<td>7.00</td>
<td>6.49</td>
<td>7.00</td>
<td>6.72</td>
</tr>
<tr>
<td>3.54</td>
<td>9.87</td>
<td>8.00</td>
<td>7.33</td>
<td>8.00</td>
<td>7.64</td>
</tr>
<tr>
<td>7.26</td>
<td>18.17</td>
<td>9.00</td>
<td>8.15</td>
<td>9.00</td>
<td>8.54</td>
</tr>
<tr>
<td>14.70</td>
<td>23.75</td>
<td>10.00</td>
<td>8.95</td>
<td>10.00</td>
<td>9.43</td>
</tr>
<tr>
<td>22.15</td>
<td>26.68</td>
<td>11.00</td>
<td>9.73</td>
<td>11.00</td>
<td>10.31</td>
</tr>
<tr>
<td>29.59</td>
<td>29.69</td>
<td>12.00</td>
<td>10.49</td>
<td>12.00</td>
<td>11.18</td>
</tr>
<tr>
<td>37.03</td>
<td>32.16</td>
<td>13.00</td>
<td>11.23</td>
<td>13.00</td>
<td>12.04</td>
</tr>
<tr>
<td>44.47</td>
<td>34.06</td>
<td>14.00</td>
<td>11.94</td>
<td>14.00</td>
<td>12.89</td>
</tr>
<tr>
<td>55.64</td>
<td>35.87</td>
<td>15.00</td>
<td>12.64</td>
<td>15.00</td>
<td>13.72</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.98</td>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
<td>2.01</td>
</tr>
<tr>
<td>3.00</td>
<td>2.96</td>
<td>3.00</td>
<td>2.99</td>
<td>3.00</td>
<td>3.02</td>
</tr>
<tr>
<td>4.00</td>
<td>3.93</td>
<td>4.00</td>
<td>3.98</td>
<td>4.00</td>
<td>4.03</td>
</tr>
<tr>
<td>5.00</td>
<td>4.89</td>
<td>5.00</td>
<td>4.97</td>
<td>5.00</td>
<td>5.04</td>
</tr>
<tr>
<td>6.00</td>
<td>5.85</td>
<td>6.00</td>
<td>5.95</td>
<td>6.00</td>
<td>6.06</td>
</tr>
<tr>
<td>7.00</td>
<td>6.79</td>
<td>7.00</td>
<td>6.93</td>
<td>7.00</td>
<td>7.08</td>
</tr>
<tr>
<td>8.00</td>
<td>7.73</td>
<td>8.00</td>
<td>7.91</td>
<td>8.00</td>
<td>8.11</td>
</tr>
<tr>
<td>9.00</td>
<td>8.66</td>
<td>9.00</td>
<td>8.89</td>
<td>9.00</td>
<td>9.14</td>
</tr>
<tr>
<td>10.00</td>
<td>9.58</td>
<td>10.00</td>
<td>9.86</td>
<td>10.00</td>
<td>10.17</td>
</tr>
<tr>
<td>11.00</td>
<td>10.49</td>
<td>11.00</td>
<td>10.83</td>
<td>11.00</td>
<td>11.21</td>
</tr>
<tr>
<td>12.00</td>
<td>11.39</td>
<td>12.00</td>
<td>11.80</td>
<td>12.00</td>
<td>12.25</td>
</tr>
<tr>
<td>13.00</td>
<td>12.29</td>
<td>13.00</td>
<td>12.76</td>
<td>13.00</td>
<td>13.29</td>
</tr>
<tr>
<td>14.00</td>
<td>13.18</td>
<td>14.00</td>
<td>13.73</td>
<td>14.00</td>
<td>14.34</td>
</tr>
<tr>
<td>15.00</td>
<td>14.05</td>
<td>15.00</td>
<td>14.69</td>
<td>15.00</td>
<td>15.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>2.98</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>4.00</td>
<td>3.96</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>5.00</td>
<td>4.94</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>6.00</td>
<td>5.91</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>7.00</td>
<td>6.88</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>8.00</td>
<td>7.84</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>9.00</td>
<td>8.79</td>
<td>9.00</td>
<td>9.00</td>
</tr>
<tr>
<td>10.00</td>
<td>9.75</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>11.00</td>
<td>10.69</td>
<td>11.00</td>
<td>11.00</td>
</tr>
<tr>
<td>12.00</td>
<td>11.63</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>13.00</td>
<td>12.57</td>
<td>13.00</td>
<td>13.00</td>
</tr>
<tr>
<td>14.00</td>
<td>13.50</td>
<td>14.00</td>
<td>14.00</td>
</tr>
<tr>
<td>15.00</td>
<td>14.43</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>(y^+)</td>
<td>110°</td>
<td>(y^+)</td>
<td>120°</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
</tr>
<tr>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
</tr>
<tr>
<td>5.0</td>
<td>4.87</td>
<td>5.0</td>
<td>4.87</td>
</tr>
<tr>
<td>6.0</td>
<td>5.72</td>
<td>6.0</td>
<td>5.71</td>
</tr>
<tr>
<td>7.0</td>
<td>6.50</td>
<td>7.0</td>
<td>6.48</td>
</tr>
<tr>
<td>8.0</td>
<td>7.19</td>
<td>8.0</td>
<td>7.16</td>
</tr>
<tr>
<td>9.0</td>
<td>7.80</td>
<td>9.0</td>
<td>7.76</td>
</tr>
<tr>
<td>10.0</td>
<td>8.34</td>
<td>10.0</td>
<td>8.30</td>
</tr>
<tr>
<td>11.0</td>
<td>8.83</td>
<td>11.0</td>
<td>8.77</td>
</tr>
<tr>
<td>12.0</td>
<td>9.26</td>
<td>12.0</td>
<td>9.19</td>
</tr>
<tr>
<td>13.0</td>
<td>9.64</td>
<td>13.0</td>
<td>9.57</td>
</tr>
<tr>
<td>14.0</td>
<td>9.99</td>
<td>14.0</td>
<td>9.91</td>
</tr>
<tr>
<td>15.0</td>
<td>10.30</td>
<td>15.0</td>
<td>10.22</td>
</tr>
<tr>
<td>16.0</td>
<td>10.59</td>
<td>16.0</td>
<td>10.50</td>
</tr>
<tr>
<td>17.0</td>
<td>10.85</td>
<td>17.0</td>
<td>10.75</td>
</tr>
<tr>
<td>18.0</td>
<td>11.09</td>
<td>18.0</td>
<td>10.99</td>
</tr>
<tr>
<td>19.0</td>
<td>11.31</td>
<td>19.0</td>
<td>11.21</td>
</tr>
<tr>
<td>20.0</td>
<td>11.51</td>
<td>20.0</td>
<td>11.41</td>
</tr>
<tr>
<td>21.0</td>
<td>11.70</td>
<td>21.0</td>
<td>11.59</td>
</tr>
<tr>
<td>22.0</td>
<td>11.88</td>
<td>22.0</td>
<td>11.77</td>
</tr>
<tr>
<td>23.0</td>
<td>12.04</td>
<td>23.0</td>
<td>11.93</td>
</tr>
<tr>
<td>24.0</td>
<td>12.20</td>
<td>24.0</td>
<td>12.08</td>
</tr>
<tr>
<td>25.0</td>
<td>12.34</td>
<td>25.0</td>
<td>12.23</td>
</tr>
<tr>
<td>26.0</td>
<td>12.48</td>
<td>26.0</td>
<td>12.36</td>
</tr>
<tr>
<td>27.0</td>
<td>12.61</td>
<td>27.0</td>
<td>12.49</td>
</tr>
<tr>
<td>28.0</td>
<td>12.74</td>
<td>28.0</td>
<td>12.61</td>
</tr>
<tr>
<td>29.0</td>
<td>12.85</td>
<td>29.0</td>
<td>12.73</td>
</tr>
<tr>
<td>30.0</td>
<td>12.96</td>
<td>30.0</td>
<td>12.84</td>
</tr>
<tr>
<td>31.0</td>
<td>13.07</td>
<td>31.0</td>
<td>12.94</td>
</tr>
<tr>
<td>32.0</td>
<td>13.17</td>
<td>32.0</td>
<td>13.04</td>
</tr>
<tr>
<td>33.0</td>
<td>13.27</td>
<td>33.0</td>
<td>13.14</td>
</tr>
<tr>
<td>34.0</td>
<td>13.36</td>
<td>34.0</td>
<td>13.23</td>
</tr>
<tr>
<td>35.0</td>
<td>13.45</td>
<td>35.0</td>
<td>13.32</td>
</tr>
<tr>
<td>36.0</td>
<td>13.54</td>
<td>36.0</td>
<td>13.40</td>
</tr>
<tr>
<td>37.0</td>
<td>13.62</td>
<td>37.0</td>
<td>13.49</td>
</tr>
<tr>
<td>38.0</td>
<td>13.70</td>
<td>38.0</td>
<td>13.56</td>
</tr>
<tr>
<td>39.0</td>
<td>13.78</td>
<td>39.0</td>
<td>13.64</td>
</tr>
<tr>
<td>40.0</td>
<td>13.85</td>
<td>40.0</td>
<td>13.71</td>
</tr>
<tr>
<td>41.0</td>
<td>13.93</td>
<td>41.0</td>
<td>13.78</td>
</tr>
<tr>
<td>42.0</td>
<td>13.99</td>
<td>42.0</td>
<td>13.85</td>
</tr>
<tr>
<td>43.0</td>
<td>14.06</td>
<td>43.0</td>
<td>13.92</td>
</tr>
<tr>
<td>44.0</td>
<td>14.13</td>
<td>44.0</td>
<td>13.98</td>
</tr>
<tr>
<td>45.0</td>
<td>14.19</td>
<td>45.0</td>
<td>14.05</td>
</tr>
<tr>
<td>46.0</td>
<td>14.25</td>
<td>46.0</td>
<td>14.11</td>
</tr>
<tr>
<td>47.0</td>
<td>14.31</td>
<td>47.0</td>
<td>14.17</td>
</tr>
<tr>
<td>48.0</td>
<td>14.37</td>
<td>48.0</td>
<td>14.23</td>
</tr>
<tr>
<td>49.0</td>
<td>14.43</td>
<td>49.0</td>
<td>14.28</td>
</tr>
<tr>
<td>50.0</td>
<td>14.48</td>
<td>50.0</td>
<td>14.34</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>2.98</td>
<td>3.0</td>
<td>2.97</td>
</tr>
<tr>
<td>4.0</td>
<td>3.94</td>
<td>4.0</td>
<td>3.90</td>
</tr>
<tr>
<td>5.0</td>
<td>4.84</td>
<td>5.0</td>
<td>4.76</td>
</tr>
<tr>
<td>6.0</td>
<td>5.66</td>
<td>6.0</td>
<td>5.51</td>
</tr>
<tr>
<td>7.0</td>
<td>6.39</td>
<td>7.0</td>
<td>6.17</td>
</tr>
<tr>
<td>8.0</td>
<td>7.04</td>
<td>8.0</td>
<td>6.74</td>
</tr>
<tr>
<td>9.0</td>
<td>7.61</td>
<td>9.0</td>
<td>7.24</td>
</tr>
<tr>
<td>10.0</td>
<td>8.12</td>
<td>10.0</td>
<td>7.67</td>
</tr>
<tr>
<td>11.0</td>
<td>8.56</td>
<td>11.0</td>
<td>8.05</td>
</tr>
<tr>
<td>12.0</td>
<td>8.96</td>
<td>12.0</td>
<td>8.39</td>
</tr>
<tr>
<td>13.0</td>
<td>9.31</td>
<td>13.0</td>
<td>8.69</td>
</tr>
<tr>
<td>14.0</td>
<td>9.63</td>
<td>14.0</td>
<td>8.96</td>
</tr>
<tr>
<td>15.0</td>
<td>9.91</td>
<td>15.0</td>
<td>9.21</td>
</tr>
<tr>
<td>16.0</td>
<td>10.18</td>
<td>16.0</td>
<td>9.43</td>
</tr>
<tr>
<td>17.0</td>
<td>10.41</td>
<td>17.0</td>
<td>9.63</td>
</tr>
<tr>
<td>18.0</td>
<td>10.63</td>
<td>18.0</td>
<td>9.82</td>
</tr>
<tr>
<td>19.0</td>
<td>10.84</td>
<td>19.0</td>
<td>10.00</td>
</tr>
<tr>
<td>20.0</td>
<td>11.02</td>
<td>20.0</td>
<td>10.16</td>
</tr>
<tr>
<td>21.0</td>
<td>11.20</td>
<td>21.0</td>
<td>10.31</td>
</tr>
<tr>
<td>22.0</td>
<td>11.36</td>
<td>22.0</td>
<td>10.46</td>
</tr>
<tr>
<td>23.0</td>
<td>11.52</td>
<td>23.0</td>
<td>10.59</td>
</tr>
<tr>
<td>24.0</td>
<td>11.66</td>
<td>24.0</td>
<td>10.72</td>
</tr>
<tr>
<td>25.0</td>
<td>11.79</td>
<td>25.0</td>
<td>10.83</td>
</tr>
<tr>
<td>26.0</td>
<td>11.92</td>
<td>26.0</td>
<td>10.95</td>
</tr>
<tr>
<td>27.0</td>
<td>12.04</td>
<td>27.0</td>
<td>11.06</td>
</tr>
<tr>
<td>28.0</td>
<td>12.16</td>
<td>28.0</td>
<td>11.16</td>
</tr>
<tr>
<td>29.0</td>
<td>12.27</td>
<td>29.0</td>
<td>11.26</td>
</tr>
<tr>
<td>30.0</td>
<td>12.37</td>
<td>30.0</td>
<td>11.35</td>
</tr>
<tr>
<td>31.0</td>
<td>12.47</td>
<td>31.0</td>
<td>11.44</td>
</tr>
<tr>
<td>32.0</td>
<td>12.57</td>
<td>32.0</td>
<td>11.53</td>
</tr>
<tr>
<td>33.0</td>
<td>12.66</td>
<td>33.0</td>
<td>11.61</td>
</tr>
<tr>
<td>34.0</td>
<td>12.75</td>
<td>34.0</td>
<td>11.69</td>
</tr>
<tr>
<td>35.0</td>
<td>12.83</td>
<td>35.0</td>
<td>11.76</td>
</tr>
<tr>
<td>36.0</td>
<td>12.91</td>
<td>36.0</td>
<td>11.84</td>
</tr>
<tr>
<td>37.0</td>
<td>12.99</td>
<td>37.0</td>
<td>11.91</td>
</tr>
<tr>
<td>38.0</td>
<td>13.06</td>
<td>38.0</td>
<td>11.98</td>
</tr>
<tr>
<td>39.0</td>
<td>13.14</td>
<td>39.0</td>
<td>12.05</td>
</tr>
<tr>
<td>40.0</td>
<td>13.21</td>
<td>40.0</td>
<td>12.11</td>
</tr>
<tr>
<td>41.0</td>
<td>13.28</td>
<td>41.0</td>
<td>12.18</td>
</tr>
<tr>
<td>42.0</td>
<td>13.34</td>
<td>42.0</td>
<td>12.24</td>
</tr>
<tr>
<td>43.0</td>
<td>13.41</td>
<td>43.0</td>
<td>12.30</td>
</tr>
<tr>
<td>44.0</td>
<td>13.47</td>
<td>44.0</td>
<td>12.36</td>
</tr>
<tr>
<td>45.0</td>
<td>13.53</td>
<td>45.0</td>
<td>12.41</td>
</tr>
<tr>
<td>46.0</td>
<td>13.59</td>
<td>46.0</td>
<td>12.47</td>
</tr>
<tr>
<td>47.0</td>
<td>13.65</td>
<td>47.0</td>
<td>12.52</td>
</tr>
<tr>
<td>48.0</td>
<td>13.70</td>
<td>48.0</td>
<td>12.57</td>
</tr>
<tr>
<td>49.0</td>
<td>13.76</td>
<td>49.0</td>
<td>12.63</td>
</tr>
<tr>
<td>50.0</td>
<td>13.81</td>
<td>50.0</td>
<td>12.68</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>2.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>3.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>3.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>4.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>4.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>4.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>4.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>5.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>5.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>5.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>5.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>5.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>6.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>6.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>6.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>6.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>6.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>6.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>6.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>6.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>6.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>7.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>7.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>7.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>7.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>7.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>7.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>7.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>7.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>7.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>7.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>7.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td>7.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>7.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.0</td>
<td>7.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.0</td>
<td>8.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.0</td>
<td>8.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.0</td>
<td>8.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.0</td>
<td>8.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.0</td>
<td>8.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.0</td>
<td>8.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>8.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.0</td>
<td>8.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>8.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I. Data Acquisition Program Listings

Note: All the programs were written in C and executed on a UNIX operating system.

CROSS
This is the main program for cross-wire data acquisition, adapted from the single-wire acquisition program, SINGLE, written by J. Seume (1988). It calls the subroutines ENTER_COND, SET_UP_VMX, and ACQUIREX.

ENTER_COND
This subroutine inputs the test conditions specific to the data set, including piston bore, pipe diameter, stroke, test section length, axial probe location, drive speed, and number of readings per cycle.

SET_UP_VMX
This subroutine sets up the NORLAND digital storage oscilloscope on the IEEE interface for data storage and transfer.

ACQUIREX
This subroutine acquires cross-wire anemometer data with the NORLAND, updates quantities for the calculation of streamwise and radial ensemble-averaged and fluctuating velocities, and velocity correlations, and stores them in a file.

AIR_STATEX
This subroutine is called by ACQUIREX and supplies ambient air conditions to the acquisition program.
II. Data Processing Program Listings

PROCESSX
This is the main program for the processing of cross-wire data into traces and profiles of both the streamwise and radial component of ensemble-averaged and rms-velocity fluctuations, and the Reynolds shear stress.

VEL_REDTURB
This data reduction program converts profiles of ensemble-averaged velocity into wall coordinates, iterating on the wall shear stress and y-offset to fit the data to the Couette flow model for turbulent-like flow, including the effect of pressure gradient.

DUPDYP
This subroutine is called by VEL_REDTURB and calculates the slope in wall coordinates based on the Van Driest mixing length model.

VEL_REDLAM
This data reduction program converts profiles of ensemble-averaged velocity into wall coordinates, iterating on the wall shear stress and y-offset to fit the data to the Couette flow model for laminar-like flow, including the effect of pressure gradient.
CROSS

#include <stdio.h>
#define void int

/* definition of external variables */
int ib3;
int mrad, lasrdr, lastcycle, iuerr, i rmserr;
int ndummy = 50;
int abort, diagnosis, add_to_set, m_cycle, oldfile, old_file = 0;
int no_inst;
int m_out = 0, m_out[20];
double mstroke, mbeq, mdiam, mlength, maxial, speed;
double t_dry, t_wet, p_atm;
int nread = 1, nlag = 0, mcycle = 0;
char filename[30];
char usage[] = "Usage: single [-a runid or -d or -m mcycle or -n or -o m_out n.
out[1...m_out]]\n";

main(argc,argv)
/* Data acquisition main program, "cross", for cross wire anemometer
measurements. G. Friedman, 8/80 */
/* The program is an adaptation of single.c, written by J. Seume for use
with single wires */

int argc;
char *argv[];
{
#include <string.h>

int i;

extern int abort, diagnosis, add_to_set, m_cycle, mcycle;
extern int no_inst;
extern int m_out, n_out[];
extern char filename[];

void set_up_vmx();
void enter_cond();
void acquirex();

/*
setvbuf (stdout,NULL,_IONBF,1); */
/* Set default values. */
diagnosis = 0;
add_to_set = 0;
m_cycle = 0;
no_inst = 0;

/* Read command line for control parameters. */
while(**argv == '-')
{
--argc;
switch(**argv)
{
 case 'a':
 /* Add to an already existing data set. */
 add_to_set = 1;
 strcpy(filename, "../usr/geoff/shdata/");
 strcpy(&filename[19], **argv);
 --argc;
 break;
 case 'd':
 /* Print out diagnostic information. */
 diagnosis = 1;
 break;
 case 'm':
 /* Set maximum number of cycles to be acquired
to a value different from the default
specified in acquire.c. */
 m_cycle = 1;
 mcycle = atoi(**argv);
 --argc;

 break;
}
break;

 case 'n':
 /* Do not access the A/D converter. */
 no_inst = 1;
 --argc;
 break;
 case 'o':
 /* Set maximum number of cycles to be acquired
to a value different from the default
specified in acquire.c. */
 m_out = atoi(*++argv);
 if (m_out > 9) {
 printf("m_out = \%d > 9 \=> Choose ", m_out);
 printf("m_out <= 9 \n\n");
 }
 for (i = 1; i <= m_out; i++) {
 n_out[i] = atoi(*++argv);
 if (diagnosis) printf("n_out[%d] = \%d\n", i, n_out[i]);
 }
 --argc;
 break;
 default:
 printf("\%s", usage);
 break;

#endif

/* ***/
/* Calls to the various subroutines */
/* Enter experimental conditions. */
enter_cond();
if (abort) goto the_end;
/* Set up A/D converter. */
if (! no_inst) set_up_vmx();
if (abort) goto the_end;

/* Acquire data and store them in file under
directory /usr/geoff/shdata */
aquirex();
if (abort) goto the_end;
/* Address for abort sequence. */
the_end;
enter_cond()
/* Enter nominal test conditions. */
{
#include <stdio.h>
#include <math.h>
#include <string.h>
#define NSTROKE 6
#define NBORE 4
#define NDIAM 3
#define NLENGTH 9
#define NAXIAL 21
#define IDLENGTH 10
#define NNDUMMY 50
#define MCYCLE 100
#define PI (4. * atan(1.0))
define NU 16.e-06 /* nominal kinematic viscosity */
extern int abort, add_to_set; /* = 1 => Add runs to an existing
set of data. */
extern int diagnosis;
extern int old_file;
extern int m_cycle, mcycle;
extern int oldfile; /* = 1 => File existed and will be updated. */
extern double mstroke, mbore, mdiam, mleng, maxial, speed;
extern int nread; /* number of readings per cycle */
extern int nlag; /* number of sample pulses (readings) by which TDC trigger
lags TDC */
extern char filename[];

FILE *storefile;

int i, istroke, ibore, idiam, ilength, iaxial, ispeed, inerr;
double Remax, Va, Ar, loverd, xoverl, xoverd, uavemax;
static double stroke[NSTROKE] = {0.0, 14.0, 9.0, 9.0, 4.95, 3.5};
static double lag_angle[NSTROKE] = {0.0, 0.0, 0.180, 0.0, 0.270, 0.0};
#ifdef
static double lag_angle = angle by which TDC trigger signal lags TDC */
static double bore[NBORE] = {0.0, 14.0, 8.5, 5.0};
/* Ideal diameters would be: {0.0, 14.0, 142.8, 409.5, 0.0}; */
static double diam[NDIAM] = {0.0, 1.5, 2.125};
static int nlengths[NDIAM][NLENGTH] =
{ {0},
 {0, 1, 2, 3, 4, 5, 6},
 {0, 7, 8},
};
static double length[NLENGTH] = {0.0, 42, 60, 80, 102.72, 120, 127.5, 59.5, 127.5}
static double axial[NLENGTH][NAXIAL] =
{ {0.0},
 {0, 1.5, 3.6, 12, 24, 30, 36.72, 48, 51, 36, 54, 57, 58.5},
 {0, 1.5, 3.6, 12, 24, 30, 36.48, 51, 36, 54, 57, 58.5, 66, 72, 78, 84, 87, 88.5},
 {0, 1.5, 3.6, 12, 24, 30, 36.48, 51, 36, 54, 57, 58.5, 72, 78, 72, 90, 96, 72, 99, 72, 101.22},
 {0, 1.5, 3.6, 12, 24, 30, 36.48, 51, 36, 54, 57, 58.5, 72, 96, 108, 114, 117, 118.5},
 {0, 1.5, 3.6, 12, 24, 30, 36.48, 51, 36, 54, 57, 58.5, 63.75, 72, 79, 5, 103.5, 115.5, 121.5, 124.5, 126},
 {0, 2.125, 4.25, 8.5, 17, 25.5, 29.75, 34.25, 51, 55, 25, 57.375},
 {0, 2.125, 4.25, 8.5, 17, 25.5, 29.75, 34.25, 51, 55, 25, 57.375, 63.75, 93.5, 110.5, 118.0, 123, 125, 125.375}
};
static char dummy[NNDUMMY]; /* dummy array to keep room for further
descriptors for runs */
char runid[10], resp[5];
char year[3], month[3];
if(! add_to_set) {

/* Set the maximum number of cycles to be acquired. */
if(!m_cycle) mcycle = MCYCLE;

/* Read run identification and check whether the corresponding
file already exists. */
for(inerr = 1; inerr;) {
 printf("Enter run identification: \n\n1\n");
 printf("(Use the format mmddyy where: \n\n1\n"");
 printf(" and ss = a sequence number of the day’s\n\n1\n");
 printf(" (runs)\n\n1\n");
 scanf("%s", runid);
 printf("mm = %s\n", runid[0], runid[1]);
 printf("dd = %s\n", runid[2], runid[3]);
 printf("yy = %s\n", runid[4], runid[5]);
 printf("ss = %s\n", runid[6], runid[7]);
 strcpy(filename, '/usr/geoff/shdata/');
 strcpy(&filename[18], runid);
 printf("The filename is '%s'\n\n1", filename);
 storefile = fopen(filename, "r+");
 if(storefile == NULL)
 printf("This file did not exist but may now \n\n1");
 fprintf("be created.\n\n1");
 oldfile = 0;
 else
 printf("This file exists and data may be added.\n\n1")
 oldfile = 1;
 printf("\n Entry correct? (y or n)\n\n1");
 scanf("%s", resp);
 if(resp[0] == ‘y’ || resp[0] == ‘Y’)
 (inerr = 0;)
 else if(resp[0] == ‘n’ || resp[0] == ‘N’)
 (inerr = 1;)
 else
 printf("Respond with y, Y for 'yes'");
 fprintf("or with n, N for 'no' next time.\n\n1");
}

if(! oldfile)
 printf("File has now been created.\n\n1");
storefile = fopen(filename, "a+");
fclose(storefile);

/* Read nominal test conditions from key board. */
if(! oldfile){
 printf("Enter nominal test conditions.\n\n1");
 for(inerr = 1; inerr;)
 (print("Stroke: \n\n1");
 printf("\n Code\n\n1");
 printf("\n Length\n\n1");
 printf("\n inches\n\n1");
 for(i = 1; i <= NSTROKE; i++)
 printf("%7.3f %7d\n\n1", stroke[i], i);
 printf("Enter code for stroke length.\n\n1");
 printf("If the desired stroke is not listed, \n\n1");
 printf("Enter a '0'.\n\n1");
 while (scanf("%d", &stroke) == 0) {
 getchar();
 printf("Enter an integer code number!\n\n1");
 }
 if(stroke == 0) {
 printf("Enter stroke value in inches.\n\n1");
 scanf("%lf", &stroke[0]);
 }
 printf("Stroke length = %7.3f", stroke[istroke]);
 printf("Entry correct? (y or n)\n\n1");
 scanf("%s", resp);
 if(resp[0] == ‘y’ || resp[0] == ‘Y’)
 inerr = 0;
 else if(resp[0] == ‘n’ || resp[0] == ‘N’)
 inerr = 1;
 else
 printf("Respond with y, Y for 'yes' ");
}
printf("or with n, N for 'no' next time.\n");
}
for(inerr = 1; inerr;
{
printf("nBore: \n");
printf(" bore code\n");
printf(" inches number\n");
for(i = 1; i <= NBORE-1; i = i + 1)
printf("\t%f \t%d\n", bore[i], i);
printf(" Enter code for bore.\n");
printf(" [If the desired bore is not listed,]\n");
printf("enter a '0'.\n");
while(scanf("%d", &bore) == 0)
{
getchar();
printf(" Enter an integer code number!\n");
}
if(bore == 0)
{
printf(" Enter bore value in inches.\n");
scanf("%lf", &bore[0]);
printf(" Bore = %7.3f in\", bore[bore]);
printf(" Entry correct? (y or n)\n");
scanf("%s", resp);
if(resp[0] == 'y' && resp[0] == 'Y')
{ inerr = 0; }
else if(resp[0] == 'n' && resp[0] == 'N')
{ inerr = 1; }
else
{
printf(" Respond with y, Y for 'yes' \n");
printf(" or with n, N for 'no' next time.\n");
}
for(inerr = 1; inerr;
{
printf("nTube diameter: \n");
printf(" diameter code\n");
printf(" inches number\n");
for(i = 1; i <= NDIAM-1; i = i + 1)
printf("\t%f \t%d\n", diam[i], i);
printf(" Enter code for diameter.\n");
printf(" [If the desired diameter is not listed,]\n");
printf("enter a '0'.\n");
while(scanf("%d", &diam) == 0)
{
getchar();
printf(" Enter an integer code number!\n");
}
if(diam == 0)
{
printf(" Enter diameter value in inches.\n");
scanf("%lf", &diam[0]);
printf(" Tube diameter = %7.3f in\", diam[diam]);
printf(" Entry correct? (y or n)\n");
scanf("%s", resp);
if(resp[0] == 'y' && resp[0] == 'Y')
{ inerr = 0; }
else if(resp[0] == 'n' && resp[0] == 'N')
{ inerr = 1; }
else
{
printf(" Respond with y, Y for 'yes' \n");
printf(" or with n, N for 'no' next time.\n");
}
for(inerr = 1; inerr;
{
printf("nTest section length: \n");
printf("tube\tc code\length\n");
printf(" length\number\t\over\n");
printf("\t\t\t\n",
for(i = 1; i <= NLENGTH-1; i = i + 1)
printf("\t%f \t%\t\n",
length[lengths[diam][i]],
lengths[diam][i],
length[lengths[diam][i]] /
diam[diam]);
printf(" Enter code for test section length.\n");
printf(" [If the desired length is not listed,]\n");
printf("enter a '0'.\n");
while(scanf("%d", &length) == 0)
{
getchar();
printf(" Enter an integer code number!\n");
}
if(length == 0)
for(inerr = 1; inerr;)
{printf("Axial probe location: \n");
 printf(" axial code\n");
 printf(" (inches)\n");
 printf(" Enter code for axial distance.\n");
 printf(" [If the desired distance is not listed, \n");
 printf(" enter a '0'.]\n");
 while(scanf("%d", &axial) == 0) {getchar();
 printf(" Enter an integer code number!\n");}
 if(axial == 0) {printf(" Enter axial distance in inches.\n");
 scanf("%lf", &axial[length][0]);}
 printf(" Probes location = %6.3f in\n",
 axial[length][axial]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y') {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N') {inerr = 1;}
 else {printf(" Respond with y, Y for 'yes' ");
 printf(" or with n, N for 'no' next time.\n");}
}
/* The following lines is used to incorporate shaft-angle encoder signals with less than 720 pulses per revolution. */
for(inerr = 1; inerr;) {
 printf("\nEnter number of readings per cycle:\n");
 while (scanf("%d", &read) == 0) {
 if (read) {
 printf(" Enter an integer number:\n");
 printf(" %d readings per cycle will be taken.\n", read);
 printf(" Divide 720 pulses by %f, \n", 720./double(nread));
 }
 }
 if(speed = (double) nread > 25.) {
 printf(" Frequency of readings is %f Hz!\n", speed = (double) nread);
 nlag = (int)((double)nread * lag_angle[istroke] / 360.);
 if(diagnosis) printf("lag angle = %lf, nlag = %d\n", lag_angle[istroke], nlag);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 { inerr = 0; }
 else if(resp[0] == 'n' && resp[0] == 'N')
 { inerr = 1; }
 else {
 printf(" Respond with y, Y for 'yes' ");
 printf(" or with n, N for 'no' next time.\n");
 }
 nread = 720;
 nlag = (int)(lag_angle[istroke]);
 if(diagnosis) printf("lag angle = %lf, nlag = %d\n", lag_angle[istroke], nlag);
}
/* Alternative: Dummy entry of shaft-angle encoder pulses. */
/* NOT USED: */
for(inerr = 1; inerr;) {
 printf("\nEnter a 50 character comment line:\n");
 printf("(Use _ instead of blank spaces!)\n");
 for(i = 1; i <= 5; i++) printf("%d", i-1);
 printf("\n");
 scanf("%s", dummy);
 printf("Comment line: %s", dummy);
 printf("\n Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 { inerr = 0; }
 else if(resp[0] == 'n' && resp[0] == 'N')
 { inerr = 1; }
 else {
 printf(" Respond with y, Y for 'yes' ");
 printf(" or with n, N for 'no' next time.\n");
 }
}
/* Convert to SI base units. */
stroke = stroke[istroke] * 0.0254;
bore = bore[ibore] * 0.0254;
diam = diam[iidiam] * 0.0254;
length = length[ilength] * 0.0254;
axial = axial[iaxial] * 0.0254;
/* Write runid and parameters to new data file. */
storefile = fopen(filename, "r+");
fwrite(runid, sizeof(char), 1, storefile);
fwrite(&stroke, sizeof(double), 1, storefile);
fwrite(&bore, sizeof(double), 1, storefile);
fwrite(&diam, sizeof(double), 1, storefile);
fwrite(&length, sizeof(double), 1, storefile);
fwrite(&axial, sizeof(double), 1, storefile);
fwrite(&speed, sizeof(double), 1, storefile);
fwrite(&nread, sizeof(int), 1, storefile);
if(! old_file) {
 fwrite(&cycle, sizeof(int), 1, storefile);
 fwrite(dummy, sizeof(char), NDUMMY, storefile);
}
fclose(storefile);
}
else {
 /* Read parameters from old data file and provide a summary in English units. */
 storefile = fopen(filename, "r+");
 fread(&runid, sizeof(char), 10, storefile);
 fread(&stroke, sizeof(double), 1, storefile);
 fread(&bore, sizeof(double), 1, storefile);
 fread(&diameter, sizeof(double), 1, storefile);
 fread(&length, sizeof(double), 1, storefile);
 fread(&maxi, sizeof(double), 1, storefile);
 fread(&speed, sizeof(double), 1, storefile);
 fread(&read, sizeof(int), 1, storefile);
 strncpy(year, &runid[4], 2);
 strncpy(month, &runid[0], 2);
 if(atol(year) == 88 && atol(month) < 6) old_file = 1;
 if(! old_file) {
 fread(&cycle, sizeof(int), 1, storefile);
 fread(dummy, sizeof(char), NDUMMY, storefile);
 }
fclose(storefile);
 /* Determine the lag in terms of number of pulses. */
 for(i = 0; i < NSTROKE; i++) {
 if(stroke[i] > (0.95 * mstroke / 0.0254)
 && stroke[i] < (1.05 * mstroke / 0.0254))
 nlag = (int)((double)read * lag_angle[i]
 / 560.);
 istroke = i;
 }
 if(diagnosis) printf("lag angle = %lf, nlag = %d\n",
 lag_angle[istroke], nlag);
printf("Input data summary in English units:\n");
printf("stroke = %6.1f in\n", mstroke/0.0254);
printf("bore = %6.1f in\n", mmbore/0.0254);
printf("test section diameter = %6.1f in\n", mdiam/0.0254);
printf("test section length = %6.1f in\n", mlength/0.0254);
printf("axial location = %6.1f in\n", maxi/0.0254);
printf("drive shaft speed = %6.1f rpm\n", speed/240.);
printf("%d readings per cycle\n", read);
printf("[Divide 720 by %f.]\n", 720./double(read));
printf("%s\n", dummy);
printf("Type 'c <CR>' to continue.\n");
scanf("%s", resp);
}
/* Echo print input data in SI units. */
printf("Input data summary in SI units:\n");
printf("stroke = %6.1f mm\n", mstroke*1000);
printf("bore = %6.1f mm\n", mmbore*1000);
printf("test section diameter = %6.1f mm\n", mdiam*1000);
printf("test section length = %6.1f mm\n", mlength*1000);
printf("axial location = %6.1f mm\n", maxi*1000);
printf("frequency = %6.3f Hz\n", speed);
/* estimate of the amplitude of the bulk-mean velocity */
printf("Estimated amplitude of the bulk-mean velocity = ");
usavemax = PI * speed * mstroke / (mmbore*mdiam) / (mdiam*mdiam);
printf("%5.2f m/sec\n", usavemax);
/* Calculate and print similarity parameters. */
printf("Nominal similarity parameters:\n");
printf("Remax = %10.2e\n", Remax = PI*mmbore*speed*mstroke / (mdiam/NU));
printf("V = %6.1f\n", V = 0.5*PI*speed*mdiam/NU);
printf("A = %6.2f\n", A = mmbore/(mdiam*mdiam)*mstroke/mlength);
else {
 storefile = fopen(filename, "r+");
 if(storefile == NULL)
 {printf("This file does not exist.\n");
 abort = 1;}
 else {
 oldfile = 1;
 /* Read parameters from old data file. */
 fread(&wea, sizeof(char), 10, storefile);
 fread(&stroke, sizeof(double), 1, storefile);
 fread(&ambore, sizeof(double), 1, storefile);
 fread(&time, sizeof(double), 1, storefile);
 fread(&time, sizeof(double), 1, storefile);
 fread(&time, sizeof(double), 1, storefile);
 fread(&time, sizeof(int), 1, storefile);
 strcpy(year, &runid[4], 2);
 strcpy(month, &runid[0], 2);

 /* Determine the lag in terms of number of pulses. */
 for(i = 0; i <= NSTROKE; i++)
 {
 if(stroke[i] > (0.95 * stroke / 0.0254) |
 stroke[i] < (1.05 * stroke / 0.0254))
 {nlag = (int)((double)nread + lag_angle[i] / 360.);
 istroke = i;
 }
 }
 if(diagnosis) printf("lag angle = %lf, nlag = %d\n",
 lag_angle[istroke], nlag);

 /* Check whether this is a file of the old format. */
 if(atoi(year) == 88 &
 atoi(month) < 6)
 {old_file = 1;
 if(! old_file) fread(dummy, sizeof(char), NDUMMY, storefile);
 }
 fclose(storefile);
 }

}
SET_UP_VMX

set_up_vmx()
/* Set up NORLAND Prowler on IEEE interface. */
/* This program is an adaptation of set_up_vm for cross wires */
{
#include <gpiob.h>
#include <stdio.h>
#include <string.h>

extern int ib3;
char set3[100];
char resp[100];

/* Send message to screen. */
printf("NORLAND Prowler will now be configured.\n");

/* Identify device and set up interface. */
ib3 = ibfind("/dev/ib3"); /* Define device ID. */
ibtmo(ib3,14); /* Timeout = 30sec */

/* Set controls on device and check interface communications. */

/* Generate string of control commands to be sent to device. */
strcp(set3,"JLA"); /* Beep off */
strcat(set3,"Y"); /* ACQ. MODE */
strcat(set3,"\n"); /* TRIGGERED HOLD */
strcat(set3,"M4096"); /* BLOCK SIZE = 4096 */
strcat(set3,"L0"); /* SAMPLE INTERVAL = EXT. */
strcat(set3,"Z"); /* TRIGGER SETUP */
strcat(set3,"G4096"); /* EXTERNAL TRIGGER DELAY = 4096 */
strcat(set3,"ME"); /* SOURCE = EXTERNAL */
strcat(set3,"\n"); /* A SETUP */
strcat(set3,"\n"); /* ACTIVE */
strcat(set3,"C2="); /* RANGE = 2 */
strcat(set3,"E0="); /* BIAS = 0 */
strcat(set3,"GC"); /* COUPLING = DC */
strcat(set3,"\n"); /* B SETUP */
strcat(set3,"\n"); /* ACTIVE */
strcat(set3,"\n"); /* RANGE = 2 */
strcat(set3,"\n"); /* BIAS = 0 */
strcat(set3,"\n"); /* COUPLING = DC */

ibwrt(ib3,set3,strlen(set3)); /* Send string to device. */
while(ERR & ibsta){
 switch (iberr)
 {
 case 0:
 {printf("iberr = %d: operating system error\n", iberr);
 printf(" UNIX error code = %d\n", ibcnt);
 break;}
 case 1:
 {printf("iberr = %d: GPIB must be in charge.\n", iberr);
 break;}
 case 2:
 {printf("iberr = %d: Write function detected ", iberr);
 printf("no listeners.\n");
 break;}
 case 3:
 {printf("iberr = %d: interface board", iberr);
 printf(" not addressed correctly.\n");
 break;}
 case 4:
 {printf("iberr = %d: invalid arg. to fctn call\n", iberr);
 break;}
 case 5:
 {printf("iberr = %d: GPIB-board must be ", iberr);
 printf("System Active Controller.\n");
 break;}
 case 6:
 {printf("iberr = %d: communication failure\n", iberr);
 break;}
 }
}
{printf("iberr = %d: I/O operation aborted.\n", iberr);
 break;}
case 7:
 {printf("iberr = %d: Interface board does not ", iberr);
 printf("exist.\n");
 break;}
case 10:
 {printf("iberr = %d: I/O started before ", iberr);
 printf("previous operation completed. \n");
 break;}
case 11:
 {printf("iberr = %d: no capability for ", iberr);
 printf("operation\n");
 break;}
case 14:
 {printf("iberr = %d: command error during ", iberr);
 printf("device call\n");
 break;}
case 15:
 {printf("iberr = %d: Serial Poll status ", iberr);
 printf("byte lost\n");
 break;}
case 16:
 {printf("iberr = %d: SQR remains asserted.\n", iberr);
 break;}
}
printf(" => Check NORLAND and connections.\n");
printf(" Type 'c <CR>' when you are ready.\n");
scanf("%s",resp);
ibwrt(ib3,set3,strlen(set3)); /* Send string to device. */
acquirex()
/* This program acquires cross-wire anemometer data with a NORLAND Prowler
digital storage oscilloscope, updates quantities for the calculation of
mean and fluctuating velocities, and correlations, and stores them in
a file. G. Friedman, 8/90 */
/* This program is based on a version of acq_un.c, with wires A and B, written
by J. Seume, 1988 */
{
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#define MREAD 181 /* maximum number of data array entries */
define MREAD2 721 /* shaft-angle encoder angles in NORLAND arrays */
define MREAD3 903 /* ueffA storage for 180 pts x 5 cycles */
define AMAX 4096 /* number of entries in NORLAND data array */
define SMAAX 8452 /* maximum number of cycles */
define MCYCLE 50 /* maximum number of radial probe locations */
define STRNGL 30
#define NDIAGY 50 /* This parameter is also needed in air_statex. */
define PI 3.14159265
extern int lb3;
extern int diagnosis, m_cycle, old_file, no_inst;
extern int m_out, n_out[];
extern double mstroke, sbore, mdiam, mlength, maxial, speed;
extern double t_dry, t_wet, p_atm; /* air conditions during run */
extern int mread, mcycle;
extern int nlag; /* number of sample pulses (readings) by which the
TDC trigger lags TDC */
extern char *filename[];
FILE *storefile, *densfile;
FILE *umfile, *vmfile;
int inerr, /* error in input data */
irad, /* number of current radial probe location */
iusserr = 0, irmserr = 0, /*sequence number of angle at which
maximum error in mean and rms
occurred in this cycle */

next_round = 1, /* A "round" of data are those data points in the
NORLAND's buffer that represent a complete cycle. */
round,
new_rad = 1, /* number of cycles in the NORLAND's buffer */
morerad = 1, /* acquire at more radial locations */
final_pr = 0, /* = 1 => final printout, lastcy >= mcycle */
inter_pr = 0, /* = 1 => intermediate printout, m_out >= 1 */
iout = 1, /* index for n_out[] */
cycle, /* number of current cycle */
lastcy, /* number acquired at one radial location */
p_count, /* number of current crank location */

1,kcount, jcount, i_count, u_count, count3, /* auxiliary counters */
iter

double dist, distance, relrad, /* probe location */
accuracy = 0.005, /* accuracy of mean */
acalib, bcalib, ncalib, /* general calibration constants for
substitution of values below */

/ninv, /* inverse of ncalib */

/*
A wire calibrations */
/* calibration of 7/10/90, cross-wire #35333 for ujet <= 25 m/sec */
acalibA = 2.94834, bcalibA = 1.85552, ncalibA = 0.435,
acalibB = 3.18061, bcalibB = 1.86477, ncalibB = 0.435,
/* calibration of 6/20/90, cross-wire #35333 for ujet <= 17 m/sec
acalibA = 2.38501, bcalibA = 1.82568, ncalibA = 0.435,
acalibB = 3.15662, bcalibB = 1.91373, ncalibB = 0.435. */

/* calibration of cross-wire #44135 for 0.0 m/s to 17.5 m/s (3/14/90)
/* acalibA = 4.00797, bcalibA = 1.55612, ncalibA = .5,
acalibB = 4.00447, bcalibB = 1.41936, ncalibB = .5. */
/* calibration constants:
E2 = acalib + bcalib * (veleff)^ncalib */

ref_temp = 27.2, /* dry-bulb temperature at calibration
in degrees Celsius */
ref_press = 0.991e+05, /* atmospheric pressure at calibration in Pa */
ref_dens, /* density at calibration */
veoffset, /* voltage that was subtracted from
hot wire signal during conditioning */

vgainA = 1.0, vgainB = 1.0,
/* hot-wire bridge output voltage */
voltage, /* angle after TDC at which the TDC
trigger is actuated (in degrees) */
trigang = 0.0, /* auxiliary variables */
base, argument,
veleff, /* instantaneous effective velocity in m/s */
cycles, /* number of cycles processed at this point */
maxaerr = 0.0, /* accuracy of umean */
maxmerr = 0.0, /* auxiliary variable for um and vm */
um, /* auxiliary variables for u and v,
vm.
theta = 45.0, /* based upon ueffA and ueffB */
angle, /* theta, in radians */
kt = 0.135, /* coefficient for the tangential cooling,
based on Champagne's work, for l/d = 330 */

ktAterm, ktBterm, /* terms from the iteration for u and v */
sint, cost,
ueffAnew, ueffBnew,
vnew, unew,
epsilonA, epsilonB,
rhsA, lhsA, rhsB, lhsB,

off_set, /* auxiliary voltage offset variable */
voltcorr, /* voltage correction to account for
ambient temperature difference between
calibration and run */
t_sensor = 250.0, /* sensor temperature in degrees Celsius */
gas_const = 8315.0, /* universal gas constant in kg/kmol/K */
air_mwt = 28.96, /* molecular weight in kg/kmol for air
with mole fractions of:
N2 = 0.7808
O2 = 0.2095
Ar = 0.0096 */
density, /* current air density */
mean_dens, /* density at atmospheric pressure */

/* sum of instantaneous velocities, for u */
static double sumu[MREAD],
also, values of umean[], re-sorted for
lag in crank-angle */

sumv[MREAD],
sumv2[MREAD], /* sum of squares of instantaneous velocities,
also, values of urms[], re-sorted for
lag in crank-angle */

sumuv[MREAD], /* sum of product of instantaneous velocities */
old_su[MREAD], old_su2[MREAD], /* current values
of sumu, sumu2 */
old_sv[MREAD], old_sv2[MREAD], old_suv[MREAD],
ueffA[MREAD3], ueffB, /* effective velocities from
wires A and B, from which get u, v */
/* ensemble averaged velocity, also used to store the density correction factor */

#define mmean[MREAD]
#define vmean[MREAD]
#define urms[MREAD]
#define vms[MREAD]
#define upvp[MREAD]

char resp[5];
char status_byte;
char set3[STRLN], acquire[2], beeper_on[4];
static char set_range[100], rcmdA[STRLN], rcmdB[STRLN];

int *iptr, ifactor1, hexdigit, sign, ivalue;
int first_time;
int bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0;
int air_status();
double *dptr, factor1, factor2, factor, offset;
static char readstrA[SMAX], readstrB[SMAX], digit[2];
static char *ptrdstr;
static char dummy[NDUMMY], buffer[NDUMMY];

/* Prepare for communication with the NORLAND */

/* Generate strings for ACQUIRE and Beeper Off commands. */
strcpy(acquire, "R");
strcpy(beeper_on, "ILC");

/* Generate command string for data transfer from NORLAND of array A. */
strcpy(rcmdA, "\"");
strcpy(rcmdA, "K");
strcpy(rcmdA, "C");
strcpy(rcmdA, "G");
strcpy(rcmdA, "A");

/* Generate command string for data transfer from NORLAND of array B. */
strcpy(rcmdB, "\"");
strcpy(rcmdB, "K");
strcpy(rcmdB, "C");
strcpy(rcmdB, "G");
strcpy(rcmdB, "C");

/* Generate and send command string to reset the voltage ranges. */
strcpy(set_range, "\"");
strcpy(set_range, "5\"");
strcpy(set_range, "\"");
strcpy(set_range, "5\"");
ibv(1b3, set_range, strlen(set_range));

/* Input and print run information prior to entering the main loop for ensemble averaging */

/* Calculate number of cycles completely represented in one NORLAND buffer based upon 720 samples/cycle via the shaft angle encoder */

/* Print out nlag. */
if(diagnosis) printf("nlag = %d\n", nlag);

/* Print out cycles at which intermediate results are to be stored. */
if(diagnosis) {
 for(i = 1; i <= m_out; i++) {
 printf("n_out[%d] = %d\n", i, n_out[i]);
 }
}

/* Set the maximum number of cycles to be acquired. */
if(!m_cycle) mcycle = MCYCLE;

/* Convert temperatures from Celsius to Kelvin. */
ref_temp += 273.15;
t_sensor += 273.15;

/* Enter voltage offsets for wires A and B. */
for(count = 1; count<count2; count++){
for(inerr = 1; inerr;)
{
 if(count == 1)
 printf("\nVoltage offset for wire A: \n");
 printf("\nVoltage offset for wire B: \n");
 printf(" Enter absolute voltage value. \n");
 if(count == 1)
 scanf("%f", &voffsetA);
 else
 scanf("%f", &voffsetB);
 if(count == 1)
 printf(" Voltage offset = %f \n", voffsetA);
 printf(" Voltage offset = %f \n", voffsetB);
 printf(" Entry correction (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {
 printf(" Respond with y, Y for 'yes' \n");
 printf(" or with n, N for 'no' next time. \n");
 }
}

/* The program assumes that theta = 45 degrees for the xwire probe. The iteration section must be changed if this
not the case. */
printf("\nNote that the program assumes theta = 45.\n");

/* Loop for radial positions */
for(; i;)
{
 /* Initialize arrays for summation and velocity calculation. */
 for(i = 0; i <= MREAD; i++)
 {sumu[i] = 0.0;
 sumv[i] = 0.0;
 sumu2[i] = 0.0;
 sumv2[i] = 0.0;
 sumuv[i] = 0.0;}

 /* Wake up the operator with a bell. */
 for(i = 0; i < 10; i++)
 printf("\n");

 /* Enter a comment line. */
 for(inerr = 1; inerr;)
 {
 printf("\nEnter a 50 character comment line: \n");
 printf("Use _ instead of blank spaces! \n");
 for(i = 1; i <= 5; i++)
 printf("1234567890\n");
 printf("\n");
 for(i = 1; i <= 6; i++)
 printf("%d", i-1);
 printf("\n");
 for(i = 0; i <= NDUMMY; i++)
 dummy[i] = '0';
 strcpy(dummy, "ensemble-averaged velocity: ");
 printf("hs", dummy);
 scanf("hs", buffer);
 strcat(dummy, buffer);
 printf("Comment line: \n%hs", dummy);
 printf("\nEntry correction? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {
 printf(" Respond with y, Y for 'yes' \n");
 printf(" or with n, N for 'no' next time. \n");
 }
 }

 /* Enter room air conditions. */
 if(! old_file) air_statex();

 /* Enter probe position. */

 143
for(inerr = 1; inerr;){
 printf("radial probe location:
")
 printf("Code to enter wall distance in inches = '1'
")
 printf("Code to enter wall distance in mm = '2'
")
 printf("Code to enter radius as fraction ");
 printf("of the tube radius = '3'
")
 printf("Code to quit = '0'
")
 printf(" Enter code for entry.
")
 while(scanf("%d", &irad) == 0)
 {getchar();
 printf(" Enter an integer code number!
");}
 switch (irad)
 {
 case 0:
 {goto the_end;
 break;}
 case 1:
 {printf(" Enter wall distance in inches.
")
 scanf("%lf", &dist);
 distance = dist * 0.0254;
 break;}
 case 2:
 {printf(" Enter wall distance in mm.
")
 scanf("%lf", &dist);
 distance = dist / 1000.;
 break;}
 case 3:
 {printf(" Enter radius as a fraction of the ");
 printf(" tube radius.
")
 scanf("%lf", &relrad);
 distance = (1.0 - relrad) * 0.5 * mdiam;
 break;}
 }
 printf(" Wall distance = %7.4f inches
",
 distance / 0.0254);
 printf(" = %6.3g mm
",
 distance / 1000.);
 printf(" Radius / Tube Radius = %6.3g \n",
 1.0 - 2.0*distance/mdiam);
 printf(" Entry correct? (y or n)
")
 printf(" Enter 'y' to start acquisition.
")
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {printf(" Respond with y, Y for 'yes' ");
 printf(" or with n, N for 'no' next time.
");
 }
}

/* If no instrument is available on the IEEE interface ... */
if(no_inst) goto the_end;

 Acquire data with NORLAND until the maximum number of cycles is reached

printf(" Data will be acquired now.
");

/* Set flag for acquisition of first round. */
first_time = 1;

/* Acquire and process as many rounds of data as requested. */
for(round = 1, next_round = 1; next_round; round++){

 /* Calculate density transient. */
 ref_dens = ref_press * air_melt / gas_const / ref_temp;

 if((densfile = fopen("densfile", "r")) != NULL) {
 fseek(densfile, 0L, 0);
 for(i = 0; i <= nread; i++) {
 if(! fread(&density, sizeof(double), 1, densfile)
printf("Reading of density failed.\n")

mean[i] = ref_dens / density;
}
fclose(densfile);
}
else {
 printf("densfile does not exist. p_atm assumed\n");
 mean_dens = p_atm * air_mwt / gas_const / t_dry;
 for(i = 0; i < nread; i++) {
 mean[i] = ref_dens / mean_dens;
 }
}

/* Send string to start acquisition. */
ibwt(ib3, acquire, strien(acquire));

/* Wait until NORLAND starts acquisition. */
/* (Loop to test whether NORLAND is already acquiring). */
do{
 ibsp(ib3, &status_byte);
 if(diagnosis)printf("status_byte = %o\n", status_byte)
}
while(!status_byte & 5);
if(diagnosis)printf("N started acquisition\n");

/* If this is the first acquisition at this radial position, do not attempt to process data. */
if(!first_time){
 if(diagnosis)printf("This is not the first time.\n");
/*/sites for tt0calb and ueffB, the effective cooling velocities */
 for(ucount = 1; ucount <= 2; ucount++){
 if(ucount == 1) {
 ncalib = ncalibA;
 ptrdstr = readstrA;
 acalib = acalibA;
 bcalib = bcalibA;
 voffset = voffsetA;
 vgain = vgainA;
 }
 else {
 ncalib = ncalibB;
 ptrdstr = readstrB;
 acalib = acalibB;
 bcalib = bcalibB;
 voffset = voffsetB;
 vgain = vgainB;
 }

 /* Evaluate Factor and Offset from data sent in XFAST binary format. See NORLAND Prowler manual volume 2 “Options for the Prowler”, pp.46-48. */

 /* Calculate Factor. */

 /* The first two hex digits (Word 1) represent the log to the base two, biased by 128, of the first factor of the Factor. */
 scanf(ptrdstr,"%2X",&factor1);

 /* Compute the first factor of the Factor. */
 factor1 = pow(2,((double)factor1 - 128.));

 /* The next six hex digits (Words 2, 3, 4) represent the sign and the base two fractions of the second factor of Factor. Calculate contributions to the second factor, hex-digit by hex-digit. */
 for(i=0, factor2=0; i<6; i++){
 strncpy(deck+(ptrdstr+2+i),1);
digit[1] = '\0';

/* Determine bit pattern corresponding to each hex-digit and calculate the second factor. */
scanf("%X",&hexdigit);
bit0 = hexdigit & 1;
bit1 = hexdigit & 2;
bit2 = hexdigit & 4;
bit3 = hexdigit & 8;
if(i==0){
 if(bit3)
 sign = -1;
 else
 sign = 1;
 bit3 = 1;
}
if(bit3) factor2 = factor2
 + pow(2.,-(double)(i4 + 1));
if(bit2) factor2 = factor2
 + pow(2.,-(double)(i4 + 2));
if(bit1) factor2 = factor2
 + pow(2.,-(double)(i4 + 3));
if(bit0) factor2 = factor2
 + pow(2.,-(double)(i4 + 4));
}
factor = (double) sign * factor1 = factor2;

/* Calculate Offset. */

/* The first two hex digits (Word 1) represent the log to the base two, biased by 128, of the first factor of the Offset. */
scanf((ptrdstr+6),"%2X",&factor1);

/* Compute the first factor of the Offset. */
factor1 = pow(2.,(double)factor1 - 128.));

/* The next six hex digits (Words 2, 3, 4) represent the sign and the base two fractions of the second factor of Offset. */
/* Calculate contributions to the second factor, hex-digit by hex-digit. */
for(i=0, factor2=0; i<6; i++){
 strncpy(digit,(ptrdstr+10+i),1);
 digit[1] = '\0';

 /* Determine bit pattern corresponding to each hex-digit and calculate the second factor. */
 scanf("%X",&hexdigit);
 bit0 = hexdigit & 1;
 bit1 = hexdigit & 2;
 bit2 = hexdigit & 4;
 bit3 = hexdigit & 8;
 if(i==0){
 if(bit3)
 sign = -1;
 else
 sign = 1;
 bit3 = 1;
 }
 if(bit3) factor2 = factor2
 + pow(2.,-(double)(i4 + 1));
 if(bit2) factor2 = factor2
 + pow(2.,-(double)(i4 + 2));
 if(bit1) factor2 = factor2
 + pow(2.,-(double)(i4 + 3));
 if(bit0) factor2 = factor2
 + pow(2.,-(double)(i4 + 4));
 }
offset = (double) sign * factor1 = factor2;
if(diagnosis)printf("offset = %f\n",offset);

146
if(diagnosis)printf("fraction and offset are calc\n");

/*/ ************************************ */
/*/ Evaluate individual data points */

icount = (MREAD2 - 1) / nread;
ninv = 1. / ncalib;
off_set = offset + voffset * vgain;
volt_corr = sqrt((t_sensor - ref_temp)
/ (t_sensor - t_dry)) / vgain;
angle = PI * theta / 180.;
sint = sin(angle);
cost = cos(angle);
jcount = 0;
for(i = 1, iptr = (int *)(ptrdstr+256);
 iptr < (int *)(ptrdstr+256+2*cy_in_buf*(MREAD2-1));
i++, iptr++){
 /* NOTE: Due to storage limitations, only every
 fourth point (2 degrees) is included, i.e.
 2 4 6 ... 180 182 ... 360 degrees */
 if(!(i % icount)){
 icount++;
 /* Calculate voltage value according to
 NORLAND Prowler manual pp.48-49 of 5/20/85. */
 /* voltage = ((double)(iptr-0X8000)*factor + off_set) * volt_corr;
 */
 /* Calculate instantaneous velocity. */
 /* King's Law with exponent other than 0.5 */
 if((base = voltage*voltage - acalib) > 0.0) {
 veleff = pow(base/bcalib,inv);
 }
 else { veleff = 0.0;
 }
 /* Correct velocity for static pressure. */
 /* Note: Currently, the density transient for the pressure
 correction is corrected for angular offset between
 piston TDC and TDC-marker in def_density; this also applies
 to acqu_u.c. 4/9/89 JS */
 veleff *= umean[jcount % (MREAD-1)];
 if(ucount == 1) ueffA[jcount] = veleff;
 else
 ueffB = veleff;
 lhaA = pow(ueffA[jcount],2.);
 lhaB = pow(ueffB,2.);
 v = sint * (ueffA[jcount] - ueffB);
 u = (ueffA[jcount] - v * sint) / cost;
 iter = 0;
 /* ************************************ */
 /* iteration to determine u and v instantaneous */
 do
 { iter++;
 ktAterm = pow((kt * sint * (u - v)),2.);
 ktBterm = pow((kt * cost * (u + v)),2.);
 ueffAnew = sqrt(lhaA - ktAterm);
 ueffBnew = sqrt(lhaB - ktBterm);
 vnew = sint * (ueffAnew - ueffBnew);
 unew = (ueffAnew - vnew * sint) / cost;
 epsilonA = fabs(vnew - v) / v;
 epsilonB = fabs(unew - u) / u;
 u = unew;
 v = vnew;
 if(iter > 2)
 printf("i = %d iter = %d epA = %f epB = %f\n",147

1, iter, epsilonA, epsilonB);
}
while ((epsilonA > .001) || (epsilonB > .001));
angle = jcount % (MREAD-1);
/* Update the summations */
sumu[angle] += u;
sumv[angle] += v;
sum2[angle] += (u*v);
sumv2[angle] += (v*w);
sumu2[angle] += (u*w);

/* Output v instantaneous to the file "vminst" */
if((angle == 179) && (1 < 750)){
 vmfile = fopen("/usr/geoff/proc/vminst","w");
 for(kcount = 1; kcount <= 179; kcount++)
 fprintf(vmfile,"%d\t\%lf\n",2 * kcount,sumv[kcount]);
 fflush(vmfile);
 fclose(vmfile);
 printf("\n\vminst file printed\n");
}
}
/* end of loop for ueffB */
/* end of loop for every 4th pt */
/* end of binary string breakdown loop */
/* end of uccount loop for ueffA and ueffB */
if(diagnosis)printf("data converted\n");

/* ****************************** */
/* Section to determine run status */
/* Should another buffer of data be acquired? */
if((lastcy = (round - 1) * cy_in_buf) > = cycle)
 next_round = 0;
 if(diagnosis) printf("next_round = %d\n",
 next_round);

 if(diagnosis)printf("wait for end of acquisition\n");
 if(diagnosis)printf("status_byte = %o\n", status_byte);

 /* Send message about current round. */
 printf("Data for round %d (cycle %d) processed.\n",
 (round - 1), (round - 1) * cy_in_buf);

 /* Wait until NORLAND is done acquiring. */
 /* (Loop to test whether NORLAND is still acquiring.) */
 i = 0;
 do{
 ibsp(ib3, &status_byte);
 if(diagnosis){
 i += 1;
 if(i > 100){
 i = 0;
 printf("%o\n", status_byte);

 }
 }
 }

 while(status_byte & 5);
 if(diagnosis)printf("N stopped acquisition\n");
 if(diagnosis)printf("status_byte = %o\n", status_byte);

 /* If necessary, read results of data acquisition. */
 if(next_round){
 if(diagnosis)printf("reading of A will begin\n");
 /* Send command to read NORLAND buffer for Chan A. */
 ibwrt(ib3, rcmdA, strlen(rcmdA));
 /* Read data from NORLAND. */
 ibrd(ib3, readstrA, SMAX);
 if(diagnosis)printf("reading of A done\n");
 if(diagnosis)printf("status_byte = %o\n", status_byte);

 148
if(diagnosis)printf("reading of B will begin\n");
 /* Send command to read NORLAND buffer for Chan B. */
 ibwrt(ib3,rdcmdB,strlen(rcmdB));
 /* Read data from NORLAND. */
 ibrd(ib3,readstrB,SMAX);
if(diagnosis)printf("reading of B done\n");
}
if(diagnosis)printf("status_byte = \%d\n", status_byte);

/* Reset flag for first round of acquisition. */
if(first_time) first_time = 0;

/* Calculate the number of cycles stored and entered into the summation so far. */
cycles = (double)((round - 1) * cy_in_buf);
printf("cycles stored, summed = \%f\",cycles);

/* Set flags for printout and for updating sums. */
if(!next_round) {
 fin_pr = 1;
}
if(m_out >= 1 && iout <= m_out
 && cycles >= (double)n_out[iout]) {
 iout++;
 int_pr = 1;
}
if(fin_pr || int_pr) {
 printf("cycles = \%f\",cycles);
 /* *** */
 /* Calculate ensemble averaged velocities,
 rms velocity fluctuations, and shear stresses
 based on the summations */
 for(iangle = 1; iangle <= nread; iangle++){
 um = sumu[iangle] / cycles;
 umn[iangle] = um;
 vm = sumv[iangle] / cycles;
 vmean[iangle] = vm;
 if((argument = 1.0/(cycles - 1.0) *
 (sumu2[iangle] - um*umn*cycles) > 0.0)
 urms[iangle] = sqrt(argument);
 else urms[iangle] = 0.0;
 if((argument = 1.0/(cycles - 1.0) *
 (sumv2[iangle] - vm*vm*cycles) > 0.0)
 vrms[iangle] = sqrt(argument);
 else vrms[iangle] = 0.0;
 upvp[iangle] = 1.0/(cycles - 1.0) *
 (sumuv[iangle] - um*vm*cycles);
 }
}
if(int_pr) {
 /* Store sums in auxiliary arrays to be updated
 further during subsequent rounds. */
 for(iangle = 1; iangle <= nread; iangle++) {
 old_su[iangle] = sumu[iangle];
 old_sv[iangle] = sumv[iangle];
 old_su2[iangle] = sumu2[iangle];
 old_sv2[iangle] = sumv2[iangle];
 old_sum[iangle] = sumuv[iangle];
 }
}
if(fin_pr || int_pr) {
 if(diagnosis) printf("fin_pr = \%d, int_pr = \%d \n", fin_pr, int_pr);
 /* Sort entries in umean and urms arrays according to
 crank angle to account for angular offset
 between TDC and trigger. */
}
for(iangle = 1; iangle <= nread - nlag; iangle++){
 sumu[iangle + nlag] = umean[iangle];
 sumv[iangle + nlag] = vmean[iangle];
 sumu2[iangle + nlag] = urms[iangle];
 sumv2[iangle + nlag] = vrms[iangle];
 sumuv[iangle + nlag] = upvp[iangle];
}

for(iangle = nread - nlag + 1;
 iangle <= nread; iangle++){
 sumu[iangle + nlag - nread] = umean[iangle];
 sumv[iangle + nlag - nread] = vmean[iangle];
 sumu2[iangle + nlag - nread] = urms[iangle];
 sumv2[iangle + nlag - nread] = vrms[iangle];
 sumuv[iangle + nlag - nread] = upvp[iangle];
}

/* Store the results in a binary string */

if(diagnosis) printf("will open storefile\n");
storefile = fopen(filename, "r+");
if(diagnosis) printf("opened storefile\n");
if(storefile == NULL)
 printf("fopen failed\n");
/* Move to end of file. */
if(fseek(storefile,0L,2))
 printf("fseek failed\n");
if(fwrite(&distance,sizeof(double),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("distance = %f\n",distance);
if(fwrite(&accuracy,sizeof(double),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("accuracy = %f\n",accuracy);
if(fwrite(&lasty,sizeof(int),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("lasty = %d\n",lasty);
if(fwrite(&maxuerr,sizeof(double),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("maxuerr = %f\n",maxuerr);
if(fwrite(&iueerr,sizeof(int),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("iueerr = %d\n",iueerr);
if(fwrite(&mxrmerr,sizeof(double),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("mxrmerr = %f\n",mxrmerr);
if(fwrite(&irmserr,sizeof(int),1,storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("irmserr = %d\n",irmserr);
if(fwrite(&sumu[1],sizeof(double),nread,storefile)
 != nread)
 printf("fwrite failed\n");
if(diagnosis) {
 for(count3 = 1; count3 <= 180; count3++)
 printf("sum[/] = %f\n",count3, sumu[count3]);
}
if(fwrite(&sumu2[1], sizeof(double), nread, storefile)
 != nread)
 printf("fwrite for sumu2 failed\n");
if(fwrite(&sumv[1], sizeof(double), nread, storefile)
 != nread)
 printf("fwrite for sumv failed\n");
if(fwrite(&sumv2[1], sizeof(double), nread, storefile)
 != nread)
 printf("fwrite for sumv2 failed\n");
if(fwrite(&sumuv[1], sizeof(double), nread, storefile)
 != nread)
 printf("fwrite for sumuv failed\n");
if(! old_file) {
 if(fwrite(&t_dry,sizeof(double),1,storefile)
 != 1) printf("fwrite for t_dry failed\n");
 if(fwrite(&t_wet,sizeof(double),1,storefile)
 != 1) printf("fwrite for t_wet failed\n");
 if(fwrite(&p_atm,sizeof(double),1,storefile)
 != 1) printf("fwrite for p_atm failed\n");
}
if(!1) printf("fwrite for p_atm failed\n");
if(fwrite(dummy,sizeof(char),NDUMMY,storefile) == NDUMMY) printf("fwrite for NDUMMY failed\n");
if(diagnosis) printf("Comment: %s\n", dummy);
if(diagnosis) printf("will close storefile\n");
if(fclose(storefile) == EOF) printf("fclose failed\n");
printf("Data were stored in file.\n");
if(fin_prt) {
/* Reset the sums used for averaging to zero for the
next calculation of ensemble averages. */
for(iangle = 1; iangle <= nread; iangle++){
 sumu[iangle] = 0.0;
 sumv[iangle] = 0.0;
 sumu2[iangle] = 0.0;
 sumv2[iangle] = 0.0;
 sumuv[iangle] = 0.0;
}
out = 1;
/* Reset fin_prt to zero. */
fin_prt = 0;
}
if(int_prt) {
/* Reset the sums used for averaging to zero for the
ongoing calculation of ensemble averages. */
for(iangle = 1; iangle <= nread; iangle++){
 sumu[iangle] = old_su[iangle];
 sumv[iangle] = old_sv[iangle];
 sumu2[iangle] = old_su2[iangle];
 sumv2[iangle] = old_sv2[iangle];
 sumuv[iangle] = old_suuv[iangle];
}
/* Reset int_prt to zero. */
int_prt = 0;
}
the_end: printf("No further data will be acquired.\n");
/* Acquirex program end */
*/
/*****************************/
AIR_STATEX

air_statex()
/ * Function to enter, or read from existing file, the ambient air
 conditions and to enter mean static air pressure in a file.
 Function adapted from air_statex.c for cross-wires 3/80 */
{
 #include <stdio.h>
 #include <string.h>

 #define STRLNG 30
 #define NDUMMY 50

 FILE *storefile;
 extern int diagnosis, oldfile;
 extern int nread; /* number of readings per cycle */
 extern char filename[];
 extern double t_dry, t_wet, p_atm; /* air conditions during run,
 stored in Kelvin and Pascal internally. */

 int inerr, /* error in input data */
 i /* auxiliary counter */;

 long offset;
 long sizeofheader, sizeofset;
 double gas_const = 8315., /* universal gas constant in kg/kmol/K */
 air_mwt = 28.96, /* molecular weight in kg/kmol for air
 with mole fractions of:
 H2 = 0.7809
 O2 = 0.2095
 Ar = 0.0096 */

 density /* air density in kg/m^-3 */;

 char resp[STRLNG];
 /* Open storefile. */
 storefile = fopen(filename,"r");

 /* Enter ambient air conditions. */
 if(diagnosis) printf("oldfile = %d\n", oldfile);
 if(oldfile) {
 printf("Current ambient air conditions:\n");
 resp[0] = 'n';
 }
 else {
 printf("Enter ambient air conditions.\n");
 resp[0] = 'y';
 oldfile = 1;
 }
 switch(resp[0]) {
 case 'n': case 'N':{
 /* Determine the size of the header. */
 sizeofheader = (long)((10+NDUMMY)*sizeof(char)
 + 6*sizeof(double)
 + 2*sizeof(int));
 if(diagnosis) printf("sizeofheader = %ld\n", sizeofheader);
 /* Determine the size of a data set. */
 sizeofset = (long)((7*sizeof(double) + 3*sizeof(int)
 + 2 * nread + sizeof(char)
 + NDUMMY + sizeof(char)));
 /* Addition to size of a data set for cross wire */
 sizeofset += (long)(3 * nread + sizeof(double));
 if(diagnosis) printf("sizeofset = %ld\n", sizeofset);
 /* Determine offset of latest air data */
 fseek(storefile,0L,2); /* Move to end of file. */
if(diagnosis) printf("fseek 0 end ok\n");

/* Check whether there is an entry for the state of the air. Read the air data. */
offset = ftell(storefile);
if(diagnosis) printf("offset = %ld\n", offset);
if(offset >= sizeof(header + sizeofset) {
 if(diagnosis) printf("ftell >\n");
 offset = (long)(3 * sizeof(double)
 - NDUMMY = sizeof(char));
 fseek(storefile,offset,2);
 offset = ftell(storefile);
 if(diagnosis) {
 printf("offset = %ld\n", offset);
 printf("errors before reading: ");
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 if(fread(&t_dry,sizeof(double),1,storefile) != 1) {
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 else {
 if(diagnosis) printf("fread of t_dry succ.\n");
 }
 if(fread(&t_wet,sizeof(double),1,storefile) != 1) {
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 else {
 if(diagnosis) printf("fread of t_wet succ.\n");
 }
 if(fread(&p_atm,sizeof(double),1,storefile) != 1) {
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 else {
 if(diagnosis) printf("fread of p_atm succ.\n");
 }
 printf("dry-bulb temperature = %lf deg.C\n",
 t_dry - 273.15);
 printf("wet-bulb temperature = %lf deg.C\n",
 t_wet - 273.15);
 printf("atmospheric pressure = %lf bar\n",
 p_atm / 1.e+05);
 scanf("%ks", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 break;
 }
else {
 printf("There is no old entry of ambient air data.\n")
}
}

case 'y': case 'Y':{
 /* Enter ambient air conditions. */
 for(inerr = 1; inerr;){
 printf("Enter dry-bulb temperature (deg.C).\n");
 printf("Enter wet-bulb temperature (deg.C).\n");
 printf("Atmospheric pressure (bar).\n");
 scanf("%lf%lf%lf", &t_dry, &t_wet, &p_atm);
 printf("dry-bulb temperature = %lf deg.C\n",
 t_dry);
 printf("wet-bulb temperature = %lf deg.C\n",
 t_wet);
 printf("atmospheric pressure = %lf bar\n",
 p_atm);
 t_dry += 273.15;
 t_wet += 273.15;
 p_atm *= 1.e+05;
 printf("Entry correct? (y/n)\n");
 scanf("%ks", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 break;
 }
}
inerr = 0;
else if(resp[0] == 'n' || resp[0] == 'N')
 inerr = 1;
else {
 printf("Enter numbers and \n");
 printf("respond with y, Y for 'yes' \n");
 printf("or with n, N for 'no' next time. \n");
}
break;

fclose(storefile);
PROCESSX

/* "processx.c" processes two channel xwire measurement files.
G. Friedman, 8/80 */
/* Program is adapted from "process.c" written by J. Seume for single
 wire data processing */

#include <stdio.h>
#include <math.h>
#include <string.h>

#define MRAD 40
#define MREAD 181
#define IDLENGTH 10
#define NDUMMY 50
#define PI (4. * atan(1.0))
#define NU 16.e-06

char usage[] = "Usage: process [-f runid or -t position or -p time or\n -v or -a or -d or -w or -r or -R]\n";

main(argc,argv)
int argc;
char *argv[];
{
 FILE *storefile;
 FILE *tracefile;
 FILE *profile;
 FILE *avefile;
 FILE *idealfile;

 int write_all; /* Write to files the data for all active traces and
for profiles in increments of 30 degs of crank angle. */

 int diagnosis = 1; /* Print error diagnostics. */
 int fast = 1; /* Enter file i.d. from the command line,
skip echo print of run parameters. */
 int radial = 1; /* Process the radial velocity component v */
 int trace = 1; /* Generate data for a plot of the ensemble-averaged
mean-velocity fluctuation transient
at one radial location. */

 int profile = 1; /* Generate data for a plot of a mean-vel. profile */
 int average = 1; /* Generate data for a plot of the cross-sectional
mean mean-velocity transient (real and ideal). */
 int rms = 1; /* Process rms-velocity fluctuations instead of
ensemble-averaged velocities. */
 int Rs = 1; /* Process Reynolds' shear stress values */
 int position; /* Number of the radial position at which a trace shall
be plotted. */
 int itime; /* Number of the current crank angle. */
 int not_done = 1; /* Program is not ready to be terminated. */
 int old_file = 0; /* file format old or new? */
 int ierr, flag, iangle, nrad, nsort, i, j, irad;
 int mread; /* number of readings per cycle */
 int mcycle; /* maximum number of cycles to be acquired */
 int nangle = 12; /* number of angles at which profiles are to be plotted
when write_all = 1 */

 int lastcr, ierr, irmserr;
 long p, prtr[MRAD], offset;
 long sizeofheader, sizeofset;
 double angle; /* crank angle */
 double time; /* Integer crank angle at which a mean-velocity profile
shall be plotted. */
 double mstroke, mbore, mdiam, mlength, maxial, freq;
 double relrad;
 double Remax, Va, Ar, loverd, xoverl, xoverd, uavemax;
 double accuracy, maxuerr, maxrsrerr;
 static double distance, umean[MREAD], urms[MREAD], uave[MREAD];
 static double vmean[MREAD], vrms[MREAD], vave[MREAD], upvp[MREAD];
 static double dist[MRAD], value, unmpr[MREAD], ucl;
 double uptr; /* auxiliary variable to print umean, urms */
 double d, sortdist[MRAD];

 155
double umint, aint; /* auxiliary radii */
double rmi, ri;
 double fnull = 0.0;
 double pi; /* pi = 3.1415... */
 double air_viscosity(), air_cond(), air_cp(),
 air_density(), dry_air_density(), psat_water();
 double T_dry, T_wet, p_atm;
 double rho, rhod, hum_ratio, air_cont, rh, mu, nu, cond, cp, alpha, Pr;

char runid[10], resp[20], resp2[20], filename[30], title[NDUMMY], dummy[NDUMMY];
char tfname[10], tnumber[5], pfname[10], pnumber[5];
char year[3], month[3];

/* Calculate pi */
pi = PI;
printf("nread = %d
", nread);

/* Determine the sizes of header and data sets. */
sizeofheader = (long)(10*sizeof(char) + 6*sizeof(double))
 + sizeof(int); /* size of the run information */
sizeofset = (long)(4*sizeof(double) + 3*sizeof(int)
 + 2 * nread * sizeof(double)); /* size of one data set */

/* Add to "sizeofset" the size of the 3 new arrays used in
the cross-wire measurements */
sizeofset += (long)(3 * nread * sizeof(double));

/* Set defaults for command line parameters. */
fast = 0;
radial = 0;
trace = 0;
profile = 0;
average = 0;
diagnosis = 0;
write_all = 0;
rms = 0;
Rss = 0;

/* Read the command line for control parameters. */
while(**argv == '-'){
 switch(**argv){
 case 'f':
 fast = 1;
 strcpy(runid,**argv);
 --argv;
 break;
 case 't':
 trace = 1;
 position = atoi(**argv);
 --argv;
 break;
 case 'v':
 radial = 1;
 --argv;
 break;
 case 'p':
 profile = 1;
 time = atof(**argv);
 --argv;
 break;
 case 'a':
 average = 1;
 --argv;
 break;
 case 'd':
 diagnosis = 1;
 --argv;
 break;
 case 'w':
 write_all = 1;
 --argv;

156
case 'r':
 rms = 1;
 --argc;
 break;

case 'R':
 Res = 1;
 --argc;
 break;
}

if(diagnosis)printf("trace position = %d\n",position);
for(not_done = 1; not_done;)
 if(! fast){

 /* Read run identification and check whether the corresponding
 * file already exists. */
 for(inerr = 1; inerr;)
 {
 printf("\n\nEnter run identification: \n\n");
 printf("(Use the format mmddyy where: m\n");
 printf(" mm = month, dd = day, yy = year,\n");
 printf(" a sequence number of the day's\n");
 printf(" runs)\n");
 printf("Enter c to continue using the same ");
 printf("run.\n");
 printf("Enter s to stop the program.\n");
 scanf("%s", runid);
 if(runid[0] == 'c') goto the_end;
 else if(runid[0] == 's') goto the_end;

 } Print("Enter correct? (y or n or stop)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 continue;
 else if(resp[0] == 's' || resp[0] == 'S')
 {goto the_end;}

 printf("If you want to process instantaneous ");
 printf("or ensemble-averaged data or times,\n");
 printf("(=> enter 'm',\n");
 printf("If you want to process differences ");
 printf("or rms-fluctuations or angular velocity,\n");
 printf("(=> enter 'r',\n");
 printf("If you want to process Reynolds' ");
 printf("shear stress,\n");
 printf("(=> enter 'R',\n");
 scanf("%s", resp);

 if(resp[0] == 'm' || resp[0] == 'r')
 {printf("Enter a 'v' for radial velocity or any other ");
 printf("character for the axial velocity,\n");
 scanf("%s", resp2);
 if(resp2[0] == 'v') radial = 1;
 }
 if(resp[0] == 'm') rms = 0;
 else if(resp[0] == 'r') rms = 1;
else if(resp[0] == 'R') Rss = 1;
else{
 printf("Mean velocity will be processed.\n");
 Rss = 0;
 rms = 0;
}
else
 /* Take run i.d. from command line. */
 strcpy(filename,"/usr/geooff/shwdata/");
 strcpy(&filename[19],runid);
 storefile = fopen(filename, "r+");
 if(storefile == NULL){
 printf("This file does not exist.\n");
 goto the_end;
 }

 /* Read parameters from data file. */
 storefile = fopen(filename, "r+");
 fread(runid,sizeof(char),10,storefile);
 fread(&stroke,sizeof(double),1,storefile);
 fread(&bore,sizeof(double),1,storefile);
 fread(&length,sizeof(double),1,storefile);
 fread(&diameter,sizeof(double),1,storefile);
 fread(&freq,sizeof(double),1,storefile);
 fread(&read,sizeof(int),1,storefile);
 /* Check whether this is a file of the old format. */
 strcpy(year,&runid[4],2);
 strcpy(month,&runid[0],2);
 if(atol(year) == 68 && atol(month) < 6)
 old_file = 1;
 else
 old_file = 0;
 if(diagnosis) printf("old_file = %d\n",old_file);
 if(! old_file) {
 fread(&cycle,sizeof(int),1,storefile);
 fread(&title,sizeof(char),NDUMMY,storefile);
 }
 fseek(storefile,0L,0); /* rewind */

 /* Determine the sizes of header and data sets. */
 sizeofheader = (long)(10*sizeof(char) + 6*sizeof(double))
 + sizeof(int); /* size of the run information */
 sizeofset = (long)(4*sizeof(double) + 3*sizeof(int)
 + 2 * nread * sizeof(double)); /* size of one data set */

 if(! old_file) {
 sizeofheader += (long)(sizeof(int) + NDUMMY * sizeof(char));
 sizeofset += (long)(3 * sizeof(double) + NDUMMY * sizeof(char));
 }

 /* Add to "sizeofset" the size of the 3 new arrays used in
 * the cross-wire measurements */
 sizeofset += (long)(3 * nread * sizeof(double));

 /* Print title. */
 printf("\nTitle:\n");
 printf("%s\n", title);

 if(! fast){
 /* Print data summaries in English and SI units
 * and dimensionless form. */
 /* Echo print input data in English units. */
 printf("\nInput data summary in English units:\n");
 printf("stroke = %6.1f in\n", stroke/0.0254);
 printf("bore = %6.1f in\n", bore/0.0254);
 printf("test section diameter = %6.1f in\n",
 diameter/0.0254);
 printf("test section length = %6.1f in\n",
 length/0.0254);
 printf("axial location = %6.1f in\n",
 }
printf("drive shaft freq = \%5.1f rpm\n", freq=240.);
printf("%d readings taken per cycle\n", nread);
if(! old_file) {
 printf("Maximum number of cycles ");
 printf(" to be acquired = %d\n", mcycle);
 printf(" Comment: %s", dummy);
}
printf("Type a character followed by \<CR\> to continue.\n\n");
if(scant("%s", resp));

/* Echo print input data in SI units. */
printf("\n Input data summary in SI units: \n\n");
printf(" stroke = \%6.1f mm\n", mstroke=1000);
printf(" bore = \%6.1f mm\n", mbore=1000);
printf(" test section diameter = \%6.1f mm\n", mdiam=1000);
printf(" test section length = \%6.1f mm\n", mlength=1000);
printf(" axial location = \%6.1f mm\n", maximal=1000);
printf(" frequency = \%5.3f Hz\n", freq);
printf(" \%d readings taken per cycle\n", nread);

/* estimate of the amplitude of the bulk-mean velocity */
avevmax = PI * freq * mstroke * (mbore*mbore) / (mdiam*mdiam);
printf("Estimate of the amplitude of the bulk-mean velocity ");
printf(=" \%5.2f m/sec\n", avevmax);

/* Calculate and print similarity parameters. */
printf(" Nominal similarity parameters: \n\n");
printf(" Remax = \%10.2e\n", Remax = PI*mbore*mbore*freq*mstroke / mdiam / NU);
printf(" Va = \%5.1f\n", Va = 0.5*PI*freq*mdiam*mdiam / NU);
printf(" Ar = \%5.2f\n", Ar = mbore*mbore/(mdiam*mdiam)*mstroke/length);
printf(" l/d = \%6.1f\n", lverd = length / mdiam);
printf(" x/l = \%6.3f\n", xoverl = maximal / mlength);
printf(" x/d = \%6.1f\n", xoverd = maximal / mdiam);

/* Reset control parameters. */
tr ace = 0;
profile = 0;
average = 0;

/* Enter type of output desired. */
for(inerr = 1; inerr;){}
printf("Enter t for trace\n");
printf(" p for profile\n");
printf(" a for average\n");
scanf("%s", resp);
switch(resp[0])
{
case 't':
 trace = 1;
 printf("Trace will be plotted.\n");
 break;
case 'p':
 profile = 1;
 printf("Profile will be plotted.\n");
 break;
case 'a':
 average = 1;
 printf("Transient of bulk-mean \n");
 printf("quantity will be plotted.\n");
 break;
default:
 printf("Enter correct code letter.\n");
 break;
}
printf("\n Entry correct? (y or n)\n");
```c
#include "radial.h"

/* Scan the file for wall distance entries. */
fseek(storefile,sizeof(header),0); /* Rewind and move to
beginning of first data set. */
flag = 1;
nrad = 0;
i = 1;
while(flag != 0){
    flag = fread(&dist[i].sizeof(double),1,storefile);
    if(flag)
        {nrad = nrad + 1;
         if(diagnosis) printf("Read set %"%d"\n", nrad);
         rpct[i] = ftell(storefile)
             - (long) sizeof(double);
         fseek(storefile,sizeof(set)
             - (long) sizeof(double),1);
         }
        else
            {if(diagnosis) printf("flag = 0\n");}
        i = i + 1;
    }
    if(diagnosis) printf("# of radial data sets = %d\n",nrad);
    
    if(! fast){
        /* Echo list of radial data sets. */
        printf("There are %d radial data sets:\n", nrad);
        printf("data set:\n");
        printf("Number \tdistance \tdistance \t\radius /\n");
        printf("\t\t\t\t\t\t\t\t\t\t\n");
        printf("radius\n");
        for(i = 1; i <= nrad ; i++)
            {
            printf("%d %f %f %f\n",
               i, dist[i]*1000., dist[i]/0.0254,
               1. - 2.*dist[i]/mdiam,)
            }
        /* To remove data sets, substitute distance from the
wall by its negative value. */
        printf("Do you want to (de)activate any data set? ");
        printf("y or n\n");
        scanf("%s", resp);
        if(resp[0] == 'y' && resp[0] == 'Y'){
            printf("Enter numbers of sets to be ");
            printf("(de)activated. (Enter 's to ");
            printf("terminate.)\n");
            while(scanf("%s", resp))
            { if(resp[0] == 's') break;
                  i = atoi(resp);
                  dist[i] = - dist[i];
                  fseek(storefile,
                     sizeofset=(long)(i-1) +
                     sizeofheader,0);
                  fwrite(&dist[i].sizeof(double),1,storefile);
            }
```
if(trace){
 if(! fast){
 /* Choose a radial location at which the traces are to be plotted */
 printf("Enter number of the trace to be plotted.\n");
 while(scanf("%d", &position) != 0){
 getchar();
 printf("Enter the integer number ");
 printf("of the trace: \n");
 }
 }
 /* Move to the data set of this radial location */
 fseek(storefile,(long)(position-1)*sizeofset
 + sizeofheader,0); /* Move to beginning of desired data set */
 if(diagnosis)printf("sizeofset = %d\n",sizeofset);
 if(diagnosis)printf("sizeofheader = %d\n",sizeofheader);
 /* Read in the desired data set */
 fread(&distance,sizeof(double),1,storefile);
 fread(&accuracy,sizeof(double),1,storefile);
 fread(&lastc,sizeof(int),1,storefile);
 fread(&amaxuerr,sizeof(double),1,storefile);
 fread(&arerr,sizeof(int),1,storefile);
 fread(&xrmser,sizeof(double),1,storefile);
 fread(&lrmerr,sizeof(int),1,storefile);
 fread(&umean[1],sizeof(double),nread,storefile);
 fread(&urms[1],sizeof(double),nread,storefile);
 fread(&vmean[1],sizeof(double),nread,storefile);
 fread(&zrms[1],sizeof(double),nread,storefile);
 fread(&upvp[1],sizeof(double),nread,storefile);
 fread(&dry,sizeof(double),1,storefile);
 fread(&wet,sizeof(double),1,storefile);
 fread(&p_atm,sizeof(double),1,storefile);
 /* Read and print comment */
 fread(dummy,sizeof(char),NDUMMY,storefile);
 printf("Comment: %s\n", dummy);
 /* Print out air state for this trace */
 if(! old_file) {
 printf("Dry-bulb temperature = %f deg. C \n", T_dry - 273.15);
 printf("Wet-bulb temperature = %f deg. C \n", T_wet - 273.15);
 printf("Atmospheric pressure = %f bar \n", p_atm = 1.e-05);
 }
 /* Print out air properties for this trace */
 if(! old_file && (! fast))
 for(inerr = 1; inerr;) {
 printf("Do you want to list property values? ");
 printf("(y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y') {
 /* From humidity ratio, air content */
 scanf("Enter humidity ratio, air content ");
 printf("(\% kg/m^3) \n");
 printf("From psychrometric chart ");
 scanf("%lf\lf", &hum_ratio, &air_cont);
 rhod = dry_air_density(T_dry, p_atm);
 rho = (p_atm / 1.013e+05) * air_cont
 * (1. + hum_ratio);
 printf("Air density (dry, humid) = %lg, %lg\n", rhod, rho);
 }
 etc...
 }
 return 0;
}
}
printf("Air density decrease ");
printf("due to humidity = \%g\n", 1 - rho / rhod) * 100.);
printf("Relative humidity = \%g\n", rh = 100. * hum_ratio * (p_atm - psat_water(T_dry)) / 0.822 / psat_water(T_dry));
printf("Air dynamic viscosity = \%g\n", mu = air_viscosity(T_dry));
printf("Air kinematic viscosity = \%g\n", nu = mu / rho);
printf("Air thermal conductivity = \%g\n", cond = air_cond(T_dry));
printf("Air specific heat at constant ");
printf("pressure = \%g\n", cp = air_cp(T_dry));
printf("Air thermal diffusivity = \%g\n", alpha = cond / rho / cp);
printf("Air Prandtl number = \%g\n", Pr = nu / alpha);
printf("Entry correct? ");
scanf("%s", resp);
if(resp[0] == 'y' || resp[0] == 'Y') {
inerr = 0;
}
else if(resp[0] == 'n' || resp[0] == 'N') {
inerr = 0;
}
else {
printf("Respond with y, Y for 'yes'; ");
printf("or with n, N for 'no'; ");
printf("or with s, S for 'stop' next time.\n";
}

/* Print data in column format to be plotted. */
tracefile = fopen("trace", "w");
for(i = 1; i <= nread; i++){
 if(rms) {
 if(!radial)
 [uprt = urms[i];
 if(diagnosis) printf("processing upms\n");
 else
 [uprt = vrms[i];
 if(diagnosis) printf("processing vrms\n");
 }
 else if(Rss)
 [uprt = upvp[i];
 if(diagnosis) printf("processing upvp\n");
 else {
 [uprt = umean[i];
 if(diagnosis) printf("processing umean\n");
 else
 [uprt = vmean[i];
 if(diagnosis) printf("processing vmean\n");
 }
 fprintf(tracefile, "%f %f\n",
(double) i = 360. / (double) nread, uprt);
}
fclose(tracefile);
}
if(write_all){
 for(i = 1; i <= nread; i++){
/* Read and process non-deactivated traces. */
if(dist[i] > 0.0)

 /* Move to the data set of this radial location. */
 fseek(storefile,(long)(i-1)*sizeofset + sizeofheader,0); /* Move to
 beginning of desired data set. */

 /* Read in the desired data set. */
 fread(&distance,sizeof(double),1,storefile);
 fread(&accuracy,sizeof(double),1,storefile);
 fread(&lastcy,sizeof(int),1,storefile);
 fread(&maxuerr,sizeof(double),1,storefile);
 fread(&guerr,sizeof(int),1,storefile);
 fread(&nxrmser,sizeof(double),1,storefile);
 fread(&irt,sizeof(int),1,storefile);
 fread(&umean,sizeof(double),1,storefile);
 fread(&urms,sizeof(double),1,storefile);
 fread(&nread,sizeof(double),1,storefile);
 fread(&vmean,sizeof(double),1,storefile);
 fread(&vrm,sizeof(double),1,storefile);
 fread(&upvp,sizeof(double),1,storefile);

 /* Print data in column format to be plotted. */
 strcpy(tfname,"ttrace");
 printf(tfname,"%d",i);
 strcat(tfname,tfnumber);
 tracefile = fopen(tfname,"w");
 for(iangle = 1; iangle <= nread; iangle++)
 if(!sent)
 if(!radial)
 uprt = urms[iangle];
 else
 uprt = vrm[iangle];
 else if(!sent)
 uprt = upvp[iangle];
 else
 if(!radial)
 uprt = umean[iangle];
 else
 uprt = vmean[iangle];
 }
 printf(tracefile,"%f %f
",
 (double) iangle = 360. / (double) nread,
 uprt);
 }fclose(tracefile);)

 if(profile == average || write_all)
 /* Sort traces with increasing wall distance. */
 /* Write wall distances and data-set pointers into
 new arrays, omitting deactivated data sets. */
 for(i = 1, j = 1; i <= nread; i++)
 if(dist[i] > 0.0){
 sortdist[j] = dist[i];
 rptr[j] = rptr[i];
 j = j + 1;
 }
 nsort = j - 1;

 /* Rearrange the arrays. */
 /* (See section 6.1 of W. H. Press et al.: Numerical
 Recipes, Cambridge (UK) University Press 1986.) */
 for(j = 2; j <= nsort; j++)
 d = sortdist[j];
 p = rptr[j];
 for(i = j - 1; i >= 1; --i){
 if(sortdist[i] > d){
 sortdist[i+1] = sortdist[i];
 rptr[i+1] = rptr[i];
 }
 }
else goto sortmark;
}

sortmark:
 i = 0;
 sortdist[i+1] = d;
 rptr[i+1] = p;
}

if(diagnosis){
 printf("Sorting results:\n");
 printf("Sort distance \tsorted \n");
 for(i = 0; i <= nrad; i++)
 printf("%d \t%f \t%f \n", i, dist[i],
 sortdist[i]);
}

if(profile){
 if(! fast){
 /* Choose phase angle at which the profile is to
 be plotted. */
 printf("Enter the phase angle.\n");
 while(fscanf("%lf", &time) == 0){
 getchar();
 printf("Enter the integer ");
 printf("phase angle!\n");
 }
 }

 /* Calculate the offset from the beginning of the data
 set to the entry corresponding to the time of
 interest in the storage file. */
 /* If it is for u */
 if(!radial && !Rs) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 = sizeof(double));
 /* If it is for v */
 else if(radial) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 = sizeof(double));
 /* If it is for upvp */
 else if(Rs) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(4 * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 = sizeof(double));

 if(diagnosis){
 printf("offset of entry = %ld", offset);
 printf("nread = %d", nread);
 printf("time = %f", time);
 printf("rms = %d", rms);
 printf("Rs = %d", Rs);
 printf("radial = %d", radial);
 }

 /* Read entries from data storage file and write to
 plot file. */
 profile = fopen("profile", "w");
 fprintf(profile, "%f %g\n", 0.0, umprf[0] = 0.0);
 for(i = 1; i <= nsort; i++){
 /* Move to the entries corresponding
 to this phase angle. */
 fseek(storefile, (rptr[i] + offset), 0);
 /* Move to the desired entry. */
 fread(&umprf[i], sizeof(double), 1, storefile);
 }
}

164
/* Print data in column format to be plotted. */
fprintf(proffile, "%f %g\n",
 sortdist[i]/mdiam,
 umprf[i]);
}
fclose(proffile);
}

if(write_all){
 for(iangle = 1; iangle <= nangle; iangle++){
 /* Choose phase angle at which the profile is to
 be plotted (every 30 degrees). */
 time = (360.0/(double)nangle) * (double)iangle;

 /* Calculate the offset from the beginning of the data
 set to the entry corresponding to the time of
 interest in the storage file. */
 /* If it is for u */
 if(!radial & & !Rs) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360.0 - 1.0)
 * sizeof(double));
 /* If it is for v */
 else if(radial)
 offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)(rns * nread * sizeof(double))
 + (long)((time * (double)nread / 360.0 - 1.0)
 * sizeof(double));
 /* If it is for upvp */
 else if(Rs)
 offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)((time * (double)nread / 360.0 - 1.0)
 * sizeof(double));

 /* Read entries from data storage file and write to
 plot file. */
 strcpy(pfnumber,"profile");
 sprintf(pfnumber,"%d", (int)time);
 strcat(pfnumber,pfnumber);
 proffile = fopen(pfnumber,"w");
 fprintf(proffile,"%f %f\n", 0.0, umprf[0] = 0.0);
 for(i = 1; i <= nsort; i++){
 /* Move to the entries corresponding
 to this phase angle. */
 fseek(storefile,(rptr[i] + offset),0); /* Move
 to the desired entry. */
 if(diagnosis){
 fread(&d,sizeof(double),1,storefile);
 printf("radius = %f\\n", d);
 }
 }
 /* Read in the desired entry. */
 fread(&umprf[i],sizeof(double),1,storefile);
 /* Print data in column format to be plotted. */
 fprintf(proffile, "%f %g\n",
 sortdist[i]/mdiam,
 umprf[i]);
 }
}
fclose(proffile);}
if(average){
 /* Open file for results of computation of the
cross-sectional average mean velocity. */
 avefile = fopen("avefile","w");
 if(avefile == NULL) printf("avefile was not opened.");
 idealfile = fopen("idealfile","w");
 if(idealfile == NULL) printf("idealfile was not opened.");

 /* Calculate cross-sectional area for averaging. */
 /* The integral excludes areas beyond the centerline. */
 aint = mdiam * mdiam / 8.;

 /* Vary time. */
 for(itime = 1; itime < nread; itime++){
 if(diagnosis) printf("itime =\n", itime);

 /* Calculate the offset from the beginning of the data
set to the entry corresponding to the time of
interest in the storage file. */

 /* If it is for u */
 if(!radial) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(rns * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 * sizeof(double));

 /* otherwise it is for v */
 else offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)(rns * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 * sizeof(double));

 /* Read the mean-velocity profile. */
 umprf[0] = 0.0; /* Set mean-velocity at the wall
to zero. */
 for(i = 1; i <= nsort; i++) sortdist[i] <= 0.5*mdiam; i++){
 /* Move to the entries corresponding
to this phase angle. */
 fseek(storefile,(ptr[i] + offset),0);

 /* Read in the desired entry. */
 fread(&umprf[i],sizeof(double),1,storefile);
 if(diagnosis){
 printf("velocity =%f\n", umprf[i]);
 }
 }

 /* Integrate profile at this time. */
 /* (Read the Oscillating Flow Experiment Log
entry of 3/15/88 for details on the integration.) */
 umint = 0.0; /* Set integral to zero. */
 /* The integral excludes areas beyond the
center-line. */
 for(i = 1; i <= nsort; i++){
 /* Integration between the far
wall and the center-line. */
 umint = umint + ((umprf[i-1] - umprf[i]) / (r1 - ri)
 * (r1*r1-r1)/3. - ri*r1*r1)/2. + ri*r1/r1/6.)
 + umprf[i]
 * 0.5 * (r1*r1-r1-ri));
 }
 if(diagnosis){

 }
}

}
else if(rim1 > 0.0 && ri < 0.0) {
 /* Integration to the center-line. */
 /* ucl = interpolated centerline velocity */
 ucl = (umprf[i] - umprf[i-1]) / (sortdist[i] - sortdist[i-1])
 * (0.5*mdiam - sortdist[i-1])
 + umprf[i];
 umint = umint
 + ((umprf[i-1] - ucl) / rim1
 * (rim1*rim1*rim1/3.)
 + ucl * 0.5 * rim1*rim1);
 break;
} else {
 /* Exclude integration from center-line to the near wall. */
 continue;
}
}

if(diagnosis){
 printf("itime = \d, umint = \f\n",
 itime, umint);
}

/* Calculate and store the mean-velocity averaged over the cross-section. */
fprintf(avefile, "\f*kg\n", (angle =
 360. * (double)itime / (double)nread),
 umint/aunit);
 if(diagnosis) printf("Writing to avefile complete.\n")
 fprintf(idealfile, "\f*zg\n",
 angle,
 pi = freq * mstroke =
 mbore*mbore / (mdiam*mdiam)
 = fabs(sin(pi*angle/180.));

 if(diagnosis) printf("Writing to files complete.\n")
 fclose(avefile);
 fclose(idealfile);
 if(diagnosis) printf("Files closed. \n");
}

if(fast) not_done = 0;
}

/* Wake up the operator with a bell. */
for(i = 0; i < 10; i++) printf("%c", '\007');

the_end;
/* End of the processing program "processx.c" */
}
VEL_REDTURB

/* vel_redturb
Converting (u,y) data profiles for turbulent-like portions of the cycle
into (u',y') by iterating on the wall shear stress and \(y \)-offset.
Results are stored in "upux"
The data is compared to curves which model the pressure-gradient effect.
Results are stored in "upupa"press"
G. Friedman, 10/90 */

main()
{
#include <stdio.h>
#include <string.h>
#include <math.h>

#define N 200
#define N2 10
#define YPMAX 49
#define TUBE_D 1.5
#define TUBE_R 0.75
#define N 28.96
#define R 6315
#define CONV 0.0254
#define STRLANG 30
#define STRLANG2 100
#define PI 3.14159265
#define LIMIT 15

FILE *profile,*datafile,*presfile;
int a,b,i,j,k,l,m,nerr;
double um[N],y[N],yorig[N],utau,uplus[N],yplus[N],ubm;
double yovd,u,yoffset,dudt,pplus,angle,tmp,lnum,aplus,factor;
double t,dry,p_atm,rho,nu,mu;
double h,hover2,s,x,sf,half,dupdyf
char filename[],theta[4],resp[STRLNG],syst[STRLNG2];
char syst2[STRLNG2];

printf("This program converts (u,y) data profiles into (upux,upupa)\n");
printf("by iterating on entered values of cf (tau wall) and yoffset\n");
printf("** Turbulent profiles **\n");
printf("Input the crank position of the profile to be converted\n");
scanf("%s",theta);
printf("theta = %s\n",theta);
printf("Input the crank position of the profile to be converted\n");
scanf("%f",angle);
printf("angle = %f\n",angle);
strncpy(filename,"/usr/geoff/proc/prof");strncpy(&filename[20],theta);
profile = fopen(filename,"r");
if(profile == NULL)
{printf("This file does not exist.\n");exit();
}
i = 1;
printf("Note that um is corrected by 1.0205 for the temperature error\n");
do{
 fscanf(profile,"%lf %lf", &yovd, &u);
mu[i] = u * 1.0205; /* u is in m/sec */
yor[i] = CONV * yovd * TUBE_D; /* convert y/d to meters */
printf("i = %d y = %lf u = %lf\n",i,yor[i],um[i]);i++;}
while (yovd < 0.5);fclose(profile);
printf("Enter t_dry (degr.C) and p_atm (bar): ");
scanf("%lf", &t_dry, &p_atm);
printf("t_dry = %lf degr.C p_atm = %lf bar\n", t_dry, p_atm);
t_dry += 273.15;
p_atm *= 1.0e+06;
rho = p_atm * M / t_dry;
printf("rho = %f\n", rho);
mu = 9.3277e-08 * t_dry - 1.2248e-05; /* viscosity at 1 atm */
mu *= (1.01325e+05 / p_atm);
printf("nu = %e\n",mu);
mu = mu / rho;
printf("nu = %e\n",nu);

/* ** */
for(inerr = 1; inerr;){
printf("Input the necessary y offset (in inches): ");
scanf("%lf", &yoffset);
printf("yoffset = %f\n",yoffset);
yoffset *= CONV;
for(k = 1; k <= i-1; k++){
 y[k] = yorig[k] - yoffset;
 /* printf("k = %d y = %f u = %lf\n",k,y[k],um[k]); */
 if(y[k] <= 0.0) y[k] = 0.0;
}
}

printf("Input utau\n");
scanf("%lf", &utau);
printf("utau = %lf\n",utau);
datafile = fopen("upyp","w");
for(j = 1; j <= i-1; j++)
 uplus[j] = um[j] / utau;
yplus[j] = y[j] * utau / nu;
 if(yplus[j] > 0.0)
 /* printf("j = %d yplus[j] = %f uplus[j] = %f\n",j,yplus[j],uplus[j]); */
 fprintf(datafile,"%f %f\n",yplus[j],uplus[j]);
fclose(datafile);

/* uplus vs. yplus determination for effects of p-gradient */
prefile = fopen("upypress","w");
uplus[1] = 1.0;
b = 1;
fprintf(prefile,"%d %f\n",b,uplus[1]);
dudt = -8.725 * cos(angle * PI / 180.);
pplus = (nu * dudt) / pow(utau,3.);
if(angle <= 90.0)
 factor = 30.175;
else
 factor = 20.59;
aplus = 25.0 / ((factor * ppplus) + 1.0);
if(aplus <= 0.0)
aplus = 1000;
printf("aplus = %f\n",aplus);

h = 0.1;
hover2 = 0.05;
/* loop to determine uplus vs. yplus */
for(m = 1;m <= YMAX;m++){
a = m;
b = a + 1;
a = 0.0;
 half = dupdyp((double)(a) + hover2,aplus);
for(l = 1;l <= (N2-1);l++)
 x = (double)a + (double)1*h;
 s = s + dupdyp(x,aplus);
 half = half + dupdyp(x + hover2,aplus);
sf = (h/6.0)*dupdyp((double)a,aplus) + 4.0*half + 2.0*s
 + dupdyp((double)b,aplus));
/* uplus determination */
uplus[b] = sf + uplus[a];
/* printf("yper = %d uplus[%d] = %f\n",b,b,uplus[b]); */
fprintf(presfile,"%d %f\n",b,uplus[b]);
}
close(presfile);

printf("\nScreen plot of velocities desired? y or n\n");
scanf("%s",resp);
if(resp[0] == 'y'){
 strcpy(syst,"graph -s -g 1 -x 1 1.1 100 ");
 strcat(syst,"-y 0 35 5 < upyp ; plot "");
 system(syst);
 strcat(syst2,"graph -s -g 1 -x 1 1.1 100 ");
 strcat(syst2,"-y 0 35 5 < upypress ; plot "");
 system(syst2);
 scanf("%s",resp);
 system("erase");
}

printf("Paper plot of velocities desired? y or n\n");
scanf("%s",resp);
if(resp[0] == 'y'){
 strcpy(syst,"graph -s -g 1 -x 1 1 1000 ");
 strcat(syst,"-y 0 35 5 < upyp ; plot -Thpib ");
 system(syst);
 strcat(syst2,"graph -s -g 0 -x 1 1 1000 ");
 strcat(syst2,"-y 0 35 5 < upypress ; plot -Thpib ");
 system(syst2);
}

printf("aplus = %f\n",aplus);
printf("Input the bulk mean velocity\n");
scanf("%lf",&ubm);
printf("ubm = %f\n",ubm);
printf("utau = %f\n",utau);
printf("cf = %f\n",pow((utau/ubm),2.) * 2.);

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s",resp);
if(resp[0] == 'n') inerr = 0;
/* **
 */
printf("rho = %f\n",rho);
printf("utau = %f\n",utau);
printf("utau * utau = %f\n",utau * utau);
printf("tawall = %f\n",utau * rho);
printf("ubm = %f\n",ubm);
printf("cf = %f\n",pow((utau/ubm),2.) * 2.);
printf("aplus = %f\n",aplus);
printf("yoffset = %f\n",yoffset);
/* end */
}
DUPDYP

```c
#include <math.h>
define KAPPA 0.41
define square(x) (x) * (x)
double dupdp(yplus,aplus)
double yplus,a-plus;
/* This function determines duplus/dyplus for the given yplus */
{
  double slope,arg1,arg2,arg3;
  double damping;
  damping = 1.0 - 1.0/exp(yplus/a-plus);
  /* Van Driest mixing length model with variable A */
  arg1 = square(KAPPA*yplus);
  arg2 = square(damping);
  arg3 = sqrt(1.0 + 4.0*arg1*arg2);
  slope = (-1.0 + arg3)/(2.0*arg1*arg2);
  return(slope);
}
```
VEL_REDLAM

/* vel_redlam
 Converts (u,y) data profiles in the laminar-like portions of the cycle
 into (u*,y*) coordinates by iterating on the wall shear stress and the
 y-offset. Results are stored in "upyp"
 Also generates a (u*,y*) curve based on a pressure-gradient influenced
 model for the Couette flow region. Results are stored in "upypress"
 G. Friedman, 10/80 */

main()
{
#include <stdio.h>
#include <string.h>
#include <math.h>

#define N 200
#define TUBE_D 1.5
#define TUBE_R 0.75
#define M 28.86
#define R 6315
#define CONV 0.0254
#define STRLNG 30
#define STRLNG2 100
#define F 5.14159265
#define LIMIT 16

FILE *profile,*datafile,*presfile;
int i,j,k,l,iner,rr;
double um[N],y[N],yorig[N].tau,uplus[N],yplus[N],ulm;
double yovd,u,yoffset,duct,const,angle,tmp,inum;
double t_dry,p_atm,rho,nu,md;
char filename[],theta[4],resp[STRLNG],syst[STRLNG2];
char syst2[2][STRLNG2];

printf("This program converts (u,y) data profiles into (uplus,yplus)\n");
printf("by iterating on entered values of tau wall and y-offset\n");
printf("# Laminar profiles \#\n");
printf("Input the crank position of the profile to be converted\n");
scanf("%s",theta);
printf("Input the crank angle of the profile to be converted\n");
scanf("%lf",&angle);
printf("angle = %lf\n",angle);
strncpy(filename,"/usr/geooff/proc/prof/\n");
strncpy(&filename[20],theta);
profile = fopen(filename,"r");
if(profile == NULL)
{
 printf("This file does not exist.\n");
 exit();
}

i = 1;
printf("u corrected by 1.0205\n");
do{
 fscanf(profile,"%lf %lf", &yovd, &u);
 um(i) = 1.0205 * u;
 yorig(i) = CONV * yovd * TUBE_D;
 printf("i = %d y = %lf u = %lf\n",i,yorig(i),um(i));
 i++;
} while (yovd < 0.5); /* ignore pts. beyond ctrlne */
fclose(profile);

printf("Enter t_dry (degr.C) and p_atm (bar)\n");
scanf("%lf%f", &t_dry, &p_atm);
printf("t_dry = %lf degr.C p_atm = %lf bar\n",t_dry,p_atm);
t_dry *= 273.15;
p_atm *= 1.0e+05;

172
rho = p_atm * M / R / t_dry;
printf("rho = %f\n", rho);
mu = 9.3277e-08 * t_dry - 1.2248e-05; /* viscosity at 1 atm */
mu *= (1.01325e-05 / p_atm);
printf("\nmu = %e\n", mu);
mu = nu / rho;
printf("nu = %e\n", nu);

/*
 */
for(inerr = 1; inerr;){
 printf("Input the necessary y offset (in inches):");
 scanf("%lf", &yoffset);
 yoffset = CONV;
 for(k = 1; k <= i-1; k++){
 y[k] = yorag[k] - yoffset;
 /* printf("k = %d y = %lf u = %lf\n", k, y[k], um[k]); */
 if(y[k] < 0.0) y[k] = 0.0;
 }
 printf("Input utau\n");
 scanf("%lf", &utau);
 printf("utau = %lf\n", utau);

 datafile = fopen("upyp", "w");
 for(j = 1; j <= i-1; j++){
 uplus[j] = um[j] / utau;
 yplus[j] = y[j] * utau / nu;
 /* printf("yplus = %lf uplus = %lf um = %lf\n",yplus[j],uplus[j],um[j]); */
 if(yplus[j] > 0.0)
 fprintf(datafile, "%f %f\n", yplus[j], uplus[j]);
 }
 fclose(datafile);

 presfile = fopen("upypress", "w");
 dudt = 6.725 * cos(angle * Pi / 180.);
 const = (nu * dudt) / (2 * pow(utau, 3));

 l = 0;
do{
 l++;
 uplus[l] = 1 - const * pow(1.0*l, 2.);
 lnum = 1;
 /*
 printf("lnyplus = %f uplus = %f",lnum,uplus[l]); */
 fprintf(presfile, "%f %f\n", lnum, uplus[l]);
}
fclose(presfile);

printf("ndudt = %f\n", dudt);
printf("const = %f\n", const);

printf("Screen plot of velocities desired? y or n\n");
scanf("%s", resp);
if(resp[0] == 'y'){
 strcopy(syst, "graph -s -g 1 -x 1 .1 100 ");
 system(syst);
 strcopy(syst2,"graph -s -g 1 -x 1 .1 100 ");
 system(syst2);
}

printf("Paper plot of velocities desired? y or n\n");
scanf("%s",resp);
if(resp[0] == 'y'){
 strcopy(syst, "graph -s -g 1 -x 1 .1 100 ");
 system(syst);
}
system(syst);
strcpy(syst2,"graph -s -g 0 -x 1 .1 100 ");
strcat(syst2,"-y 0 35 5 < upypress ; plot -Thpib");

printf("Input the bulk mean velocity\n");
scanf("%lf",&ubm);
printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s",resp);
if(resp[0] == 'n') inerr = 0;

printf("Input the bulk mean velocity\n");
scanf("%lf", &ubm);
printf("u_{au} = _f \n", utau);
printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s", resp);
if(resp[0] == 'n') inerr = 0;

/* ** *
 printf("\nContinue the iteration on yoffset and utau?\n");
 scanf("%s", resp);
inerr = 0;
*/
printf("rho = _f \n", rho);
printf("u_{au} = _f \n", utau);
printf("u_{au} \times utau = _f \n", utau * utau);
printf("utau = utau \times _f \n", utau * utau);
printf("utau \times utau = _f \n", utau * utau);
printf("utau \times utau = _f \n", utau * utau);
printf("utau \times utau = _f \n", utau * utau);
printf("utau \times utau = _f \n", utau * utau);

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s", resp);
inerr = 0;

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s", resp);
inerr = 0;

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s", resp);
inerr = 0;

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s", resp);
inerr = 0;
Fluid Mechanics Experiments in Oscillatory Flow
Volume II—Tabulated Data

J. Seume, G. Friedman, and T.W. Simon

University of Minnesota
Dept. of Mechanical Engineering
Minneapolis, Minnesota 55455

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

Project Managers, Roy C. Tew and James E. Dudenhoefer, Power Technology Division, NASA Lewis Research Center, (216) 433–8471

Unclassified - Unlimited
Subject Category 34

Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re_{max}, Re_{av}, and Q, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA’s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

Fluid mechanics; Oscillating flow; Stirling engines

Unclassified

Unclassified

Unclassified

184

A09

Unlimited

Unclassified

Unclassified

Unclassified

Unclassified

184

A09

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
288-102