
N9 2- 22 438

FASTI: A MULTI-PROCESSED ENVIRONMENT FOR VISUALIZATION
COMPUTATIONAL FLUID DYNAMICS

Gordon V. Bancroft

Fergus J. Merritt
Todd C. Plessel
Paul G. Kelaita

R. Kevin McCabe

Sterling Federal Systems Inc.
1121 San Antonio Road

Palo Alto, California 94303

OF

ABSTRACT

Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft is typical of problems
being computed at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP
supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new
developments in scientific computing warrant a new approach to the design and implementation of analysis tools.
These larger, more complex problems create a need for new visualization techniques not possible with the existing
software or systems available as of this writing and these visualization techniques will change as the supercomputing

environment, and hence the scientific methods employed, 1 evolve even further.

Visualization of computational aerodynamics requires flexible, extensible, and adaptable software tools for
performing analysis tasks. Flexible means the ability to handle a diverse range of problems. Extensible means the
ability to interact at all levels of the software hierarchy, either through existing built-in functionality or through the
implementation of custom "plug-in" modules. Adaptable means the ability to adapt to new software and hardware
configurations through the use of modular structured programming methods, a graphics library standard, and the use
of common network communication protocols (like UNIX sockets) for the distribution of processing.

This paper discusses FAST (Flow Analysis Software Toolkit), an implementation of a software system for fluid
mechanics analysis that is based on this approach.

BACKGROUND

Computational Fluid Dynamics (CFD), involves the use of high speed computers to simulate the characteristics of
flow physics. Computational aerodynanz.icists use CFD methods and solvers to study subsonic, supersonic, transonic
and hypersonic (compressible) regimes of flight, in addition to studying incompressible problems within particular
systems. Examples of ongoing studies on full-scale aircraft configurations at NASA Ames include the Space
Shuttle, F16, and the Aerospace Plane. Specialized areas of research include jet-engine turbine flow, VSTOL and
ground effect research, and even flow through an artificial heart. Basic CFD research involves unsteady flow
phenomena like vortex shedding and turbulence modelling.

A flow solver running on a supercomputer must handle input files (finite difference grids, ref. 7,15,16) that are
typically very large. For example, the number of xyz triplets (each represented by three eight-byte floating point
numbers) in a 100 x 100 x 100 grid yields a 24 Mbyte file. If complexity is added, or the grid resolution (density of
points) must be raised for flow solving to yield acceptable results, the files grow proportionally in size. Once the
solver has been run, there are from five to eight variables for each grid node, again, each represented by an eight-byte
floating point number. For the 24 Mbyte example, five variables for each grid point yields a 40 Mbyte raw data file.
This is a total of 64 Mbytes (grid plus the solution) for this example. The F16 mentioned previously, which
consists of 29 grid zones, is over 108 Mbytes worth of data! (Note: On the workstations these become four-byte
IEEE format floating point numbers making the files about half this size)

1 FAST (Flow Analysis Software Toolkit) Developed by Sterling Federal Systems Inc. under contract to
NASA Ames Research Center NASA Contract #NAS2-13210.

118

Three examples of grid generation programs are:

3DGRAPE
EAGLE
GRIDGEN3D

3-dimensional grids about anything by Poissons Equation (Sorensen)

A list of commonly used flow solvers are:

ARC2D
ARC3D
TNS
CNS
PNS
INS3D
TWING

Ames Research Center 2-dimensional solver (Pulliam)
Ames Research Center 3-dimensional solver (Pulliam)
Transonic Navier Stokes solver (Flores)
Compressible Navier Stokes solver (Flores)
Parabolized Navier Stokes solver (Chausee)
Incompressible Navier Stokes solver (Kwak)
Transonic Wing solver (Thomas)

Programs available for visualization of CFD data sets are:

PLOT3D
SURF

GAS

RIP

A command line driven Fortran program that computes CFD quantities (Buning [7])
Allows for the rendering of smooth, wireframe, and function mapped surfaces with a more
interactive interface (Plessel[8])
Combines graphics generated from PLOT3D and SURF and allows animations to be created and
recorded (Merritt[9])
A program for interactive particle tracing ('Rogers[19])

FAST OVERVIEW

The software cycle for the creation and and analysis of computational fluids results could be reduced to the following
conceptual model:

• Data generation (Flow solving)
• Data manipulation (The original data may need to befiltered or transfered)
• Data abslraction (A graphical object is defined using the data)
• Data rendering (Viewing on a workstation)
• Data interpretation (analysis)
• Feedback (Perhaps go back to previous phases)

A problem with the existing CFD software is that it takes a non integrated approach to dealing with the different
steps of the CFD process. The grid generation and flow solver programs are involved in the data generation phase.
The visualization software is part of the abslraction, rendering and analysis phases. The various programs present
the user with different interfaces, and there is little attention paid to the data manipulation and feedback steps. In the
current system, large data sets flow from one step to another from disk to ram and back to disk (perhaps from one
computer to another), taking on different file formats along the way.

The design criteria for FAST were:

• Minimize the data path in the CFD process
• Provide a consistent user interface

• Allow for quick user feedback
• Provide an extensible software architecture

• Provide a quick path through the CFD process
• Provide libraries and tools so that application modules could be added easily
• To isolate 3D viewing tasks from the application programmer

119

In order to achieve these design goals FAST has evolved into collection of programs that communicate via Unix
sockets with a central hub process that manages a pool a shared memory. A fundamental data type is loaded or
generated anti stored into shared memory (data generation and manipulation), a collection of programs (modules)
operate on data and produce additional data (objects) that are also placed into shared memory (data abstraction). The
objects are rendered using the fast viewing system (data rendering). Data is analyzed by additional modules or visual
inspection (data analysis). Depending on the results of the analysis the user changes input to any of the previous
modules (feedback). In addition there is a collection of libraries and utilities that are used to build the application
modules.

The use of shared memory reduces the flow of data in the system. The use of a viewing process relieves the burden
of three dimensional interactive viewing from the application programmer. The fact that the fundamental data type(s)
reside in shared memory makes it easy to make changes based on the feedback obtained from the analysis phase.
Finally the use of FAST libraries and utilities makes it easy to add new modules.

We are aware of other scientific visualization packages and visualization capabilities in existence and/or under
development. These include visual programming examples like CONMAN (Silicon Graphics[3]) and AVS
(Application Visualization System, Stardent Computer[4]), and other scientific visualization environments like
MPGS (Multi-Purpose Graphics System, Cray Research), and the Personal Visualizer (Wavefront), as well as
'scripting' languages like PVWAVE (Precision Visuals), IVIEW (Intelligent Light), and VISAGE (Visual Edge) to
name a few, While FAST is built specifically around the research tasks involved in CFD analysis, these other
environments and packages typically take a much more generalized approach towards visualization, for the obvious
reason that CFD research is a relatively small part of their intended audience. These systems and environments often
require a certain level (a 'power' user, visual programmer, or animation/rendering expert) of skill with computer
graphics above and beyond the level of the typical CFD scientist. In researching these other more general approaches,
we have discovered that the results (data) get handed off at some point to the 'power' user (or perhaps even computer
graphics group or expert) and this person (or group) creates the animations, films or videos. FAST is built around a
model where the scientist is the first and last person in the data chain and FAST is a toolset for his environment.

This is not meant as a criticism of these other approaches, as the need for generalization dictates the need for this
other level of user. It is our belief, though, that the techniques used in FAST presented in this paper would also
apply and be very useful in the more general environments.

Graphics, CPU, and memory handling performance were key considerations in the FAST design and development
process. For graphics, a base-line level of what is commonly termed (but undefined) as "real-time" had to be
established and agreed upon as acceptable. This was determined to be a minimum of 3 framesdsec for a typical 10-20
Mbyte problem (techniques used for rendering would determine the problem size in this range). This base line frame
rate was determined to be essential in visualization of fluid mechanics for understanding the dynamics of the
simulations. For the development platform, the Silicon Graphics 4D220/GTX (16 Mbytes memory) this goal was
reached, and we are pleased with the current performance level. The Silicon Graphics 4D320/VGX, has even higher
levels of cpu and graphics performance[18], although specific test results do not yet exist.

We have implemented in FAST new techniquesand capabilities non-existent in the previous tools and expanded on
others. For example, the colormap editing capabilities were enhanced to include banded, spectrum, dynamic, contour,
striped, and two-tone function mapping. Surface rendering includes the ability to 'sweep' planes through the data
either grid oriented, arbitrarily oriented, or a contour surface (isosurface). Enhanced titling and labelling features
include the use of postscript type fonts and symbols, where typeface, font point size, and style can be specified. The
animation capability is substantially enhanced beyond what was available in GAS (Graphics Animation System[9]).
These enhancements include greater control by allowing the ability to edit scenes, views, and objects. Another
capability allows for separate scenes to be rendered in separate windows giving the scientist/user even more
flexibility and animation control.

At the time of this printing, the software is in Beta testing at NASA Ames Research Center. The typical
workstation environment is a Silicon Graphics 4D/VGX Power Series class machine. The Beta release users
currently include approximately a dozen CFD research scientists and application programmers at approximately 250
sites across the country.

120

FAST ARCHITECTURE

Each separate process communicates through the FAST Hub while managing shared memory and communicating
using standard Berkeley UNIX Interprocess Communication (IPC[11]).

Hub

The central process of the FAST environment is the Hub module (Hub, figure 2). The Hub module invokes and
shuts down the FAST modules yet its main function is to process requests sent by the modules. These requests

might be to allocate a segment of shared memory and return the shared memory id, or to delete a shared memory
segment. Since the Hub process is always running as long as FAST is active, the data allocated through the Hub
remains accessible even when the original process which requested it is terminated. The Hub module is essentially
transparent to the user, in that it has no panels.

Viewer

This is the central module for processing, from the users perspective (Viewer, figure 3). This is where the graphical
data pool generated by other modules is managed and interactively viewed. FAST Central, unlike other FAST
modules, runs continuously while FAST is up and running. Other modules can be spawned or shut down as they are
needed from the Viewer module. In addition Viewer allows object attributes to be set (e.g. transparency, mirroring,
line width), scene attributes to be set (e.g. lighting, color map editing, background color), viewing preferences to be

set(e.g, toggle axis, mouse axis modes) as well containing the animation control panels. Animator is used to create
and record smooth (spline interpolated) keyframe animation sequences.

File IIO

The file i/o module (file i/o, figure 4) loads pre-computed PLOT3D type grid, solution, and function Ides as well as
ARCGraph[20] files into FASTs shared memory. It consists of three control panels. The file input panel is used to
list file names and information and to load data into shared memory. The data sub-panel displays pertinent

information about the previously loaded grids and solutions. The ARCGraph panel is used for handling this type of
file input.

£EP_..¢.alr,_ll_

The CFD Calculator (figure 5) module allows the scientist to attach to the grid and solution data that has been loaded
and to calculate a variety of scalar and vector functions for analyzing the computed solution. The Calculator has the
appearance and functionality of a real programmable calculator but instead of operating on numbers it operates on
fields of numbers (scalars) andfields of vectors

Its basic operations (e.g., +, -, MAG, CURL), are applied to entire fields - either c0-ml_onem'wis_ or vector-wise.
For example, + applied to two scalar fields will produce a new scalar field of values that are the sums of the
corresponding values of the two operand scalar fields. And LOG applied to a vector field will generate a new vector
field by taking the logarithm of each component of the corresponding operand vector, in addition to component,
scalar and vector binary operators there are also special operations such as GRADIENT, DIVERGENCE, DOT, and
CROSS that apply to entire fields and produce new scalar or vector fields.

The scientist can select a range of active solution zones on which to operate and use the CFD Calculator to compute
about 100 different built-in CFD scalar and vector functions such as Pressure, Enthalpy, Normalized Helicity,

Velocity, and Vorticity [16]. These fields are stored in one of the Calculator's scalar or vector registers. The
Calculator can then be programmed wit.'a formulas that operate on these fields and produce new ones using the basic
operations already mentioned. The CFD Data Panel is used to copy, move, delete, and display information fields
(such as min-max) stored in the Calculator's registers. These features, and others, help make the CFD Calculator an
interactive, powerful tool that the CFD scientist can use to compute important quantities for analyzing computed
solutions.

121

SURER

The SURFace Extractor and Renderer module (figure 6) attaches to grids (loaded by the file i/o Module) and scalar and
vector fields (generated by the CFD Calculator) and renders grid surfaces as points, lines, vectors, or polygons. These
grid surface objects are also stored in shared memory so they can be rendered in the FAST environment. The grid
surfaces can show the grid geometry, for example, a lighted, Gouraud [2] shaded polygon surface of the Space
Shuttle, or they can display the scalar data as function colored lines or polygons, or vector data as line vectors, vector
heads, or polygon vector deformation surfaces (vector heads connected in a surface). Grid surface objects can
represent grid geometries, scalar fields, and vector fields.

In addition to changing data types, surface rendering and other attributes, SURFER can sweep through all surfaces in
a given grid direction.This creates a dynamic image showing even more features of the flow field.

"rifler

The Titler module (figure 7) is used to create high quality Postscript text suitable as titles for images in videos,
slides, and movies. Title attributes include font, point size, position, color, drop shadows, and a snap-to-grid feature
to make alignment easier. Like other graphical objects, title objects are stored in shared memory so they can be added
to other scenes. Postscript fonts from other sources may be imported and created titles may be saved for later use.

Isolev

Isolev (figure 8) performs three functions using a single algorithm. One, it draws surfaces of constant value in 3D
scalar fields, i.e. isosurfaces. Two, it draws cutting planes function mapped by the scalar field of interest. Cutting
planes may be at any angle, and are consistently oriented throughout a multi-zoned grid. Three, it draws vector field
deformation surfaces originating at cutting planes or isosurfaces, lso and deformation surfaces are lighted and smooth
shaded. Both isosurfaces and cutting planes may be rendered as dots for improved performance. Interactive grid
coarsening is available to improve interactivity. The user may also set up sweeps, where isolev automatically
sweeps the isovalue (or cutting plane location) through all possible values, or within a user specified range. This
can be used to get a feel for the entire volume. The marching cubes algorithm [Kerlick,13] is used to generate
polygons. Level scalar fields are created to generate cutting planes function mapped by the scalar field of interest.
Edge crossings, a faster algorithm, is used to generate points. A user selected vector field may be used to draw
vectors originating at the crossing points.

Tracer
The tracer module (figure 9) is used to compute particle traces and render them as vectors through the flow field.
Tracer attaches to a grid and solution and allows the user to interactively select the point of release or rake['/] from
which the traces are computed. The traces can either be computed forward or backward in time as well as allowing the
user to selectively save traces. Once traces are saved, a delta time factor may be interactively adjusted through the
panel to allow particle trace "cycling".

Topglogy

The topology module identifies and classifies critical points in a flow field. Critical points are marked with icons
which visually identify the class of the point. Traces can be computed at or about these critical points. Topology
can find and display vortex cores by examining eigan vectors.

122

Interactive Visualization Control

Analysis

CFD scalar and vector functions

custum calculator formulas,

isosurfaces, particle tracing

Data Types
Grid, Solution, Scalar, Vector,

ARCGraph, Particle, Plot

Object Types

Titles,

Traces, Rakes, Ribbons

IJK Surfaces,

XYZ Cutting Planes,
Contour Surfaces

^(A A

/
/ \

! I

/

Colormaps
Function colormap:

Spectrum, Contour,

Banded, Striped, Twotone

Dynamic Contours

Shading Colormaps

.,ll

\

Rendering

points, lines, vectors,
vector deformation surfaces,

shaded surfaces,

functitn mapped surfaces,

interactive lighting

AnimationlRecording

keyframe construction

non-linear spline interpolation

stereo recording

View/Scene Control

3D transformation modes

spaceball controller
scene construction

sweeping

Object Attributes

Mirroring, Transparency,

Interactive Lighting

Figure 1, "FAST Interactive Visualization Control"

Interaclivg Visualization Control

M_l[i-processed: In figure 3, several modules worked together to generate the scene: Surfer generated the grid surface

objects, CFD Calculator computed the scalar and vector fields, Titler was used to generate the text, and Viewer was
used for image handling and color map editing. When modules are not needed they can be iconified so they occupy
less screen space and CPU resources. Because of this, the FAST environment can be running while other
applications are also being used. Alternatively, FAST modules can be terminated without exiting the FAST
environment - and this has no effect on their data since it is already in shared memory. Unlike standard dynamic

memory, shared memory remains available even after the allocating process is killed. All shared memory segments
are removed when FAST is exited via the Quit selection of the Viewer module.

Powerful. The FAST environment contains sophisticated tools such as the CFD Calculator that enable the scientist

to analyze computed solutions by examining many relevant "CFD quantities", such as normalized hclicity, shock,
perturbation velocity, and vorticity. And if these "built-in" functions are not adequate the scientist can program the
Calculator to compute customized functions using the rich set of component, _alar, and vector operators. In figure

123

3, the CFD Calculator was used to compute entropy and pressure scalar fields and a velocity vector field (see "FAST
Architecture, CFD Calculator, Page 7).

Hexible. Storing data and graphical objects in shared memory has enabled the complex scenes in figure 3 to be

constructed by mixing and matching shared data from any module that is currently plugged into the FAST
environment. The figure shows how grid, scalar, and vector data has been combined to generate grid surfaces rendered

as grid lines, scalar colored smooth polygon surfaces, and vectors.

Interactive. Surfer provides the ability to interactively alter scene attributes such as coloring the data by a different

scalar field, displaying a different vector field, adjusting the legend, normalization, and clipping ranges, or changing
rendering and data types. For example, the vector field can be rendered as a Gouraud shaded, lighted, vector
deformation surface. With the looping option turn_ on Suffer will sweep through all data in the current grid
direction - providing a dynamic visualization ability. And while this is happening the scientist (from Viewer) can
transform (e.g., rotate, or zoom) all or part of the scene or use the color map editor to adjust the function color
mapping by inserting, deleting, and changing colors, or selecting a different colormap types such as Spectrum,
Contour, Striped, Twotone, or Banded.

IPC and Shared Memory Implementation

It was decided that an interprocess communication (IPC) package must be implemented to allow FAST to operate as
a modular environment where resources could be shared among different machines as well as a single host.
Specifically, Unix System V shared memory facilities are used to allow each process (module) to access the
environment's data, while the Berkeley IPC package's implementation of Internet domain stream sockets allows for
the coordination of this data.

As each module is executed by the FAST hub, it must immediately establish a two-way communication channel
between it and the hub. Because an Internet domain address consists of a machine network address and a port
number, these two values are used in establishing this connection. The following command is therefore executed at
the beginning of a module's main routine:

socket__establish_and_accept (hub_host, hub_port, &rsock, &wsock);

This does the following:
1) create a socket from which to read

2) determine a local port and listen on it
3) create a writeable socket and establish a connection to the hub (using the hub's

hostname and port number which came in as arguments)
4) now send the port number to the hub and
5) accept a connection from the hub

At the same time, the hub process executes this statement:

socket_accept_and_establish(sock, module_.host, &wsock);

which does the following:
1) create one socket from which to read from all modules
2) accept a connection from the next module
3) read in the module's port number
4) create a writable socket and connect this socket to the module

After a two-way connection has been established, both the hub and the module are left with two socket descriptors
each. These are used exactly as a file descriptor is used, one for writing (wsock) and the other for reading (rsock).
The hub actually stores these descriptors along with other pertinent information, such as module status, in an array
of structures - one structure for each module.

The modules specified for inclusion in the FAST environment are specifically listed in a "run command" file called
$HOMELfastrc. Also included within this file is information about initial placement of a module's main panels, the
name of the host where the module resides, and the complete path name of the particular module.

124

Once a module has been executed by the FAST hub using the Unix system(3) call and the communication channels
have been established, the hub enters a loop where it waits on a request from any of the active modules to perform
some sort of action. The hub process uses the Unix select(2) call to examine all available read socket file descriptors
to determine if they are ready for reading. This appears as follows:

while (continue_looping) {
for each module

load read socket id into fds, file descriptor structure
select (fds, 1,000,000 seconds) i.e. pause here until a request is detected
communication is detected ... determine from which module

read up the request from that module

process request
} end while

Information sent between a module and the hub (and vice-versa) is always preceded by a standard sized structure which
contains, the command and four information fields. The necessary information, if any, is then written back to the
module, and the flow control takes the hub back up to the point where it can again wait for a requesL

One example of a request that a module might make would be the allocation of memory which may eventually be
used by another module. It must first send a request to the hub to do this. The hub then allocates the memory as a
shared memory segment and retrieves the shared memory identifier associated with this segment. This identifier is
then stored by the hub in a data structure possibly to be accessed by another module at a later time. Finally this
identifier is sent back to the module so that it may attach the shared data to it's virtual memory address space.

At any time that a different module would like to access this data, a request is similarly sent to the hub to retrieve
the shared memory identifiers so that it too may attach to the data.

A consequence of using shared memory instead of standard dynamic memory is that dynamic data structures such as
linked list nodes no longer have a pointer to the next node but rather the shared memory id of the next (and current)
node. And this shared memory id must be explicitly attached to and detached from whenever the structure is traversed.

The FAST environment contains several lists of this form: a list of grids, a list of solutions, a set of scalar and
vector lists (one for each register of the CFD Calculator), and a list of graphical objects. A typical request that a
module would make of the Hub is to gain access to a particular list node, for example, a node from one of the CFD
Calculator's vector register lists. This would involve setting up the fast__infobuf with the appropriate information
about the request, writing it to the Hub, reading the node's shared memory id from the Hub, and attaching to generate
a virtual address for the requesting module process. The Hub process detects the socket write in its main event loop
and executes a socket read and calls the function process._request0 to handle the module's request:

Modules that generate data to be shared must: 1) change low-level usage of pointers to shared memory ids, 2) alter
management routines to explicitly attach and detach in addition to allocate and deallocate, 3) provide a library of
routines that modules can link with that provide access to the actual data stored in these structures, 4) provide a
library of routines that the Hub can use to create and destroy these structures (recall that the Hub is the single process
that does all shared memory allocation and deallocation).

Graphical objects are also shared which means the structures that define them must reside in shared memory. Note
that part of this structure references the shared memory ids of the grid, scalar and other data needed to draw a grid
surface object. The routine draw_.grid_surface0 accepts this structure and draws it. This routine is part of the viewing
library which is linked to every FAST graphical module so they can all include grid surface objects in their scenes.

Using shared memory and sockets, FAST is able to quickly and easily share all the data used within the
environment. Even though shared memory can not yet be shared over different machines as it is on a single host,
FAST has been designed with that feature in mind. When indeed we can accomplish this, the ultimate power of
FAST can be realized.

125

DISCUSSION

For an existing SGI visualization application to be converted into a FAST module:
• Command line arguments must be used to establish window location and Hub communication - and

nothing else.
• Periodically, each module must check for exit command IPC from the Hub. This is usually done once

each time through the main event loop.
• Standard input should not be used.
• Standard output should be used sparingly for status and error messages.
• The colormap must be used according to FAST conventions. FAST library functions must be used to get

color indexes for drawing. A few indexes are reserved for modules to create their own colors, but most of
the colormap is only modified via the FAST COLORMAP module.

• Grid, vector and scalar field data must be accessed via FAST shared memory.
• The panel library should be used for menus, buttons, sliders, etc.
• The panel library's nap time or blocking should be turned on when waiting for user input to avoid

excessive context switching.
• The application's drawing code must be integrated into the viewing library so that it's visualizations can

appear in all modules.
• The data needed to draw must be placed in shared memory and made available to the viewing mode

There are several advantages to integrating applications into FAST as modules. These advantages include:
• Shared memory speeds which allow users to interactively view their data from several modules without

long disk IO delays.
• Access to CFD Calculator generated vector and scalar fields.
• Precalculated rain and max for grids, vector and scalar fields. This reduces the time needed to access data in

many cases.
• Sophisticated colormap manipulation using the FAST COLORMAP module.
• Integration of visualizations created by several modules into a single scene.
• Trivial integration of visualizations into animations.
• Interactive access to most of the generic capabilities of the SGI graphics hardware, e.g. rot-tran-scale,

using the viewing library panels.
• Other synergistic effects of multiple modules accessing the same data.
• New applications can be built quickly since many functions are be made available by existing FAST

modules and libraries.

There are also some disadvantages, of course. These include:
• Time to learn to use the FAST libraries and intermodule communications as well as to keep up with

future changes.
• Performance overhead due to multiple processes busy waiting.

Future plans for FAST include the capability for use across high speed LANs for 'smart' distribution of processing.
Compute intensive modules could be distributed or broken up into components that communicate over these
networks, or perhaps memory could be shared across systems.

As flow solvers become fully integrated, and interactive 3-d grid generation becomes a reality, FAST will condnue
to offer more effective visualizations of computational aerodynamics in all aspects of fluid flow simulations.

126

