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Abstract

The task of inferring a set of classes and class
descriptions most likely to explain a given
data set can be placed on a firm theoretical
foundation using Bayesian statistics. Within
this framework, and using various mathemat-
ical and algorithmic approximations, the Au-
toClass system searches for the most proba-
ble classifications, automatically choosing the
number of classes and complexity of class de-
scriptions. A simpler version of AutoClass has
been applied to many large real data sets, have
discovered new independently-verified phenom-
ena, and have been released as a robust soft-
ware package. Recent extensions allow at-
tributes to be selectively correlated within par-
ticular classes, and allow classes to inherit, or
share, model parameters though a class hierar-
chy. In this paper we summarise the mathe-
matical foundations of Autoclass.

1 Introduction

The task of supervised classification - i.e., learning to pre-
dict class memberships of test cases given labeled train-
ing cases - is s familiar machine learning problem. A re-
lated problem is ensupereised classification, where train-
ing cases are also unlabeled. Here one tries to predict all
features of new cases; the beet classification is the least
"surprised" by new cases. This type of classification,
related to clustering, is often very useful in exploratory
data analysis, where one has few preconceptions about
what structures new data may hold.

We have previously developed and reported on Au-
toClase [Cheeseman e_ al., 1988a; Cheeseman etal.,
1988b], an unsupervised classification system based on
Bayesian theory. Rather than just partitioning cases,
as most clustering techniques do, the Bayesian approach
searches in a model space for the "best" class descrip-
tions. A best classification optimally trades off predic-
tive accuracy against the complexity of the classes, and
so does not "overfit" the data. Such classes are also

"fuzzy"; instead of each case being assigned to a class, a
case has a probability of being a member of each of the
different classes.
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Autoclass IIl, the most recent re]essod version, com-
bines real and discrete data, allows some data to be miss-

ing, and automatically chooses the number of
from first principles. Extensive testing has indicated

that it generally produces significant and useful results,
but is primarily limited by the simplicity of the rood-
ele it uses, rather than, for example, inadequate search
heuristics. AutoClass III assumes that all attribute, are

relevant, that they are independent of each other within
each class, and that classes are mutually exclusive. Re-
cent extensions, embodied in Autoclass IV, let ns relax

two of these assumptions, allowing attributes to be st.-
lectively correlated and to have more or less relevance
via a class hierarchy.

This paper summarizes the mathematical foundations
of AutoClase, beginning with the Bayesian theory of
learning, and then applying it to increasingly complex
classillcation problems, from various single class rood-
ek up to hierarchical class mixtures. For each problem,
we describe our assumptions in words and mathematics,

and then give the resulting evaluation and estimation
functions for comparing modek and making predictions.
The derivations of these results from these assumptions,
however, are not given.

2 Bayesian Learning

Bayesian theory gives a mathematical calculus of degrees
of belief, describing what it means for beliefs to be con-
sistent and how they should change with evidence. This
section briefly reviews that theory, describes an approach
to making it tractable, and comments on the resulting
trsdeoffs. In general, a Bayesian agent uses a single real
number to describe its degree of belief in each proposition
of interest. This usumption, together with some other
assumptions about how evidence should affect beliefs,
leads to the standard probability axioms This result
was originally proved by Cox [Cox, 1946] and has been
reformulated for an AI audience [Heckerman, 1990]. We
now describe this theory.

2.1 Theory

Let E denote some evidence that is known or could po-
tentially be known to an agent; let/I denote a hypothe-
sis specifying that the world is in some particular state;
and let the sets of possible evidence E and pcesible states
of the world H each be mutually exclusive and exhans-
tive sets. For example, if we had a coin that might be



two-headedthe possiblestates of the world might be
"ordinary coin", "two-headed coin". If we were to toss
it once the po_ible evidence would be "]ands heads",
"lands tails".

In general, P(,_[ed) denotes a real number describing
an agent's degree of belief in the conjunction of propmi-
tions a and b, cond/tioual on the assumption that propo-
sitions c and d are true. The propm/tioas on either s/de

of the conditionlng bar "I" can be arbitrary Boolean ex-
preuion-. More specifically, w(H) is a _prior" describing
the qent's belief in H be/ore, or in the absence of, see-
ing evidence E, w(H[B) is a "l_3sterior" describing the

agent's belief after observing some particular evidence
E, and L(EIH) is • "likelihood" embodying the •gent's
theory of how likely it would be to see each possible ev-
idence combination E in each possible world H.

To be consistent, beliefs must be non-negative, 0 <
P(a[5) _ 1, and normalized, so that 5"_//w(H) -- 1 and
_B L(EJH) - 1. That is, the agent is sure that the
world is in some state and that some evidence will be

observed. The KkeKhood and the prior together give a
'Ljoint" probability Y(£H) _= Z(£[H)w(H) of both
and H. Normalizing the joint gives Bayes' rule, which
tells how beliefs chould change with evidence;

.r(_n') I;(ZIH),(H )
• "(HIE) = _s 3(_H) = Es z(_l_r)'r(_)"

When the set of possible Hs is continuous, the prior
w(H) becomes • differential dw(H), and the sums over
H are replaced by integrals. Similarly, continuous Es
have a dii_erential likelihood dL(E[H), though any real
evidence AE will have • fudte probability AL(EJH)

In theory, all an agent needs to do in any given situ-
ation is to choose • set of states H, an a_ociated like-
llhood function descJribing what evidence is expected to
be observed in those states, a set of prior expectations
on the states, and then collect some relevant evidence.

Bayes' rule then specifies the appropriate posterior be-
liefz about the state of the world, which can be used to
anzwer most questions of interest. An agent can combine
these posterior beliefs with its utility over states/7(H),
which says how much it prefers each po_ible state, to
choose an action A which maximises its expected utility

H

2.2 Praetlee

In practice this theory can be difficult to apply, as the
sums and integrals involved are often mathematically in-
tractable. So one must use approximations. Here is our
approach.

RAther than consider all possible s_tes of the world,
we focus on some smaller space of models, and do all
of our analysis conditions] on an assumption S that the
world really is described by one of the models in our
space. As with meet modeling, this assumption is ahnmt
certainly fake, but it makes the analysis tractable. With
time and effort we can make our models more complex,
expanding our model space in order to reduce the effect
of this mmplification.

The paramete_ which specify a imrticular model
split into two sets. First, a set of dkcrete parameters T
describe the general form of the model, ummlly by spec-
ifying some functional form for the likelihood function.
For example, T might q_ecify whether two variables are
co, elated or not, or how many classes are present in •
dasaification. Second, free variables in this general form,
such as the maguitude of the correlation or the relative
_ise_ of the classes, constitute the remaining continuous
model parameters V.

We generally prefer a likelihood s L(E[VTS) which is
mathematically simple and yet still embodies the kinds
of complexity we believe to be relevant.

Similarly, we prefer • dmple prior distribution
dw(VTJb") over this model space, allowing the result-
ing V integrals, described below, to be st least approx-
hnated. A prior that predlcts the dL_erent parameters
in V independently, through • product of terms for each
different parameter, often helps. We also prefer the prior
to be as broad and uninformative as po_ible, so our soft-
ware can be used in many different problem contexts,
though in principal we could add specific domain knowl-
edge through an appropriate prior. Finally we prefer a
prior that gives nearly equal weight to different levek
of model complexity, resulting in • "significance test ".
Adding more parameters to • model then induces • cost,
which must be paid for by a significantly better fit to the
data before the more complex model is preferred.

Sometimes the integrable priori are not broad _mough,
containing met, a-parameters which specify some part of
model space to focus on, even though we have no prior
expectations about where to focus. In these cases we
"cheat" and use simple statistics collected from the evi-

dence we are going to use, to help set these priors _. For
example, see Sections 4.2, 4.5.

The joint can now be written as dY(_VTIS) =
f,(E[VTS)dw(VT]S) and, for a reasonsbly-comphx
problem, is usually a very rugged distribution in VT,
with an immense number of sharp peaks distributed
widely over • huge high-discretional _pace. Because of
this we despair of directly normalising the joint, as re-
quired by Bayes' rude, or of communicating the detailed
shape of the posterior dktribution.

Instead we break the continuous V space into regions
R surrounding each sharp peak, and smu'ch until we tire

for combinations RT for which the hnarginal" joint

 z(  rls) - d ( V lS)
is as large as poesibh. The best few such '_nodels _ R_'
are then reported, even though it is usually almmt cer-
tain that more probable modek remain to be found.

Each model R_ i_ reported by describing its marginal
joint M(_RTJS), its discrete parameters T, and esti-
mates of typical values of V in the region R, like the
mean estimate of V:

fv_. V d3(_VrlS)
£(vImJ_rs) = J_(m_lS)

SNore that when a variable like V sits Im a p_obabllity ex-
preuio• whe_ a propmitio• should be, it stands for • propo-
sition that the variable has a particul_ value.

=This is cheating because the prior is su'ppesed to be in-
dependent of evidence.
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or the V for which dJ(EVTIS) is _umin I_ While
these estimates are not invariant under reparameteriss-
tions of the V space, and hence depend on the syntax
with which the likelihood was expressed, the peak is usu-

ally sharp enough that such differences don't matter.

Reporting only the best few models is usually justified,
since the modek weaker than this are usually many or-
dere of magnitude less probable than the best one. The
main reason for reporting models other than the best is
to show the range of variation in the models, so that one
can judge how different the better, not yet found, models

might be.

The decision to stop searching for better models RT
than the current best can often be made in a principled

way by using estimates of how much longer it would
take to find a better model, and how much better than
model would be. If the fact that a data value is un-

known might be informative, one can model _mknown"
ss just another possible (discrete) data value; otherwise
the likelihood for an unknown value is just a sum over

the possible known values.

To make predictions with these resulting models, a
ressonable approximation is to average the answer from
the best few peaks, weighted by the relative marginal

joints. Almost all of the weight is usually in the best
few, justifying the neglect of the rest.

2.$ TradeofFs

Bayesian theory offers the advantages of being theoret-
ically well-founded and empirically well-tested [Berger,
1985]. It offers a clear procedure whereby one can almost
"turn the crank", modulo doing integrals and search, to
deal with any new problem. The machinery sutomati-
tally trades off the complexity of a model against its fit
to the evidence. Background knowledge can be included
in the input, and the output is a flexible mixture of sev-
era] different "answers," with a clear and well-founded
decision theory [Berger, 1985] to help one use that out,-
put.

Disadvantages include being forced to be explicit
about the space of models one is searching in, though
this can be good discipline. One must deal with some
difficult integrals and sums, although there is a huge lit-
erature to help one here. And one must often search
large spaces, though most any technique will have to do
this and the joint probability provides a good local eva]-
uation function. Finally, it is not clear how one can take
the computational cost of doing a Bayesian analysis into
account without a crippling infinite regress.

Some often perceived disadvantages of Bayesian anal-

ysis are really not problems in practice. Any ambiguities
in choosing a prior are generally not serious, since the
various possible convenient priors usually do not disagree
strongiy within the regions of interest. Bayesian analysis
is not limited to what is traditionally considered "statis-
tical" data, but can be applied to any space of models

about how the world might be. For a general discussion
of these issues, see [Cheeseman, 1990].

We wiU now illustrate this general approach by apply-

ing it to the problem of unsupervised classification.

3 Model Spaces Overview

3.1 Conceptual Overview

In this paper we deal only with attribute-value, not re-
lational, data. s For example, medical cases might be

described by medics] forms with a standard set of en-
tries or slots. Each slot could be filled only by elements
of some known set of simple values, llke numbers, colors,
or blood-types. (In this paper, we will only deal with
real and discrete attributes.)

We would like to explain this data as consisting of a
number of classes, each of which corresponds to a dif-

fering underlying cause for the symptoms described on
the form. For example, different patients might fall into
classes corresponding to the different diseases they suffer
from.

To do a Bayesian analysis of this, we need to make
this vague notion more precise, choosing specific math-
ematical formulas which say how likely any particular
combination of evidence would be. A natural way to do
this is to say that there are a certain number of classes,
that a random patient has a certain probability to come
from esch of them, and that the patients are distributed
independently - once we know all about the underlying
clsm_s then learning about one patient doesn't help us
learn what any other patient will be like.

In addition, we need to describe how each class is dis-
tributed. We need a "single class" model saying how
I/kely any given evidence is, given that we know what
class the patient comes from. Thus we build the multi-
class model space from some other pre-existing model
space, which can be arbitrarily complex. (In fact, much
of this paper will be spend describing various single class
models.) In general, the more complex each class can be,
the less of a need there is to invoke multiple classes to

explain the variation in the data.
The simplest way to build a single.class model is to

predict each attribute independently, i.e., build it from
attribute-specific modek. A class has a distribution for
each attribute and, if you know the class of a case, learn-
ing the values of one attribute doesn't help you predict
the value of any other attributes. For real attributes one
can use a standard normal distribution, characterized
by some specific mean and a variance around that mean.
For discrete attributes one can use the standard mu]tino.

mial distribution, characterized by a specific probability
for each possible discrete value.

Up to this point we have described the model space of
Autoclass IlL Autoclass IV goes beyond this by intro-
ducing correlation and inheritance. Correlation is intro-
duced by removing the assumption that attributes are
independent within each class. The simplest way to do
this is to let all real attributes covary, and let all discrete
attributes covary. The standard way for real attributes
to covary is the multivariate normal, which basically says
that there is some other set of attributes one could de-

fine, as linear combinations of the attributes given, which
vary independently according to normal distributions. A
simple way to let discrete attributes covary is to define
one super-attribute whose possible values are all possible

s Nothin_ in prindple prevents • Bayesian analym of more
complex model spaces that predict relational datA.
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combinations of the values of the attributes given.

If there are many attributes, the above ways to add
correlation introduce a great many parameters in the
models, making them very complex and, under the usual

priors, much less preferable than simpler independent
models. What we really want are simpler models which
only allow partial covsriance. About the simplest way
to do this is to say that, for s given class, the attributes
clump together in blocks of inter-related attributes. All
the attributes in a block covary with each other, but not
with the attributes in other blocks. Thus we can build

a block model space from the covariant model spaces.
Even this simpler form of covariance introduces more

parameters that the independent case, sad when each
class must have its own set of parsmeters, multiple
clmmes are penalised more strongly. Attributes which
are irrelevant to the whole classification, like a medi-

cal patient's favorite color, can be particularly costly.
To reduce this cost, one can allow classes to share the
specificstion of parameters associated with some of their
independent Mocks. Irrelevant attributes can then be
shared by all classes at a m/n/mum cost.

Itather than allow arbitrary combinations of classes
to share blocks, it is simpler to organise the classes as
leaves of a tree. Each block can be placed at some node
in this tree, to be shared by all the ]eaves below that
node. In this way different attributes can be explained
at different levels of an abstraction hierarchy. For med-
ical patients the tree might have _viral infections" near
the root, predicting fevers, and some more specific viral
disease near the leaves, predicting more disease specific
symptoms. Irrelevant attributes like favorite-color would

go at the root.

$.2 Notation Summary

For all the models to be considered in this paper, the

evidence E will consist of a set of I cases, an s_ociated
set K of attributes, of size 4 K, and case attribute values
Xih, which can include "unknown." For example, medi-
ca] case number 8, described as (age -" 23, blood-type -
A .... ), would have Xs,, = 23, Xs.3 = A, etc.

In the next two sections we will describe applications
of Bayesian learning theory to various kinds of rood-

els which could explain this evidence, beginning with
simple model spaces and building more complex spaces
from them. We begin with a single class. First, a sin-
gle attribute is considered, then multiple independent
attributes, then fully covariant attributes, and finally
selective covariance. In the next section we combine
these single classes into class mixtures. Table I gives
an overview of the various spaces.

For each space S we will describe the continuous
parameters V, any discrete model parameters T, nor-

realised likelihoods dI,(E[VTS), and priors dw(VT[S).
Most spaces have no discrete parameters T, and only one
region R, allowing us to usually ignore these parameters.

Approximations to the resulting marginal, M(ERT[S)
and estimates £(V[ERTS) will be given, but not de-
rived. These will often be given in terms of general func-
tions F, so that they may be reused later on. As ap-

_Note we use scrlpt letters llke K for sets, and matching
ordinary letters E to denote their sise.

propriate, comments will be made about algorithms and
computational complexity. All of the likelihood func-
tions considered here assume the cases are independent,
i.e.,

L(EIVTS)= 1"[Z(E,IVTS)
i

so we need only give L(E,[VTS) for each space, where
E, ffi {X,x, X,,, X,,,..., X,x).

4 Single Class Models

4.1 Single Discrete Attribute- ..qz>x

A discrete attribute k allows only a finite number of pos-
sible values i E [1, 2, ...,/;] for any X,. "Unknown" is usu-
ally treated here as just another possible value. A set of
independent coin tosses, for example, might have Z - 3
with l, = heads, Is -- tails, and Is = %nknown". We

make the assumption Sz), that there is only one discrete
attribute, and that the only parameters are the continu-
on. par_ters V = _,... _r. consisting of the likelihoods

L(X_IVSz)x) = q(l=x,) for each possible value I. In the
coin example, q, = .7 would say that the coin was so

_unbalanced" that it has a 70 percent chance of coming
up hen& each time.

There are o-ly L- I free parameters since normal-
isation requires _'_4 qt - I. For this likelihood, all that
matters from the data are the number of cases with each

value 5 L = _-_, 6xd. In the coin example, I, would be
the number of heads. Such sums are called _mi_cient
statistics" since they summarise All the information rel-
evant to a model.

We choose s prior

r(az)
d_r(VlSz),) = dB(qx...qr_lI.) - _ _I qT-* dq,

i

which for a > 0 is a special case of a bets distribu-
tion [Berger, 1985] (r(y) is the Gamma function [Spiegel,
1968]). This formula is parameterised by a, a "hyperpa-
rameter" which can be set to different values to specify
different priors. Here we set a = 1/L. This simple prob-
lem has only one maximum, whose marginal is given by

= F,(A,...,L Z)- r( L)n,ru,+
r(.z + 1)r(.)L

We have abstracted the function F,, so we can refer to it
later. The prior above was chosen because it has a form

similar to the likelihood (and is therefore a "conjugate"
prior), and to make the following mean estimate of q_
particularly simple

II+a
 (vlESv,) = L Z)- = I + 1

for a - 1/L. F2 is also abstracted out for use later.
Note that while F2(le,/, L) is very similar to the classical

estimate of _, F2 is defined even when I - 0. Using a
hash table, these results can be computed in order I
numerical steps, independent of L.

'Note that 6,, denotes I when _ - v and 0 otherwise.
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Space

Sm
S_
SD
SR
Sv
SM

Sx

Description

Single Discrete
Single Real
Independent Attrs
Covariant Discrete
Covaria"t Real

Block Covariance

Flat Class Mixture

Tree Class M/xture

V T

q,
p#
v_

q1112...

I_ BK_b

a_V_ C

R SubsFace,

R

R

St - Sz,aor$.,

Sa =--SD or Sn

Sc =- Sz or Sv
Sc - St or Sv

Table 1: Model Spaces

Comp_te 7Ym_e
I

IK
IK

(Z + K)K _

mc(z + K,)v_
uxL_(z_ + xl)

4.2 Single Real Attribute- Saz

1_al attribute values X_ specify a small range of the real
line, with a center zi and a precision, Azi, assumed to be
much smaller than other scales of interest. For example,
someone's weight might be measured as 70d:l kilograms.
For scalar attributes, which can only be positive, like
weight, it is best to use the logarithm of that variable
[Aitchison and Brown, 1957I.

For Sat, where there is only one real attribute, we
assume the standard normal distribution, where the suf-

ficient statistics are the data mean _ = _ _"_f zi, the ge-

ometric mean precision A'_ = (Hi / Az,)) and the stan-

dard deviation s given by s2 = _ _(z_ __)2. V consists
of s model mean p and deviat{on ,% and the likelihood
is given by the standard normal distribution.

1 _ Af-_L._L_=
dZ(zdVSm) = -_--e ... - dz,.

V2f#

For example, people's weight might be distributed with
a mean of 80 kilograms and a deviation of 15. Since
all real data have a finite width, we replace dz with
&z to approximate the likelihood &L(X,[VSm) -

f.,.,dL(zdVSm) =- -_ dL(z, IVSat).
As usual, we choose priors that treat the parameters

in V independently.
i

d_(VlS.t) = d*(_lSa,) d*(_lSat)

We choose a prior on the mean to be fiat in the range of
the data,

d*(_lSm) = d/Z(H_ +, _-)

where p+ = maxz_,/_- = rninz_, by using the general
uniform distribution

dv
da(vlv +, v-) - for V e [V-, V+] •

y+ - y-

A fiat prior is preferable because it is non-informative,
but note that in order to make it normalisable we must
cheat and use information from the data to cut it off st

some point. In the single attribute case, we cem similarly

choose a fiat prior in log(e).

d_r(_lSat) = dR(log(#)ltog(A/.O, log(rain Az_))

where Ap = p+ - p-. The posterior again has just one
peak, so there is only one region R, and the resulting
marginal is

=(Elsa,) = z
2 (.l)ilog(AMmina=Od-tAV"

Note that this joint is dimensionless. The estimates are
r--T-'_

simply £(plESat) - 7, and £(o'[E ) = _/+_,s. Com-

putation here takes order I steps, used to compute the
sufficient statistics.

4.3 Independent Attributes - ,-qz

We now introduce some notation for collecting sets of
indexed terms like X,_. A single such term inside a { }
will denote the set of all such indexed terms collected

across all of the indices, like i and k in E = {X_t } ---
{X_t. such that i E [1,...,/], k E JU). To collect across
only some of the indices we use Ut as in E_ = Ut Xi_ m
{X,t,X,=,...}, all the evidence for a single case i.

The simplest way to deal with cases having multiple
attributes is to assume Sz that they are al] independent,
i.e., treating each attribute as if it were a separate prob-
lem. In this case, the pazsmeter set V partitions into

parameter sets V_ = UI. qt, or [ph,_], depending on
whether that k is discrete or real. The likelihood, prior,
and joint for multiple attributes are all simple products
of the results above for one attribute: St = Spa or Sat

Joe.,

z(E, IVSz) = n z(x,,IV_St),

and

d_r(VISz)= H &r(_lSz)'

U( lS ) = n
k

where E(k) - _ X,t, all the evidence associated with
attribute k. The estimates £(V_IESz ) = £(VtlE(k)$t)
are exactly the same. Computation takes order IK steps
here.

4.4 Fully Covariant Diseretes - Sz>

A model space $_ which allows a set /C of discrete at-

tributes to fully covary (i.e, contribute to a likelihood in
non-trivial combinations) can be obtained by treating all
combinations of base attribute values as particular val-
ues of one super attribute, which then has L' -- I'h Lt
values _ so L' can be a very large number! V consists
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of terms llke qhl....Ix, indexed by all the attributes. Ir
f_eneralisen to

i k

Given this transformation, the likelihoods, etc. look the
same as before:

L(Z, IVSv) = qa,_,..a_,

where each Ik = X_,,

a_(vls_)= az_({_,,_...j_}IL'),

M(_lSv) = F,({I_,,,...,_ ),L L'),
and s

e(_,v,...,. IZSv ) = F,(Z_,_....,.,X,Z')

Computation takes order IK steps here. This model
could, for example, use s single combined hair-color eye-
color attribute to allow a correlation between people be-

ing blond and blue-eyed.

4.5 Fully Covariant Reals - Sa

we assume Sa that s set _ of real-valued attributes
follow the multivariate normal distribution, we replace
the o_ above with s model covariance matrix _hk, and
m_ with a data covariance matrix

I
s., = i _(z,, - =.)(=,., - t.,)

d

The ]Chk, must be synm_tric, with ]C_h, = _k,k,
and "positive definite', satisfying _hh, t_Dkh't_' > 0
for any vector l_,. The likelihood for a set of attributes
A: is7

_(_,IVS_) = _IV(E,, {_,}, {Z.,},X)

T'r dz_H

(s,,-)4-i:z,,.,rj .LIL,.

is the multivariate normal in K dimensions.
As before, we choose a prior that takes the means to

be independent of each other, and independent of the
covariance

a_(VlS_)= _-((_,.,}is_)I]d-(_is_),

so the estimates of the means remain the same,
E(#_IEba) = N_. We choose the prior on _, to use
an inverse Vv'ishart distribution [Msrdia et aL, 1979]

IG.,I_ b IZ..,I=_:F=_ e-} :E._.,Z'.,._G':,;

_,_ I]._ r(_-_, -" ) ,_<_,
which is normalised (integrates to 1) for h > K and
_t, symmetric positive definite. This is a "conju-
gate" prior, meaning that it makes the resulting po0te-
rior dw({Z_,} IEga) take the same msthenmtica_ form

'F_ and F_ are defined on page 4.
_E_" denotes the matrix inverse of _._ sstisfyin$

_, z;:'z. = &., ud IZ.,I denotescomponentsof thema-
trixdeterminant of (_.,i}.

as the prior. Tbls choice makes the rmmltins integrals
manageable, but requires us to choose an h and all the
components of Gi_,. We choose h = K to make the
prior as broad as possible, and for Gt_, we "chest" and
choose Gi_,, = S_._&_, in order to avoid overly distorting
the resulting marginal

I _''_'_'a IlS_., + e.,I c+_ iI_ _/_

and estimates

_(Z._,l£S_) = I+ _ - X - 2 = /----_--°""

If we choose Gi_, too large it dominates the esti-
mates, and if G_, is too small the marginal is too small.
The compromise above should only over estimate the
marginal somewhat, since it in effect pretends to have
seen previous data which agrees with the data given.
Note that the estimates are undefined unless I > 2.
Computation here takes order (I + K)K _ steps. At
present, we lack a satidactory way to appro_dmate the
above nu_rginsl when some values are unknown.

4.6 Block Covarlance- Sv

Rather than just having either full independence or full
dependence of attributes, we prefer a model space Sv
where some combinations of attributes may covary while
others remain independent. Thin allows us to avoid pay-
in8 the co_t of specifying covsrianee parameters when
they cannot buy us a s/fjnificantly better fit to the data.

We partition the attributes _ into B blocks _, with
fu" covsriance within each block and full independence
between blocks. Since we presently lack a model allowing
different types of attributes to covary, all the attributes
in a block must be of the same type. Thus real and
discretes may not mutually covary.

We are away of other modek of partial dependence,
such as the the trees of Chow and Liu described in [Pearl,
1988], but choose this approach because it includes the
limiting cases of full dependence and fuLl independence.

The evidence E partitions block-wise into E(_,) (us-
ing_,(_:)- U.._x,.and_(_:)= {_,(x:)}),eachwith
its own sufficient statistics; and the parameters V parti-
tion into parameters _/_ = {q',s,..Jx} or [{E,,,}, {p.}].
Each block i8 treated as a di_erent problem, except that
we now also have discrete parameters T to specify which
attributes covary, by specifying B blocks and {_,} at-
tributes in each block. Thus the likelihood

B

¢(_, IWSv) = II z(_,(_C,)l_4S_)
b

is a simple product of block terms Sn = Sv or $n assum-
ing full covariance within each block, and the estimates
£(_i£TSv) - £(_iE(_,)$_) are the ssme as before.

We choose a prior which predicts the block structure
B {_,} independently of the parameters _ within each
independent block

d,(VriSv) = ,(n {_:,) ISv) 1"[ a'(V_ISa)
b
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which results in a similarly decomposed marginal

_(_lS_) = _(B {_:_) ISv)_ _(E(K,)IS_).
b

We choose a block structure prior

.(_ {Kb) lay) = X/X.Z(Ex, Bx)KvZ(Xv, By),
where Ka is the set of real attributes and Ba is the
number of real blocks (and similarly for Ks> and Bo).
This says that it is equally likely that there will be one
or two or three, etc. Mocks, and, given the number of
blocks, each possible way to group attributes is equally
likely. This is normalized using Z(A, U), givenby

u (U - u + 1)A
Z(A, U) = _ (-I)"-x (U - u -I-1)!(u - i)!'

I----|

which givesthenumber ofwad one can partitiona set
with A elements into U subsets. This prior prefers the
special cases of full covariance and full independence,
since there are fewer ways to make these block combi-
nations. For example, in comparing the hypothesis that
each attribute is in a separate block (i.e., all indepen-
dent) with the hypothesis that only one particular pair
of attributes covary together in a block of size two, this
prior will penalize the covariance hypothesis in propor-
tion to the number of such pairs possible. Thus this
prior includes a "siguifcsnce test", so that a cova:iance
hypothesis will only be chosen if the added fit to the
data from the extra covarianee is enough to overcome
this penalty.

Computation here takes order NIC(I_'_b + -_b) steps,
where N is the number of search trials done before quit-

ting, which would be around (K - I)! for a complete
search of the space. ]_b is an average, over both the
search trials and the attributes, of the block size of real
attributes (and unity for discrete attributes).

S Class Mixtures

5.1 Flat Mixtures - SM

The above model spaces Sc - Sv or $; can be thought
of as describing a single class, and so can be extended
by considering a space SM of simple mixtures of such
classes [D.M.Titterington e_ a/., 1985]. Figure I shows
how this model, with $c - Sz, can fit a set of artificial
real-valued data in five dimensions.

In this model space the likelihood
C

I,(EdVT$_) = _ _,L(E, IV,T, Sc)
£

sums over products of "class weights" at, that give the
probability that any case would belong to class c of the
C classes, and class likelihoods describing how members
of each class are distributed. In the limit of large C this
model space is general enough to be able to fit any dis-
tribution arbitrarily closely, and hence is "asymtotical]y
correct _.

The parameters T -- [C, {Tc}] and V -- [{r,,), {V,}]
combine parameters for each class and parameters de-
scribing the mixture. The prior is similarly broken down
as

d.(VTIS.) = Fs(C)C!dB(Ta_)IC)IId.(V,T_ISc)
¢

| I

Figure h AutoClaas III Finds Three Classes
We plot attributes I vs. 2, ud 3 vs. 4 for am arti_dad data
set. One ¢rdeviation ovalJ are drawn a_ound the centers of
the three cls_mes.

where Fs(C) =- t'_ for C > 0 and is just one arbitrary
choice of a broad prior over integers. The a© is treated
as if the choice of class were another discrete attribute,

except that a C! isadded because classes are not distin-
guishable a priori.

Except in very shnple problems, the resulting joint
_r(EVTIS) has many local maxima, and so we must
now focus on regions R of the V space. To find such
local maxims we use the "EM _ algorithm [Dempster et
aL, 1977] which is based on the fact that at a maxima
the class parameters Vc can be estimated from weighted
sufficient statistics. Relative likelihood weights

a.L(E, IV.T=Sc)
_'=- L(E, IVTS.) '

give the probability that a particular case d is a member
of class c. These weights satisfy _"_cwdc = 1, since every
case must really belong to one of the classes. Using these
weights we can break each case into _fractional cases',
sesigu these to their respective classes, and create new
=class data _ B e = _'k [X,., trde] with new weighted-class
sufficient statistics obtained by using weighted sums
_d wd= _stead of sums _d" For example I= = _, ted=,

=it = ¼ E,'°,.=,,, I,,..a== = E,'_,= ]'[, &,.i., and
AZ"_¢ = I'I_ AZdl, ''_'" Substituting these statistics into
any previous clam likelihood function I,(EIV=TcSc) gives
a weighted likelihood L'(E cIVcT=Sc) and associated new
esthnates and marginak.

At the maxima, the weights wdc should be consistent
with estimates of V = ([¢*e,6'¢]) from £(Vc[ERS_) =
e'(V=IE=Sc)and _(a.lEaS,,) = F=(Z=.AC). To reach
s _ we start out at a random seed and repeatedly
use our current best estimates of V to compute the w,c,
and then use the w,= to re-estimate the V, stopping when
they both predict each other. Typically this takes 10 -
I00 iterations. This procedure will converge from any
starting point, but converges more slowly near the peak
than second-order methods.

Integrating the joint in R can't be done directly be-
cause the product of a sum in the full likelihood is hard
to decompose, but if we use fractional cases to approxi-
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mate the likelihood

/,(El IVTRS,=)

C

E

__ I] (,,z(E, IV,Zsc))',.
c

holding the to,, fixed, we get an approximate joint:

M ( E RTISw ) _- F3( C)C! F,({I, }. I. C) II M' ( E'TI$c )
¢

Our standard search procedure combines an explicit
search in C with a random search in all the other p_-
rameters. Each trial begins converging from classes built
around C random case pairs. The C is chosen randomly
from a log-normal distribution fit to the Cs of the 6 - I0
best trials seen so far, after trying a fixed range of Cs to
start. We also have developed alternative search proce-
dures which selectively merge and split classes according
to various heuristics. While these usually do better, they
sometimes do much worse.

The marginal joints of the different irish generally
follow a log-normal distribution, al/owing us to estimate
during the search how much longer it will take on average
to find a better peak, and how much better it is likely
lobe.

In the simpler model space $MI where 5c = $: the
computation is order Nf_K, where _ averages over the
search tri_. N is the number of possible peaks, out
of the immense number usually present, that a compu-

tation actually examines. In the covsfiant_s • $_¢t"
where SC = 5v this becomes NK_(17_b + K_).

6.2 Class Hierarchy and ][nheritanee - SR

The above class mixture model space SM can be gener-
alised to a ]_erardfical space SH by replacing the above
set of classes with a tree of classes. Leaves of the tree,
corresponding to the previous classes, can now inherit
specifications of class imrsmeters from =higher" (clo, er
to the root) dames. For the purposes of the parameters
specified at a class, all of the classes below that class
pool their weight into one big class. Parameters auoci-
ated with "irrelevant" attributes are spechSed indepen-
dently at the root. Figure 2 shows how a class tree, this
time with $c = Sv, can better fit the same data as in
Figure 1. See [Hanson et al., 1991] for more about this
coml_lMrison.

The tree of clasps has one root class ,'. Every other
class e has one parent class Pc, and every class has 3c
child classes given by Ccj, where the index ] ranges over
the children of a class. Each child class has a weight

a=j relative to its siblings , with _[_:" acs" - I, and an
absolute weight ac._ = acjac, with a, =l.-

While other approaches to inheritance are pc_ible,
here each class is given an associated set of attributes
_c, which it predicts independently through a likeli-
hood L(E,(£c)IVcT¢$c) and which no cls_, above or be-
low it predicts. To avoid having redundant trees which
describe the same likelihood function, only £, can be
empty, and non-leaves must have Jc > 2.

We need to ensure that all attributes are predicted
somewhere at or above each leaf class. So we call .4_

__m _. I

Figure 2: AutoClass IV Finds Class Tree × I0 **° Better
Lists of attribute numbers denote covariant b]oc_ within
each cla_, and the ovals now indicate the leaf classes,

the set of attributes which are predicted at or below
sach class, start with ,4, = K, and then recursively par-
tition each .4¢ into attributes £c "kept _ at that class,
and hence predicted directly by it, and the remal,l,g
attributes to be predicted at or below each child .4¢._.
For leaves ._ ffi £_.

Expressed in terms of the leaves the likelihood is again
a mixture:

I,(EdVTSa,)= _ a,. _I I,(E,(£,,)IV_,T,,$c)
¢:J.=O c'=¢,P.,Pp.,...,r

*nowing the same EM procedure as before to find local

maxim_. The case weights here w_, = 5"_" ,nc.j, (with
_r, -- 1) sum llbe in the fist mixture case and define

class statistics E_(£c) = UJ,E¢..i [Xi.,toc_].
We also choose a similar prior, though it must now

specify the £c as we//:

d.(VrlSx) =

1"I d,(],£. I _S8)3=.' da(Ua.,l],.)d,r(KT, l £,..qc)

d,(:,_:, 1.4.S,) = F=(], - _. _-_ ¥ _=)-_E,.'

for all subsets £, of.4¢ ofsisein the range [I - _.,Ac],
except that F3(3c - I) is replaced by 6o_. when .A¢ = _c.
Note that this prior is recureive, as the prior for each
class depends on the what attributes have been chosen
for its parent class.

This prior says that each possible number of attributes
kept is equally likely, and given the number to be kept
each particular combination is equally li_dy. This prior
prefers the simpler cases of £c = .4¢ and Ec = I and so
again offers a significance test. In comparing the hypoth-
esis that all attributes are kept at class with a hypothesk
that all but one particular attribute will be kept at that
class, this prior penali, es the a11-but-one hypothesk in
proportion to the number of attributes that could have
been kept instead.

The marginal joint becomes

M(ERTIS. ) =_

_I d_r(],£, J,4_$_)Jet Ft(UIc.,, I,, 3¢)M'(E¢(£,)T,I$c)
c j
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and

estimates are again £(VclERS;I) = Z'(V'clEC(IC.e)Sc)
and £(acjiERSx) = F2(Icj, Ic, Jc).

In the general case of SA_', where $¢ = Sv, computa-

tion again takes NK_(I]_'_b + K-"_b2),except that the 7 is
now also an average of, for each k, the number of classes
in the hierarchy which use that k (i.e., have k E _¢).
Since this is usually less than the number of leaves, the

model SH is typically cheaper to compute than SM for
the same number of leaves.

Searching in this most complex space SRv is challengo
ing. There are a great many search dimensions where one
can trade off simplicity and fit to the data, and we have

only begun to explore possible heuristics. Blocks can be
merged or split, classes can be merged or split, blocks
can be promoted or demoted in the class tree, EM itera-
tions can be continued farther, and one can try a random
restart to seek a new peak. But even the simplest ap-

proaches to searching a more general model space seem
to do better than smarter searches of simpler spaces.

6 Conclusion

The Bayesian approach to unsupervised classification de-
scribes each class by a likelihood function with some free

parameters, and then adds in a few more parameters to
describe how those classes are combined. Prior expects-

tions on those parameters VT combine with the evidence
E to produce s marginal joint M(ERT[S) which is used
as an evaluation function for classifications in a region

R near some local maxima of the continuous parameters
V and with some choice of discrete model parameters T.

This evaluation function optimally tr_les off the com-

plexity of the model with its fit to the data, and is used
to guide an open-ended search for the best classification.

In this paper we have applied this theory to model
spaces of varying complexity in unsupervised classifica-
tion. For each space we provides a likelihood, prior,
marginal joint, and estimates. This should provide
enough information to allow anyone to reproduce Au-
toClass, or to use the same evaluation functions in other
contexts where these models might be relevant.
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